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Decoupling the electronic gap from the spin Chern number in spin-resolved topological insulators
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In two-dimensional topological insulators, a disorder-induced topological phase transition is typically iden-
tified with an Anderson localization transition at the Fermi energy. However, in Z2 trivial, spin-resolved
topological insulators it is the spectral gap of the spin spectrum, in addition to the bulk mobility gap, which
protects the nontrivial topology of the ground state. In this work, we show that these two gaps, the bulk
electronic and spin gap, can evolve distinctly on the introduction of quenched short-ranged disorder and that
an odd-quantized spin Chern number topologically protects states below the Fermi energy from localization.
This decoupling leads to a unique situation in which an Anderson localization transition occurs below the
Fermi energy at the topological transition. Furthermore, the presence of topologically protected extended bulk
states nontrivial bulk topology typically implies the existence of protected boundary modes. We demonstrate
the absence of protected boundary modes in the Hamiltonian and yet the edge modes in the eigenstates of the
projected spin operator survive. Our work thus provides evidence that a nonzero spin-Chern number, in the
absence of a nontrivial Z2 index, does not demand the existence of protected boundary modes at finite or zero
energy.
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I. INTRODUCTION

Understanding the robustness of topological properties to
weak perturbations in electronically gapped systems has re-
mained a central question at the forefront of research in
condensed-matter physics [1–6]. The destruction of topolog-
ical properties on closing the electronic gap is a fundamental
concept underlying this phenomena in a wide range of phys-
ical systems such as a two-dimensional electron gas in a
magnetic field (e.g., the integer [1] and fractional [7,8] quan-
tum Hall effects) and topological band structures such as
Chern [9] and topological insulators [3]. On the introduction
of weak disorder (that does not break any protecting symmetry
such as time reversal in the case of Z2 topological insulators),
this electronic gap closes (being filled in by Anderson local-
ized Lifshitz states [10,11]) but so long as the mobility gap
remains open, the topological properties can be rigorously
proven to remain intact [3–5,12–24]. As a consequence, the
bulk mobility gap is always used as a metric of how “pro-
tected” the ground-state topology is to external perturbations
[5,6,14].

In quantum spin Hall insulators this same paradigm has
been widely adopted. However, the presence of nontrivial
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spin-resolved topology requires the preservation of a gap in
both the electronic and spin spectrum [25]. A gapped spin
spectrum is essential as the spin-Chern number (Cs) is a rela-
tive invariant. between the up and down spin sectors [4,12,25];
if the spin spectrum is gapless, then the up and down sectors
can hybridize and trivialize the invariant. In the presence of
disorder, these gaps are converted into mobility gaps, i.e., their
spectrum is soft but their eigenstates are localized such that
they remain insulators with regards to transport.

In many prominent cases the bulk spin mobility gap mirrors
that of the bulk electronic mobility gap in the presence of
disorder. This is true of Z2 nontrivial spin-Hall insulators
[4,15,25]. It is also true in higher-order or crystalline topo-
logical insulators, provided the disorder does not violate the
crystalline symmetries protecting the bulk topology [26–44].
It has therefore been common practice to ignore the spin gap
altogether and only study the electronic spectrum.

Here we show that in spin-resolved topological insulators
that lack a nontrivial Z2 index but support a quantized Cs it
is essential to study both the electronic and spin spectrum
concomitantly. By generalizing the typical density of states
to the spin spectrum we show that it is possible to decouple
the fate of the electronic and spin mobility gaps as a function
of disorder. While the disorder driven topological spin Hall-
to-trivial insulator phase transitions can be identified by the
spin gap closing at the Fermi energy, in direct contrast with
all of the other paradigmatic examples we have previously
discussed, the electronic mobility gap does not close at the
Fermi energy. Instead, we provide strong numerical evidence
through simulations on large system sizes that an Anderson
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FIG. 1. Schematic bulk phase diagram of the disordered Hamil-
tonian in Eq. (1) as a function of energy E and strength of the random
on-site disorder W . The higher-order topological phase, which is
only stable in the clean limit (W = 0) is marked by a bold red
line. The metallic bands at finite energy (shown in dark gray) are
described by the Gaussian orthogonal ensemble (GOE) of random
matrix theory [45], which localizes at sufficiently large disorder with-
out closing the mobility gap between the two bands. When the Fermi
energy is placed within the light blue region such that the spin gap
is intact, the spin Chern number is quantized and the system exhibits
a spin-resolved Anderson topological insulator. The line separating
the light yellow and light blue regions is the spin mobility edge that
is decoupled from the electronic mobility edge that separates the
gray and yellow regions. When all of the bulk states localize, the
spin mobility gap closes and the spin-Chern number is no longer
quantized.

localization transition takes place below the Fermi energy,
leading to the phase diagram seen in Fig. 1, which is funda-
mentally distinct from known topological counterparts.

A major consequence of decoupling the electronic and spin
mobility gaps must appear in the nature of edge modes as a
result of the bulk-boundary correspondence.

In this work we utilize a two-dimensional band structure
that hosts two distinct, spin-resolved topological insulating
phases admitting Cs = 1 as well as a trivial insulating phase,
Cs = 0. The two spin-resolved topological insulating phases
are distinguished by the simultaneous presence of higher-
order topology in one. We utilize these two topological band
structures to show that higher-order topology is not necessary
to realize the phenomena we study in this work. Nonethe-
less, as spin-resolved topology has been shown to commonly
coexist with higher-order topology [46–51], higher-order in-
sulators constitute ideal experimental candidates to realize
disordered spin-resolved topological insulators.

As the higher-order topology of the model we study is sym-
metry protected, the introduction of disorder removes these
symmetries but does not remove the quantized spin Chern
number and it is therefore far from obvious what topologi-
cal properties remain robust, answering this question is one
major goal of the current work. We demonstrate that extended
boundary modes protected by the bulk topology are absent.
Nonetheless, the projected spin-operator does yield well-
defined one-dimensional dispersing edge modes localized to
their boundary provided the spin Chern number remains quan-
tized. In addition, the electronic spectrum is shown to support

topological surface modes only on an inserted zero dimen-
sional defect [52,53].

Importantly, in the landmark work on the spin Chern num-
ber [25], Prodan noted “the existence of Chern numbers for
different [spin] sectors does not automatically imply the ex-
istence of chiral edge modes.” While it has been established
that helical edge states need not be present when Z2 = 0 and
Cs �= 0, our result serves as a direct demonstration that the
existence of a spin-Chern number, in the absence of a nontriv-
ial Z2 index, does not dictate the existence of any protected
boundary modes, whether at finite or zero energy.

The remainder of the paper is organized as follows. In
Sec. II the tight-binding model that we study is introduced as
well as details of how disorder will be modeled. In Sec. II A
the electronic structure and topological properties of the tight-
binding model in the clean limit are given. In Sec. II B the
computational tools utilized to examine the electronic and
and topological properties of the tight-binding model in the
presence of disorder are defined. In Sec. III the effects of
disorder are investigated, first with respect to the bulk and
surface electronic spectrum in Sec. III A. Subsequently in
Sec. III B, the effects of disorder on the bulk and surface
spin spectrum as well as topology of the spin spectrum are
explored. Finally, before concluding in Sec. IV, we examine
the use of magnetic flux tubes to probe the bulk topology of
the spin spectrum via the electronic spectrum in Sec. III C.
In the Appendix we provide further details investigating (a)
the prevalence of finite-size effects in our determination of
the phase boundaries, (b) the fate or corner-modes for systems
admitting higher-order topology in the clean limit, and (c) the
effects of disorder in an additional spin-resolved topological
insulator lacking higher-order topology in the clean limit.

II. MODEL, SYMMETRIES, AND APPROACH

We consider a quintessential tight-binding model which,
for a set of parameters, is a spinful generalization of the fa-
mous Benalcazar-Bernevig-Hughes model [54,55] admitting
two distinct spin-resolved topological insulating phases and a
trivial insulating phase as seen in Fig. 2.

