

1 **SpudDB: A database for accessing potato genomic data**

2 John P. Hamilton^{1,2}, Julia Brose², and C. Robin Buell^{1,2,3,4,*}

3 ¹ Department of Crop & Soil Sciences, University of Georgia, Athens, GA, 30602, USA

4 ² Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA

5 ³ Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, 30602, USA

6 ⁴ The Plant Center, University of Georgia, Athens, GA, 30602, USA

7

8

9 *Corresponding author: Center for Applied Genetic Technologies, 111 Riverbend Rd, University of
10 Georgia, Athens, GA 30602; +1-706-432-4021; Robin.Buell@uga.edu

11

12 Keywords: Potato, diversity, co-expression, annotation

13

14

15 **Abstract**

16
17 Potato is a key food crop with a complex, polyploid genome. Advancements in sequencing technologies
18 coupled with improvements in genome assembly algorithms have enabled generation of phased,
19 chromosome-scale genome assemblies for cultivated tetraploid potato. The SpudDB database houses
20 potato genome sequence and annotation, with the doubled monoploid DM 1-3 516 R44 (hereafter DM)
21 genome serving as the reference genome and haplotype. Diverse annotation data types for DM genes
22 are provided through a suite of Gene Report Pages including gene expression profiles across 438 potato
23 samples. To further annotate potato genes based on expression, 65 gene co-expression modules were
24 constructed that permit identification of tightly co-regulated genes within DM across development and
25 responses to wounding, abiotic stress, and biotic stress. Genome browser views of DM and 28 other
26 potato genomes are provided along with a download page for genome sequence and annotation. To link
27 syntenic genes within and between haplotypes, syntelogs were identified across 25 cultivated potato
28 genomes. Through access to potato genome sequences and associated annotations, SpudDB can enable
29 potato biologists, geneticists and breeders to continue to improve this key food crop.

30 **Introduction**

31
32 *Solanum* Sect Petota contains approximately 100 species including *Solanum tuberosum* L. (cultivated
33 potato) (Spooner, 2009). Potatoes were domesticated from wild potato species approximately 8,000-
34 10,000 years ago in the Andes (Spooner et al., 2005) and have since spread throughout the world
35 serving as a critical food crop. Potato tubers are modified underground stem structures and are clonally
36 derived. While tubers serve as a mode of asexual reproduction and as a mechanism to overwinter and
37 evade predation, the reliance on clonal propagation results in high genetic load due to the lack of a
38 meiotic sieve to remove deleterious and dysfunctional alleles.

39
40 Most cultivated potato cultivars are autotetraploids ($2n = 4x = 48$) and due to its complex
41 genome, the first potato genome sequenced was that of *S. tuberosum* Group Phureja DM 1-3 516 R44
42 (hereafter DM), a doubled monoploid derived from a diploid clone via anther culture (Paz & Veilleux,
43 1999). Its homozygosity permitted assembly in 2011 of the DM genome via *de novo* assembly of short-
44 read sequences prior to development of third generation long read sequencing platforms (Potato
45 Genome Sequencing Consortium et al., 2011). Access to the DM reference genome sequence, albeit a
46 single haplotype, permitted an explosion of genome-enabled discoveries in potato including
47 development of SNP-chip genotyping arrays (Felcher et al., 2012; Vos et al., 2015), assessment of potato
48 structural genome diversity (Hardigan et al., 2015, 2016), understanding genes underlying domestication
49 (Hardigan et al., 2017), discovery of genes associated with agronomic traits (e.g., (Sharma et al., 2018;
50 Klaassen et al., 2019; Khlestkin et al., 2020; Prodhomme et al., 2020)), and furthering our knowledge of
51 potato biology (e.g. (Peterson et al., 2016; Ye et al., 2018; Enciso-Rodriguez et al., 2019; Laimbeer et al.,
52 2020; Zhang et al., 2020; Eggers et al., 2021; Ma et al., 2021; Ramírez Gonzales et al., 2021)). With
53 respect to the genome landscape of cultivated tetraploids, whole genome resequencing coupled with
54 alignments to the DM reference genome revealed a high degree of heterozygosity coupled with
55 rampant structural variation attributable to mutation and wild species introgressions (Hardigan et al.,
56 2017).

57
58 In the last 15 years, the advances in sequencing technologies, enhanced genome assembly
59 algorithms, and increased computing capacities have resulted in generation of multiple potato genome
60 sequences, including heterozygous diploid genomes ($2n = 2x = 24$) as well as phased, tetraploid genomes.
61 Some of the first cultivated potato genomes available subsequent to DM were diploid or dihaploid ($2n =$
62 $2x = 24$) genomes derived from cultivated tetraploids (van Lieshout et al., 2020; Zhou et al., 2020;
63 Jayakody et al., 2023). With access to long-read sequencing platforms and improved algorithms that can
64 phase genome assemblies in the last few years, phased tetraploid genomes are now feasible (Hoopes et
65 al., 2022; Sun et al., 2022; Bao et al., 2023) confirming earlier estimates of genome heterogeneity, allelic
66 diversity, structural variation, wild species introgressions, and a high degree of dysfunctional and
67 deleterious alleles that were derived from short-read sequencing alignments to the DM reference
68 genome. While most potato genome sequences have been generated from cultivated potato clones, a
69 subset of wild potato species (Leisner et al., 2018; Yan et al., 2021; Tang et al., 2022; Feng et al., 2024;
70 Hosaka et al., 2024) have been sequenced. Central to these emerging genome sequences was updating
71 the DM reference genome to a chromosome-scale using long-read sequences coupled with Hi-C data
72 that was re-annotated using RNA-sequencing (RNA-seq) and full-length cDNA sequences, greatly
73 improving the quality of the genome sequence and the gene annotation (Pham et al., 2020).

74
75 Genome and genetic data for potato are housed in a limited number of databases. The PoMaMo
76 database included molecular maps, genome sequences, and suite tools (Meyer et al., 2005); however, it
77 is no longer available. A subset of potato genomic data is available on the Solanaceae Genomics

78 Network (Fernandez-Pozo et al., 2015), yet this database is highly focused on tomato. Potato genome
79 sequences are also available at the SpudDB (Hirsch et al., 2014) which was created for breeders to mine
80 genotype and phenotype diversity data primarily derived from North American cultivated potato as part
81 of the USDA-funded SolCAP project (Douches et al., 2014). With the recent availability of extensive
82 chromosome-scale genome assemblies, we have updated SpudDB with new content, features, and
83 access tools.

84

85 **Overview and Navigating SpudDB**

86

87 SpudDB provides access to potato genome sequences via genome browsers, search tools, download
88 pages, and diverse annotation data types for the DM v6.1 reference genome. The home page of SpudDB
89 (<https://spuddb.uga.edu/index.shtml>) highlights recent updates, a summary of the content of the
90 database including links to literature associated with large datasets in SpudDB, and a quick search tool
91 for DM v6.1 genes either by gene identifier or keyword. The menu provides access to the JBrowse2
92 genome browsers (Diesh et al., 2023), database search tools, dataset download pages, and the results of
93 various analyses such as gene expression. Archived updates of SpudDB are available on the What's New
94 page (<https://spuddb.uga.edu/new.shtml>).

