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Abstract
We investigate the boundary phenomena that arise in a finite-size XX spin
chain interacting through an XX interaction with a spin− 1

2 impurity located
at its edge. Upon Jordan–Wigner transformation, the model is described by a
quadratic Fermionic Hamiltonian. Our work displays, within this ostensibly
simple model, the emergence of the Kondo effect, a quintessential hallmark
of strongly correlated physics. We also show how the Kondo cloud shrinks
and turns into a single particle bound state as the impurity coupling increases
beyond a critical value. In more detail, using both Bethe Ansatz and exact
diagonalization techniques, we show that the local moment of the impurity
is screened by different mechanisms depending on the ratio of the boundary
and bulk coupling Jimp

J . When the ratio falls below the critical value
√
2, the

impurity is screened via the Kondo effect. However, when the ratio between
the coupling exceeds the critical value

√
2 an exponentially localized bound

mode is formed at the impurity site which screens the spin of the impurity
in the ground state. We show that the boundary phase transition is reflected
in local ground state properties by calculating the spinon density of states,
the magnetization at the impurity site in the presence of a global magnetic
field, and the finite temperature susceptibility of the impurity. We find that the
spinon density of states in the Kondo phase has the characteristic Lorentzian
peak that moves from the Fermi level to the maximum energy of the spinon as
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the impurity coupling is increased and becomes a localized bound mode in the
bound mode phase. Moreover, the impurity magnetization and the finite tem-
perature impurity susceptibility behave differently in the two phases. When the
boundary coupling Jimp exceeds the critical value

√
2J, the model is no longer

boundary conformal invariant as a massive bound mode appears at the impurity
site.

Keywords: Bethe Ansatz, boundary phase transition, Kondo effect.

1. Introduction

The antiferromagnetic Kondo effect is a quintessential example of a strongly correlated phe-
nomenon. It was first observed in the resistivity of a metal with a dilute concentration of mag-
netic impurities. This results, among many other effects, in the spin- 12 impurity being screened
at low temperature while behaving as a free spin at high temperatures [1, 2]. Theoretically, this
phenomenon was interpreted as a smooth cross-over from weak coupling at high temperatures
to strong coupling at low temperatures mediated by non-perturbative spin-flip processes [3, 4].

In the conventional Kondo problem, considering one impurity at energy scales small com-
pared to the Fermi energy one can describe the system by an effective one-dimensional free
fermion gas with a linearized spectrum perturbed by a marginally relevant impurity (defect)
operator [1, 2, 4]. This description makes the problem amenable to various non-perturbative
treatments, the Wilson numerical RG, the Bethe Ansatz, and the conformal field theory, all of
which overcome the failure of perturbative calculations [4–8]. Kondo behavior also arises in
other contexts, in particular in spin chains, when an antiferromagnetic spin chain interacts with
a spin impurity in the bulk [9] or at its boundary [10–13]. In this paper, we demonstrate the
occurrence of a similar effect in the XX spin chain with a boundary impurity, which can also
be described by a non-interacting fermionic Hamiltonian. This model shows Kondo behavior
in physical quantities such as the signature Lorentzian-like peak in the impurity density of
states, a smooth crossover of local impurity magnetization, and a characteristic susceptibility
that is finite at low temperature but falls off as 1

T at high temperature, when the boundary coup-
ling is sufficiently weaker than the bulk coupling. However, when the boundary coupling is
larger than

√
2 times the bulk coupling, the impurity opens a boundary gap due to an appear-

ance of localized massive mode at the boundary. It is remarkable to find the Kondo effect
and a distinct bound mode phase (where impurity is essentially screened by a single particle
bound mode) in this quantum spin Hamiltonian that is mappable to a quadratic, free fermion
model. It is extremely important to note that even though the system is mappable and solvable
in the free fermion picture, the fundamental quasiparticle in the spin model, the spinons are
interacting [14].