We introduce a random onsite potential V (r) to model
quenched, short-range disorder realizing the Hamiltonian,

H =
∑
k

ψ
†
kH0(k)ψk +

∑
r

ψ†
rV (r)ψr, (1)

where ψr is a four component spinor at site r (or Bloch mo-
mentum k). The Hamiltonian belongs to class BDI [16,18,24]
in the clean limit and class AI on introduction of finite disorder
and is therefore expected to demonstrate localization of the
electronic states on introduction of disorder.

The Bloch Hamiltonian H0(k) takes the form:

H0(k)/t = sin kxσ1 ⊗ τ1 + sin kyσ1 ⊗ τ2

+ M(k)σ3 ⊗ τ0 + �(k)σ2 ⊗ τ0, (2)

where t has units of energy, σ0,1,2,3(τ0,1,2,3) are the 2 × 2
identity matrix and three Pauli matrices respectively, operat-
ing on the spin (orbital) indices. We further define M(k) =
α(cos kx + cos ky) + γ and �(k) = �0 + t1(cos kx − cos ky),
fixing γ = 0.9 throughout. Time-reversal symmetry T , is
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FIG. 2. Clean phase diagram: Topological phase diagram for the
Hamiltonian in Eq. (2) in the clean limit (W = 0). A nontrivial Z2

index cannot be defined for any phase. Two topologically nontrivial
phases can be identified as a function of �0/t1 for γ /α < 2. Both
support spin-resolved topology, but a quantized quadrupole moment,
Qxy = 1/2, and zero-energy corner modes protected by chiral sym-
metry exist for |�0/t1| < |γ − 2α|/|α| as detailed in Ref. [56].

generated by T †H0(−k)T = H0(k), where T = σ3 ⊗ τ1K,
where K represents complex conjugation. Additionally,
a chiral symmetry, S†H0(k)S = −H0(k) exists generated
by S = σ1 ⊗ τ3 and particle-hole symmetry, generated by
�†H0(k)� = −H0(−k), where � = σ2 ⊗ τ2K.

At each site, we model the quenched disorder as a random
onsite potential V (r). We sample the potential V (r) from a
Gaussian distribution with zero mean and variance W 2, and
hence W characterizes the strength of disorder. Throughout
this work,W will be expressed in units of t .

In the following we present a detailed numerical study of
the model defined in Eq. (1) through a combination of exact
diagonalization that reaches up to linear system sizes L = 60
and the kernel polynomial method (KPM) [57] to study the
average and typical density of states up to linear system sizes
of L = 1000. Before describing the quantities and metrics we
use to determine each phase of the system we begin with a
review of the model in the clean limit [i.e., V (r) = 0].

A. Clean limit

In the clean-limit Eq. (2) admits both spin-resolved and
higher-order topological phases as a function of the model
parameters, as seen in Fig. 2. More specifically, the higher-
order topology observed in this model falls under the category
of a boundary obstructed phase supporting bulk-corner corre-
spondence when �0 = 0 and edge-corner correspondence for
�0 �= 0 [56,58]. While higher-order topology can be identi-
fied concomitantly with spin-resolved topology for a range
of parameters, they are independent. Higher-order topology
is not necessary to realize the physics investigated in this
work. Nevertheless, HOTIs have been shown to be a natu-
ral place to identify two-dimensional, Z2 = 0, spin-resolved
topological insulators allowing for immediate connection to
experimentally realized systems. We utilize, as starting points
to study the effects of disorder, each phase shown in Fig. 2. In
the main body we focus on the phase admitting higher-order

FIG. 3. Properties of the clean band structure: (a) Band struc-
ture along high-symmetry path for tight-binding model given by
Eq. (2) for the parametr choice �0 = 0, t1 = 0.05, and γ /α = 0.9.
(b) Spectra for a slab of 40 unit cells along the x̂ direction and
periodic boundary conditions along ŷ. Inset shows enlarged view of
spectral gap at ky ± π . (c) Spectra of 50 lowest-lying states when
applying open-boundary conditions along both principal axes in a
systems of 50 × 50 unit cells. Localization of degenerate midgap
states shown in red is detailed in (d), demonstrating that they are
corner localized.

and spin-resolved topology simultaneously as well as a topo-
logically trivial phase. We further consider the spin-resolved
topological phase in which higher-order topology is absent in
Appendix C.

By fixing �0 = 0, t1 = 0.05 and γ /α = 0.9 the
system at hand supports fourfold rotational symmetry
generated by C†

4H0(kx, ky)C4 = H0(ky,−kx ), where
C4 = e−i π

4 τ0⊗σ3e−i π
2 τ3⊗σ3 , falling under the category of HOTIs

with “bulk-corner” correspondence [56,58]. The bulk band
structure along the high-symmetry path is shown in Fig. 3(a)
detailing that the model is an insulator for our choice of
parameters. Considering a cylindrical geometry, such that
ky remains a good quantum number, we find the spectra in
Fig. 3(b) detailing the absence of gapless states on the x
edge. Finally, placing the system in a slab geometry of linear
system size L = 50 with open boundary conditions along
x and y we find the spectra shown in Fig. 3(c), displaying
four zero-energy states. The localization of these states at the
corners of the sample is shown in Fig. 3(d).

The bulk-boundary correspondence for the corner bound
states has been established in prior works through computa-
tion of the nested Wilson loop [54,59]. The Wilson loop along
direction kx as a function of ky, is defined as

Wx(ky) = Pexp

[
i
∮

Aocc,x(k)dkx

]
, (3)

where Aocc,x(k) = −i 〈
occ| ∂kx |
occ〉 is the Berry connection
for the occupied subspace. On integration, the Wilson loop
can be written in the form,

Wx(ky) = eiHW,x (ky ). (4)
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The Wannier center charges (WCCs), x̄(ky), follow as eigen-
values of HW,x (ky)/π and can be used to determine both the
Z2 index and bulk-boundary correspondence for states on the
x edge [12,60,61]. The WCC spectra for Eq. (2) has been
shown to be gapped [54–56], indicating a trivial Z2 index
and lack of gapless topological edge states. The nested Wilson
loop follows as the Wilson loop of the Wannier Hamiltonian,
HW,x (ky), and dictates that the corner modes are topologically
protected by the presence of quantized quadrupole moment
Qxy = 1/2 [54]. The quadrupole moment is in turn protected
by the presence of chiral symmetry, which has been well
documented in Refs. [26,27,54].

Coexisting with the symmetry protected topology of
Eq. (2), is nontrivial spin-resolved topology. The spin-
resolved topology is identified by a quantized spin-Chern
number, Cs = (C↑ − C↓)/2, where C↑,↓ is the Chern number
defined for the spin-up and spin-down eigenstate which con-
stitute a Kramers pair. To compute the spin-Chern number we
must isolate the spin up(spin down) subsectors of the occupied
Kramers pairs. This is accomplished through construction of
the projected spin operator (PSO) [25]. The projected spin
operator takes the form Ŝ = P(k)ŝP(k), where P(k) is the
projector onto occupied bands and ŝ is a preferred spin axis.
In the presence of spin-rotation symmetry it is simple to verify
that the eigenvalues of the PSO are fixed as ±1. The pos-
itive(negative) branches of the spectra corresponding to the
spin-up(spin-down) eigenstates for which the Chern number,
C↑(C↓), can be computed.

If additional terms violating the spin-rotation symmetry
are introduced, then the eigenvalues of the PSO adiabatically
deviate from ±1. So long as a gap in the spectra of the PSO
remains present, referred to as the spin gap (labeled �s),
C↑(C↓) can be unambiguously computed. Thus, the spin gap
is as fundamental to the problem as the energy gaps. In the
presence of disorder, these are converted into energy and spin
mobility gaps that have to be determined from quantities that
are not self-averaging.

For Eq. (2), a gap in the PSO is present fixing the Fermi
energy E/t=0 for the choice, ŝ = sz = σ3 ⊗ τ3, allowing for
calculation of the spin-Chern number. The eigenvalues of the
spin spectra, as a function of the Fermi energy, are shown in
Fig. 4(a), demonstrating that the PSO is gapped for all values
of the Fermi energy which fall within the electronic bulk gap.

