®

Check for
updates

A Direct PRF Construction
from Kolmogorov Complexity

Yanyi Liu'®) and Rafael Pass®?

! Cornell Tech, New York, USA
y12866Qcornell.edu
2 Tel-Aviv University, Tel Aviv, Israel
rafaelp@tau.ac.il

Abstract. While classic results in the 1980s establish that one-way func-
tions (OWF) imply the existence of pseudorandom generators (PRG)
which in turn imply pseudorandom functions (PRF), the constructions
(most notably the one from OWFs to PRGs) is complicated and inefficient.

Consequently, researchers have developed alternative direct construc-
tions of PRF's from various different concrete hardness assumptions. In this
work, we continue this thread of work and demonstrate the first direct con-
struction of PRFs from average-case hardness of the time-bounded Kol-
mogorov complexity problem MK'P[s], where given a threshold, s(-), and
a polynomial time-bound, #(-), MK*P[s] denotes the language consisting
of strings = with t-bounded Kolmogorov complexity, K*(z), bounded by
s(J).

In more detail, we demonstrate a direct PRF construction with quasi-
polynomial security from mild avg-case of hardness of MKtP[2O<‘/m)]
w.r.t the uniform distribution. We note that by earlier results, this assump-
tion is known to be equivalent to the existence of quasi-polynomially
secure OWFs; as such, our results yield the first direct (quasi-polynomially
secure) PRF construction from a natural hardness assumptions that also
is known to be implied by (quasi-polynomially secure) PRFs.

Perhaps surprisingly, we show how to make use of the Nisan-Wigderson
PRG construction to get a cryptographic, as opposed to a complexity-
theoretic, PRG.

1 Introduction

Pseudorandom functions (PRFs), introduced by Goldwasser, Goldreich, and
Micali [14] in the 1980s are one of the most important cryptographic primi-
tives. Roughly speaking, a PRF is a family of efficiently computable functions

Y. Liu—Work done while visiting the Simons Institute (during the Meta-complexity
program) and visiting University of Washington. Supported by a JP Morgan fellowship.
R. Pass—Supported in part by NSF Award CNS 2149305, AFOSR Award FA9550-18-
1-0267, AFOSR Award FA9550-23-1-0387, ISF Grant No. 2338/23 and an Algorand
Foundation award. This material is based upon work supported by DARPA under
Agreement No. HR00110C0086. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Government, DARPA, AFOSR or the Algorand
Foundation.

© International Association for Cryptologic Research 2024

M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14654, pp. 375-406, 2024.
https://doi.org/10.1007/978-3-031-58737-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58737-5_14&domain=pdf
https://doi.org/10.1007/978-3-031-58737-5_14

376 Y. Liu and R. Pass

{f:}:e{0,1}+, where given a randomly sampled seed z, the outputs of f.(z) on
(adversarially-selected) inputs « is indistinguishable from the outputs of a truly
random function F(x) (with respect to a computationally bounded machine).
Most notably they are a central object in private-key cryptography: they give
simple and direct constructions of private-key encryption, message authentica-
tion, and identification (between parties with shared keys) [13,15,34]. In addi-
tion, they have also found many other applications in cryptography, including
resettable security [5], oblivious RAM [17] (and more), and also in computational
complexity [45] and computational learning theory [51]; the reader is referred to
a nice survey by Bogdanov and Rosen [4].

While classic results in the 1980s by Hastad, Impagliazzo, Levin and Luby [23]
and Goldreich, Goldwasser and Micali [14] established that one-way functions
(OWFs) imply the existence of pseudorandom generators (PRGs) [23] which
in turn imply pseudorandom functions (PRFs) [14], the constructions (most
notably the one from OWFs to PRGs) is complicated and inefficient. Although
there has been great progress over the last decades in improving the construction
of PRGs [19,20,25,50], the currently best constructions of [36] has a seed length
w(n?®/logn) and requires calling the underlying OWFs w(n?/log® n) times.

Direct Constructions of PRFs. Consequently, towards the goal of develop-
ing practical and provably secure PRF constructions, researchers have developed
alternative direct constructions of PRFs from various different concrete hard-
ness assumptions—most notably based on the Decisional Diffie-Hellman (DDH)
assumption [38,39], the hardness of factoring Blum-integers [40], and the hard-
ness of lattice problems [3].

In this work, we continue this thread of work and demonstrate the first
direct constructions of PRF's from average-case hardness of the standard time-
bounded Kolmogorov complexity problem MK'P[s] [1,2,22,28,29,46], where
given a threshold, s(-), and a polynomial time-bound, (), MK'P[s] denotes
the language consisting of strings x with ¢-bounded Kolmogorov complexity,
K'(z), bounded by s(|z|). In more detail, we demonstrate a direct PRF con-
struction with quasi-polynomial security from mild average-case of hardness of
MK'P[2V1°6"] w.r.t the uniform distribution.! We note that by earlier results,
this assumption is known to be equivalent to the existence of quasi-polynomially
secure OWFs; as such, our results yield the first direct (quasi-polynomially
secure) PRF construction from a natural hardness assumption that also is known
to be implied by PRFs.

To explain this result in more detail, let us first recall the notion of (time-
bounded) Kolmogorov complexity, and the notion of (mild) average-case hard-
ness that we rely on.

The MK'P Problem. Given a truth table 2 € {0,1}" of a Boolean function,
what is the size of the smallest “program” that computes x? This problem
has fascinated researchers since the 1950 [48,52,53], and various variants of it
have been considered depending on how the notion of a program is formalized.

1 The threshold 2V™°8" is the inverse of 21°8” " = plogn

A Direct PRF Construction from Kolmogorov Complexity 377

For instance, when the notion of a program is taken to be circuits (e.g., with
AND,OR,NOT gates), then it corresponds to the Minimum Circuit Size prob-
lem (MCSP) [27,48], and when the notion of a program is taken to be a time-
bounded Turing machine, then it corresponds to the Minimum Time-Bounded
Kolmogorov complexity problem (MK'P) [1,2,22,28,29,46]. Our focus here is on
the latter scenario. Given a string o describing a truth table, let K*(x) denote
the t-bounded Kolmogorov complexity of x—that is, the length of the shortest
string IT such that for every ¢ € [n], U(II,%) = x; within time ¢(|II]), where U
is a fixed Universal Turing machine.

Given a threshold, s(-), and a polynomial time-bound, ¢(-), let MK*P[s] denote
the language consisting of strings = such that K*(z) < s(|z|); MK'P[s] is clearly
in NP, but it is unknown whether it is NP-complete. In [30], Liu and Pass recently
showed that when the threshold s(-) is “large” (more precisely, when s(n) =
n—clogn, for some constant ¢), then mild average-case hardness of this language
w.r.t. the uniform distribution of instances is equivalent to the existence of one-
way functions (OWF).?

Even more recently, a different work by Liu and Pass [31] demonstrated
that when the threshold is smaller then an appropriate notion of average-case
hardness of the problem characterizes quasi-polynomial or sub-exponential one-
way functions (depending on the threshold). In more detail, when the threshold
s is small, MKtP[s] is a sparse language so it can never the average-case hard
w.r.t. the uniform distribution (simply saying NO succeeds with overwhelming
probability). To deal with this issue, [31] thus argued that the right notion of
average-case case hardness of a sparse language ought to condition on both YES
and NO instances. In more detail, we refer to a language L C {0,1}* as D(-)-
dense if for all n € N, |L,,| = D(n), where L,, = LN{0,1}". We say that a D(-)-
dense language L is a(-) hard-on-average* with respect to T(-)-time attackers
((T,a)-HoA*) if for all probabilistic T-time heuristics H, for all sufficiently
large n, there exist p € {0,1} such that,

Prlz < {0,1}" : H(x) = p | L(z) = p] <1 — a(n™),

2 There are many ways to define time-bounded Kolmogorov complexity. We here
consider the “local compression” version—which corresponds to the above truth
table compression problem—and where the running-time bound is a function of the
length of the program. A different version of (time-bounded) Kolmogorov complexity
instead considers the size of the shortest program that outputs the whole string x.
This other notion refers to a “global compression” notion, but is less appealing from
the point of view of truth table compression, as the running-time of the program
can never be smaller than the length of the truth table x.

Strictly speaking, [30] considered the “global compression” version of Kolmogorov
complexity, but when the threshold is large, these notions are essentially equiva-
lent, and the result from [30] directly applies also the “local compression” notion of
Kolmogorov complexity considered here.

378 Y. Liu and R. Pass

*

where n* = log D(n). n* is referred to as the normalized input length. In other
words, there does not exist a T-time “heuristic” that decides L with probability
1 — a(n*) conditioned on YES (and NO) instances.*

[31] showed that for any § > 0, quasi-polynomially secure and subexponen-
tially secure OWFs are characterized by (n’, O(1/n?))-average-case* hardness
of MK'P[s] where the threshold are s(n) = 20(VIe7) and s(n) = polylogn
respectively. Intriguingly, their result—following a literature on so-called hard-
ness magnification [7-10,37,42-44] shows that it suffices to assume sublinear
hardness of these problems to provide those characterizations (when the thresh-
old is sublinear). While the original result of [31] only showed equivalence in the
non-uniform regime, it was recently shown how to also establish an equivalence
also in the uniform regime [33]; additionally, [33] also (implicitly) show that the
equivalence still holds if the error parameter becomes larger—it is (sufficient
and) also necessary to assume (n’, -1;)-average-case* hardness of MK'P[s] for
any 0 > 0.

In more detail, focusing on quasi-polynomially secure OWFs, we have the
following. We say that a function f is a quasi-polynomially secure OWF if there
exists a constant ¢ > 0 such that f is (T,1/T)-one-way for T'(n) = 2¢ log”n

Theorem 1 ([31,33]). For any polynomial t(n) > (1 +¢)n,e > 0, any 5 > 0,
0 > 0, the following are equivalent:

- Quasi-polynomially secure (resp mon-uniformly quasi-polynomially secure)
OWFs exist.

~ There exists a constant ¢ > 0, s(n) = 2°V16™ _sych that MK'P[s] is (n?, +)-
HoA* (resp non-uniformly HoA*).

Our Main Result. Our main result is a direct construction of quasi-
polynomially secure PRFs (with input domain {0, 1} (lo8” k) where k is the seed
length) from the average-case* of hardness of MK'P[20(VI8™)] w1t the uni-
form distribution and with respect to attackers of size n®. (Formally proved in
Sect. 5.3.)