Focusing on the effective one-dimensional theory with a linearized energy spectrum near
the Fermi energy, due to spin-charge separation the charge part of the fermion decouples and
only the spin fluctuations couple to the impurity operator, thereby showing that the Kondo
effect can be described by the spin sector of the electrons that interact with a spin defect. This
manifests itself in the spectrum that consists of decoupled charge holons and spin- 12 spinons
coupled to the impurity [6], or by nonabelian bosonization that allows the separation of charge
and spin degree of freedom in the Hamiltonian [15, 16]. Since the Kondo effect is solely due
to non-perturbative spin flips, the same effect can also be observed in several spin chains
where a magnetic impurity is placed on its edge [10, 13, 17]. In the low energy sector, similar
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considerations apply to the system we are considering in this paper, the XX spin chain with a
point defect at the boundary, described by the Hamiltonian

H=
N−1∑
j=1

J
2

(
σxj σ

x
j+1 +σyj σ

y
j+1

)
+
Jimp

2
(σx1σ

x
0 +σy1σ

y
0) . (1)

Here σ⃗j are the Pauli matrices that act on the local two-dimensional Hilbert space of each
quantum spin variable and σ⃗0 is the impurity spin operator located at the left edge of the spin
chain and interacting with the first spin in the spin chain. Upon fermionizing the spin variable
via the Jordan–Wigner transformation, the bulk describes a gas of free fermions on the lattice
(i.e. the tight-binding model) with a bond defect

H=
N−1∑
j=1

J
2

(
ψ†
j ψj+1 +ψ†

j+1ψj

)
+
Jimp

2

(
ψ†
0ψ1 +ψ†

1ψ0

)
. (2)

To take the continuum limit, recall the relation between the spin operators and the currents σ⃗j ∼
1
2π [J⃗L(aj)+ J⃗R(aj)]+ (−1)j constant n⃗(aj) where a is the lattice spacing and both uniform

currents J⃗R/L and the staggered part n⃗ vary slowly at long distance [10]. With the boundary

condition J⃗L(x= 0) = J⃗R(x= 0) such that J⃗R(x) can be regarded as the analytic continuation
of J⃗L(x) to the negative x-axis and the staggered part n⃗(0) = J⃗L(0) = J⃗R(0) at the boundary,
the low energy Hamiltonian density can be written as a perturbed quadratic theory in terms of
spin currents [10, 18]

H∼
[
J⃗ (x)

]2
+ gδ (x)(J xSx+J ySy) , (3)

where g∝ Jimp

J and we dropped the chirality index. Apart from the lack of the J zSz interac-
tion, the Hamiltonian in equation (3) is the same as the spin part of the conventional Kondo
Hamiltonian [15] describing the bath of free fermions interacting with a spin impurity.

To see how the strong coupling fixed point is retained in equation (3), we recall the RG
equations for the anisotropic Kondo model with parallel coupling (gz) and perpendicular coup-
lings (g±) [19, 20]

dgz
dlnΛ

=−2g2± +O
(
g3
)
,

dg±
dlnΛ

=−2gzg± +O
(
g3
)
. (4)

As shown in figure 1, both the conventional Kondomodel and the XX−Kondomodel (for small
boundary coupling) are described by equation (3) and flow to the same strong coupling fix point
characterized by the quenching of the local magnetic moment of the impurity. The RG-flow
is also instructive to see that the XX−Kondo model does not have a Berzinski–Kosterlitz–
Thouless transition; it always flows to strong coupling and the irrelevant ferromagnetic Kondo
coupling regime is not a part of the model or its effective theory. It is also important to note
that even though the z− part of the Kondo coupling is absent in the XX−Kondo model in the
starting theory, as seen from equation (4), the model flows to the same fixed point in the strong
coupling limit as such an interaction is generated in the RG process. Thus, both models have
similar physics in the low energy limit but with the several differences e.g. due to the absence
of a Kondo coupling in the z-direction and the effect of the UV cut-off provided by the lattice
spacing.

Here, using Bethe Ansatz, we solve the Hamiltonian, equation (1), and study it on all energy
scales such that we capture the bound mode phase that does not exist in the low energy con-
tinuum description. We show that for Jimp <

√
2 the model is in a Kondo phase where the
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Figure 1. Perturbative renormalization group flow diagram of the anisotropic Kondo
impurity model which shows that only when the impurity coupling is ferromagnetic,
the flow is towards the trivial fix point but for rest of the parametric regimes, the model
flows to the strong coupling fixed points denoted by red circle in the schematic. The
low energy field theoretic description of the XX-Kondo model considered in this paper
also flows to the same coupling fixed point when the impurity coupling is below the
critical value of