95

96 To facilitate access to potato genome sequences, we have deployed a JBrowse2 genome browser
97 (Diesh et al., 2023) hosting 29 total genomes including the DM v6.1 reference genome (Pham et al.,
98 2020), phased diploid breeding line RH 89-039-16 (Zhou et al., 2020), phased tetraploid genomes
99 (Hoopes et al., 2022; Sun et al., 2022; Bao et al., 2023), *S. chacoense* M6--a source of self-compatibility
100 (Jansky et al., 2011; Eggers et al., 2021; Ma et al., 2021), and *S. candalleanum*, the progenitor of
101 cultivated potato (Spooner et al., 2005). A suite of search tools for the DM v6.1 gene annotation is
102 located on the Search Tool Page (https://spuddb.uga.edu/integrated_searches.shtml) including a BLAST
103 (v2.2.26) (Altschul et al., 1997) search tool, functional annotation keyword search tool, InterPro
104 identifier and key word search tool, Gene Ontology identifier and key word search tool, Pfam accession
105 search tool, and a sequence identifier search tool. On the top menu bar is the Analyses tab which
106 provides links to DM specific analyses such as gene expression, gene co-expression, and potato
107 syntelogs. A Contact tab is also present to permit users to send feedback. A Download tab on the top
108 menu bar contains links to webpages that describe available genome datasets including:

- 109 • DM v6.1 genome assembly, annotation, gene expression matrix, and variant calls
- 110 • Eight phased tetraploid genome assemblies and annotation (cv. Altus, Atlantic, Avenger, Castle
111 Russet, Colomba, Cooperation-88, Otava, Sputna)
- 112 • Twenty phased dihaploid genome assemblies and annotation from the Potato 2.0 project
- 113 • Diploid RH89-039-16 (v3) genome assembly and annotation
- 114 • Doubled monoploid DM1S1 genome assembly, annotation, and variant calls
- 115 • Updated *S. chacoense* M6 (v5.0) genome assembly and annotation
- 116 • *S. candalleanum* (v1.0) genome assembly and annotation
- 117 • Archived *S. chacoense* M6 (v4.1) genome assembly and annotation
- 118 • Archived DM (PGSC v4.03/v4.04) genome assembly and annotation
- 119 • Tomato (*Solanum lycopersicum*) M82 (SollycM82_v1) genome assembly and annotation

120

121 In addition, links to the genome browser for each of these assemblies are provided via its download
122 webpage.

123

124 **DM v6.1 as the reference genome for potato**

125
126 The DM v6.1 reference genome serves as the foundation for the potato community. Not only is it a high-
127 quality, chromosome-scale genome assembly (Pham et al., 2020), it represents a single haplotype that
128 serves to link alternative haplotypes present in highly heterozygous, phased diploid and tetraploid
129 genome assemblies thereby linking alleles and syntelogs. The 741 Mb DM v6.1 genome was scaffolded
130 into 12 chromosomes and annotated using extensive transcript evidence, including full-length cDNAs,
131 resulting in 40,652 working protein-coding genes encoding 52,953 gene models and 32,917 high-
132 confidence protein-coding genes encoding 44,851 gene models (Pham et al., 2020). The DM genes have
133 been annotated for a suite of annotation data types to aid in understanding gene function which are
134 available on individual Gene Report Pages for each gene. These include putative functional description
135 assigned through BLAST searches against the *Arabidopsis thaliana* proteome, Swiss-Prot plant proteins,
136 and the Pfam database as well as gene expression abundances. Further annotations include Gene
137 Ontology classifications, BLAST searches against UniRef database, gene co-expression module
138 assignment, and syntelogs across cultivated potato genomes.
139

140 The major update to SpudDB was expansion of gene expression profiles to include additional
141 RNA-sequencing (RNA-seq) datasets from a broader group of developmental stages, tissues, and
142 treatments. To obtain relevant expression datasets, the National Center for Biotechnology Information
143 Sequence Read Archive (Sayers et al., 2022) was queried for *S. tuberosum*. Initial filtering for paired end
144 RNA-seq datasets resulted in 4,571 Sequence Read Archive accessions. These were then filtered for
145 sequencing platform requiring the Illumina platform, RNA-seq library, minimum of 20 million reads,
146 paired end sequences, and informative sample description. A subset of 456 accessions were
147 downloaded and quality checked using FastQC (v0.12.1; (Wingett SW, 2018)) and MultiQC (Ewels et al.,
148 2016) using default parameters and were then classified based on organ and treatment/conditions
149 [Organ: fruit, flower, leaf, root, seedling, stem, tuber; Treatment/Conditions: abiotic stress, biotic stress,
150 development, photoperiod, wounding] based on the BioProject and BioSample description. Expression
151 abundances were calculated using kallisto quant (Bray et al., 2016) with the parameter -t 8 and
152 represented as transcripts per million (TPMs). All of the RNA-seq samples downloaded for the gene
153 expression analysis were clustered to identify mis-labeled samples and 18 accessions were removed
154 based on their PCC or PCA clustering generated using the R commands: prcomp (R Core Team, 2023)
155 with default parameters and cor with method option set to pearson, respectively, with aberrant tissue
156 types. The final RNA-seq dataset has 438 samples. Of the 40,652 DM genes, 39,651 are expressed at ≥ 0
157 TPM in at least one sample. Expression abundances are available for the entire DM genome via the Gene
158 Expression page (<https://spuddb.uga.edu/expression.shtml>) or individually for each gene via the Gene
159 Report Page.
160

161 **Gene co-expression**

162
163 Gene co-expression network modules were generated from all representative working gene models
164 using Simple Tidy GeneCoEx with default parameters ([Li et al., 2023](#)). Co-expression modules were built
165 using all 438 RNA-seq libraries (156 samples after replicate averaging) representing a diverse set of
166 tissues and conditions/treatments including a tuber developmental series, abiotic stress, biotic stress,
167 and a set of photoperiod conditions (Fig. 1a). To build the correlation network edge table, only edges
168 with $r > 0.8$ were used, which corresponded to the top 1% of all edges. A network object was then
169 constructed using the 'graph_from_data_frame()' function of igraph (Csárdi et al.) with option directed
170 set to F. Graph based clustering was performed using the Leiden algorithm (implemented as the
171 'cluster_leiden()' function in R as part of the igraph package(Csárdi et al.) with a resolution parameter of
172 4 and objective_function parameter set to modularity. Of the 40,652 DM genes, 36,025 were placed into

173 co-expression modules based on their expression pattern generating 65 modules containing between 5
174 and 2,943 genes.