Theorem 2 (Main Theorem). Consider some threshold s(n) = 2°VI8™ ¢ >
0, polynomial t(n) > (1 + €)n,e > 0, and any 3 > 0. Assume that MK'P[s] is
(n®, 13)-HoA* (resp. non-uniformly (n®, -5)-HoA*). Then, there exists a quasi-
polynomially secure (resp. non-uniformly quasi-polynomially secure) PRF h :
1% x {0, 10 5 {0, 1}2008* 2 _, (0,1}

4 The reason the error probability, « is a function of the logarithm of the number of
YES-instances (i.e., the “normalized” input length, n*, as opposed to just n (i.e.,
the logarithm of the number of instances) is to ensure that this notion meaningfully
relaxes the notion of a one-sided heuristic, also for very sparse languages. If it wasn’t,
then a 1/n-heuristic® could not make any mistakes on YES instances when the
languages contains less than n YES-instances.

A Direct PRF Construction from Kolmogorov Complexity 379

As noted above (see Theorem 1), the above assumption is equivalent to the exis-
tence of quasi-polynomially secure OWFs. Thus, Theorem 2 follows from The-
orem 1 and the results of [14,23] (which show how to get a quasi-polynomially
secure PRF from any quasi-polynomially secure PRG, with an explicit reduc-
tion). The point here is that we present a direct proof of this result, without
passing through the result of [23], and thus as a result the construction becomes
much simpler and more efficient. See the paragraph below discussing the effi-
ciency of the construction.

As far as we know, our results thus yield the first direct PRF construction
from a natural hardness assumption that also is known to be implied by PRFs.

A Non-Black-Box Security Reduction. We highlight that whereas we pro-
vide an explicit security reduction when proving the security of our PRF, the
reduction is non-black box. In particular, we are relying on the fact that the
PRF attacker is computationally bounded and has a small description. For this
reason, the proof for the uniform case does not directly imply security in the
non-uniform setting and we need to work a bit harder to demonstrate security
also in the non-uniform setting. Roughly speaking, the non-black box nature of
the reduction stems from the fact that we will use the attacker to “compress”
the instance string = (in order to determine if its K* complexity is small).

On the PRF Domain Size. We highlight that our PRF only has a O(log? \)
bit input domain where X is the security parameter. Such (small domain) PRFs
suffices for typical applications of PRFs [13] (e.g., to CPA-secure private-key
encryption [18]). Of course we can always extend the domain using the standard
tree construction [13] (but at a loss in efficiency). Alternatively, we note that if we
consider hardness of MK'P[s] with an even smaller threshold s(n) = poly log(n)
(which is equivalent to subexponentially secure OWFs), then the construction
directly extends to give a PRF with a A¢-bit input domain; see Theorem 18 for
a generalized version of Theorem 2, Corollary 19, and Corollary 20.

On the Efficiency on the PRFs. We present an explicit reduction from an
attacker that breaks the security of our PRF to breaking MKtP[s] on a particular
instance z € {0,1}". The efficiency of the PRF is a function of the time-bound ¢
and the length of the threshold A = s(n) (which roughly equals the “normalized
input length” of MK'P[s]). In particular, its running time is O(\?) - t(\) where
3 is any constant > 0, and the seed length is O(A'*#). At first it would seem
that the efficiency of the construction is “too good to be true”—since A = s(n)
is sublinear in the length n of the instance x € {0,1}" we reduce security from.
The point, however, is that the MKtP[s] problem can be trivially decided in time
25(") (and is generally conjectured to be hard for time 2°(5("))this is referred
to as the Perebor Conjecture [48])—so the “fair” way to measure efficiency is in
terms of the threshold s (and not the instance length n), and this is why we let
the security parameter be defined as A = s(n) (instead of defining it as n).

Comparisons with Existing PRFs. Let us briefly compare our PRF with
existing constructions. We first focus our attention on a “baseline” PRF, in which
we apply the generic transformation of [14,23] (from OWFs to PRFs) to the

380 Y. Liu and R. Pass

OWF construction of [31]. Given that both (our and the baseline) constructions
base their security on the hardness of MK'P[s], we here consider a linear running
time bound ¢(n) = O(n), and (n®, -;;)-average-case* hardness of MK'P[s] for
some arbitrarily small constant 3 > 0. In this setting, the [31] OWF has both
the running time and the seed length of 0()3“‘5). However, recall that even the
start-of-the-art OWF-to-PRG construction [36] incurs a O(A\?) blow up in both
the seed length and the running time, whereas our PRF construction achieves
runtime O(A'+#) and seed length O(A'+7).

We also provide comparisons with the PRFs constructed in [3,38], and [40].
We highlight that these constructions are based on hardness assumptions that
are not known to be also implied by PRF's. Nevertheless, we still give an efficiency
comparison, the results of which are summarized in Table 1.

Table 1. Efficiency comparisons with existing PRFs. (All assumptions are quasi-
polynomially hard, 3 > 0 is an arbitrarily small constant.)

Seed Length | Runtime | Input Length
LWE [3] O(\?) O(\%) |log®
R-LWE [3] o) o) log? X
DDH [38], Factoring [40] | O()) o\ log? A
DDH [38], Factoring [38] | O(X) O(\?) A
Ours O(\'*5) O(N'8) [log? X

Notice that [3] only gets PRF with input length log® A (rather than \), just
as we do, from quasi-poly assumptions.

We, as well as [3], can always use standard domain extension (incurring
an overhead of A in terms of running time) to extend the domain to A bits.
In essence, all of the constructions (except for the LWE one) have the same
efficiency. Ours is § worse in the exponent for any arbitrary small § > 0, and
the LWE based construction is strictly worse, losing a factor of A.

1.1 Construction Overview

We here provide a brief outline of the construction. Towards this, let us first
briefly review the Nisan-Wigderson PRG [41].

The NW Construction. The construction NW starts off with a function f
that is assumed to be average-case hard to compute (with probability better
than 1/2 + §) over random inputs € {0,1}¢, and is parameterized by a collec-
tion of sets of indexes 7 = {I;};c|m referred to as the designs; these design
sets I;, |I;| = ¢ are efficiently computable given ¢ and in their simplest imple-
mentation involve evaluating a polynomial “indexed” by +—more details on this
construction below.?

5 This polynomial-based design construction appeared in [41], and is used to obtain
the so-called “low-end” derandomization. There are many other constructions of

A Direct PRF Construction from Kolmogorov Complexity 381

Next, given a seed y, to compute the bit i of output of the PRG NW, we
simply apply f to the “projected” input y;, defined as y restricted to the indexes
in Il

NWE(y) = f(yr,) - f(ur,.)
See Fig. 1 for an illustrative example of the NW construction (in which we will
employ the design construction that we describe in the next paragraph).

N

Output NW/ (y) = Y1 Ya yr), fCyr ys yo), fyrs), --- 5 f(yr,)

Input y =

Fig. 1. An illustrative example of the NW construction with function f : {0,1}* —
{0,1} and designs Z. In this example, £ = ¢ = 3. The design construction is based
on polynomials, where I; = {1,4,7} corresponds to the polynomial p;(z) = 0, and
I, = {1,5,9} corresponds to the polynomial pa2(z) = x.

For concreteness, let us recall the design construction of [41] that we will
rely on. Let ¢ denote the input length to f, and let ¢ denote a prime (or the
smallest power of 2) such that ¢ > ¢. We consider designs with universe [d] where
d = lq. The seed length of the NW generator, |y|, will also be picked to be d.
We interpret each number j € [d] as a tuple in [(] x [¢]. Each set I; C [d] is
defined to be the set {jr = (k,p(k))}refq where p is the i-th polynomial of F,
(according to some canonical enumeration of all polynomials in F, in a degree
increasing order). Notice that each I; contains ¢ elements, and thus the length
of the projected seed y, is equal to the input length of f.

The NW Reconstruction Procedure. It will be useful to review the security
reduction of the NW PRG. Roughly speaking, [41] show that any distinguisher
D (of the output of the PRG and a random string) with advantage ¢, can be used
to approximate f with probability 1/2 4+ O(e/m) using a small (but larger than
m - m!/1°8%) bits of non-uniform advice z. This is referred to as the NW recon-
struction procedure. (In particular, if f cannot be approximated by programs of
size |D| + |z| this yields a contradiction.)

The NW Construction as a PRF. Let us highlight one particular feature
of the NW PRG when using the above design construction (based on polynomi-
als). Given the seed y and the output index i, we can efficiently—i.e., in time
polynomial in (|i|,£) rather than in (¢, £)—compute the set I;. Besides this, com-
puting the 7th output bit of the generator only needs one call to the underlying

designs, but, for our purposes, the polynomial-based one is useful as it is efficient in

l2].

382 Y. Liu and R. Pass

hard function f. In other words, the output bits of the NW PRG are locally
computable. As a consequence, if we are able to show that the above genera-
tor actually is a PRG with superpolynomial stretch (and f is efficient), then it
actually also yields a PRF; this will be the approach that we will rely on.

Our PRF. Consider some running time bound ¢(n) > (1+¢')n, &’ > 0, threshold
function s(n) = 2V1°6™ and hardness parameter a(\) = 1/\°. We construct a
PRF h : {0, 1}0_(’\1+ﬁ) x {0,1}20e) _, 10,1} whose security can be based on
a-average-case* hardness of MK'P[s] of input length n such that s(n) = \.% To
simplify notation, we here abuse the notation and specify h rather as a PRG of

the form h : {0, 1}00‘1”) — {0, 1}”:21%“, but note that due to our use of the
NW PRG, each bit of the output h is locally computable (i.e., efficiently as a
function of the seed and the index 7) so this actually yields the desired PRF.

The construction of the (PRG-representation of) h proceeds in the following
three steps.

— We start by appealing to the [30,31] OWF construction. Given a seed II’ €
{0,1}**1, and an input i € {0,1}!°8™, the function f removes all ‘0’ from the
end of IT’ (if any), and removes an extra ‘1’ from the end.” Let IT denote the
remaining string. f simply outputs the bit produced by II after running on
input ¢ for ¢(|1]) steps. In more detail,

Far' i) = U (i), 11010)

where U is the universal Turing machine fixed in the definition of K*.
— Next, relying on the Nisan-Wigderson generator, we define the function
g, y) as
',
g(IT',y) = NWET ()

where IT' € {0, 1}*1 f(II’,-) is a function {0,1}°e" — {0,1},y € {0,1}4,
d = O(log”n) = O(log* \), and 7 is the polynomial-based design as intro-
duced above.® The output size of the NW generator is set to be m = n® =
2e108° X (where € = 1/8).

In more detail, g divides its seed into I’ and y, instantiates the NW generator
with hard function f(II’,-), and simply computes the NW generator on seed
y. The seed length of g is |II'| + |y| = (A + 1) + O(log* \) = O(N).