Computation of the Chern number for the occupied eigen-
states of the PSO (C↓) is accomplished via modification
of the coupling matrix method introduced in Ref. [62],
replacing the occupied eigenfunctions of the Hamilto-
nian with the eigenfunctions corresponding to the negative
eigenvalues of the PSO. The results establish Cs = 1 for
Eq. (2), while we emphasize the absence of a nontrivial Z2

index.
In correspondence with the presence of a quantized Chern

number, the spectral density of the PSO on the surface can be
computed for open boundary conditions along x and twisted
boundary conditions along y, ψ (x, y + L) = eiθyψ (x, y). The
results in Fig. 4(b) and Fig. 4(c) display the expected spec-
tral flow. Fixing the twist angle, θy = 0, we inspect the real
space distribution of the eigenstates at λ = 0 in Fig. 4(d) that
demonstrates that these gapless modes are bound to the open
edges.

FIG. 4. Properties of the PSO band structure: (a) Spectra of the
PSO as a function of the Fermi energy on an L = 20 system size
with periodic boundary conditions. Red dashed line marks region
of energy supporting a gapped PSO spectra. [(b) and (c)] The PSO
on an L = 20 size system with open boundary conditions along x
and twisted boundary conditions along y, for twist θy, is considered.
The average local density of states on the (b) x = 0 and (c) x = L
surfaces as a function of the twist angle demonstrating chiral edge
states. (d) The real-space distribution of the eigenstates nearest to
λ = 0 for twist angle θy = 0, demonstrating localization along the
edges.

The analysis of the Bloch Hamiltonian defined in Eq. (2)
and presented in this section has established the coexistence
of (I) symmetry-protected higher-order topology and (II) spin-
resolved topology when the Fermi energy is placed within the
bulk gap. The presence of an electronic bulk gap is visible in
Fig. 3(a). The electronic gap is marked by red-dashed lines in
Fig. 4(a) demonstrating that within this region the PSO is cor-
respondingly gapped. The bulk-boundary correspondence of
the symmetry protected higher-order topology has been estab-
lished through identification of a gap in the surface spectra in
Fig. 3(b) and subsequent identification of zero-energy corner
localized states as shown in Figs. 3(c) and 3(d). The bulk-
boundary correspondence of the PSO as a Chern insulator has
been established via analysis of the spectral flow on imposi-
tion of twisted boundary conditions as seen in Figs. 4(b) and
4(c). In the following sections we will address whether the
gap in the bulk electronic and spin spectrum can be decoupled
through introduction of disorder and the corresponding impact
on the fate of topological boundary modes.

B. Probes of the disordered model

We now define all quantities computed to construct a com-
plete phase diagram in the presence of disorder.

1. Probes of the energy spectrum and wave functions

To understand the nature of the bulk and surface states we
compute the average density of states (DOS), typical density
of states (TDOS), and the level statistics through the adjacent
gap ratio. It is well known that the DOS cannot distinguish
between extended and localized states. By contrast, the TDOS
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can distinguish between localized and extended states due to
the fact that the TDOS performs a geometric average of the
local DOS [57,63,64]. As the electronic states transition from
being extended to localized, the local spectrum transitions
from continuous to discrete, suppressing the TDOS. As a
consequence the TDOS is an appropriate measure of the mo-
bility gap, which can therefore be used to determine the phase
boundaries. It is important to stress that on the introduction of
disorder the energy gap becomes soft due to nonperturbative
Lifshitz states that fill in the gap. Instead, the mobility gap, or
the gap in the typical density of states will distinguish metallic
and insulating phases. We therefore compute both quantities
to develop a full picture of the spectrum of the model. The
average DOS is defined as

ρ(E ) = 1

L2

[∑
n

δ(E − En)

]
, (5)

where the sum is over all the eigenstates |En〉 of the Hamilto-
nian operator H in Eq. (1), n = 1, . . . , 4L2 for a linear system
size L, En are the eigenvalues of H , and [. . . ] denotes a
disorder average. For the computation of the DOS and TDOS
we average over 5000 disorder configurations.

To probe the nature of localized states we define the TDOS
through the local DOS via

ρtyp(E ) = exp

(
1

4Ns

Ns∑
i=1

2∑
σ=1

2∑
τ=1

[ln ρi,σ,τ (E )]

)
, (6)

where Ns indicates a small collection of random sites consid-
ered Ns � L2 and the local DOS at site i for spin σ and orbital
τ , ρi,σ,τ (E ), is defined as

ρi,σ,τ (E ) =
∑
k,α,β

|〈k, α, β|i, σ, τ 〉|2δ(E − Ekαβ ). (7)

When examining the surface DOS, the sum over i is restricted
to values on the surface of the sample. No such restriction is
imposed for the bulk DOS.

In order to correctly ascertain the localization properties it
is essential to reach large system sizes. Therefore, both quan-
tities are computed using the KPM [57] for a linear system
size of L = 1000, this method expands the quantity of interest
in terms of Chebyshev polynomials to an order NC and is
able to reach large system sizes by utilizing efficient sparse
matrix-vector multiplication. To filter Gibb’s oscillations from
truncating this series we use the Jackson kernel, which ef-
fectively amounts to replacing the Dirac-delta function in the
definition of the local DOS in Eq. (7) with a Gaussian of width
δE = πD/NC [57] and bandwidthD. Once convolved with the
wave-function overlap this infrared energy scale δE broadens
the effective localization length and therefore scaling with NC

is needed to ascertain localized and delocalized phases [57].
Therefore, in this work we utilize the scaling of the typical
DOS with the KPM expansion order (NC) as a means to probe
the localization transitions [57,64]. As we are considering a
system of linear size L = 1000, we find that the finite-size
effects due to the physical system size are minimal at the
considered expansion orders (see Appendix A). Rather we
must perform scaling with respect to Nc as only in the limit
Nc → ∞ does KPM produce an exact result. Truncating Nc

to reduce the computational cost then represents the most
significant “finite-size” effect, not the physical system size
[65]. Due to the convolution of the wave functions and the
energy spectrum, the KPM smearing of the energy is turned
into a smearing of the wave function. In a metallic phase, the
typical DOS will be NC independent, whereas in the localized
phase the typical DOS will be zero in the thermodynamic
limit, thus it will go to zero as NC → ∞ in our numerical
simulations on finite size and expansion order. To conclude,
we label the gap in the typical DOS as the mobility gap, and
strictly speaking there is no gap in the average DOS for any
disorder strength.

To provide an additional probe of the delocalized phase
and to ascertain its diffusive (i.e., random matrix theory like)
metallic properties, the level statistics is computed through
the adjacent gap ratio, ri, and averaged over 500 disorder
configurations. We compute the adjacent gap ratio using exact
diagonalization from

ri = min(δi, δi+1)

max(δi, δi+1)
, (8)

where δi = Ei+1 − Ei is the difference between neighboring,
distinct eigenvalues. In the following, the level statistics is
computed as a function of energy that we average over 500
disorder configurations for linear system sizes L = 20, 40, 60
that have periodic boundary conditions. The disordered model
at hand is in class AI, based on this symmetry classification
disorder should be a relevant perturbation and localize all
states in the spectrum, which will produce a Poisson dis-
tributed adjacent gap ratio 〈r〉 ≈ 0.386. However, if the states
remain delocalized, which in the current model arises due to
purely topological reasons, then the adjacent gap ratio will
follow the Gaussian orthogonal ensemble (GOE) [45] random
matrix theory ensemble that predicts 〈r〉 ≈ 0.53.

2. Probes of the spin-resolved spectrum and wave functions

The presence of nontrivial spin-resolved topology is deter-
mined by the spectra of the PSO (Ŝ), which we refer to as the
spin spectrum. As we will see, the gap in the spin spectrum
is as fundamental to this problem as the electronic spectrum,
both must be studied in tandem. We therefore, carefully spell
out our analogous approach defining relevant quantities that
are similar to the energy spectrum here.

The PSO is a function of the occupied states, fixing a
given Fermi energy, E we define the PSOwithout translational
symmetry through

Ŝ = P̂(E )ŝP̂(E ), (9)

where P̂(E ) projects onto all occupied states up to energy
(E ), namely P̂(E ) = ∑

En<E |En〉〈En|. From this we define the
disorder averaged spin-resolved DOS at the Fermi energy, E ,
from the spectrum of Ŝ through

ρS (λ;E ) = 1

L2

[∑
n

δ(λ − λn)

]
, (10)

where λn denotes the eigenvalues of Ŝ with eigenvectors |λn〉
and the sum is over all the eigenvalues i = 1, . . . , 4L2.