175
176 The co-expression modules can then be used to identify genes with expression patterns
177 associated with specific tissues or treatments. Tuber bulking relies on the accumulation of amylopectin
178 in the amyloplasts that is catalyzed by starch synthases (Nazarian-Firouzabadi & Visser, 2017). Starch
179 synthase V (Soltu.DM.02G027020.1) was previously identified as vital to tuber bulking (Li et al., 2024). In
180 the co-expression analyses, starch synthase V is a member of Module 6 which has peak expression in the
181 tuber short day time course sample collected at 3pm. The expression of starch synthase V was plotted in
182 red along with the other genes in module 6 showing high expression during later stages of tuber
183 development and the time course data sets (Fig. 1b). This expression profile is expected based on the
184 activity of starch synthase V in amylopectin accumulation.

185
186 Co-expression modules can also be mined to identify additional genes involved in biological
187 processes. For example, Module 11 has peak expression in wounded tubers after 3 days and generally
188 high expression in all the wounded tubers after 1 day (Fig. 1a). Of the highly expressed genes, there was
189 one MYB transcription factor. MYB transcription factors are known to be involved in wound healing
190 through their regulation of suberin biosynthesis (Han et al., 2024). This uncharacterized MYB
191 transcription factor (Soltu.DM.04G025530.1) exhibits an expression pattern with high expression after
192 14 days of wounding and could play an important role in wound healing in potato (Fig. 1c). Co-
193 expression module membership for the entire DM genome can be obtained via the Gene Co-expression
194 page (<https://spuddb.uga.edu/coexpression.shtml>) and the Gene Report page for each individual gene.

195
196 **Potato genome sequences and linking across haplotypes**

197 To facilitate traversing between alleles within and between genome assemblies of cultivated potato, we
198 determined syntenic relationships between 25 cultivated potato genomes. Using DM as the reference
199 genome, the representative gene models from four phased tetraploid genomes (Hoopes et al., 2022;
200 Sun et al., 2022; Bao et al., 2023) and 20 phased dihaploid genomes from the Potato 2.0 project
201 (<https://potatov2.github.io/>) were input into GENESPACE (Lovell et al., 2022) and syntelogs for each DM
202 gene were identified. To account for the ploidy of the phased genomes, the ploidy parameter of the
203 'init_genespace' function was set to "1" for the DM v6.1 genome, "2" for the 20 dihaploid genomes,
204 and "4" for the four tetraploid genomes. Syntelogs for each gene are viewable on the Gene Report
205 Page and as a track on the DM v6.1 JBrowse.

206
207 **DM v6.1 JBrowse**

208 The DM v6.1 reference genome is available as a JBrowse2 instance (Diesh et al., 2023)(Fig. 2). Tracks
209 available include reference sequence, loci and gene models with separate tracks for representative high
210 confidence gene models, high confidence gene models, and working gene models. Gene expression data
211 is available as RNA-seq coverage tracks of the 438 RNA-seq samples that were generated using HISAT2
212 (Kim et al., 2019) that are grouped based on classification. Syntelogs from GENESPACE (v1.3.1; (Lovell et
213 al., 2022) are provided as well. For variant data, SNPs from genotyping-by-sequencing using a set of
214 57,054 SureSelect baits (Uitdeewilligen et al., 2013) and the SolCAP SNP project that utilized RNA-seq and
215 draft genome sequence to develop an Affymetrix SNP array platform (Hamilton et al., 2011) are
216 provided to link positions in the DM genome with widely used genetic markers which are in use in
217 community-based genotyping platforms. Individual JBrowse instances are also available for 28 other
218 potato genomes [Tetraploid cultivars: Atlantic, Castle Russet, Cooperation-88, Otava; Diploid/Dihaploids:
219 RH and 20 dihaploids from the Potato 2.0 project (<https://potatov2.github.io/>), Doubled Monoploid:
220 DM1S1; Wild species: *S. chacoense* M6, *S. candolleanum*] and available via the top menu bar or via links

221 on their individual Download page.
222

223 **SpudDB Gene Report Pages**

225 For a biologist, access to an array of annotation data types can facilitate understanding gene function.
226 For each DM gene model, a Gene Report Page is available either through a search via gene identifier,
227 key word identifier, or from a locus or gene model link in the JBrowse. The SpudDB Gene Report page
228 (Fig. 3) has a summary of each gene model including putative function description, locus name, and
229 alternative splice form (gene model). Basic metrics for each gene model include chromosome or scaffold
230 location, coordinates on the DM v6.1 genome for the mRNA (predicted transcript = gene model), coding
231 sequence length, and predicted amino acid length. The sequences of the genomic sequence, transcript
232 sequence, coding sequence, and predicted protein sequence are provided in FASTA format. A link to the
233 DM v6.1 JBrowse genome browser for each gene model is also included in the Gene Report Page. Gene
234 ontology classifications are also provided as are searches against UniRef100. To facilitate development
235 of targeted simple molecular markers, putative Simple Sequence Repeats (SSRs) for the locus are
236 available with their coordinates.

237
238 A table of gene expression abundances for each gene model is provided along with its run
239 identifier from National Center for Biotechnology Information Sequence Read Archive, short description
240 of the sample, classification of the study, and expression abundance in TPMs. Co-expression module
241 assignment is also listed with the co-expression module membership and the module peak expression
242 assignment. To facilitate traversing from DM to other potato genomes, syntelogs from the potato
243 syntelog analysis are listed for each gene.

244
245 **Improvements in architecture**
246 SpudDB has undergone a number of back-end improvements and enhancements since the last release
247 to support future updates and to continue to provide useful tools to the user community. The entire
248 SpudDB website has been converted to use HTTPS for increased compatibility and security. The search
249 tools and Gene Report pages have been migrated from a PostgreSQL instance to SQLite for increased
250 performance and reliability. The number of genome browsers on SpudDB had grown from the original
251 MySQL based Gbrowse1 for the legacy DM annotation to include a number of JBrowse1 and JBrowse2
252 instances for the new and updated genomes added to SpudDB. All of these have been replaced by a
253 single, unified JBrowse2 instance which is easier to maintain and provides an enhanced user experience.

254
255 **Future Directions**
256 As a substantial number of potato researchers are geneticists and breeders, SpudDB serves a key
257 function in provision of genomic data not only from the DM reference genome but also from new
258 emerging genome assemblies. We anticipate that more potato genome sequences and annotation will
259 continue to be generated and made available to the public in the coming years. The back-end
260 improvements to SpudDB, especially the use of JBrowse 2, will enable streamlined addition of new
261 genomes to SpudDB. These assemblies, and importantly, the alleles in these genomes can be linked
262 through synteny with new GENESPACE builds with the addition of new genomes to SpudDB. Continued
263 development of new functional annotation datatypes will facilitate data-mining the potato genome and
264 can readily be added to the Gene Report page for each gene. We also anticipate that development of a
265 pan-genome for potato that captures novel structural variation in cultivated potato will provide new
266 resources for potato researchers.