√
2 times the bulk coupling. But when the boundary coupling exceeds

the critical value, the boundary opens a gap and the model is no longer critical.

impurity is screened by a multi-particle Kondo cloud, and it undergoes a boundary phase trans-
ition between the Kondo phase and a bound-mode phase where the impurity is screened by
a single bound mode formed at the impurity site. Our results show that equation (1) does
not remain boundary conformal invariant for all values of Jimp at low energy scale. Although
the bulk remains critical, there are boundary excitations that are massive when Jimp >

√
2J

which breaks the conformal invariance. We identify distinct physical quantities, in particular
the impurity magnetization and susceptibility that vary between the Kondo and bound mode
phases, allowing for experimental detection of these unique features.

Quantum impurities at the edge of various interacting models have been studied before by
various authors [12, 13, 17, 21–25]. One of the common features of these models is the exist-
ence of boundary bound modes in some parametric regimes. These bound mode introduce
novel features such as the YSR phase in one dimensional superconductor with Kondo impur-
ity studied in [26] or they could the possibility of perfect quantum state transfer in many body
platform studied in [27]. The model we study here, which can be mapped to a non-interacting
Fermionic problem, nonetheless, has a rich phase diagram that resembles the Kondo phase
and a distinct bound mode phase. Recently, we considered the isotropic Heisenberg chain with
boundary impurity [13], where the similar physics of boundary impurity phenomena occurs
with the presence of σziσ

z
i+1 coupling when antiferromagnetic impurity considered is con-

sidered. There the phase transition between the Kondo and bound mode occurs at Jimp =
4
3J.

The sharp contrast is when Jimp < 0 where in the XXX model the impurity is unscreened or
can be screened by a bound mode but for the XX model in equation (1), the sign of Jimp does
not matter because the quantization condition and hence the entire spectrum does not change
when the sign of the impurity coupling is changed in equation (A.14). In [13], there were two
effects, the bulk interaction and the lattice effect which could have resulted in the bound mode
at large value of coupling. Solving, the present model we show that it is the lattice cut-off and
not the bulk interaction that is responsible for the formation of bound mode. Since, the bulk
interaction turns out to be irrelevant operator for the boundary physics as it only dresses up the
energy of the boundary bound mode and changes the location of the phase boundary, we were
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able establish the RG picture described earlier. The XY chain with impurity has been previ-
ously studied [28, 29] and some of our results were reported there. The aim of this paper is to
help provide a route to experimentally detect the boundary bound mode by computing phys-
ical observables such as magnetic susceptibility and density of states in a simple model. This
model can be experimentally realized in some engineered quantum platforms, such as cold
atoms [30] or photonic crystal [31]. We show that by calculating the susceptibility of the chain
with and without impurity, one can detect the existence of this bound mode and understand
how multiparticle Kondo effect (in the deep Kondo regime) slowly becomes the few-particle
effect (in intermediate Kondo regime), and finally becomes a single particle bound mode.

2. Summary of main results

In this section, we briefly summarize the main result obtained via Bethe Ansatz keeping aside
the details for later sections. This model model has two distinct phases as shown in figure 2:

(i) The Kondo phase characterized by the screening of the impurity by a multiparticle Kondo
cloud exists when the ratio of boundary and bulk coupling is less than the critical value
Jimp

J <
√
2. It is often easier to distinguish two subphases in this phase:

(a) The deep Kondo phase exists when Jimp

J < 1 where the impurity density of states is
Lorentzian-like centered at the Fermi level E= 0 and the impurity magnetization in
the presence of magnetic field crosses over from the screened impurity withMimp = 0
to a free spin Mimp =

1
2 at large magnetic field Hc = 2J asymptotically just as in the

case of the conventional Kondo problem [32].
(b) The intermediate Kondo phase exists when 1< Jimp

J <
√
2 where the spinons particip-

ate in the screening cloud form a Lorentzian-like distribution centered at E= 2Jwhich
is the maximum energy of a single spinon. This shift in the density of the state peak
affects other physical quantities such as local impurity magnetization, which again
smoothly crosses over from 0 atH= 0 to 1

2 at the critical value of the fieldHc = 2J, but
the magnetization curve is a concave upward increasing curve which does not asymp-
totically reach the maximum value 1

2 but rather reaches in abrupt manner.