— Finally, we amplify the security of g, by considering the function h that takes
the XOR of g on many independent seed. In more detail, A is defined as

Wy, I yy) = gUT) @ - @ g(IT,)

5 In this proof overview, we assume that n is a power of 2 for simplicity.

" The [30] construction was slightly different; the above modified version has a slightly
tighter analysis and shaves log A bits in the input length.

8 The O(log® n) = O(log* \) seed length of the PRG comes from our choice of designs.
We note that there are explicitly computable designs that support our use of the
NW PRG with only O(logn) seed length. See [21] and [11, Lemma A.2]. It may be
that those designs lead to a more practical construction.

A Direct PRF Construction from Kolmogorov Complexity 383

where v = logn/a = X\ log? \.

Note that the seed length of h is O(X\)-y < O(A*#log? \), and the output size
will be nf = 2516" X (50 its corresponding PRF has input domain {0, 1}2(08” V),
Also notice that the running time of our PRF is O(t()\) - A?log? \). (The reader
is refer to Sect. 5.2 for a more detailed presentation of our PRF.)

We remark that there are two aspects of the construction that a-priori seem
strange:

— In the derandomization literature, NW generators are used to fool attackers
with smaller running time than the time needed to compute the hard function,
whereas we are dealing with attackers that are more powerful than what is
required to run the construction;

— The above PRG construction (without the amplification step), is very simi-
lar to the derandom-ization-style PRG? constructions based on the hardness
of time-bounded Kolmogorov complexity problems appearing in [32]. These
constructions, however, just as most more recent NW generators [26,47] are
instantiated with a hard function encoded by error-correcting codes (ECCs)
in order to make sure the reconstruction procedure is able to actually com-
press the input (since the “plain” NW reconstruction procedure only shows
how the function can be computed with non-trivial probability). Note that
using ECCs would not work in our setting as to get a PRF—we would need
the ECC to be locally encodable, and such ECC cannot exist.

Both of the above differences mean that we cannot rely on simply the “standard”
NW proof. However, we shall show that since we are starting off with average-
case hardness of a particular hard function (i.e., based on MK'P][s]), we are able
to overcome these issues.

1.2 Proof Overview

We briefly explain why the above construction is secure, assuming a-average-
case* hardness of MK'P[s] where a(\) = 1/A? and s(n) = 2V1°6™ The proof
will proceed in two steps. First, we will show that the function g above (i.e.,
applying just the plain NW generator on the sampled function) satisfies a weak
PRG property. Next, we show that the general XOR construction used in the
final PRG h amplifies such a weak PRG into a standard one. Finally, as noted
above, since each bit is locally computable, the PRG actually yields a PRF.

Let us start by describing the notion of a weak family of PRGs and how
they can be amplified into a standard PRG using the construction employed in
function h.

Weak Families of PRGs. We refer to a family of functions {g;};c0,13» as a
a-weak family of PRGs if for every efficient distinguisher D, it holds that with
probability a(X\) over j « U, D distinguishes g;({y) from uniform with at most
negligible probability.

9 In fact, hitting set generators.

384 Y. Liu and R. Pass

In essence, with reasonable probability over the index, we get a full-fledged
(strong) PRG. We remark that this notion is different from previous notions
of weak PRGs [12,35] in the aspect that we consider a family of functions,
whereas these other definitions consider a single PRG whose output is only
weakly indistinguishable from random. A weak family of PRGs also yields such a
weak PRG when the expansion is long enough so as to recover the index (which
indeed will be the case for us). The issue is that the weak PRG it gives has
indistinguishability gap of 1 — «, but the results of [12,35] only apply when the
indistinguishability gap is smaller than 1/2. Consequently, we directly leverage
the fact that the once a “good” index of the family has been sampled, the PRG
is actually fully indistinguishable from random. Relying on this, we next present
a general proof that such weak families of PRGs can be amplified into a standard
PRG!? using the XOR construction and while relying on proof techniques similar
to those used in Yao’s classic hardness amplification theorem [16,54].

Showing that g is a Weak Family of PRGs. The central part of our paper
is demonstrating that the function g can be viewed as a 2(«a)-weak family of
PRGs assuming a-average-case* hardness of MK'P[s]. In more detail, we define
a weak family of PRGs ¢}, (y) = g(II’,y), and assume for contradiction that
there exists a distinguisher that breaks its security for 1 — «/O(1) fraction of
index IT’ of the family. We aim to use this distinguisher to decide MK'P[s] on
average (conditioned on both YES- and NO-instances). The general approach
will combine ideas from [6,24,30-32]. Roughly speaking, to decide an instance
x, we view z as a hard function to use in the NW generator (as in [24,32], fol-
lowing [6]), except that we do not rely on an ECC as done by [24,32]), and feed
the output of this generator to the attacker. If the attacker succeeds in distin-
guishing, we answer YES and otherwise NO. The key point is that, intuitively,
if the distinguisher succeeds, then by the NW reconstruction argument, we can
get a short description of program that approximates x with non-trivial prob-
ability, and intuitively, most NO instances do not have such short approximate
description. Let us make two observations here: (1) the reason we do not need
to rely on an ECC is exactly the fact that NO instances do not have even short
approzimate descriptions (as we shall soon argue), (2) the use of the NW recon-
struction algorithm (similar to its use in [6,24,32]) is what makes the reduction
non-black box since we are relying on the fact that the distinguisher has a small
description.

We next need to argue that on random YES instances, the distinguisher
actually works; this will rely on a probabilistic domination argument from [30, 31]
and it is here that we require the original distinguisher (breaking the PRGs ¢')
to succeed for a large fraction of indices.

In more detail, assume for contradiction that there exists a distinguisher D
that breaks the (a/O(1))-weak family of PRGs ¢'; that is, over at least a 1 —
a/O(1) fraction of the indices IT’, D breaks gj;» with a non-negligible advantage.

!0 For the ease of presentation, we only consider standard (polynomially secure) PRGs
and negligible distinguishing advantage. Our proof will also show that the PRG
(after amplification) is quasi-polynomially secure, as desired.

A Direct PRF Construction from Kolmogorov Complexity 385

Notice that we can assume D breaks each such g;v with advantage at least
Qmﬁ (which is negligible in \) and also notice that —21y~ = L. We will use

2¢elog? A ne
D to decide MK'P[s] with probability at least 1 — a conditioned on both YES
instances and NO instances. Let us assume for simplicity in this proof overview
that D is a deterministic uniform distinguisher. (In the actual proof, we will deal
with probabilistic distinguishers, or even non-uniform algorithms.)

First note that by the security (of the reconstruction procedure) of the Nisan-
Wigderson generator [41] (see also [6,24,32]), if « is a random NO instance, then
with very high probability (much larger than 1 — «) over x, D cannot succeed
in distinguishing between U, and NW”(U;)—the reason for this is that if D
could do so, then the Nisan-Wigderson reconstruction procedure would approx-
imate over at least a 1/2 + 1/n?¢ fraction of coordinates (but in a randomized
local fashion). In addition, the reconstruction procedure only requires O(n*®)
bits as advice, so we have managed to approximately compress x. Observe that
the distribution of a random NO instance is statistically close to the uniform
distribution, so it remains to show that such an approximate local compression
is impossible for almost all of random strings = € {0, 1}".

Random Strings Cannot be Approximately Compressed. It is well-
known that by a standard counting argument, most of random strings cannot be
exactly compressed (and thus have high Kolmogorov-complexity). Proving that
they cannot be locally (1/2+ 1/n%)-approximated (by randomized programs of
size n?%) requires a slightly more delicate argument. We will show that a (fixed)
randomized program II can only (1/2 + 1/n%)-approximate a uniform random
string x with very small probability; the proof is then concluded using a union
bound over all programs (of size n%).

Let P denote the set of strings « € {0, 1}" such that given z, the randomized
program I7 on input a random index ¢ € [n] (with fresh randomness) computes
x; with probability > 1/2 + 1/n%. Our goal is to show that |P]| is very small.

Towards this, the key idea is to derandomize IT, and next simply argue that
most random string will be far from the output of the deterministic version
of IT. At first it would seem that we can simply fix the best random tape for
II; the issue, however, is that I may succeed to compute different bits ¢ with
different random tapes. To overcome this issue, we use an averaging argument
to show that for each x € P, there exists at least a 277% fraction of random
tapes r such that the output of the deterministic machine I, (the program IT
with its random tape fixed to r) is (1/2 + 1/(2n%¢))-close to z. From this it
follows that over random x,r, the probability that I, produces a string that is
(1/2 + 1/(2n%))-close to z is at least

1 |P
2n25 n

We are now ready to derandomize I1. Observe that if we fix the random tape
of IT to a string r* that maximizes the above probability (over a random x), we
have that the output of IT,~ is (1/2 + 1/(2n2%))-close to z is at least

1 |P
2n25 n

386 Y. Liu and R. Pass

over random z € {0,1}".
Next, notice that the deterministic program I~ will output a fixed string,
but by a Chernoff bound, it follows that a random string is (1/2 + 1/n%)-close

to it with probability at most
e_Q(n1745)

(To see this, note that each bit of the random string matches the fixed string
independently with probability 1/2, so the distance between them is simply the
sum of n independent random variables with expectation 1/2.) Therefore, we
have that

B < 2n2567(2(n1_45)

AL

Finally, by taking a Union bound over all randomized program of size at most

n?¢, we conclude that the probability that a random string x can be approxi-

mately compressed is at most

277,25 . 27’126679(”1746) — 2n2s . 27(2(n1745)+n25

In addition, the above probability will be negligible when 2¢ < 1 — 4e (which
will hold since e = 1/8).

Why the Distinguisher D Works on YES Instances. On the other hand,
when z is a random YES instance of MK'P[s], we claim that D will manage to
distinguish between NW®(Uy) and U,,-, for at least a 1 — a faction of z. Observe
that if x is a YES instance, then x will appear as the truth table of the function
f(I',-) for some IT' € {0,1}=* (e.g., the K'-witness of x), and thus NW*(Uy)
will always be one PRG inside the family of PRGs that ¢’ defines. Since D has
to break a 1 — a/O(1) fraction of PRGs in the family, it would seem that D
has to distinguish between NW?*(U,;) and U,,- for at least a 1 — « fraction of
. However, the distribution of a random YES instance is very different from
how the truth table of f(II’,-) is distributed in our construction of g. So we
have no guarantee how the distinguisher D performs if we sample x from the
random-YES distribution. To deal with this issue, we rely on an argument in [30,
31] to show that the f(II’,-)-truth-table distribution “dominates” the random-
YES distribution, and therefore if D succeeds with probability 1 — a/O(1) over
the f(II',-)-truth-table distribution, D must succeed also with probability 1 —
(a/O(1))-O(1) > 1 — « over the random-YES distribution. This concludes that
we can always decide MK'P[s] with probability > 1—a conditioned on both YES
and NO instances, and concludes the construction of a (a/O(1))-weak family of
PRGs.