However, its not sufficient to know if the spin spectrum
is finite we have to also determine if the spin eigenvectors are
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localized in real space or not. Therefore, analogous to the local
DOS we define the spin-resolved local DOS at site i for spin
σ and orbital τ as

ρS
i,σ,τ (λ;E ) =

∑
k,α,β

|〈k, α, β|i, σ, τ 〉|2δ(λ − λkαβ ), (11)

from which we define the typical spin-resolved DOS,

ρS
typ(λ;E ) = exp

(
1

4Ns

Ns∑
i=1

2∑
σ=1

2∑
τ=1

[
ln ρS

i,σ,τ (λ;E )
])

. (12)

Similarly to a metallic and insulating TDOS, we expect that
whether the spin-resolved TDOS is nonzero will tell us if the
eigenmodes of the PSO are localized or not. Similarly, the gap
in the spin-resolved TDOS, we refer to as the spin mobility
gap.

In the following we study the spin-resolved spectrum using
exact diagonalization and consider system sizes up to L = 20.
Despite the small sizes we are able to get rather conclusive
data on the nature of the PSO in the presence of disorder,
which for the present problem has much less severe finite-
size effects compared to the eigenstates and spectrum of the
Hamiltonian. We remark that it is possible to construct a KPM
description of the spin spectrum to reach larger sizes but it
requires a double Chebyshev expansion and is therefore left
for future development.

3. Topological properties

In the presence of finite disorder we again diagnose bulk
topology through computation of the spin-resolved Chern
number via a modifying of the coupling matrix method
described in Ref. [62]. We emphasize that our implemen-
tation differs only through a replacement of the real-space
Hamiltonian with the PSO. For clarity, we briefly describe the
method.

Defining twisted boundary conditions for single-particle
eigenfunctions of the PSO as ψ (x + L, y) = eiθxψ (x, y) and
ψ (x, y + L) = eiθyψ (x, y) such that θi ∈ [0, 2π ). The single-
particle eigenfunctions can be Fourier transformed. The
twisted boundary conditions impose the constraint that re-
ciprocal space coordinates take on discrete values, k =
( 2n1πL , 2n2π

L ) + ( θx
L ,

θy
L ), where 0 � ni � L.

The Chern number is then computed as

C↓ = 1

2π i

∮
∂Rq

dlq〈�q|∇q�q〉, (13)

where |�q〉 is the Fourier transform of the negative eigenstates
of the PSO and ∂Rq is the boundary of the square of side
length 2π/L. To carry out the computations we discretize the
∂Rq into 80 segments, replacing the derivative with finite dif-
ferences. Finally, we average over a minimum of 20 disorder
configurations.

III. EFFECTS OF DISORDER

We now come to the effects of disorder when starting from
the two-dimensional band structure given by Eq. (2). Impor-
tantly, the disorder breaks the translational symmetry and the
identification of each phase then follows from the quantities
defined in Sec. II B.

A. Bulk and surface electronic phase diagram

1. Insulator with higher-order and spin-resolved topology

We start by establishing the nature of the bulk phase of
the model as a function of disorder maintaining the parameter
choice, �0 = 0, t1 = 0.05, and γ /α = 0.9. The TDOS as a
function of disorder strength and energy is shown in Fig. 5(a).
Importantly, we see a clear mobility gap at weak disorder that
does not close as we increase the disorder strength. Instead,
we see two clearly metallic bands at finite energies, which
Anderson localize around a disorder strength ofW = 1.5. To
mark the mobility edge we follow the procedure outlined in
Ref. [66], extrapolating ρtyp(E/t ) to to zero as a function
of W for each KPM expansion parameter Nc, identifying the
localization transition,Wl (Nc). A second extrapolation is per-
formed to obtainWl (Nc) in the limit Nc → ∞. Repeating this
procedure at each value of E/t produces the phase boundary
shown as a dashed white line in Fig. 5(a).

The absence of the closure of the mobility gap is shown
clearly through the NC dependence of ρtyp(E = 0) at the cen-
ter of the band in Fig. 5(b), where the typical DOS always
is a decreasing function of increasing NC suggesting it is
always insulating. However, the average DOS is converged
in NC (on this linear scale) and is always nonzero at finiteW ,
though exponentially small at weak disorder. This gives it an
artificial sense of looking like it is lifting off from zero at a
particular disorder strength on a linear scale, but in facts its
just exponentially small in the disorder strength as expected
for Lifshitz states. This is in strong contrast to the localizing
behavior seen in the typical DOS.

In contrast, sitting at a finite Fermi energy E/t = 1.5, deep
in the metallic band, we see a stable metallic phase, which de-
velops a strong NC dependence at large disorder strength. This
is displayed in Fig. 5(c), where the power-law fit to ρTyp(E ) as
a function of ∼(W −Wl (NC ))x to determine an estimate of the
localization transition at this expansion order denotedWl (NC ),
which is plotted as black dashed lines. In our data, we find
optimal fits for 1.4 < x < 2.0. The inset then further shows
the extrapolation ofWl (NC ) to Nc → ∞ to obtain the result in
the thermodynamic limit. Taken together, the results in Fig. 5
clearly show two metallic bands undergoing an Anderson lo-
calization transition. If we take a Fermi energy in the mobility
gap center, then we see that the localization transition takes
place below the Fermi energy. This phenomena is quite unlike
that of a Chern or Z2 topological insulator where the mobility
gap closes in the band center at a critical disorder strength,
namely the delocalization-localization transition takes place
at the Fermi energy. Here, for the case of the HOTI, we find
that this is no longer the case.

To describe the nature of the metallic phase we turn to the
average level statistics on small sizes and the typical DOS
at much larger sizes to provide a comparison in Fig. 6. Im-
portantly, we find that the electronic bands have an adjacent
gap ratio consistent with the GOE, thus demonstrating a delo-
calized phase in two dimensions. We emphasize that based
solely on symmetry classification, class AI systems in two
dimensions are known to be unstable to disorder and localize
on introduction of weak disorder in the thermodynamic limit
[64,67,68]. Our numerical results provide evidence that the
presence of a quantized spin-Chern number serves to obstruct
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FIG. 5. Typical density of states in the bulk: (a) The ratio of the bulk TDOS defined in Eq. (6) and the average DOS defined in Eq. (5) as
a function of disorder strengthW and energy E for a fixed system size of L = 1000 and KPM expansion order NC = 16 384. While the data
at fixed NC look like a mobility gap closes, this is not the case as the scaling with NC needs to be taken into account. The mobility edge is
marked by white dashed line. It is computed following the method detailed in (c). (b) Bulk TDOS at zero energy as a function ofW for various
expansion orders NC used in the KPM. (c) Bulk TDOS at E/t = 1.5 as a function of W for various expansion orders NC used in the KPM.
The localization transition point,Wl (Nc ), is determined by extrapolating ρtyp(E/t = 1.5) to zero. Inset demonstrates extrapolation ofWl (Nc ) to
Nc → ∞ limit in order to determine the phase boundary.

such localization in the model at hand. One reasonable ex-
planation for this correspondence follows from the fact that
topological order is global, not local, and thus generally re-
quires the existence of extended bulk states. This has been
previously studied in the context of Wannier representations
for crystalline systems [69–72]. In the following section fur-
ther numerical evidence for the correspondence between a
quantized spin-Chern number and extended bulk states will
be presented motivating future work towards a rigorous proof

FIG. 6. Revealing the GOE metal at finite energy: Bulk TDOS
define in Eq. (6) as a function energy, varying the expansion order,
NC for the kernel polynomial method, fixing the disorder strength
to (a) W = 0.5 and (b) W = 1.5. [(c) and (d)] Adjacent gap ratio
defined in Eq. (8) as a function energy for a linear system size L with
periodic boundary conditions, fixing the disorder strength (c) W =
0.5 and (d)W = 1.5 and averaging over 500 disorder configurations.
For increasing disorder strength the region supporting finite-energy
states that obey the expected result for a GOE, 〈r〉 ≈ 0.53 (marked
with a black dashed line) becomes sharper. In contrast, in the local-
ized regimes [where we see a strong NC dependence in (a) and (b)]
we also see the level statistics are Poisson (or approaching it) with
〈r〉 = 2 log 2 − 1 ≈ 0.39 (marked by dashed orange line) showing
the two results are nicely compatible.