267
268 **Data availability**

269 All data are freely available at SpudDB (<https://spuddb.uga.edu>) for searching and download. We have
270 also deposited the new gene expression, gene co-expression, and syntelog datasets in Figshare under
271 <https://doi.org/10.6084/m9.figshare.27471918.v1>.

272
273 **Funding**
274 We gratefully acknowledge funding to C.R.B. from the National Science Foundation (IOS-2140176), U.S.
275 Department of Agriculture (2019-51181-30021), Georgia Research Alliance, Georgia Seed Development,
276 and the University of Georgia.
277

278 **Conflicts of interest**
279 The authors declare no conflict of interest.
280

281 REFERENCES

282 Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D.J. (1997). Gapped
283 BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic acids
284 research*, 25, 3389–3402

285 Bao, Z., Li, C., Li, G., Wang, P., Peng, Z., Cheng, L., Li, H., Zhang, Z., Li, Y., Huang, W., Ye, M., Dong, D.,
286 Cheng, Z., VanderZaag, P., Jacobsen, E., Bachem, C.W.B., Dong, S., Zhang, C., Huang, S., & Zhou,
287 Q. (2023). Genome architecture and tetrasomic inheritance of autotetraploid potato. *Molecular
288 Plant*, 16, 1866

289 Bray, N.L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq
290 quantification. *Nature Biotechnology*, 34, 525–527

291 Csárdi, G., Nepusz, T., Traag, V., Horvát, S., & Zanini, F. igraph: Network Analysis and Visualization in R.
292 2023. URL <https://CRAN.R-project.org>,

293 Diesh, C., Stevens, G.J., Xie, P., De Jesus Martinez, T., Hershberg, E.A., Leung, A., Guo, E., Dider, S., Zhang,
294 J., Bridge, C., Hogue, G., Duncan, A., Morgan, M., Flores, T., Bimber, B.N., Haw, R., Cain, S., Buels,
295 R.M., Stein, L.D., & Holmes, I.H. (2023). JBrowse 2: a modular genome browser with views of
296 synteny and structural variation. *Genome Biology*, 24, 74

297 Douches, D., Hirsch, C.N., & Manrique-Carpintero, N.C. (2014). The contribution of the Solanaceae
298 coordinated agricultural project to potato breeding. *Potato Research*, 57, 215–224

299 Eggers, E.-J., van der Burgt, A., van Heusden, S.A.W., de Vries, M.E., Visser, R.G.F., Bachem, C.W.B., &
300 Lindhout, P. (2021). Neofunctionalisation of the Sli gene leads to self-compatibility and
301 facilitates precision breeding in potato. *Nature Communications*, 12, 4141

302 Enciso-Rodriguez, F., Manrique-Carpintero, C., N., Nadakuduti, S., S., Buell, R., C., Zarka, D., Douches, & .
303 D. (2019). Overcoming Self-Incompatibility in Diploid Potato Using CRISPR-Cas9. *Frontiers in
304 Plant Science*, 10, 376

305 Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for
306 multiple tools and samples in a single report. *Bioinformatics*, 32, 3047–3048

307 Felcher, K.J., Coombs, J.J., Massa, A.N., Hansey, C.N., Hamilton, J.P., Veilleux, R.E., Buell, C.R., & Douches,
308 D.S. (2012). Integration of two diploid potato linkage maps with the potato genome sequence.
309 *PloS one*, 7, e36347

310 Feng, Y., Zhou, J., Li, D., Wang, Z., Peng, C., & Zhu, G. (2024). The haplotype-resolved T2T genome
311 assembly of the wild potato species *Solanum commersonii* provides molecular insights into its
312 freezing tolerance. *Plant Communications*, 100980

313 Fernandez-Pozo, N., Menda, N., Edwards, J.D., Saha, S., Tecle, I.Y., Strickler, S.R., Bombarely, A., Fisher-
314 York, T., Pujar, A., Foerster, H., Yan, A., & Mueller, L.A. (2015). The Sol Genomics Network (SGN)-
315 -from genotype to phenotype to breeding. *Nucleic Acids Research*, 43, D1036-41

316 Hamilton, J.P., Hansey, C.N., Whitty, B.R., Stoffel, K., Massa, A.N., Van Deynze, A., De Jong, W.S.,
317 Douches, D.S., & Buell, C.R. (2011). Single nucleotide polymorphism discovery in elite North
318 American potato germplasm. *BMC genomics*, 12, 302

319 Han, Y., Yang, R., Zhang, X., Wang, Q., Wang, Y., Li, Y., Prusky, D., & Bi, Y. (2024). MYB24, MYB144, and
320 MYB168 positively regulate suberin biosynthesis at potato tuber wounds during healing. *The
321 Plant Journal*, 119, 1239–1257

322 Hardigan, M.A., Bamberg, J., Buell, C.R., & Douches, D.S. (2015). Taxonomy and Genetic Differentiation
323 among Wild and Cultivated Germplasm of *Solanum* sect. Petota. *The plant genome*, 8,
324 eplantgenome2014.06.0025

325 Hardigan, M.A., Crisovan, E., Hamilton, J.P., Kim, J., Laimbeer, P., Leisner, C.P., Manrique-Carpintero,
326 N.C., Newton, L., Pham, G.M., Vaillancourt, B., Yang, X., Zeng, Z., Douches, D.S., Jiang, J.,
327 Veilleux, R.E., & Buell, C.R. (2016). Genome Reduction Uncovers a Large Dispensable Genome
328 and Adaptive Role for Copy Number Variation in Asexually Propagated *Solanum tuberosum*. *The
329 Plant Cell*, 28, 388–405

330 Hardigan, M.A., Laimbeer, F.P.E., Newton, L., Crisovan, E., Hamilton, J.P., Vaillancourt, B., Wiegert-
331 Rninger, K., Wood, J.C., Douches, D.S., Farré, E.M., Veilleux, R.E., & Buell, C.R. (2017). Genome
332 diversity of tuber-bearing *Solanum* uncovers complex evolutionary history and targets of
333 domestication in the cultivated potato. *Proceedings of the National Academy of Sciences*, 114,
334 E9999–E10008

335 Hirsch, C.D., Hamilton, J.P., Childs, K.L., Cepela, J., Crisovan, E., Vaillancourt, B., Hirsch, C.N., Habermann,
336 M., Neal, B., & Buell, C.R. (2014). Spud DB: A resource for mining sequences, genotypes, and
337 phenotypes to accelerate potato breeding. *The Plant Genome*, 7.
338 <https://doi.org/10.3835/plantgenome2013.12.0042>