2 Preliminaries

For any two random variables X and Y defined over some set V, we let
SD(X,Y) = maxycy |Pr[X € T] = Pr[Y € T]| = £ 3, oy | Pr[X = 0] = Pr[Y =
v]| denote the statistical distance between X and Y. It will be helpful to note

A Direct PRF Construction from Kolmogorov Complexity 387

that the expression is maximixed when the “distinguisher” T' = {v : Pr[X =
v] > Pr[Y = v]}.
Let U,, denote the uniform distribution over {0,1}", for any n € N.

2.1 Time-Bounded Kolmogorov Complexity

We define the notion of ¢-time-bounded Kolmogorov complexity that we rely
on. We consider some universal Turing machine U that can emulate any Turing
machine M with polynomial overhead. The universal Turing machine U receives
as input a description/program IT € {0,1}* = (M,w) where M is a Turing
machine and w € {0,1}* is an input to M; we let U(IT(i), 1*"ID) denote the
output of M(w,4) when emulated on U for ¢(|II]) steps.

Definition 3. Let U be a universal Turing machine and t(-) be a polynomial.
Define
K'(x)= min {|II|: Vi€ [Jz]), UUT(), 11Dy = 2,}.
IIe{0,1}~

We remark that the notion of time-bounded Kolmogorov complexity has been
defined in a lot of different ways [2,28,29,46,48]; the definition we consider here
is the “local compression” version [31] where the program IT is required to effi-
ciently output each individual bit x; of the string x, given 4 as input.

Let MK'P[s(n)] be a language consisting of strings = with K*-complexity
at most s(|z|). We recall the following fact about (time-bounded) Kolmogorov
complexity.

Fact 4 ([31]) There exists a constant ¢ such that for every polynomial t(n) >
(1+¢e)n,e >0, the following holds:
(1) For every x € {0,1}*, K'(z) < |z| + ¢;
(2) For every n € N, every function 0 < s(n) < n, 2ls5(WI=¢ < |MK'P[s(n)] N
{0’ l}n| < 2Ls(n)J+l.

2.2 Average-Case* Hardness

We introduce the notion of average-case®™ hardness, defined in [31]. On a high-
level, average-case® hardness provides a meaningful notion of average-case hard-
ness w.r.t. two-sided error heuristics for sparse languages. Before describing the
definition, let us first define the density of a language: We say that a language
L c {0,1}* is D(-)-dense if for all n € N, |L,,| = D(n), where L, = LN {0,1}".
Now we are ready to define the notion of average-case® hardness.

Definition 5 (Average-case® Hardness). We say that a D(-)-dense lan-
guage L is a(-) hard-on-average® (resp non-uniformly «(-) hard-on-average*)
with respect to T'(-)-time attackers ((T,«)-HoA* (resp non-uniformly (7', «)-
HoA™)) if for all probabilistic T-time (resp non-uniform T-time) heuristics H,
for all sufficiently large n, there exist u € {0,1} such that,

Prfe — {0,1}" : H(z) = | L(z) = p] < 1 - a(n"),

where n* =log D(n). n* is referred to as the normalized input length.

388 Y. Liu and R. Pass

In other words, there does not exist a T-time “heuristic*” that decides L with
probability 1 — a(n*) conditioned on YES (and NO) instances. We refer the
reader to [31] for how average-case® hardness meaningfully generalizes (and lies
between) the two standard notions of average-case hardness (errorless and 2-
sided error average-case hardness).

In this work, we are interested in the average-case* hardness of MK'P[s]. We
note that the normalized input length n* of MK'P[s] on input length n is roughly
as large as the threshold s(n).

Claim 1. Let ¢ be the constant as in Fact 4. For any polynomial t(-), any func-
tion 0 < s(n) < n, for any input length n, it follows that s(n)—c < n* < s(n)+1.

Proof: This claim immediately follows from Fact 4. [l

2.3 One-Way Functions and MK'P[s]
We recall the standard definitions of one-way functions.

Definition 6. Let f : {0,1}* — {0,1}* be a polynomial-time computable func-
tion. f is said to be a (T,e)-one-way function ((T,e)-OWF) (resp non-uniformly
secure (T,e)-OWF) if for any probabilistic T(n)-time (resp non-uniform T(n)-
time) algorithm A, for all sufficiently large n € N,

Prlz — {0,1}"y = f(z) : A", y) € 71 (f(2))] <e(n)

In addition, we say that f is quasi-polynomially secure if it is (T, 1/T)-one-way
for some constant ¢ > 0 and some function T'(n) = 2¢ log” n e say that f is
subexponentially secure if it is (T, 1/T)-one-way for some constant ¢ > 0 and
some function T'(n) = 2",

As mentioned in the introduction, [31] showed that OWF's are characterized
by average-case* hardness of MK'P[s] and how small the threshold is determines
how hard (or secure) the OWF we obtain. As also mentioned, while the original
result of [31] only showed equivalence in the non-uniform regime, it was recently
shown how to also establish an equivalence also in the uniform regime [33];
additionally, [33] also (implicitly) show that the equivalence still holds if the
error parameter becomes larger—it is (sufficient and) also necessary to assume
(n?, -%)-average-case* hardness of MK'P[s] for any 3 > 0. We here formally
state their results.

Theorem 7 ([31,33]) For any polynomial t(n) > (14 €)n,e > 0, any 5 > 0,
any § > 0, the following statements hold:

- Quasi-polynomially secure (resp mnon-uniformly quasi-polynomially secure)
OWFs exist iff there exists a constant ¢ > 0, s(n) = 2°VI87 such that
MK'P[s] is (n’, L)-HoA* (resp non-uniformly HoA*).

— Subexponentially secure (resp non-uniformly subexponentially secure) OWFs
exist iff there exists a constant ¢ > 0, s(n) = log®(n), such that MK'P[s] is
(n’, 5)-HoA* (resp non-uniformly HoA*).

A Direct PRF Construction from Kolmogorov Complexity 389

2.4 Pseudorandom Generators and Pseudorandom Functions
We recall the standard definitions of pseudorandom generators (PRGs).

Definition 8. Let g : 1* x {0,1}¢N — {0,1}™N be a function. g is said
to be a (T(-),e())-pseudorandom generator ((7',)-PRG) (resp non-uniformly
secure (T,e)-PRG) if for any probabilistic T(-)-time (resp non-uniform T(-)-
time) algorithm A (whose running time is T(-) in the length of its first input),
for all sufficiently large X,

| Prz «— {0,1}90M . A1, g(z)) = 1] —Prly — {0,1}™N) . A1}, y) = 1]] < ().

In addition, we say that g is locally-computable if each bit of the output of g
can be computed in time poly(d(\),log m(N)).

We note that to simplify notations, we relax the efficiency requirement on g,
since we also consider locally computable PRGs that output quasi-polynomially
(or sub-exponentially) many bits (where it will be guaranteed that each bit of the
output can be computed efficiently) (and such functions are inherently inefficient
due to its output length).

We turn to introducing pseudorandom functions.

Definition 9. Let f: 1* x {0,1}¢™) x {0, 1}*N) — {0,1} be a polynomial-time
computable function. f is said to be a (T(-),e(-))-pseudorandom function (T} e)-
PRF (resp non-uniformly secure (T,e)-PRF) if for any probabilistic T(-)-time
(resp non-uniform T-time) algorithm A, for all sufficiently large n,

|Prz — {0,114 : A7@) (1) = 1] = Pr[f — F: A (1Y) =1]] < e(n)

where F = {f": {0,1}})*) — {0,1}}.

In addition, we say Ehat f is quasi-polynomially secure if there exists a constant
c>0,T(\) =2¢8" A fisa (T,1/T)-PRF. We say that f is subexponentially
secure if there exists a constant ¢ > 0, T(\) = 2*", fis a (T,1/T)-PRF.

3 Weak Family of PRGs and Security Amplification

In this section, we introduce the notion of weak family of PRGs and prove a
security amplification lemma for such PRGs.

Roughly speaking, a weak family of PRGs {g-;(].A)}jE{O,l}dl(A) is a family of
functions such that for any distinguisher D, there is at least some fraction of
functions in the family whose output is pseudorandom. In addition, we say that
the weak family has running time t()\) if there exists a function g such that
9(1,4,9) = g,(1*,) and g(1*, j,y) runs in time £(A).

Definition 10. We say that a family of functions ¢’ : {g;»(l)‘) {01}
{0, l}m()\)}je{oyl}dl()) is a a-weak family of (T, ¢)-pseudorandom generator (a-
weak family of (T,)-PRGs) if for all T(\)-time distinguisher D (such that D

390 Y. Liu and R. Pass

runs in time T(\) when its first input is 1*), for all sufficiently large n € N, it
holds that

Pr[j — {0, 13X - Advp (g} Uay(n))s Umen)) < (V)] > a(N)
where for any random variables X,Y, Advp A(X,Y") is defined to be

Advp A (X, V) < | Prlry — X : DA 1) = 1] = Pr[ry « Y : D(1*, 1) = 1]
We refer to j as the index and y as the seed.
We say that ¢’ is non-uniformly secure if the above holds for all non-uniform
T(\)-time distinguisher.

Notice that we will also consider PRGs whose output length is super polynomial
in its seed length. Although such PRGs are inherently not efficiently computable,
we will require them to be locally computable.

We show that weak family of PRGs can be amplified to obtain a full-fledged
PRG (as long as PRGs in the weak family are expanding enough).

Lemma 11. Let {g}(l)‘) {0,119 — {0, 1}m()\)}je{0’1}d1(>\) be a a-weak fam-
ily of (T, €)-PRG with running time t(\). Let v(X\) be a (time-constructible) par-
allel repetition parameter, and let h : 1* x {0, 1} (N +d2(0)3(0) £ 13m0 pe
the xor of ~y-fold repetition of g':

h(j1, Y153 JysYy) = 95, (1) © ... © g} (y4)

It holds that h is a (T'(X\),&'(N\)-PRG where T'(X) = T(A\) — y(A)t(N), €/ (A) =
2max{(1 —a(X)"™ e(\)-y(\)}. In addition, the lemma also holds in the non-
uniform setting.