of this observation. Importantly, the estimates for the metallic
phase boundary obtained via scaling of the TDOS with NC

agrees well with that obtained from the level statistics.
The conclusions we have reached in this subsection do not

rely on the higher-order topology of the clean Hamiltonian
and instead depend solely on whether topological protection
against localization is provided by the spin Chern number
Cs = 1. We verify this in Appendix C by starting from the
spin-resolved topological band structure for which higher-
order topology is absent (see the clean phase diagram in
Fig. 2), demonstrating that evolution of the level statistics,
the mobility gap, and the spin-resolved mobility gap evolve in
the same manner as we have shown here. This illustrates that
the spin-resolved topological insulators have topologically
protected bulk states (that a symmetry analysis would imply
are localized) below the Fermi energy. We further demonstrate
this principle in Sec. III A 3 below. By removing the spin-
resolved topology, we show that the bulk states localize on
the introduction of disorder.

2. NATURE OF EDGE MODES

To complete our analysis, we determine the phase diagram
of the surface states. It has been established that if the Z2

index is trivial and spin-Chern number is finite, then helical
edge states are not protected. Nevertheless, to complete our
analysis and provide a contrast with Z2 topological insulators
it is important to examine the edges at zero and finite energy.
To study the edge states at finite energy we impose periodic
boundary conditions along the y direction and open boundary
conditions along the x direction. We study the surface TDOS
by modifying Eq. (6) to restrict the sum over i to lattice sites
on the x edge. In Fig. 7(a) we plot the surface TDOS as a func-
tion of energy at representative values of disorder strength. We
do not find any regime that displays stable metallic surface
states and we observe a clear lack of convergence for in-
creasing NC , that demonstrates the surface states are localized
at all energy. To clarify this behavior, we plot the TDOS at
E/t = 0 and E/t = 0.5 as a function of disorder strength
in Fig. 7(b) and Fig. 7(c), respectively. At zero energy, the
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FIG. 7. TDOS computed for sites on an open x surface: We show the TDOS as defined in Eq. (6) as a function of energy, varying the
expansion order, NC for the kernel polynomial method, and fixing the disorder strength to (top)W = 0.5 and (bottom)W = 1.5. Black dashed
lines approximate the location of the bulk mobility gap. (b) Dependence of surface ρtyp as a function of expansion order, NC , at zero energy.
Inset in shows convergence of average DOS at zero energy. (c) Dependence of surface ρtyp as a function of expansion order, NC , at finite energy.
Inset displays Nc dependence at varying energy and disorder strength.

TDOS indicates ρtyp(E/t = 0) → 0 as NC → ∞ is always
true. By contrast, the ADOS is nonzero at all values of finite
disorder, demonstrating the presence of disorder-induced, lo-
calized zero-energy states on the surface. These zero-energy
states have been the source of speculation that a higher-order
to first-order transition can occur. Indeed such a prediction
follows naturally from a simple observation that the Bloch
Hamiltonian, Eq. (2), admits two masses, �(k) and M(k).
While M(k) controls the bulk band gap, �(k) controls the
surface gap. We can naively analyze the effects of disorder
on these parts of the model within a perturbative (in disorder
strength) perspective. Such a Born approximation yields that
the effective value of �(k) will vanish prior to that of M(k).
However, it is imperative to stress that this perturbative picture
is well known to completely fail to explain Anderson localiza-
tion phenomena [73,74] (and only captures some aspects of
the average spectrum), which cannot be described with a per-
turbative analysis. Importantly, these conclusions are at direct
odds with our numerical results as they suggest that protected
helical edge states emerge when the effective value of �(k)
vanishes, which is simply not the case as we have shown
they localize in the presence of disorder. Thus, our analysis
unambiguously shows that any disorder-induced zero-energy
and finite-energy edge states are not topologically protected
and no such transition has occurred. Rather, as will be shown,
we find the spin gap alone controls the topological classifica-
tion and existence of extended bulk states. Our numerical data
imply that the surface states localize for infinitesimal disorder
strength. As a result, it can be concluded that although a quan-
tized spin-Chern number protects the existence of extended
bulk states, it does not demand the existence of protected
boundary modes, whether at zero or finite energy.

3. Anderson localization in the absence of a spin-Chern number

As stated previously, the model presented falls under class
AI in the Altland-Zirnbauer table in the presence of disorder
and belongs to the GOE of random matrix theory. We there-
fore do not expect the bulk, finite-energy metallic phase to be
stable to the introduction of disorder [45]. Rather, a symmetry
analysis would dictate that the finite-energy bulk metallic
phase identified in the clean limit will localize on introduction

of infinitesimal disorder. Fascinatingly, we have shown that
this is not the observed behavior. Instead the finite-energy bulk
GOEmetallic phase exhibits stability to disorder as probed via
the level statistics and TDOS.

As this result is unexpected based on symmetry classifica-
tion, it is important to investigate further whether the observed
extended states are protected by the existence of nontrivial
bulk topology, namely the quantized spin-Chern number. To
do so, we can redefine the parameters of the Bloch Hamilto-
nian in Eq. (2) such that the bulk electronic gap is unchanged,
but the spin-Chern number is trivialized. Namely, leaving γ

fixed, we tune the value of α such that |γ /α| > 2, causing the
spin-Chern number to vanish (see Fig. 2).

To study the trivial phase sufficiently away from the
topological critical point, we fix α = 0, keeping all other
parameters used in Sec. III A 1 intact. The bulk and surface
TDOS as a function of the KPM expansion parameter, Nc, are
computed forW = 0.5 in a system of size L = 1000, averag-
ing over 5000 disorder configurations with the results shown
in Fig. 8. In these figures it is clear that for increasing Nc both
the bulk and surface TDOS demonstrate convergence towards
zero. If we compare this trend at a representative value of
energy, E/t = 1.0, with the topological system supporting
Cs = 1, then we find a sharp contrast with the results shown
in Fig. 8(c).

In accordance with the analysis presented of the topolog-
ically nontrivial model, we compute the level statistics at
representative values of disorder strength. As the bulk elec-
tronic gap has remained unaffected, we can directly compare
the results in Fig. 9 with those in Fig. 6, revealing a stark
difference in stability. This behavior provides further evidence
for the topological protection of bulk-extended states offered
by the spin-Chern number.

B. Bulk and surface spin-resolved phase diagram and topology

Surprisingly, our analysis of the electronic spectrum indi-
cates no extended states are observed at zero energy regardless
of the disorder strength. When studying the evolution of a
topological insulator as a function of disorder, it is common
to focus on the properties of the system at zero energy due to
the understanding that the nontrivial topology is protected by
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FIG. 8. Typical density of states for trivial insulator. The typical density of states is computed for the trivial insulator supportingCs = 0 as
a function of the KPM expansion parameter, Nc. Both the (a) bulk and (b) surface display convergence to zero demonstrating localized states.
(c) Comparing the typical density of states as a function of the KPM expansion parameter between a the topological and trivial insulator. The
typical density of states at finite energy is vanishing for the trivial insulator and finite for the spin-resolved topological insulator in the bulk
while both systems display a vanishing zero-energy typical density of states on the surface.

the bulk-mobility gap. The spin-resolved topological insulator
at hand exhibits a strikingly different behavior. Increasing the
magnitude of disorder drives a series of metal-insulator transi-
tions at finite energy away from the band center (as shown in
Fig. 5). However, in the clean limit in the presence of a finite
spin Chern number it is necessary to study both the electronic
and spin gap. Therefore, we have generalized each of these
theoretical probes from the energy to the spin spectrum in
Sec. II B 2 and in this section we turn to a study of the prop-
erties of the PSO, for the spin-resolved topological insulating
phase realized fixing �0 = 0, t1 = 0.05 and γ /α = 0.9, in the
presence of disorder.