339 Hoopes, G., Meng, X., Hamilton, J.P., Achakkagari, S.R., de Alves Freitas Guesdes, F., Bolger, M.E.,
340 Coombs, J.J., Esselink, D., Kaiser, N.R., Kodde, L., Kyriakidou, M., Lavrijssen, B., van Lieshout, N.,
341 Shereda, R., Tuttle, H.K., Vaillancourt, B., Wood, J.C., de Boer, J.M., Bornowski, N., Bourke, P.,
342 Douches, D., van Eck, H.J., Ellis, D., Feldman, M.J., Gardner, K.M., Hopman, J.C.P., Jiang, J., De
343 Jong, W.S., Kuhl, J.C., Novy, R.G., Oome, S., Sathuvalli, V., Tan, E.H., Ursum, R.A., Vales, M.I.,
344 Vining, K., Visser, R.G.F., Vossen, J., Yencho, G.C., Anglin, N.L., Bachem, C.W.B., Endelman, J.B.,
345 Shannon, L.M., Strömvik, M.V., Tai, H.H., Usadel, B., Buell, C.R., & Finkers, R. (2022). Phased,
346 chromosome-scale genome assemblies of tetraploid potato reveal a complex genome,
347 transcriptome, and predicted proteome landscape underpinning genetic diversity. *Molecular
348 plant*, 15, 520–536

349 Hosaka, A.J., Sanetomo, R., & Hosaka, K. (2024). A de novo genome assembly of *Solanum
350 bulbocastanum* Dun., a Mexican diploid species reproductively isolated from the A-genome
351 species, including cultivated potatoes. *G3*, 14, jkae080

352 Jansky, H., Chung, S., Y., Kittipadukal, & P. (2011). M6: A Diploid Potato Inbred Line for Use in
353 Breeding and Genetics Research. *Journal of Plant Registrations*, 8, 195–199

354 Jayakody, T.B., Hamilton, J.P., Jensen, J., Sikora, S., Wood, J.C., Douches, D.S., & Buell, C.R. (2023).
355 Genome Report: Genome sequence of 1S1, a transformable and highly regenerable diploid
356 potato for use as a model for gene editing and genetic engineering. *G3*, 13, jkad036

357 Khlestkin, V.K., Erst, T.V., Rozanova, I.V., Efimov, V.M., & Khlestkina, E.K. (2020). Genetic loci
358 determining potato starch yield and granule morphology revealed by genome-wide association
359 study (GWAS). *PeerJ*, 8, e10286

360 Kim, D., Paggi, J.M., Park, C., Bennett, C., & Salzberg, S.L. (2019). Graph-based genome alignment and
361 genotyping with HISAT2 and HISAT-genotype. *Nature Biotechnology*, 37, 907–915

362 Klaassen, M.T., Willemsen, J.H., Vos, P.G., Visser, R.G.F., van Eck, H.J., Maliepaard, C., & Trindade, L.M.
363 (2019). Genome-wide association analysis in tetraploid potato reveals four QTLs for protein
364 content. *Molecular Breeding*, 39, 151

365 Laimbeer, F.P.E., Bargmann, B.O.R., Holt, S.H., Pratt, T., Peterson, B., Doulis, A.G., Buell, C.R., & Veilleux,
366 R.E. (2020). Characterization of the F Locus Responsible for Floral Anthocyanin Production in
367 Potato. *G3*, 10, 3871–3879

368 Leisner, C.P., Hamilton, J.P., Crisovan, E., Manrique-Carpintero, N.C., Marand, A.P., Newton, L., Pham,
369 G.M., Jiang, J., Douches, D.S., Jansky, S.H., & Buell, C.R. (2018). Genome sequence of M6, a
370 diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species *Solanum*
371 *chacoense*, reveals residual heterozygosity. *The Plant Journal* 94, 562–570

372 Li, C., Deans, N.C., & Buell, C.R. (2023). “Simple Tidy GeneCoEx”: A gene co-expression analysis workflow
373 powered by tidyverse and graph-based clustering in R. *The Plant Genome*, 16, e20323

374 Li, H., Brouwer, M., Pup, E.D., van Lieshout, N., Finkers, R., Bachem, C.W.B., & Visser, R.G.F. (2024).
375 Allelic variation in the autotetraploid potato: genes involved in starch and steroidal glycoalkaloid
376 metabolism as a case study. *BMC Genomics*, 25, 274

377 van Lieshout, N., van der Burgt, A., de Vries, M.E., Ter Maat, M., Eickholt, D., Esselink, D., van Kaauwen,
378 M.P.W., Kodde, L.P., Visser, R.G.F., Lindhout, P., & Finkers, R. (2020). Solyntus, the New Highly
379 Contiguous Reference Genome for Potato (*Solanum tuberosum*). *G3*, 10, 3489–3495

380 Lovell, J.T., Sreedasyam, A., Schranz, M.E., Wilson, M., Carlson, J.W., Harkess, A., Emms, D., Goodstein,
381 D.M., & Schmutz, J. (2022). GENESPACE tracks regions of interest and gene copy number
382 variation across multiple genomes. *eLife*, 11, eLife.78526

383 Ma, L., Zhang, C., Zhang, B., Tang, F., Li, F., Liao, Q., Tang, D., Peng, Z., Jia, Y., Gao, M., Guo, H., Zhang, J.,
384 Luo, X., Yang, H., Gao, D., Lucas, W.J., Li, C., Huang, S., & Shang, Y. (2021). A nonS-locus F-box
385 gene breaks self-incompatibility in diploid potatoes. *Nature Communications*, 12, 4142

386 Meyer, S., Nagel, A., & Gebhardt, C. (2005). PoMaMo--a comprehensive database for potato genome
387 data. *Nucleic Acids Research*, 33, D666-70

388 Nazarian-Firouzabadi, F., & Visser, R.G.F. (2017). Potato starch synthases: Functions and relationships.
389 *Biochemistry and Biophysics Reports*, 10, 7–16

390 Paz, M.M., & Veilleux, R.E. (1999). Influence of culture medium and *in vitro* conditions on shoot
391 regeneration in *Solanum phureja* monoploids and fertility of regenerated doubled monoploids.
392 *Plant Breeding*, 118, 53–57

393 Peterson, B.A., Holt, S.H., Laimbeer, F.P.E., Doulis, A.G., Coombs, J., Douches, D.S., Hardigan, M.A., Buell,
394 C.R., & Veilleux, R.E. (2016). Self-Fertility in a Cultivated Diploid Potato Population Examined
395 with the Infinium 8303 Potato Single-Nucleotide Polymorphism Array. *The plant genome*, 9.
396 <https://doi.org/10.3835/plantgenome2016.01.0003>

397 Pham, G.M., Hamilton, J.P., Wood, J.C., Burke, J.T., Zhao, H., Vaillancourt, B., Ou, S., Jiang, J., & Buell,
398 C.R. (2020). Construction of a chromosome-scale long-read reference genome assembly for
399 potato. *GigaScience*, 9, gaa100

400 Potato Genome Sequencing Consortium (2011). Genome sequence and analysis of the tuber crop
401 potato. *Nature*, 475, 189–195