We defer the proof of Lemma 11 to the full version due to space limit.

4 Unapproximability of Random Strings for Small
Programs

It is well known that most random strings cannot be (exactly) produced by
small programs (and thus have high Kolmogorov complexity). In this section,
we show that most random strings cannot even be approximated with slightly
non-trivial probability by small programs. We say that a program approximates
a string with probability % + ¢ if over a random index ¢ (and randomness of the
program), the program on input ¢ outputs the bit on the i-th coordinate of the
string with probability % + 9.

We are going to prove that most random strings of length n cannot be approx-

imated with probability > 1/2 4 1/n° by programs of size n’.

Lemma 12. For any constants €,6 > 0, 6 < 1 — 2e, there exists constants ng
such that for all n > ng, with probability at least

1— nE . 2—n1725/2+n5+2

A Direct PRF Construction from Kolmogorov Complexity 391

over a uniform random string x € {0,1}™, it holds that no (probabilistic) program
IT (that always terminates on every random tape) of description length < n® can
approzimate the string x with probability 1/2 + 1/n; that is

Pr[ie[n]:ﬂ(i)zﬂci]Z%"’%

where the probability is also taken over the internal randommness of II.

Proof: Let II,. denote the deterministic machine of IT with random tape fixed to
be r. Since IT always terminates, let ;7 denote the running time of the program
II. Fix any such program IT € {0,1}*, |II| < n’°, we claim that there is no more
than a nc2="" /2+! fraction of strings « € {0,1}" such that IT approximates
x with probability % + n—ls Formally, we claim that

1 1 1-2¢
P 0,1}": P () =] > =+ —| <nf2™™ /241 (1
' [m —oy r<—{0,1}t11“1,i<—[n][(i) = i) = 5T ns] =n (1)

If this holds, by taking a union bound over all I, we have that

Pr {:r — {0,1}"™ 311, |IT] < n°,

i < n627n1725/2+n5+2

+n€ <

Pr (I(1) = x;] >

r«{0,1}11 ;i< [n]

N |

since (by a standard counting argument) there are at most 27°+1 such programs
II, which proves the lemma.

We proceed to proving Inequality 1. Notice that if IT approximates x with
probability % + #, by a standard averaging argument, there are at least a ﬁ
fraction of r such that the deterministic machine II, approximate x with prob-

ability 3 + 5-=. Thus, the LHS of Inequality 1 is at most

r—{0,1}t1 [i—[n]

Pr[ag<—{0,1}”: Pr | Pr [n,.(i):xi]z%+ 1]2 1]
n

1 1
SQHE Pr |:J) — {07 1}n7,r — {07 1}tn : P[I‘] [HT(Z) = IZ] Z 5 2n6:|

1 1
<2n°Pr {az —{0,1}": _P[r] [T~ (i) = x;] > 3 + } (2)
1<— N
where 7* is picked to be the random tape that maximizes the probability. Notice
that the deterministic program II,- can output only a single string. Let z; be
the random variable such that z; = 1 iff II,.+ (i) = x;. Since z is a random string,
the random variables z; are independently distributed with mean 1/2. It follows

392 Y. Liu and R. Pass

that
Prlo (0.1} Pr [MI() —ai] > & + -
Tz — : Pr [-(i) =x) > =
“ ’ i[n] V= 2 2nf
n._n
r |z« {0,1} g z; > 2+2n8

1€[n]

<e_n172s/2 < 2—%1725/2

where the (second) last step follows from the Chernoff bound. Plugging this into
the Inequality 2, the claim follows. [

5 PRF Construction from MK!P

In this section, we show how to construct a PRF from hardness of MK'P[s].

5.1 Tools

Let us briefly introduce the technical tools needed in our construction. We start
by recalling the construction of the Nisan-Wigderson (NW) PRG [41].

Definition 13 (NW generator [41]). Let T = (I,...,I,,) be a family of
subsets of [d] with each |I;| = ¢ and let f : {0,1}* — {0,1} be a function. The
(Z, f)-NW generator is the function NW% : {0,1}¢ — {0,1}™ that takes any
string y € {0,1}¢ as a seed and outputs

NWI(y) = f(yr,) - f(ur,)

. . def
where for any set I; = {i1,... i} C[d], any y = y1y2...yd, Y1, = Yir Yis - - - Yi,
denotes the “projection” of string y onto coordinates in I;.

The core ingredient of the Nisan-Wigderson construction is a combinatorial
design which will be used as the family of subsets in a NW generator.

Definition 14 (Combinatorial designs [41]). A family of sets T = {I4, ...,
I, C [d]} is said to be a (d, !, k)-design if for every i € [m], |I;| = £, and for
every j € [m],j #14, [I;NI;| < k.

We rely on the following explicit design generation algorithm.

Definition 15 (Explicit design generation [41]). Let DesignNWGen be the
following algorithms. On input £,k,i € N such that k < £,1 < i < €7 let q be
the smallest power of 2 such that q > £. The algorithm DesignNWGen will output
a set I C [d] such that |I| = ¢, where d = £q. The algorithm proceeds as follows:

— Let p(-) be the i-th polynomial on F, of degree k (with respect to the canonical
enumeration of all polynomials of degree k on Fy).

A Direct PRF Construction from Kolmogorov Complexity 393

- Consider each number in [d] = [¢ X ¢] as a pair of numbers in [¢] X [q]. The
set I will be defined to be

I'={(a,p(a)) | a €[]}
where we abuse the notation and view a as also a field element in F.

Recall that the above construction gives us a good combinatorial design.

Lemma 16 ([41]). For any {,x,m € N, m < £~ let DesignNWGen be the algo-
rithm and d € N as in Definition 15. Let T = {I; = DesignNWGen(, 5,1) }ic[m]-
It holds that T is a (d, ¢, k)-design.

The following version of the reconstruction theorem will be useful for us.

Lemma 17 (Implicit in [26,41], explicit in [32]; see also [49]). There exists
a PPT algorithm NWRecon such that the following conditions hold.

— Input: the truth table of a function f : {0,1} — {0,1}, a (d,¢, k)-design
Z=A{hL,...,I,}, and a distinguishing gap parameter 1=,
— Given oracle access to a (probabilistic) oracle D C {0,1}™ such that

Prly — {0,1}¢: D(NW/(y)) = 1] — Prjw — {0,1}"" : D(w) = 1]| > e.

— Output: a (deterministic) program M of description length < m - 2% +m +
d+ O(logd) such that

1 €
P 21 11 (p) = > -+ —
tlp — (2] (p) = fP)] = 5 + 5~
where I = MP(I) and the probability is also taken over the internal ran-

dommess of D.

5.2 The PRF Construction

We present our PRF construction from the average-case* hardness of MK'P.
Consider any (monotonically increasing) polynomial ¢(-), t(n) > (1+¢&)n, e > 0.

Let A be a program size parameter (which will also serve as a security param-
eter in the construction), kK = k(\) denote the PRF input length parameter, and
let v = y(A) be a parallel repetition parameter. To base the security of our con-
struction on the af-)-average-case* hardness of MK'P[s], we state the concrete
choices of the parameters: We consider input length n such that s(n) = A, and
we pick k = 1/8logn, v = O(logn/a()N)).

Our goal is to construct a PRF with input domain {0, 1}*. (Towards this,
we will be needing a Nisan-Widgerson PRG of output length m = 2*.) The
construction relies on the following ingredients. (We refer the reader to Sect. 5.1
for definitions of the technical tools used in this construction.)

394 Y. Liu and R. Pass

— We will rely on the following decoding procedure Dec that maps any string
IT' € {0,1}* to a string IT € {0,1}<I'l_ IT is obtained by removing all ‘0’ in
the end of II’ (if any), and then removing an additional ‘1’.

~ We define a function f that receives a seed II’ € {0,1}**! and an input
i € {0, 1}’“,7 computes IT = Dec(Il') and interprets it as a program, runs
the program IT on input ¢ for ¢(|II]) steps, and outputs what the program
outputs, where k' is picked to be 8k. Formally,

FAT' i) = U (i), 11010)

where U is the universal Turing machine we fixed in the definition of K*.

— We will be needing a combinatorial design to instantiate a Nisan-Wigderson
PRG. Let £ = k', k = k, m = 2. For each i € [2¥], let I; be the set generated
by DesignNWGen on input £, k, . Let

1= (113127"'51771)

And note that Z will be a (d, ¢, k)-design (by Lemma 16) where d = ¢q and ¢
is the smallest power of 2 such that ¢ > ¢. Also notice that DesignNWGen on
input ¢, x will be able to generate at most £ sets, and we here need 2* sets.
Due to our choice of parameters, it holds that £% > 2% = 28 = m.

— Define g(II', y) as the Nisan-Wigderson generator instantiated with the func-
tion f(I1',-) and the design Z. In more detail, for any seed IT’ € {0, 1} 1,
y € {0,1}%, g(IT',y) is defined as

g(IT’',y) = NWETT) ()

And note that the output size is m. Moreover, we define a family of function

{977/ e g(Il',)} rreqo,13>+1 where we simply view [I' as an index (that

indices a NW generator) and y as the seed of g7;..
Now we are ready to describe our PRF construction.

— The PRF construction A is defined as a function & : {0, 1}A 17 x {0, 1}F —
{0,1}.

— h receives as the seed a string z = (I, y1, . .., IT.,y,) of length (A\+1+d)~,
where for each j € [7], IT} is of length A + 1 and each y; is of length d.

— On input i € {0,1}*, the output of h is defined to be

h(z,i) = g(IT1,y)[i] @ ... © g(II}, y,)[i]

where g(I1},y;)[i] denote the i-th bit of g(I1},y;), for any j € [v].

The seed length of the construction is (A + 1+ d)y < (A + O(k?)) - v. We
next analyze the running time of our construction. f;; emulates the program
IT for t(|II]) steps, so fir runs in time O(t(]II])) < O(t(N)) (since ¢ is mono-
tonically increasing). To compute g(I1',y), for each i € [2¥], we need to invoke
DesignNWGen on input (¢, k,i), which runs in time O(¢?) = O(k?), and we also

A Direct PRF Construction from Kolmogorov Complexity 395

need to compute f(II',yr,), which runs in time O(¢t(X)). Thus, g(IT’,y) takes
O2F(t(\) + £2)).

In order to analyze the running time of h, we notice that g(II’,y) can be
computed locally — on each index i € [2¥], g(II’,y)[i] can be computed in time
O(t(\) + €2). h(z,i) will take the xor of v independent instances of g(II’,y)[i].
Thus, the running time of h is O((t(\) + £2)7).