To do so we first fix the Fermi energy E = 0 and compute
the TDOS of the PSO for a system size of L = 20 under
PBCs following Eq. (12), averaging over 50 disorder con-
figurations. The results in Fig. 10(a) are distinct from what
was observed for the electronic spectrum in Fig. 5. The spin
spectrum supports a spectral gap that narrows with increas-
ing disorder strength and vanishes at W ≈ 1.5 as shown in
Fig. 10(b). Interestingly, this value approximately aligns with
the localization of all bulk states.

Next, we consider the effects of varying E , comput-
ing the TDOS of the PSO at λPSO = 0 to determine the

FIG. 9. Topological protection of extended bulk states. By tuning
the parameters of Eq. (2), we maintain the bulk electronic gap but
access two different topological phases. A symmetry analysis states
that neither model will show stability to disorder and the adjacent
gap ratio should obey the Poisson distribution with 〈r〉 ≈ 0.386,
while extended states within the Gaussian orthogonal ensemble are
indicated by 〈r〉 ≈ 0.53. The disorder averaged adjacent gap ratio
for the topological phase is visible in Fig. 6, demonstrating stability
to disorder. Results for the topologically trivial model, shown here,
clarify that in the absence of topological protection all states localize.

presence/absence of a spin gap as a function of varying the
Fermi energy and disorder strength. The results shown in
Fig. 10(c), demonstrate that as disorder strength is increased,
the range of E for which a spin gap exists begins to narrow,
reflecting the behavior of a familiar Chern insulator. Thus,
we have confirmed that the spin mobility gap closes at this
topological transition.

1. Topology of the spin spectrum

The spin-Chern number is expected to remain robust as
long as the electronic and spin mobility gaps remain nonzero.
It is further reasonable to expect that the spin-Chern num-
ber is trivialized on localization of all occupied bulk states
in the electronic spectrum. To verify these expectations, we
first compute the bulk spin-Chern number fixing E = 0. The
results shown in Fig. 10(d) demonstrate that as we increase
the linear system size, L, the spin-Chern number is quantized
for weak disorder, deviating from the quantized value for
W � 1.5. This is in good agreement with the analysis of both
the TDOS for the spin and electronic spectrum, demonstrating
that the closure of the spin spectral gap and localization of all
occupied states are both realized at the same disorder strength
(to within our numerical accuracy). To provide further evi-
dence of a sharply defined spin Chern number and the nature
of its fluctuations we show the distribution of the spin Chern
number across different disorder samples in Fig. 10(e). This
reveals that the spin Chern number is quantized for every
sample not just on average. As we go through the transition
and increase disorder strength this distribution develops a tail
towards zero.

Last, we further verify the correspondence between the
presence of a mobility gap in the spin spectrum and a quan-
tized spin-Chern number we compute the spin-Chern number
as a function of E at representative values of the disorder
strength W = 0.5 and W = 1.0 in Fig. 10(f). The results
demonstrate that the spin-Chern number remains quantized
when the Fermi Energy (E ) is in the electronic and spin
mobility gaps.

Having firmly established a direct correspondence between
the existence of a spin gap and the existence of a quantized
spin-Chern number, a schematic of the bulk phase diagram
is constructed. This requires knowledge of the bulk-mobility
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FIG. 10. Disordered properties of the PSO and spin Chern number: (a) Typical density of states of PSO, defined in Eq. (12), at E = 0 as a
function of magnitude of eigenvalues for the PSO, (λPSO), and disorder strength under periodic boundary conditions. (b) Typical and average
density of states, defined in Eq. (5), of PSO defined at E = 0 as a function of disorder strength at λPSO = 0. (c) Typical density of states of PSO
as a function of disorder strength and Fermi energy at λPSO = 0, which shows that it becomes finite wherever the spin gap closes. In each plot
a dashed line marks the approximate location at which all occupied states localize in the bulk. (d) Calculation of spin-Chern number, defined
in Eq. (13), at the Fermi energy for a supercell of linear size L as a function of disorder strength, averaging over 20 disorder configurations. (e)
Histogram detailing results of spin-Chern number computation for individual disorder configurations as a function of disorder strength, fixing
E = 0. (f) Spin-Chern number as a function of the Fermi energy for representative values of disorder strength.

gap as computed in Fig. 5, as well as knowledge of the
spin mobility gap as computed in Fig. 10. The resulting
phase diagram, shown in Fig. 1, is striking as it implies
the possibility of a topological phase transition, both as a
function of the Fermi energy and disorder strength, without
closing the mobility gap. However the PSO, which controls
the bulk topology, does display such conventional gap closing
as seen in Fig. 10(c). It is the hidden nature of the PSO and
the interplay between the bulk mobility gap and spin gap
which allows for the construction of such an exotic phase
diagram.

2. Spin-resolved edge modes

In Sec. III A 2 our computation of the surface TDOS on
the edge in a cylindrical geometry led to the conclusion that
topological edge states are all localized at any W > 0. Nev-
ertheless, it is interesting to investigate the “surface spectra”
of the PSO for a fixed E . If we consider the eigenstates
associated with the negative (positive) eigenvalues of the PSO
to be “occupied” and “unoccupied,” then the magnitude of
the spin-Chern number corresponds to the magnitude of the
Chern number for the “occupied states” of the PSO. As such,
for a nonzero quantized spin-Chern number we expect the
PSO to support chiral edge modes, a hallmark of the Chern
insulator state. We directly examine these edge modes for a
system size L = 20 in a cylindrical geometry (open boundary
conditions along x and twisted boundary conditions along
y). We consider representative disorder strengths W = 1 and

W = 2 for which the spin gap has been shown to be open and
closed, respectively.

In order to examine the edge modes, we track the local
density of states along the x = 0 and x = L edges as a func-
tion of varying the twisted boundary conditions along y. The
results, displayed in Figs. 11(a) and 11(c) for W = 1 and
Figs. 11(b) and 11(d) for W = 2 respectively are in accor-
dance with classification of the PSO as a Chern insulator.
For W = 2 the spectral flow vanishes indicating the trivial
topology. The real-space distribution of the eigenstates nearest
to λ = 0 for θy = 0 are also shown in Figs. 11(e) and 11(f)
forW = 1 andW = 2, respectively. These figures underscore
that in the topological phase the states are bound to the edge
and decouple from the edge in the trivial phase. While the
results in Fig. 11 are for single disorder configurations, we
have considered 20 possible disorder configurations for each
value ofW , confirming the results are consistent in each case.

C. Signatures of spin-resolved topology
in the electronic spectrum

The previous sections demonstrate that the spin-resolved
topological Anderson insulator phase does not admit pro-
tected boundary modes at a surface of codimension n �= 0. It
is then natural to investigate the case of n = 0 through intro-
duction of a zero-dimensional defect in the lattice. The defect
we consider is that generated by a dislocation or equivalently
insertion of a magnetic flux tube. This is a natural choice
as flux insertion is a well-established probe of both Chern
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FIG. 11. Surface states of the PSO: The PSO on an L = 20 size
system with open boundary conditions along x and twisted boundary
conditions along y, for twist θy, is considered. The average local den-
sity of states of the PSO, defined in Eq. (10), on the x = 0 surfaces
as a function of the twist angle are shown for W = 1.0 in (a) and
W = 2.0 in (b). The average local density of states of the PSO on the
x = L surfaces as a function of the twist angle are shown forW = 1.0
in (c) and W = 2.0 in (c). The results demonstrate the presence
(absence) of topological gapless edge modes when a spectral gap
is present (absent) in the PSO. The real-space distribution of the
eigenstates nearest to λ = 0 for twist angle θy = 0 are given in (e)
and (f) forW = 1 andW = 2, respectively.

insulators and quantum spin-Hall insulators and should allow
for the topology of the spin spectrum to be probed through an
analysis of the electronic spectrum [41,52,53,75–79].

The magnetic flux tube is placed at the center of the
disordered, real-space Hamiltonian of linear system size L,
centered at the origin. The presence of a flux tube is simu-
lated using the Peierls substitution with the choice of gauge
connection given by

Ay = φδ(y)�(x). (14)

Imposing a cylindrical geometry we calculate the disorder av-
eraged density of states on the defect, varying the flux strength
φ from 0 to the flux quanta, φ0 = hc/e. The results for a linear
system size L = 100 are shown in Figs. 12(a) and 12(b) for
W = 0.3 and W = 0.9 respectively. The flux tube binds two
states which are pumped across the bulk gap as a function of
the flux strength.