The transition point between the deep Kondo regime and the intermediate Kondo regime
occurs when the boundary coupling is equal to the bulk coupling, at Jimp = J. In this case,
the impurity density of states is a constant and the Kondo scale TK as a function of para-
meter b= sec−1(

Jimp

J ) has a point of inflection at b= 0. In this point impurity simply
becomes indistinguishable from the bulk. However, the impurity (spin at the first site)
is still screened by a multiparticle cloud (or in other words the spin at the first site in the
chain still forms long rangemany-body singlet with spinons) even at this point as is evident
from the ground state magnetization, the finite field magnetization and the finite temper-
ature susceptibility calculation presented below. The moniker ‘Kondo effect’ used in this
manuscript is to be understood as a generalized phenomena in which the localized impurity
on the edge of the chain forms a many-body long range singlet with the itinerant spinons
in the bulk. It is not possible to unscreen the impurity by a single particle excitation in this
phase.

We will show that the ground state is a sea of a long range singlets in the entire Kondo
phase where impurity is screened bymulti-particle Kondo cloud. All excited states are con-
structed by adding even numbers of spinons on top of the ground state. The susceptibility
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Figure 2. Phase diagram of the model showing the Kondo phase (along with two sub-
phases: the deep and the intermediate Kondo phase) and the boundmode phase. The ver-

tical axis represents the ground state energy density ρE =
E|gs⟩
N+1 , which is computed using

both Bethe Ansatz (solid lines) and the exact diagonalization (circular plot marker) and
x−axis is the impurity parameter, and both variables Jimp

J (top) and b, where sec(b) = Jimp

J
(bottom) are shown. Here N is the total number of bulk sites. Notice that at the phase
transition point b= π

4 (or Jimp

J =
√
2), the ground state energy density becomes inde-

pendent of the system size. The boundary physics depends only on |Jimp|. Thus only the
case with positive coupling is shown in the diagram.

at zero temperature is finite which shows that the impurity is screened at low temperat-
ure. However, the susceptibility falls off as 1

T at high temperature which indicates that the
impurity behaves as a free spin at high temperature.

(ii) The bound mode phase is characterized by the screening of the impurity by a single expo-

nentially localized bound mode with energy Eb =− J2imp√
J2imp−J2

formed at the impurity site

when the boundary to the bulk coupling ratio is Jimp

J >
√
2. The bound mode is described

by a purely imaginary solution of the Bethe Ansatz equations called boundary string solu-
tion. This phase is characterized by the impurity density of states given by equation (73),
which is negative other than a positive delta function contribution from the bound mode.
This shows that the screening is effectively a single-particle phenomenon in this regime.
Moreover, the local magnetization at the impurity site in the presence of a global mag-
netic field H has a discontinuity at H= Eb because the massive bound mode screens the
impurity. Once the magnetic field has enough energy to flip the bound mode, the impurity
magnetization abruptly jumps to 1

2 as shown in figure 10. Moreover, the susceptibility is
finite but negative at zero temperature showing that the impurity is screened and behaves
diamagnetically. However, as the temperature increases, the susceptibility becomes posit-
ive and eventually falls off as 1

T as a free spin.
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Note that in this phase, apart from the usual bulk excitation, a unique boundary excit-
ation is possible. The boundary excitation involves removal of the boundary string and
addition of a hole. Impurity is unscreened in such excited states. Notice that the bound
mode is a single particle excitation. Thus, in this phase, the impurity can be unscreened by
a single particle excitation unlike in theKondo phase. Hence, the excited states are uniquely
sorted in two towers in this phase where one towers includes all the states where impurity
is screened and another tower encompasses all the states where impurity is unscreened.
This is in sharp contrast with the Kondo phase were there is just a single tower of excited
state where impurity is screened in all of the eigenstates.