5.3 Security of the PRF Construction

Theorem 18. Consider any (monotonically increasing) polynomial t(n) > (1+
e)n, € > 0, any threshold function s(n) = n°Y, and its inverse ng(-) = s~1(-),
and any hardness parameter a(n) = X, B > 0. Assume MK'P[s(n)] is (n?,)-
HoA* (resp non-uniformly (n®,a)-HoA*).

Then, there exist constants v > 0,8 > 0 such that for parameters n' =
ns(A), k(A) = 1/8logn’, v(A) = 7o - logn’/a(X), it holds that the function h :
1} x {0, 1}F1+2108”)y 5 £0 13FN) 5 {01} (constructed in Sect.5.2) is a
(n’?, 25)-PRF (resp non-uniformly secure (n'°, -%5)-PRF).

Notice that there are two immediate corollaries of Theorem 18, by considering
threshold s(n) = 20087 (from which we obtain Corollary 19, where n’ =
22(log” M. and the assumption is equivalent to quasi-polynomially secure OWF's;
the PRF domain is {0, 1}20°6"2)) and threshold s(n) = polylog(n) (from which
we obtain Corollary 20, where n’ = 2)‘1/6, and the assumption is equivalent to
subexponentially secure OWFs; the PRF domain is {0, 1})‘1/C). The reader is

referred to Sect. 2.3 for equivalence between OWFs and average-case hardness
of MK'P[s].

Corollary 19 (PRF with input length 2(log” \)). Consider a threshold
function s(n) = 2°VI%6™ § > 0, polynomial t(n) > (1 4 €)n,e > 0, and any
B > 0. Assume that MK'P[s] is (n®, L)-HoA* (resp. non-uniformly (n®, 1)-
HoA*).

Then, the function h : 1* x {0,1}0()‘1%) x {0,1}108" M (89 _ {01} (con-
structed in Sect. 5.2) is a quasi-polynomially secure (resp. non-uniformly quasi-
polynomially secure) PRF.

Corollary 20 (PRF with input length 2(\'/¢)). Consider a threshold func-
tion s(n) = logn, ¢ > 2, polynomial t(n) > (1 + e)n,e > 0, and any B > 0.
Assume that MK'P[s] is (n?, L)-HoA* (resp. non-uniformly (n®, 13)-HoA*).

Then, the function h : 1* x {0, 1}00"77) 5 10 13A/8 10,1} (con-
structed in Sect. 5.2) is a sub-exponentially secure (resp. mon-uniformly sub-
exponentially secure) PRF.

We proceed to proving the Theorem 18. In what follows, we consider any
polynomial ¢(n) > (14 ¢)n, € > 0, any threshold function s(-) (with its inverse
denoted by n4(-) = s71(-)) such that s(n) = n°®) and any hardness parameter
a(n) = %, 8> 0. We will show that & is a PRF assuming hardness of MK'P[s].

396 Y. Liu and R. Pass

Switching Distributions. Recall that the a-average-case* hardness of MK'P[s]
considers hardness of MK'P[s] over the uniform distribution (conditioned on
both YES and NO instances), whereas our PRF security game concerns the
performance of the distinguisher over the pseudorandom function distribution
vs. its performance over the random function distribution. We start by showing
that our hardness assumption implies hardness of MK'P[s] over distributions
that are easier to work with.

Let us first introduce the distributions that are needed in our proof. We will
be needing the notion of (¢, s)-universal distribution (ensemble) {Dyniv.n }nen,
defined as follows.* Dy, Will pick a uniform random string IT € {{0, 1}=stmy
€}'2, and interprets it as a program. Dy, Will output z € {0,1}", where each
Z;, @ € [n], is the bit produced by running the program IT on input ¢ after ¢(|1])
steps. Formally, z; = U(IT(i), 1*"TD) where U is the universal Turing machine
we consider. The other distribution we need is the uniform distribution.

We proceed to introducing the notion of average-case* hardness with respect
to two distributions, Dy and Dy, defined similarly to Definition 5 but consider-
ing more general distributions. Roughly speaking, this requires no attacker can
simultaneously output 1 with high probability over Dy and output 0 over Dy.

Definition 21 (Average-case* Hardness w.r.t. Dy and Dy). We say that
a D(-)-dense language L is «(-) hard-on-average* for T-time attackers with
respect to Dy = {Dyn}neny and Dy = {Dnntnen ((T,@)-HoA* w.rt. Dy
and Dy) (resp non-uniformly (T, a)-HoA* w.r.t. Dy and Dy) if for all proba-
bilistic T-time (resp non-uniform T-time) heuristics H, for all sufficiently large
n, it holds that either

Prjz < Dy, : H(z) =1] <1 —a(n®),

or

Pr[z < Dy, : H(z) =0] <1 — a(n").
where n* =log D(n). n* is referred to as the normalized input length.

We will show that average-case* hardness of MK'P[s] over uniform distribu-
tion implies average-case* hardness of MK'P[s] over the distributions that we
are interested in.

Lemma 22. There exists a constant ¢ > 0 such that for any threshold function
s(n) < n/10, any polynomial t(n) > (1 + e)n, € > 0, any hardness parameter
a(N) = %ﬁ, B >0, the following holds.

Assume that MK'P[s] is (T, a)-HoA*. Then, MK'P[s] is (T,a’)-HoA* w.r.t.
the (t,s)-universal distribution and the uniform distribution where o/ = a/c’.
Moreover, the lemma also holds in the non-uniform setting.

! Note that there are many ways of defining the universal distribution, and we here
consider the definition that is most relevant to us.
12 For technical reason, we also consider the empty string e.

A Direct PRF Construction from Kolmogorov Complexity 397

Proof: Let ¢/ = 2°"! be a constant where c is the constant as in Fact 4. Let
o (n) = a(n)/c’. For any input length n of MK'P[s], let n* be the “normalized
input length”. Assume for contradiction that there exists a T-time heuristic*
H such that H breaks the (T, a/c')-HoA* of MK'P[s] w.r.t. the universal dis-
tribution and the uniform distribution; that is, for infinitely many n € N, the
following two conditions hold simultaneously: (1) H will output 1 with proba-
bility at least 1 — a/(n*) over Dyniv,n, and (2) H will output 0 with probability
at least 1 — o/(n*) over U,. We will show that the attacker H will also break
the (T,) average-case* hardness of MK'P[s]. Fix some sufficiently large n € N
such that our heuristic* H succeeds on inputs of length n.

We first show that H will output 1 with probability at least 1 — a(n*) over a
uniform random YES instance € MKP[s]. Suppose not, and we have that H fails
(to output 1) with probability > a(n*). By Fact 4, there are at least 2°(")~¢ YES
instances in MK'P[s]. Therefore, for any 2 € MK'P[s] N {0,1}", with probability

at most
1

2s(n)—c

a random YES instance will hit z. On the other hand, since z € MK'P[s], there
exists a program II, |II| < s(n), such that on input ¢, IT will output x; within
time ¢(|11]), for each i € [n]. It follows that x will be sampled with probability

at least
1

92s(n)+1

in the universal distribution (since the universal distribution will pick a random
program of length < s(n) and there are 25()*! such programs (including the
empty string); « will be sampled from the distribution when the program IT is
picked). Thus, H must also fail over the universal distribution with probability
at least

Pr[x «— Duniv.n : H(x) # 1]
= Y Pr[Dunivn = 2] Pr[H(z) # 1]
TEMKP[s]
1 1
> Z FWPT[H(JJ) # 1]
zEMKP[s]
> S P’ — (0,1} AMKP(s] s 2' = 2] - PrlH () £ 1]
- 2c+1 ’ :
zEMKIP[s]
L,
>26ﬁa(n)
—a(n*)
which contradicts to the condition (1).

We turn to proving that, on input a random NO instance of MKtP[s], H will
output 0 with probability at least 1 — a(n*). This follows from the fact that the

398 Y. Liu and R. Pass

random NO distribution is statistically close the uniform distribution. In more
detail, let
Zl = un

be the uniform distribution over n-bit strings. And let
Zy = {z — {0,1}" : = & MK'P[s]}

be the distribution of a random NO instance. Recall that by condition (2), the
probability that H outputs 1 over Z; is at least

Prlx — Z; : H(z) =1] <

o/ (n*)

We then show that statistical distance between Z; and Zs is at most 2~ 7+s(m)+1,
By Fact 4, there are at most 2°(™*! pn-bit strings that are YES-instances of
MKtP[s], thus there are at most 2°("™*! points that have higher probability
mass in Z; than in Zs, and the difference in probability mass for each such
point is exactly 27". By the observation noted after the definition of statistical
distance!?, it follows that the statistical distance is upper bounded by
1 1 a(n®)
on—s(n)—1 — 9n*+1 < 2

(The first inequality holds since (1) we are only considering threshold functions
such that s(n) < n/10, and thus n — s(n) +1 > n —n/10 + 1; (2) recall that
n* < s(n) 4+ 1 by Claim 1. The second inequality holds since a(n) = -5 for any
constant 3 > 0.) Thus, the probability that H outputs 1 over Z, is at most

Prlz «— Zy: H(x) = 1]
SPI‘[(E — Z1 : H(.’E) = 1] + SD(Zl, ZQ)
<a(n*)/d +a(n*)/2 < a(n®)

Finally, notice that there are infinitely many such input lengths n, and we
conclude that H also breaks the (T,) average-case* hardness of MK'P(s].

Note that our proof only makes black-box use of the heuristic* H, and we
conclude that it also holds in the non-uniform setting. |l

Constructing a Weak Family of PRGs. We turn to showing that the func-
tion g(II',y) (specifically, the family ¢g') we construct in Sect. 5.2 will be a weak
family of PRGs.

Let us briefly recall the construction and introduce the parameters. We con-
sider any polynomial ¢(n) > (14¢€)n, € > 0. Our security parameter is denoted by
. (We will base the security of our construction on the hardness of MK'P[s] with
respect to input length n such that n = ng(A).) We will consider a PRF input
length parameter k satisfying k = k(\) = 1/8logns(A). Let f be the function,
g’ be the family, &' = k'(A\),£ = £()\),d = d(X),m = m()\) be the parameters as
defined in Sect.5.2. We are going to show that ¢’ is a weak family of PRGs.

'3 That is, that the optimal distinguisher is T = {w : Pr[Z1 = w] > Pr[Z2 = w]}.

A Direct PRF Construction from Kolmogorov Complexity 399

Lemma 23 Let t,8,8,,k, k', ¢,d,m, f,g be as above, s(n) < n/2. Let o/(\) =
ﬁ be a hardness parameter (for some constant 3 > 0,¢ > 0).