To understand this behavior, consider first the case where
we set t1 = 0 [that is defined in H0 below Eq. (1)] such that
spin-rotation symmetry is preserved. In this case the occupied
subspace for E = 0 is composed of the occupied subspace of
two Chern insulators with C = ±1. As detailed in Ref. [52],

FIG. 12. Probing the topology with a magnetic flux tube: Local
density of states on inserted flux tube (ρflux) as a function of flux
strength fixing (a) W = 0.3 and (b) W = 0.9, considering a linear
system size L = 100 and averaging over 100 disorder configurations.
At φ = φ0/2 the modes are degenerate and act in an identical manner
to end states of a spinful SSH chain.

for each Chern insulator the adiabatic flux threading process
causes N = |C| modes bound to the flux tube to be pumped
across the bulk gap. The sign of the Chern number further
determines whether these bound modes are pumped from the
occupied to unoccupied subspace or vice versa. In the case
of a quantum spin-Hall insulator, we therefore observe two
counterpropagating flux tube bound modes as a function of
flux strength.

On introducing a finite spin-orbit coupling, removing the
spin-rotation symmetry, it is possible to gap the degeneracy
of the flux tube bound modes seen at φ = φ0/2. In the clean
limit, for �0 = 0 and t1 �= 0, this degeneracy is protected by
crystalline symmetry [79,80]. For finite disorder, this degener-
acy is removed for individual disorder configurations but the
states remain bound to the flux tube. When considering a large
number of disorder configurations the symmetries are restored
in the average [81] and the degeneracy reappears. Regardless
of whether such a degeneracy is present, the number of states
bound to the inserted flux tube is robust for every disorder con-
figuration and is a known physical observabel of spin-resolved
topological insulators, as explored in Ref. [79]. In brief, the
flux tube can be used to probe whether the occupied states
contain hidden subspaces corresponding to occupied Chern
insulating ground states.

IV. DISCUSSION AND CONCLUSION

In this paper we have investigated the effects of quenched
short-range potential disorder on the zero temperature phase
diagram of two-dimensional Z2 trivial topological insulators
supporting a quantized, finite spin-Chern number.

While we utilize a prototypical model of a higher-order
topological insulator as a starting point in the clean limit, it
is emphasized that higher-order topology is a separate entity
all together and the higher-order classification is immediately
trivialized via introduction of disorder. Nevertheless, spin-
resolved topology and higher-order topology can be shown to
coexist in two dimensions in the clean limit, offering a large
class of experimental systems to search for the exotic physics
identified in this work.
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As a consequence, we expect these results to be relevant
in the ongoing studies of two-dimensional higher-order topo-
logical insulators [46,79,82,83] as well as fragile topological
insulators [79]. The outcome of the present study also shows
that midgap, finite-energy edge modes typically identified in
two-dimensional, Z2 trivial materials supporting a spin-Hall
conductivity [46,48,49,51] are fragile and will be localized
in any realistic sample. Furthermore, our results are directly
applicable in the context of two-dimensional heterostructures
and twisted (or moiré) materials where additional degrees of
freedom such as valley and minivalley, etc., can give rise to
pseudo(spin)-resolved topology [84,85]. It will be exciting to
see how these conclusions play out when considering three-
dimensional systems, which we leave for future work.

Our results expand our fundamental understanding of topo-
logical materials and the meaning of “topological protection.”
By decoupling the spin and bulk spectral gap through disorder,
the model yields a phase diagram whereby a topological phase
is bordered by a trivial insulating phase without an interven-
ing gapless point. In other words, the bulk mobility gap and
the spin mobility gap have decoupled resulting in Anderson
localization taking place below the Fermi energy where the
topology remains quantized. Furthermore, our results extend
the concept of nth order insulators in a direction not pre-
viously explored, demonstrating that topologically protected
boundary modes exist only on a zero-dimensional defect.
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APPENDIX A: SYSTEM-SIZE DEPENDENCE
OF THE PHASE DIAGRAM

In order to verify that the finite-size effects in the main
body arise due to the KPM expansion order, Nc, and not from

FIG. 13. Typical density of states in the bulk for L = 500. The
bulk TDOS as a function of disorder strength, W and energy E for
a fixed system size of L = 500 and KPM expansion order NC =
16 384. The mobility edge computed for L = 500 and L = 1000 are
marked by white and red dashed lines respectively.

the physical system size, L, we consider a system smaller than
that used to obtain the results in the main body. Namely, we
consider a system of size L = 500, the main body utilizes L =
1000. The bulk TDOS is then recomputed as a function of
varying the Fermi energy, E , as well as the disorder strength,
W and the KPM expansion order. We follow the procedure
detailed in the main body to systematically obtain the phase
boundary. The results in Fig. 13, compare the phase boundary
as determined for L = 500 with that determined for L = 1000.
They are overlapping, establishing that our choice of system
size, L, does not lead to finite-size effects in computation of
the TDOS and construction of the phase diagram.

APPENDIX B: NATURE OF THE CORNER
MODES WHEN HIGHER-ORDER TOPOLOGY

IS PRESENT IN CLEAN LIMIT

As stated in the main body, higher-order topology is not a
requirement to realize a system in which Cs = 1 and Z2 = 0.
However in the clean limit these topological properties can be
identified in two-dimensional higher-order topological insu-
lators. It is therefore useful to examine the presence/absence
of protected corner states to provide a comprehensive study
of the bulk-boundary correspondence in spin-resolved topo-
logical insulators. The robustness of corner modes to the
introduction of disorder in two-dimensional HOTIs has been
studied for alternate models [90,91]. Such studies are broadly
interested in maintaining the bulk-corner correspondence of
HOTIs as dictated by topological invariants protected by
symmetries that may be removed through the inclusion of
disorder. For the model utilized in this work, Eq. (2), the
bulk invariant protecting the corner modes is a quantized
quadrupole moment, Qxy. As stated in Sec. II A, quantization
of the quadrupole moment is protected by chiral symmetry,
in the clean limit. Introduction of onsite disorder removes the
chiral symmetry. It is therefore expected that corner modes
will not be protected. Furthermore, infinitesimal disorder pop-
ulates the edge gap with localized states, the combination of
this fact with the removal of crystalline symmetries disallows
topological classification via the filling anomaly.

To investigate the fate of the corner modes on introduction
of disorder when �0 = 0, t1 = 0.05 and γ /α = 0.9, we con-
sider the four lowest-lying states of a two-dimensional slab of
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FIG. 14. Delocalization of the corner charge: (a) Schematic de-
tailing measurement of corner bound charge. Charge density within a
circle of radius, r, centered at a corner is computed. Q(r), defined in
Eq. (B1), exhibits three main features: If r is large enough to contain
the full system, then Q(r) = 4e; if r is decreased such that only
three corners are contained within the circle, then Q(r) = 3e, two
corners of the square are then removed simultaneously providing a
third transition to Q(r) = e. [(b)–(d)] Charge contained with a circle
of radius r centered about a corner of a two-dimensional slab of
size L2 with open-boundary conditions. We consider the four lowest-
lying states as a function of disorder strength, averaging over 100
disorder configurations. Quantization of corner charge is destroyed
by increasing of the disorder strength, indicating that corner localized
modes are not protected from disorder.

size L2 at L = 100, 150, 200 with open boundary conditions
along both the x and y directions using Lanczos [92]. The
charge localized at the corner is computed as

Q(r)/e =
∑
r′

i<r

4∑
n=1

|ψn(r′
i )|2, (B1)

where the sums are over the four lowest-lying state and r′
i

indicates distance from the bottom right corner of the two-
dimensional slab. A schematic of the expected behavior in the
clean limit is shown in Fig. 14(a).