402 Prodhomme, C., Vos, P.G., Paulo, M.J., Tammes, J.E., Visser, R.G.F., Vossen, J.H., & van Eck, H.J. (2020).
403 Distribution of P1(D1) wart disease resistance in potato germplasm and GWAS identification of
404 haplotype-specific SNP markers. *TAG. Theoretical and Applied Genetics*, 133, 1859–1871

405 R Core Team. (2023). *R: A Language and Environment for Statistical Computing*. <https://www.R-project.org/>.

407 Ramírez Gonzales, L., Shi, L., Bergonzi, S.B., Oortwijn, M., Franco-Zorrilla, J.M., Solano-Tavira, R., Visser,
408 R.G.F., Abelenda, J.A., & Bachem, C.W.B. (2021). Potato CYCLING DOF FACTOR 1 and its lncRNA
409 counterpart StFLORE link tuber development and drought response. *The Plant Journal*, 105,
410 855–869

411 Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., Connor, R., Funk, K., Kelly, C.,
412 Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F.,
413 Murphy, T., Phan, L., Skripchenko, Y., Tse, T., Wang, J., Williams, R., Trawick, B.W., Pruitt, K.D., &
414 Sherry, S.T. (2022). Database resources of the national center for biotechnology information.
415 *Nucleic Acids Research*, 50, D20–D26

416 Sharma, S.K., MacKenzie, K., McLean, K., Dale, F., Daniels, S., & Bryan, G.J. (2018). Linkage Disequilibrium
417 and Evaluation of Genome-Wide Association Mapping Models in Tetraploid Potato. *G3*, 8, 3185–
418 3202

419 Spooner, D.M. (2009). DNA barcoding will frequently fail in complicated groups: An example in wild
420 potatoes. *American Journal of Botany*, 96, 1177–1189

421 Spooner, D.M., McLean, K., Ramsay, G., Waugh, R., & Bryan, G.J. (2005). A single domestication for
422 potato based on multilocus amplified fragment length polymorphism genotyping. *Proceedings of
423 the National Academy of Sciences of the United States of America*, 102, 14694–14699

424 Sun, H., Jiao, W.-B., Krause, K., Campoy, J.A., Goel, M., Folz-Donahue, K., Kukat, C., Huettel, B., &
425 Schneeberger, K. (2022). Chromosome-scale and haplotype-resolved genome assembly of a
426 tetraploid potato cultivar. *Nature Genetics*, 54, 342–348

427 Tang, D., Jia, Y., Zhang, J., Li, H., Cheng, L., Wang, P., Bao, Z., Liu, Z., Feng, S., Zhu, X., Li, D., Zhu, G.,
428 Wang, H., Zhou, Y., Zhou, Y., Bryan, G.J., Buell, C.R., Zhang, C., & Huang, S. (2022). Genome
429 evolution and diversity of wild and cultivated potatoes. *Nature*, 606, 535–541

430 Uitdewilligen, J.G., Wolters, A.M., D'Hoop B, B., Borm, T.J., Visser, R.G., & van Eck, H.J. (2013). A next-
431 generation sequencing method for genotyping-by-sequencing of highly heterozygous
432 autotetraploid potato. *PLoS One*, 8, e62355

433 Vos, P.G., Uitdewilligen, J.G.A.M.L., Voorrips, R.E., Visser, R.G.F., & van Eck, H.J. (2015). Development
434 and analysis of a 20K SNP array for potato (*Solanum tuberosum*): an insight into the breeding
435 history. *TAG. Theoretical and Applied Genetics*, 128, 2387–2401

436 Wingett SW, A.S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control.
437 *F1000Research*, 7, 1338

438 Yan, L., Zhang, Y., Cai, G., Qing, Y., Song, J., Wang, H., Tan, X., Liu, C., Yang, M., Fang, Z., & Lai, X. (2021).
439 Genome assembly of primitive cultivated potato *Solanum stenotomum* provides insights into
440 potato evolution. *G3*, 11, jkab262

441 Ye, M., Peng, Z., Tang, D., Yang, Z., Li, D., Xu, Y., Zhang, C., & Huang, S. (2018). Generation of self-
442 compatible diploid potato by knockout of S-RNase. *Nat Plants*, 4, 651–654

443 Zhang, X., Campbell, R., Ducreux, L.J.M., Morris, J., Hedley, P.E., Mellado-Ortega, E., Roberts, A.G.,
444 Stephens, J., Bryan, G.J., Torrance, L., Chapman, S.N., Prat, S., & Taylor, M.A. (2020). TERMINAL
445 FLOWER-1/CENTRORADIALIS inhibits tuberisation via protein interaction with the tuberigen
446 activation complex. *The Plant Journal*, 103, 2263–2278

447 Zhou, Q., Tang, D., Huang, W., Yang, Z., Zhang, Y., Hamilton, J.P., Visser, R.G.F., Bachem, C.W.B., Robin
448 Buell, C., Zhang, Z., Zhang, C., & Huang, S. (2020). Haplotype-resolved genome analyses of a
449 heterozygous diploid potato. *Nature Genetics*, 52, 1018–1023