Thus, we show that this simple model has not only the well known Kondo physics where
a bulk with gapless excitation screens the impurity forming a many body cloud but also has
a regime where the impurity is screened by a single particle bound mode. We show that the
existence of the bound mode has far reaching consequences in the thermodynamics of the
impurity. Thus, computing the thermodynamic quantities associated with the impurity, we
find that the impurity physics is different in these two regimes. Moreover, the bound mode
regime has unique boundary excitations, which are absent in the Kondo regime which involves
unscreening the impurity by unoccupying the single particle bound mode solution. Note that
as the impurity coupling increases, the length of the Kondo cloud shrinks gradually and when
Jimp =

√
2J, the Kondo length becomes smaller than the lattice spacing which leads to forma-

tion of exponentially localized single particle bound mode

3. The Bethe Ansatz equations

To analytically diagonalize the Hamiltonian in equation (1), we proceed to construct the
transfer matrix associated with it. Starting from a spectral parameter u dependent R-matrix
R(u) ∈ End(V⊗V) of the tensor square of the vector space V with an explicit matrix form

R(u) =


a(u) 0 0 0
0 b(u) c(u) 0
0 c(u) b(u) 0
0 0 0 a(u)

 , (5)

we impose the free fermion condition [33]

a2 (u)+ b2 (u) = c2 (u) , (6)

which can be satisfied by choosing

a(u) = cos(u) ,b(u) = sin(u) ,and c(u) = 1. (7)

One can readily check that R(u) given by equation (5) with entries equation (7) is a unitary
solution of the the Yang–Baxter equation

R12 (u− u ′)R13 (u)R23 (u
′) = R23 (u

′)R13 (u)R12 (u− u ′) , (8)

satisfying the unitary condition

R12 (u)R21 (−u)∝ I. (9)

To define the system with open boundary conditions [34], we introduce the double row
monodromy matrix

ΞA (u) = TA (u) T̂A (u) , (10)

7
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where the two single row monodromy matrices are

TA (u) = RA,N (u)RA,N−1 (u) · · ·RA,1 (u)RA,0 (u− b)

T̂A (u) = RA,0 (u+ b)RA,1 (u) · · ·RA,N−1 (u)RA,N (u) .

and obtain the transfer matrix,

t(u) = trA (Ξ(u)) . (11)

Here, A is the auxiliary space and 0 is the impurity site and 1 through N are the labels for the
bulk sites. Note that the inhomogeneity parameter b at the 0th site located left of site 1 will
give the impurity term in the Hamiltonian via Jimp = Jsec(b) as shown in equation (12).

The Hamiltonian is then obtained from the transfer matrix as

H= J
d
du

log t(u)
∣∣∣
u→0

=
1
2

N−1∑
j=1

J
(
σxj σ

x
j+1 +σyj σ

y
j+1

)
+ Jsec(b)(σx1σ

x
0 +σy1σ

y
0)

 . (12)

This Hamiltonian acts on the product space ⊗N
j=1hj where the local Hilbert space of each

quantum spin variable is the two-dimensional complex vector space hn = C2 and σxj and σ
y
j

are the Pauli operators acting in hj. Notice that the impurity coupling Jimp = Jsec(b), is para-
meterized by the variable b, so that for purely imaginary b, the boundary coupling Jimp < J and
for 0< b< π

2 , it is between J and infinity. This parameterization is natural in the Bethe Ansatz
and often makes the resulting expressions simpler. Notice that the spectrum of the model is
the same for ±Jimp; thus only positive Jimp is considered in the above parameterization.

We employ the functional Bethe Ansatz method [35] to diagonalize the transfer matrix and
obtain the Bethe Ansatz equations. We recall that the quantum determinants of the single row
monodromy matrices are given as [36]

Detq {T(u)}= tr1,2
{
P(−)
1,2 T1

(
u− π

2

)
T2 (u)P

(−)
1,2

}
(13)

Detq
{
T̂(u)

}
= tr1,2

{
P(−)
1,2 T̂1

(
u− π

2

)
T̂2 (u)P

(−)
1,2

}
, (14)

where

P(−)
1,2 =

1−R(0)
2

=−1
2
R
(
−π
2

)
(15)

is the antisymmetric projection operator
(
P(−)
1,2

)2
= P(−)

1,2 .