Assume MK'P[s] is (n3,a’)-HoA* w.r.t. the (t,s)-universal distribution and
the uniform distribution. Then, {g}, (1) : {0,1}4N) — {0, 13N} e 0,130
isla (/' (N)/4)-weak family of (T'(N\),&'(\))-PRGs where T'(\) = 22FN) &/(\) =

2k(

) -
In addition, the lemma also holds in the non-uniform setting.

Proof: We suppose for contradiction that there exists a distinguisher D that
breaks the weak family of PRGs ¢’. Since D is a good distinguisher, it follows
that there exist infinitely many A € N such that for at least a 1—a’(\)/4 fraction
of its index IT’ € {0, 1} 1,

| Pr[D(1*, gy (Ua)) = 1] = Pr[D(1 Upn) = 1]| 2 €'(N)

We will use this distinguisher D to construct an heuristic® H breaking the
average-case* hardness of MK'P[s].
Our heuristic* H, on input a string = € {0,1}", will proceed as follows.

— H first computes the security parameter A = s(n), the input length parame-
ters k = k(A\) and k¥’ = 8k, and the other parameters needed in the construc-
tion of g.

— Let 2’ be the first 2¥ bits of z, and H will view 2’ as the truth table of a
function f, {0,1}* — {0,1}.

— H will instantiate the NW generator NW with the function f,, (and the
design 7 as in Sect. 5.2), and check whether the distinguisher D (on input the
security parameter A) will distinguish NW% (Ug) from random with advantage
at least €’(\)/2.

— In more detail, let p, denote the random variable D(1%, NW% (Uy)) and 6
denote the random variable D(1*,U,,). H will estimate E[p,] by drawing
4(6,()\1)/8)2 1og(a,(§)/8) samples from p, and take the average. Let p* be the

random variable of the average value. (Note that by the Hoeffding’s Inequality,
p* is guaranteed to be (additively) ('())/8)-close to E[p,] with probability
> 1—a/(A\)/8.) We repeat the above procedure to also estimate E[f] and
denote the average by 6*.

— Finally, H will output 1 if |p* — 6% > &'()\)/2.

We turn to analyzing the running time of H. Drawing a sample from p, requires
to run NW% (Uy). Using the same analysis as in Sect. 5.2 for g(II’,y), we conclude
that NW% (Uy) runs in time O(2F - (n + £2)) < O(n?). In addition, we need to
evaluate the distinguisher D, which takes time 7”(\). Note that drawing a sample
from 6 takes at most as much time as sampling from p,, we conclude that H runs

in time 4(5,()\1)/8)2 log(a,(i)/s)-2(O(n2)+T’()\)) < 0(2%* log a,%)\))-O(Z%—i—n?) <

3

n°.
We proceed to showing that H is a good heuristic*: H will output 1 with
probability at least 1 — o/(n*) over the distribution for YES instances, H will

400 Y. Liu and R. Pass

output 0 also with probability at least 1 — o/ (n*) over the distribution for NO
instances, and this holds for infinitely many input lengths n (where n* is the
“normalized” input length as in Definition 21). Fix some sufficiently large secu-
rity parameter A on which the distinguisher D breaks the weak family of PRGs
¢', and consider an input length n such that n = ng(A).

We first analyze how our algorithm performs over the (¢, s)-universal distri-
bution Dyniy,» on input length n. It is helpful here to introduce a new notation
tt(+): For any binary function f, let tt(f) denote its truth table, and let tt, (f)
denote the n-bit prefix of the truth table. Consider the following two distribution:

— {2’ = [z]ow : & — Dyniv.n}, and
— {ttye (F(IT',-)) : I — {0,131}

where [z],, denotes the (2¥)-bit of z. Observe that (1) the above two distri-
butions are identically distributed, (2) ¢}, (Uy) will be identical to NW% (Ug) as
long as ttyw (f(I1,-)) = 2/, and (3) over a random program II’ sampled from the
second distribution, with probability at least 1 — o/()A)/4, the distinguisher will
distinguish ¢4, (Ug) from random with advantage at least ¢’(\) (which follows
from the fact that D is a good distinguisher breaking g'). We conclude that (3)
will still hold if we replace f(II',-) by f., and thus with probability at least
1—a/(N)/4 over & < Dyniy.n, D will distinguish NW%, (Ug) from random and it
holds that
[Elpz] — E[6]] > €"(A) 3)
Recall that p* (resp 6*) is our empirical estimation of E[p,] (resp E[f]). As
argued before, using Hoeffding’s Inequality (and taking a Union Bound), we can
show that except for probability a’()\)/4, the two estimations will be close to
their expectations with difference < &’(\)/8. If so, it follows from Eq. 3 that the
difference between their estimations should be at least

|p* = 07| > |E[pa] — E[0]] —€'(N)/4 = £'(A)/2 (4)

By applying the Union Bound again (taking into account that Eq.3 holds
with high probability and our estimations are accurate with high probability),
it follows Eq. 4 holds with probability at least

1
>1-
2M\8¢ — (n*)Ac

1—ad'(N)/4—ad'(N)/4=1~- =1-a(n")

where the first inequality holds since recall that o/(\) = 13- for some constants
0,c’, and the second inequality holds since, by Claim 1, A = s(n) < n* — 1.
Finally, note that if Eq. 4 holds, our algorithm H will output 1, which concludes
that H outputs 1 with probability > 1 — a(n*) over the YES distribution.

We move on to proving that our algorithm H will output 0 with probability
at least 1 — o/ (n*) over the uniform distribution over x € {0,1}". We refer to
a string z € {0,1}™ as being bad if our distinguisher D distinguishes NW%’ (Uy)
(where ’ is the first 2" bits of z) from random with at least ¢’()\)/4; that is,

[Elpa] — E[0]] > €'(A)/4 (5)

A Direct PRF Construction from Kolmogorov Complexity 401

Notice that if a string x is not bad, using the same Chernoff/Hoeffding-type
argument we did for YES instances, it follows that H(z) will output 0 with
probability at least 1 — a/(A\)/4 = 1 — d/(s(n))/4 > 1 — o'(n*)/2, as desired.
Thus, we will show that the faction of bad strings over {0,1}" is very small.
We consider any bad string z € {0,1}". It follows from Eq.5 that D(1*) will

distinguish NW? (Ug) from random with advantage
| Pr[D(1* NWE (Uy)) = 1] — Pr[D(1Y, Uy,) = 1] > €'(N) /4

Recall from Lemma 16 that 7 is a (d, /¢, k)-design. By Lemma 17, the
Nisan-Wigderson reconstruction algorithm NWRecon” “A")(x') will output (with
high probability) a program M that given oracle access to D approximates
the function f,» where tt(f,r) = 2’ (and therefore, approximates the pre-
fix of the string z). In more detail, the program M is of description length
<m2"+m+d+ O(logd), and the oracle-aided program M’ = MDUA")(I) will
satisfy that

Prlp «— [Qk/] : M'(p) =)]

= Prlp — [2¥]: M'(p) = for ()]

SO R S S S O

-2 8m 2 8.2k.2k = 2 2(5/16)K
where the last inequality holds when &’ = 8k, k = 1/8logn is sufficiently large.
We will further argue that M’ has a small description length: Consider an imple-
mentation of M’ with the program M, the code of D, parameters A\, ¢, k hard-
wired in it. It first invokes the design generation algorithm to generate the design
Z. It will then simulate MD“A")(I) and will output whatever M outputs. Notice
that hardwiring the code of D takes either O(1) bits (when D is a uniform
attacker), or O(22%) bits (when D is a non-uniform attacker since D runs in
time 22), and storing the parameters takes O(log \) + O(log d) bits. So when k
is sufficiently large, the description length of M’ is at most

m2% +m +d + O(2*) + O(log d) + O(log \)
=2F. 2% 1 oF 1 O(k?) 4+ 0(2?%) + O(log k?) + O(log 5(n))
< 0(22k) + 2k + O(k2) < 2(5/16)k'

due to our choice of parameters (where d = O(¢?) = O(k?) and k' = 8k). Thus,
we conclude that for any bad = € {0,1}", its (Qk/)—bit prefix can be approximated
by a program (i.e., M’) of description length < 2(3/16%" with probability at least
% + W By Lemma 12, a random string x is bad with probability at most

9(5/16)k’ _eXp(_2(1—2(5/16))k’/2 + 9(5/16)k’ +2)
— 9(5/16)K’ _exp(_2(6/16)k’/2 + 9(5/16)k’ +2)
— pp/16 _eXp(_n6/16/2 + nd/16 4 2)

<277 < o/ (n*)/2

402 Y. Liu and R. Pass

where exp(-) denotes 2() and the last inequality holds when n is sufficiently
large since n* < n and o/ (n*) = W for some constants 3,¢ > 0. Taken this
together with the fact that H will output 0 with probability at least 1 —a’(n*)/2
when the input string z is not bad, we conclude that H(z) outputs 0 over the
uniform distribution with probability at least 1 —a/(n*), which finishes the proof

for the NO instances. [l

Remark 1 (A note on non-black box nature of the reduction). We remark that
the proof of Lemma 23 implicitly defines a reduction R that breaks the average-
case® hardness of I\/IKtP[s] given any “efficient” machine D that breaks the
weak family of PRGs. Although the reduction only accesses D as a black-box,
the reduction is actually non-black box because in the analysis of the reduction,
we are relying on the fact that D has a relatively short description—this is
instrumental on argue that we succeed on NO instances (where D is used to
approximately compress the instance).

Amplifying Weak Families of PRGs. We proceed to proving that the con-
struction A in Sect. 5.2 will be a PRF assuming that ¢’ is a weak family of PRGs.
In Sect. 3, we have shown that weak families of PRGs can be amplified by taking
the xor of the independent outputs. Notice that if we consider the function A’
that takes as input a seed z and outputs the truth table of h(z,-), this function
is the xor of the function ¢’. By Lemma 11, we conclude that h’ is a PRG, and
it follows that h will be a PRF since each bit on the truth table of h(z,-) can be
computed explicitly (as argued in Sect.5.2).

Returning to Proving Theorem 18. We here present a formal proof of The-
orem 18.

Proof: [of Theorem 18] Let ¢, s,ng, k,y as in the theorem statement. Let ¢’ be
the constant as in Lemma 22. We first show that A will be a PRF with desired
security if we assume MK'P[s] is (n®, a)-HoA*, and we will argue that this proof
implicitly defines a security reduction we need.