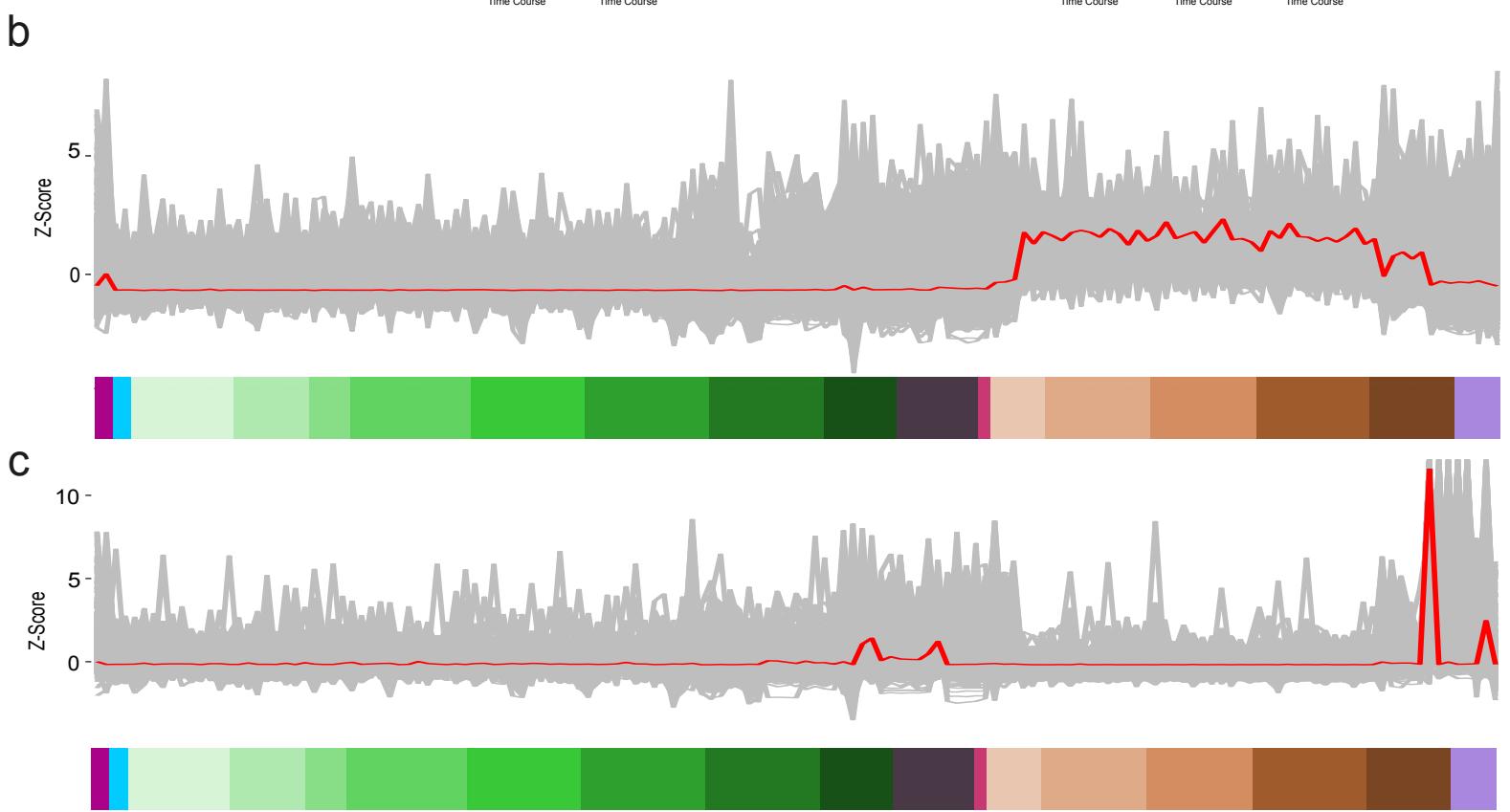
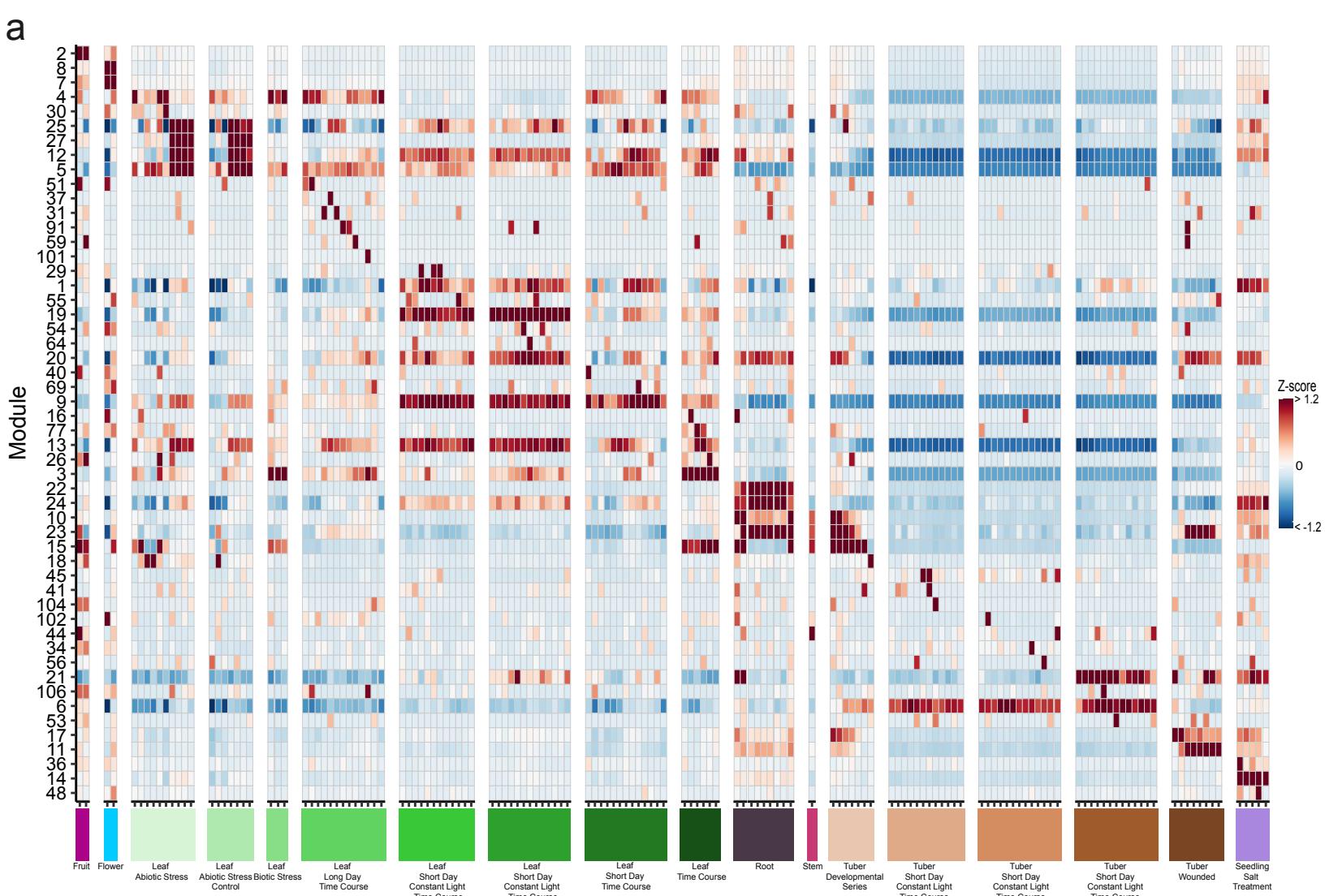
450