We can compute explicitly

Detq (R(u)) = tr1,2
{
P(−)
1,2 R1,j

(
u− π

2

)
R2,j (u)P

(−)
1,2

}
= sin

(
u− π

2

)
sin

(
u+

π

2

)
and obtain the quantum determinant of the transfer matrix via the relation

Detq {T(u)}=
N∏
j=1

Detq {R(u)} . (16)

The eigenvalue of the transfer matrix satisfy the relation [37]

Λ(θj)Λ
(
θj−

π

2

)
=

∆q (θj)

cos2 (2θj)
= a(θj)d

(
θj−

π

2

)
, j = 1, . . . ,N, (17)

8
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where

∆q (u) = Detq {T(u)}Detq
{
T̂(u)

}
(18)

such that

a(u) = 2
cos2 (u)
cos(2u)

cos(u− b)cos(u+ b)cos2N (u) (19)

d(u) = a
(
−u− π

2

)
= 2

sin(u)2

cos(2u)
sin(u− b)sin(u+ b)sin2N (u). (20)

Baxter’s T-Q relation for the eigenvalue can be written as [38]

Λ(u) = a(u)
Q
(
u− π

2

)
Q(u)

+ d(u)
Q
(
u+ π

2

)
Q(u)

, (21)

where the Q function is

Q(u) =
M∏

ℓ=1

sin(u− uℓ)cos(u+ uℓ). (22)

Regularity of the T-Q equation gives the Bethe Ansatz equations(
cos(uj)
sin(uj)

)2N+2 cos(uj+ b)
sin(uj+ b)

cos(uj− b)
sin(uj− b)

= 1. (23)

Upon making the transformation uj = iλj

2 − π
4 , the Bethe Ansatz equations become sinh

(
λj

2 + iπ
4

)
sinh

(
λj

2 − iπ
4

)
2N+2

sinh
(

λj

2 + ib+ iπ
4

)
sinh

(
λj

2 − ib− iπ
4

) sinh
(

λj

2 − ib+ iπ
4

)
sinh

(
λj

2 + ib− iπ
4

) = 1. (24)

As shown in appendix, the Bethe Ansatz equation (24) is the quantization condition written for

the rapidity λ related to the quasimomenta k via
sinh

(
λj
2 + iπ

4

)
sinh

(
λj
2 − iπ

4

) = e−ikj . Because the quantization

condition for k is a transcendental equation, writing it as Bethe Ansatz equations makes it
easier to analytically study the model.

The energy eigenvalues follow from equations (12) and (21)

E= J
d
dλ

Λ(λ)

∣∣∣∣
λ→0

=−2J
∑
j

1
cosh(λj)

. (25)

4. Results

The solutions of the Bethe Ansatz equations equation (24) depend on the value of the parameter
b. In addition to the standard (real) solutions that describe the dynamics of spin flips on the
chain, the Bethe Ansatz equation equation (24) has a unique purely imaginary solution in the
thermodynamic limit of the form

λb =
i
2
(4b−π) , (26)

when π
4 < b< π

2 , corresponding coupling strength
√
2J< Jimp; while when either b is purely

imaginary or it takes real values in the range 0< b< π
4 , there is no such solution. This solution

9
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is called the boundary string solution. Such a solution describing a bound mode appears in
many one-dimensional models with boundaries [11, 17, 21, 22, 26, 39–41].

We will now solve the Bethe equations in these two regimes separately. We shall refer to
the phase in which no boundary string solution exists as the ‘Kondo phase’, while the phase
in which the boundary string solution exists will be termed the ‘Bound mode phase’, and the
rationale for this nomenclature will become evident shortly. In both phases, we describe the
ground state, the bulk and boundary elementary excitations, the effects of magnetic field and
the finite temperature effects.

4.1. Kondo phase

The Kondo Phase corresponds to the range where 0< Jimp <
√
2J, or the parameter b being

purely imaginary or between 0< b< π
4 . We call the the parameter regimewhere the parameter

b is imaginary (0< Jimp < J), the deep Kondo regime and the parameter range 0< b< π
4

(J< Jimp <
√
2J) the intermediate Kondo regime.

Taking log on both sides of equation (24) and differentiating with respect to λ leads to

2ρ(λ) =
sech(λ)
π

(
2cosh2 (λ)

(
cos(2b)

cos(4b)+ cosh(2λ)

)
+N+ 1

)
− δ (λ) . (27)

The delta function is added to remove the root at the origin because the trivial solution λ= 0
(k= 0) leads to a non-normalizable vanishing wavefunction. Note that the root distribution
naturally separates into the bulk, the boundary and the impurity part as

ρ(λ) = ρbulkN+ ρimp + ρboundary, (28)

where the impurity contribution is

ρimp =
2
π
cosh(λ)

(
cos(2b)

cos(4b)+ cosh(2λ)

)
. (29)

The total spin of the system is given by

Sz =
N+ 1
2

−
ˆ ∞

−∞
ρ(λ)dλ= 0 (30)

which shows that the impurity is screened. The ground state is a many body singlet with total
spin Sz = 0 such that no few particle excitations can unscreen the impurity spin since it is a
multi particle effect where the impurity is screened by the redistribution of all other Bethe
roots just like in the case of the conventional Kondo problem [32].