The results in Figs. 14(b)–14(d) demonstrate that in
the presence of disorder charge quantization at the cor-
ners is destroyed. This is in accordance with the removal
of the underlying symmetry protected topology and further
demonstrates that topologically protected boundary modes,

FIG. 15. Properties of the clean band structure: (a) Bulk band
structure on fixing �0 = 0.1, t1 = 0, and γ /α = 0.9 in Eq. (2).
(b) Spectra of nanoribbon, composed of 40 unit cells along the x
direction as a function of momenta, ky, displaying absence of gapless
edge states. (c) Spectrum for slab of size L = 50 with open boundary
conditions, detailing absence of corner localized modes. (d) Wannier
center charge spectra demonstrating trivial nature of Z2 index.

whether at a surface of codimension one or two, are
absent.

APPENDIX C: SPIN-RESOLVED TOPOLOGICAL
INSULATORWITHOUT HIGHER-ORDER

TOPOLOGY IN THE CLEAN LIMIT

In the main body we utilize, as a starting point for
investigation of a Z2 trivial insulator supporting a quan-
tized spin-Chern number, a prototypical model of a spinful
higher-order topological insulator supporting bulk-corner
correspondence [56,93]. Higher-order topological insulators
represent a natural class of systems to identify such physics
as the general principal of construction for higher-order topo-
logical systems relies on addition of a T -odd axion mass
to a Dirac Hamiltonian describing a first-order topological
insulator [94]. This axion mass has the effect of gapping the
surface states and removing classification as a nontrivial Z2

insulator. However, the axion mass does not have the effect
of closing the spin gap, indicating that the spin-Chern number
will remain robust. This is the reason spin-Hall conductivity
has been used as an effective computational probe in the
search for higher-order topological insulators [46].

Nevertheless, in the clean limit, an additional topologically
nontrivial phase is visible in Fig. 2 which lacks higher-order
topology while supporting Cs = 1. To demonstrate that it is
solely the spin-resolved topology which is responsible for the
physics observed in this work, we consider a model formed
via the parameter choice �0 = 0.1, t1 = 0.0, and γ /α = 0.9
in Eq. (2). This choice places us in the topologically nontrivial
phase in the bottom right of Fig. 2. The bulk band structure
is shown in Fig. 15(a) demonstrating that it is an insulator.
The absence of gapless edge modes is shown for a nanoribbon
spectra in Fig. 15(b) and the absence of corner modes is shown
plotting the lowest energy states for a slab of size L = 50 with
open boundary conditions in Fig. 15(c). By computing the
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FIG. 16. Effects of disorder: (a) The bulk TDOS as a function of disorder strength,W and energy E for a fixed system size of L = 500 and
KPM expansion order NC = 16 384. The mobility edge is marked by white dashed line, computed following the power-law fitting procedure
detailed in the main body. (b) Bulk TDOS at E/t = 0 as a function of W for various expansion orders (NC) used in the KPM. A strong
Nc dependence is visible, indicating the presence of localized states for all values of disorder strength. (c) Typical density of states for the
spin-spectrum band center, λ = 0, as a function of the electronic Fermi energy and disorder strength. Red dashed line indicates disorder
strength at which all electronic states localize. (d) Disorder averaged spin-Chern number, considering 50 disorder configurations, as a function
of disorder strength. Vertical black dashed line indicates location at which electronic states localize. Error bars detail the standard error for the
disorder configurations.

Wannier center charge spectra, visible in Fig. 15(d) we can
confirm that it is gapped and that theZ2 classification is trivial.
However, by computing the spin-Chern number, for choice of
spin-quantization axis ŝ = σ3 ⊗ τ3, we find Cs = 1.

Having established that this parameter choice removes
the higher-order topology while maintaining the classification
Cs = 1, we perform a brief analysis of disorder effects. As in
the main body, at each site, we model the quenched disorder as
a random onsite potential V (r). We sample the potential V (r)
from a Gaussian distribution with zero mean and varianceW 2,
and henceW characterizes the strength of disorder;W will be
expressed in units of t .

We first consider the effects of disorder on the electronic
spectra by computing the TDOS for the electronic and spin
spectra. The TDOS for the electronic spectra is computed as
a function of the disorder strength using KPM for a system
of size L = 500 and varying the KPM expansion order, Nc.
The results shown in Fig. 16(a) reveal a series of finite-
energy metal-insulator transitions as a function of the disorder
strength, with all occupied states demonstrating localization
for W ∼ 0.9. Furthermore, Fig. 16(b) demonstrates a strong
Nc dependence for the TDOS at zero energy, indicating that
the bulk-mobility gap does not close.

We then examine the spin-spectra TDOS computed for a
system of size L = 20, averaging over 50 disorder configura-
tions as a function of the Fermi energy at λ = 0. The results
are shown in Fig. 16(c). This figure demonstrates that the
spin mobility gap closes at W ≈ 0.9 when the Fermi energy
is set to zero. This is in agreement with a computation of
the spin-Chern number, utilizing the coupling matrix method
discussed in the main body, and averaging over 50 disorder
configurations, shown in Fig. 16(d). The spin-Chern number
is quantized for every disorder configuration when W < 0.9.
The correspondence between the value of disorder strength at
which all states localize and trivialization of the spin-Chern
number supports the conclusion that extended bulk states are
protected by the spin-resolved topology.

In addition to the TDOS, for the bulk electronic spectra
we compute the the disorder averaged adjacent gap ratio,
〈r〉 as a function of energy and disorder strength, averaging
over 500 disorder configurations for a system of size L = 60.
In the limit of extended states we expect 〈r〉 ≈ 0.53 for the
GOE, while for localized states the system should obey a

Poisson distribution and support 〈r〉 ≈ 0.386. The results are
compared with the TDOS at representative values of disorder
strength in Fig. 17 showing excellent agreement.

1. Nature of edge modes

We now focus on the nature of edge modes in the presence
of disorder. As stated in the main body, despite lacking pro-
tected helical edge states as would be found in the presence
of a nontrivial Z2 index, in the clean limit finite-energy edge

FIG. 17. Finite-energy GOE metal: Bulk TDOS as a function of
energy, varying the expansion order, NC , for the kernel polynomial
method, fixing the disorder strength to (upper)W = 0.5 and (lower)
W = 0.9 is compared with the adjacent gap ratio for a linear system
size L = 60 with periodic boundary conditions, averaging over 500
disorder configurations. For increasing disorder strength the region
supporting finite-energy states that obey the expected result for a
GOE, 〈r〉 ≈ 0.53 (marked with a black dashed line) becomes sharper.
In contrast, in the localized regimes [where we see a strong NC de-
pendence] we also see the level statistics are Poisson (or approaching
it) with 〈r〉 = 2 log 2 − 1 ≈ 0.39 (marked by dashed orange line)
showing the two results are nicely compatible.
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FIG. 18. TDOS computed for sites on an open x surface: We show the TDOS as defined in Eq. (6) as a of function energy, varying the
expansion order,NC , for the kernel polynomial method and fixing the disorder strength to (top)W = 0.5 and (bottom)W = 1.0. (b) Dependence
of surface ρtyp as a function of expansion order, NC , at zero energy. (c) Dependence of surface ρtyp as a function of expansion order, NC , at
finite energy.

bound states can be found within the bulk gap. This is visible
in Fig. 15(b).

To study the edge modes we follow the procedure laid
out in the main body, imposing periodic boundary conditions
along the y direction and open boundary conditions along
the x direction. We then compute the TDOS but restrict the
sum over lattice sites to only include sites on the x edge. In
Fig. 18(a) the surface TDOS is shown as a function of energy
at representative values of disorder strength. The results dis-
play a significant dependence on the KPM expansion param-
eter, Nc, indicating lack of a stable metallic phase. We further
plot the TDOS at E/t = 0.0 and E/t = 0.5 as a function

of the disorder strength and KPM expansion parameter in
Fig. 18(b) and Fig. 18(c), respectively. These figures demon-
strate that the surface TDOS converges to zero as Nc → ∞,
leading to the conclusion that despite the presence of topolog-
ically protected extended bulk states, topologically protected
boundary modes are absent. This is a unique feature of the
disordered, spin-resolved topological insulator.

In summary, this example underscores the fact that decou-
pling of the spin-Chern number and electronic gap requires
only absence of a nontrivial Z2 index and quantized Cs. Any
additional topological classification, such as the presence of
higher-order topology, is not strictly necessary.
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