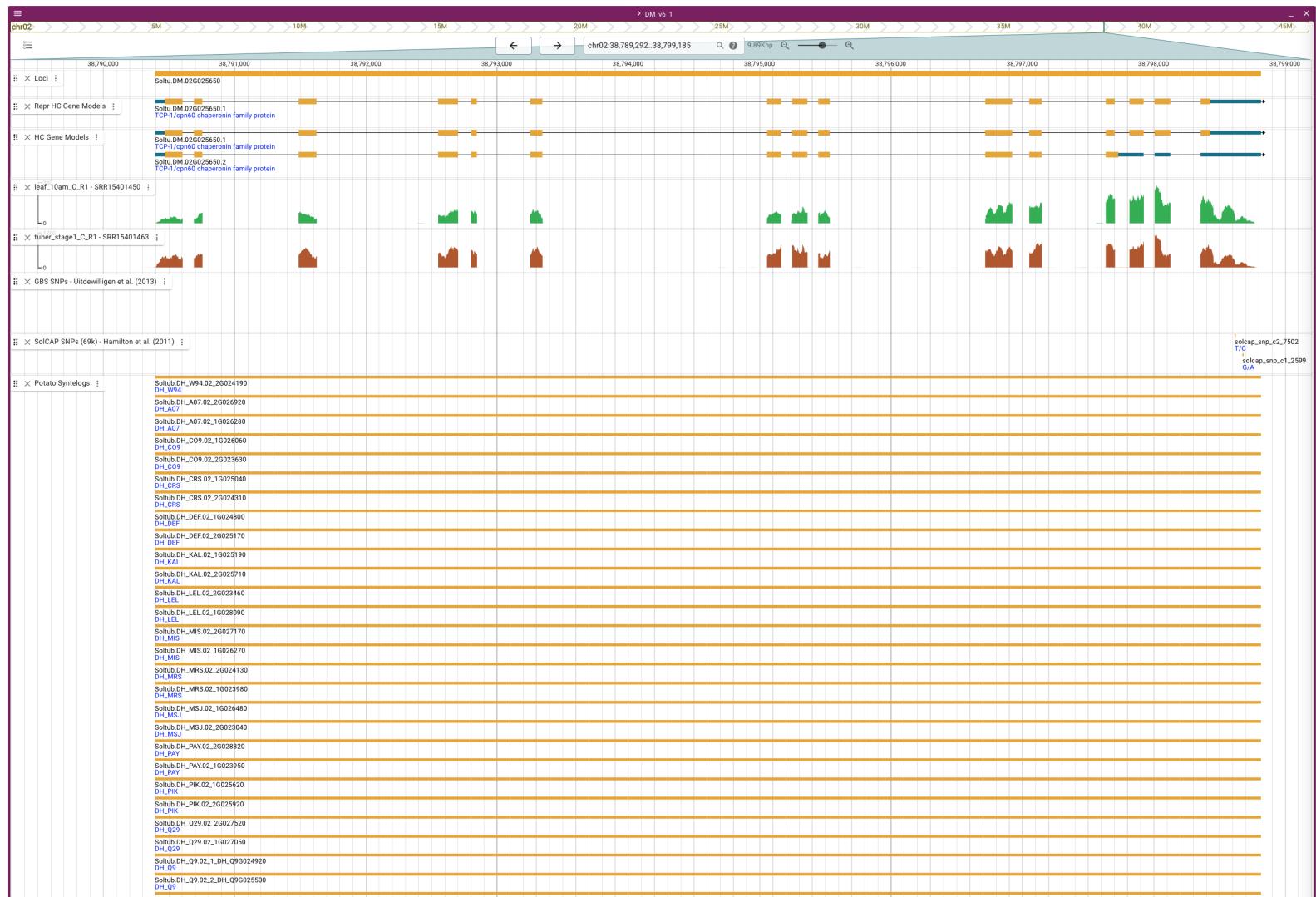
451

452 **Figures**

453

454 **Fig. 1. Gene Co-expression Module Expression.** a) Module expression of 438 RNA-sequencing libraries
455 representing 18 conditions/treatments over seven tissue types. b) Expression of starch synthase V
456 (Soltu.DM.02G027020). Z-score expression of all genes Module 6 is plotted in grey with starch synthase
457 V in red. c) Expression of a MYB transcription factor (Soltu.DM.04G025530). Z-score expression of all
458 genes in Module 11 is plotted in grey with the MYB transcription factor in red.



459


460 **Fig. 2. SpudDB genome browser.** Exemplar JBrowse2 screenshot of the DM v6.1 browser featuring
461 Soltu.DM.02G025650 which encodes a TCP-1/cpn60 chaperonin family protein. The locus, representative high
462 confidence gene model (Soltu.DM.02G025650.1), all high confidence gene models, two RNA-sequencing read
463 alignments (leaf, 10 AM, Rep1 and tuber, stage 1, Rep1), variants from genotyping-by-sequencing and the SolCAP
464 SNP array, and syntelogs within cultivated potato identified by GENESPACE are shown.

465

466 **Fig. 3. Gene Report Page features in SpudDB.** a) General information regarding Soltu.DM.02G025650.1 including
467 link to the gene model in the genome browser, putative function, locus name, alternative splice form, and gene
468 attributes (chromosome, coordinates, CDS length, and amino acid length). b) Gene ontology information. c) BlastP
469 search of UniRef100 showing accession identifier, percent similarity, percent coverage, description, and p-value.
470 d) Pfam and InterPro matches including accession identifier, method, name, match positions, and e-value. e)
471 Potato syntelogs identified through GENESPACE. F) Coexpression module assignment including peak expression
472 within the module. g) RNA-seq gene expression values in transcripts per million with National Center for

473 Biotechnology Information Sequence Read Archive accession identifier and sample description.
474

a Soltu.DM.02G025650.1		DM v6.1 Annotation		
Show Soltu.DM.02G025650.1 in the Spud DB Genome Browser				
Gene Identification				
Putative Function: TCP-1/cpn60 chaperonin family protein				
Locus Name: Soltu.DM.02G025650				
Alternative Splice Form: Soltu.DM.02G025650.2				
Gene Attributes				
Scaffold: chr02				
mRNA Genomic Coords (5'-3'): 38790394 - 38798818				
CDS length: 1608 nt				
Protein length: 535 aa				
b Gene Ontology Classification				
GO accession	Type	Name	Code	With
GO:0005515	molecular_function	protein binding	IEA	TAIR:AT3G02530
GO:0042221	biological_process	response to chemical	IEA	TAIR:AT3G02530
GO:0005829	cellular_component	cytosol	IEA	TAIR:AT3G02530
c BlastP Searches (UniRef 100)				
Accession	% Sim	% Cov	Description	P-value
UniRef100_M1AYG3	100	99.8	TCP domain class transcription factor n=1 Tax=Solanum tubero	1e-303
UniRef100_A0A6N2CBJ5	100	99.8	Uncharacterized protein n=1 Tax=Solanum chilense TaxID=4083	3.9e-303
UniRef100_A0A3Q7F9W4	100	99.8	Uncharacterized protein n=1 Tax=Solanum lycopersicum TaxID=4	1.9e-302
d PFAM hits				
Accession	Name	Match Start	Match End	E-value
PF00118	Cpn60_TCP1	29	528	6.1e-165
e Interpro hits				
Interpro Acc	Method	Method Desc	Match Start	Match End
IPR027413	Gene3D	GROEL	1	185
IPR012722	TIGRFAM	chap_CCT_zeta: T-complex protein 1, zeta subunit	2	533
IPR012722	CDD	TCP1_zeta	6	529
f Coexpression Module Assignment				
Module ID	Module Peak Expression			
6	tuber_3pm_SD			
g RNA-Seq Gene Expression Values				
SRA Run Accession	SRA Exp Accession	Sample Desc	Sample Category	TPM
SRR15401435	SRX11703628	closedflower_control_C_R1	Flower	35.2437
SRR15401434	SRX11703629	closedflower_control_C_R2	Flower	32.994
SRR15401433	SRX11703630	closedflower_control_C_R3	Flower	33.8838