We pick the constant g to be 4¢’ and the constant § = 1/16. It follows (from
Lemma 22) that MK'P[s] is (n?, a/c’)-HoA* w.r.t. the (t,s)-universal distribu-
tion and the uniform distribution. Let n’ = ns(A). Then by Lemma 23, ¢ is a
(a(N)/(4c"))-weak family of (T"()\),&’(\))-PRG where T"(\) = 22F = n/1/4 and
¢'(A\) = 3¢ = —i7. Recall that ¢’ runs in time #'()) o 28(t(N\) + O(¢?)) =
O(2%t(N)).

We will rely on Lemma 11 to show that h is a PRF. However, Lemma 11
is only stated with respect to PRGs (instead of PRFs). As mentioned before,
it suffices to show that h, being viewed as a PRG (by considering the function
outputting the truth table of h on each seed as a pseudorandom string), is a
PRG. If so, it follows that h will be a PRF since the pseudorandom string can
be computed locally (as argued in Sect.5.2). By Lemma 11, we have that h is a
(T"(N),e”(N)-PRG (when being viewed as a PRG) where T" () = T"(\)—~t' ()

A Direct PRF Construction from Kolmogorov Complexity 403

and €”(A) = 2max{(1 — a(\)/(4¢"))7,~v¢'(N\)}. Notice that
/() =m0 (V) = w5 logn Ja(A) - O24() > n®

since (1) we only consider a(\) = 1/M\, 3 > 0, and A = s(n’) = n’°() (taken
together, this implies that 1/a(\) = n°M), and (2) t(\) = n/°() since t is a
polynomial. We turn to prove that £”’(\) is also small. €”()) is the maximal of
the two values, and we will prove that each of the values will be upper bounded
by ﬁ = % Observe that on one hand,

NY \\4c' /a(N)-logn’ ogn’ 1
2(1 — a(A)/(4))7 = 2(1 — a(N)/(4e)) /N e < (1 /eyl < /16

And on the other hand,

1) 1 1
27m =2(4c' /a(N) logn)nll/S < RIVATS

since as argued above, 1/a()\) = n°(). This concludes that h is a (n’?, —5)-PRG.
Notice that our security proof (presented above, going through Lemma 22,
Lemma 23, and Lemma 11) defines a security reduction that, given an attacker A
that breaks the PRF h on security parameter 1%, breaks the hardness of MK'P(s]
on input length A = s(n).
Also notice that the proof also works in the non-uniform setting since the
lemmas needed in the proof all hold in the non-uniform setting. [l

References

1. Allender, E.: When worlds collide: Derandomization, lower bounds, and kol-
mogorov complexity. In: International Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, pp. 1-15. Springer (2001)

2. Allender, E., Buhrman, H., Koucky, M., Van Melkebeek, D., Ronneburger, D.:
Power from random strings. SIAM J. Comput. 35(6), 14671493 (2006)

3. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 719-737. Springer (2012)

4. Bogdanov, Andrej, Rosen, Alon: Pseudorandom functions: three decades later. In:
Tutorials on the Foundations of Cryptography. ISC, pp. 79-158. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57048-8_3

5. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC 2000, pp. 235244 (2000). https://doi.org/10.1145/
335305.335334

6. Carmosino, M.L., Impagliazzo, R., Kabanets, V., Kolokolova, A.: Learning algo-
rithms from natural proofs. In: 31st Conference on Computational Complexity
(CCC 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

7. Chen, L., Hirahara, S., Oliveira, I.C., Pich, J., Rajgopal, N., Santhanam, R.:
Beyond natural proofs: Hardness magnification and locality. In: 11th Innovations in
Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik (2020)

https://doi.org/10.1007/978-3-319-57048-8_3
https://doi.org/10.1145/335305.335334
https://doi.org/10.1145/335305.335334

404

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Y. Liu and R. Pass

Chen, L., Jin, C., Williams, R.R.: Hardness magnification for all sparse np lan-
guages. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pp. 1240-1255. IEEE (2019)

Chen, L., McKay, D.M., Murray, C.D., Williams, R.R.: Relations and equivalences
between circuit lower bounds and karp-lipton theorems. In: 34th Computational
Complexity Conference (CCC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2019)

Chen, L., Tell, R.: Bootstrapping results for threshold circuits “just beyond” known
lower bounds. In: Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pp. 34-41 (2019)

Chen, L., Tell, R.: Hardness vs randomness, revised: uniform, non-black-box,
and instance-wise. Electronic Colloquium on Computational Complexity (2021).
https://eccc.weizmann.ac.il /report,/2021/080/1

Dodis, Y., Impagliazzo, R., Jaiswal, R., Kabanets, V.: Security amplification for
interactive cryptographic primitives. In: Theory of Cryptography: 6th Theory of
Cryptography Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009.
Proceedings 6, pp. 128-145. Springer (2009)

Goldreich, O.: Foundations of Cryptography — Basic Tools. Cambridge University
Press (2001)

Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In:
FOCS (1984)

Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: Advances in Cryptology: Proceedings of CRYPTO 84 4, pp.
276-288. Springer (1985)

Goldreich, O., Nisan, N., Wigderson, A.: On yao’s xor lemma. Technical Report
TR95-050, Electronic Colloquium on Computational Complexity (1995)
Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431-473 (1996)

Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270-299 (1984)

Haitner, 1., Harnik, D., Reingold, O.: On the power of the randomized iterate. In:
CRYPTO, pp. 22-40 (2006)

Haitner, I., Reingold, O., Vadhan, S.: Efficiency improvements in constructing pseu-
dorandom generators from one-way functions. In: Proceedings of the Forty-Second
ACM Symposium on Theory of Computing, pp. 437-446 (2010)

Hartman, T., Raz, R.: On the distribution of the number of roots of polynomials
and explicit weak designs. Random Struct. Algorithms 23(3), 235-263 (2003)
Hartmanis, J.: Generalized kolmogorov complexity and the structure of feasible
computations. In: 24th Annual Symposium on Foundations of Computer Science
(sfes 1983). pp. 439-445, November 1983. https://doi.org/10.1109/SFCS.1983.21
Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364-1396 (1999)

Hirahara, S.: Non-black-box worst-case to average-case reductions within NP. In:
59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
pp. 247-258 (2018)

Holenstein, T.: Pseudorandom generators from one-way functions: a simple con-
struction for any hardness. In: TCC, pp. 443-461 (2006)

Impagliazzo, R., Wigderson, A.: P = BPP if e requires exponential circuits: Deran-
domizing the xor lemma. In: STOC 1997, pp. 220-229 (1997)

https://eccc.weizmann.ac.il/report/2021/080/l
https://doi.org/10.1109/SFCS.1983.21

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

A Direct PRF Construction from Kolmogorov Complexity 405

Kabanets, V., Cai, J.: Circuit minimization problem. In: Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Port-
land, OR, USA, pp. 73-79 (2000)

Ko, K.: On the notion of infinite pseudorandom sequences. Theor. Comput. Sci.
48(3), 9-33 (1986)

Kolmogorov, A.N.: Three approaches to the quantitative definition of information.
Int. J. Comput. Math. 2(1-4), 157-168 (1968)

Liu, Y., Pass, R.: On one-way functions and Kolmogorov complexity. In: 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, pp. 1243-1254. IEEE (2020)

Liu, Y., Pass, R.: Cryptography from sublinear time hardness of time-bounded
kolmogorov complexity. In: STOC (2021)

Liu, Y., Pass, R.: Characterizing derandomization through hardness of levin-
kolmogorov complexity. In CCC (2022)

Liu, Y., Pass, R.: On one-way functions and the worst-case hardness of time-
bounded kolmogorov complexity. Cryptology ePrint Archive p. 1086 (2023)

Luby, M.G.: Pseudorandomness and cryptographic applications, vol. 1. Princeton
University Press (1996)

Maurer, U., Tessaro, S.: Computational indistinguishability amplification: tight
product theorems for system composition. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 355-373. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03356-8_21

Mazor, N., Pass, R.: Counting unpredictable bits: A simple prg from one-way
functions. Cryptology ePrint Archive (2023)

McKay, D.M., Murray, C.D., Williams, R.R.: Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In: Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp.
1215-1225 (2019)

Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336-375 (1999)
Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM (JACM) 51(2), 231-262 (2004)

Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring. In:
Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Com-
puting, pp. 11-20 (2000)

Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2),
149-167 (1994)

Oliveira, I., Pich, J., Santhanam, R.: Hardness magnification near state-of-the-art
lower bounds (2019)

Oliveira, I.C.: Randomness and intractability in kolmogorov complexity. In: 46th
International Colloquium on Automata, Languages, and Programming (ICALP
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

Oliveira, 1.C., Santhanam, R.: Hardness magnification for natural problems. In:
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 65-76. IEEE (2018)

Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24-35
(1997)

Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of
the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983,
Boston, Massachusetts, USA, pp. 330-335. ACM (1983)

https://doi.org/10.1007/978-3-642-03356-8_21
https://doi.org/10.1007/978-3-642-03356-8_21

406

47.

48.

49.

50.

51.
52.

53.

54.

Y. Liu and R. Pass

Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the xor
lemma. J. Comput. Syst. Sci. 62(2), 236-266 (2001)

Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-force
searches) algorithms. Annal. History Comput. 6(4), 384-400 (1984)

Vadhan, S.P.: Pseudorandomness. Foundations and Trends® in Theoretical Com-
put. Sci. 7(1-3), 1-336 (2012)

Vadhan, S.P., Zheng, C.J.: Characterizing pseudoentropy and simplifying pseudo-
random generator constructions. In: STOC, pp. 817-836 (2012)

Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134-1142 (1984)
Yablonski, S.: The algorithmic difficulties of synthesizing minimal switching cir-
cuits. Problemy Kibernetiki 2(1), 75-121 (1959)

Yablonski, S.V.: On the impossibility of eliminating perebor in solving some prob-
lems of circuit theory. Dokl. Akad. Nauk SSSR 124(1), 44-47 (1959)

Yao, A.C.: Theory and applications of trapdoor functions (extended abstract). In:
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982, pp. 80-91 (1982)

	A Direct PRF Construction from Kolmogorov Complexity
	1 Introduction
	1.1 Construction Overview
	1.2 Proof Overview

	2 Preliminaries
	2.1 Time-Bounded Kolmogorov Complexity
	2.2 Average-Case* Hardness
	2.3 One-Way Functions and MKtP[s]
	2.4 Pseudorandom Generators and Pseudorandom Functions

	3 Weak Family of PRGs and Security Amplification
	4 Unapproximability of Random Strings for Small Programs
	5 PRF Construction from MKtP
	5.1 Tools
	5.2 The PRF Construction
	5.3 Security of the PRF Construction

	References