As usual, for an odd number of total sites, a zero-energy spinon has to be added in the
ground state.

The ground state energy for an even N is given by

Egs =−2J
ˆ ∞

−∞

1
cosh(λ)

ρ(λ)dλ=−2J(N+ 1)
π

− 4bJcsc(2b)
π

+ J. (31)

All other excitations are constructed by adding even number of holes with energy

Eθ =
2J

cosh(θ)
, (32)

where θ is the position of the hole. When θ→±∞, Eθ → 0 which shows that the model is
gapless. There are no boundary excitations in this phase.

10
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Figure 3. The plot presents the spectral weight of the spinons in the Kondo cloud screen-
ing impurity R(E)given in equation (33). This spectral weight was computed using the
Bethe Ansatz method. The plot reveals intriguing trends: in the deep Kondo regime, the
majority of spinons involved in impurity screening have energies close to the Fermi
energy (E= 0). However, as the impurity coupling surpasses that of the bulk such that
the model is in the intermediate Kondo phase most of the screening spinons clustering
around an energy level close to 2J, which is the maximum energy of a single spinon.

From the root density equation (27), we obtain the ratio of the density of states contribution
by the impurity to the bulk as

R(E) =
N
2
ρimp
dos (E)

ρbulkdos (E)
=

4J2 cos(2b)

E2
(
cos(4b)+ cosh

(
2cosh−1 ( 2J

E

))) , (33)

where we used

Eθ = 2Jsech(θ) , (34)

the energy of a single spinon which can range from 0 to its maximum 2J to invert the relation.
Only in the deep Kondo regime, i.e. when 0< Jimp < J, the ratio of the impurity to the bulk

density of states R(E) takes a characteristic Kondo Lorentzian-like peak centered at E= 0 as
shown in figure 3. However, in the intermediate Kondo regime, i.e. when J< Jimp <

√
2J, the

peak shifts from the Fermi surface E= 0 to the maximum energy of the spinon 2J. At b= 0,
the impurity coupling is the same as the bulk coupling. Thus, the impurity becomes part of
the bulk, and at this point, R(E) becomes a constant function. This change in the shape of the
magnetization curve and the peak of the Lorentzian from E= 0 to E= 2J in the intermediate
Kondo regime shows that the model is preparing an announcement of the bound mode phase
for b> π

4 , where the impurity is screened by a single mode, thus characterized by a delta
function peak in the density of state, as shown later in equation (73).

11



J. Phys. A: Math. Theor. 57 (2024) 265004 P Kattel et al

Figure 4. The characteristic Kondo scale within the Kondo regime. The vertical line
separates the deep Kondo and the intermediate Kondo phase. At the transition point
shown by vertical dashed line, the scale TK has an inflection point.

Given the density of states, we define the Kondo temperature as the energy scale at which
the integrated impurity density of the state is half of the total number of state contributed by
impurity i.e. ˆ TK

0
dEρimp

dos (E) =
1
2

ˆ 2J

0
dEρimp

dos (E) , (35)

where the integral bound of over the possible energy window of a single spinon. We thus
obtain,

TK =
2J
√
1− cos(2b)√

1− cos2 (2b)
=
√
2Jsec(b) . (36)

As shown the the figure 4, the Kondo temperature increases as imaginary b is decreases (or
equivalently Jimp increases). When b= 0, Jimp = J and TK =

√
2J. Finally when b reaches the

critical value π
4 , Jimp =

√
2J, then TK = 2J, which is the maximum energy of possible for a

single spinon. Notice the inflection point in the plot of TK in figure 4 at b= 0. As mentioned
earlier, at b= 0, the boundary and bulk couplings are the same where the ratio of the impur-
ity to bulk density of state becomes a constant. This point demarcates the deep intermediate
Kondo phase. The significant growth in TK between 0< b< π

4 suggests that the Kondo length
decreases rapidly in this regime and hence the multiparticle Kondo screening turns into few-
body screening before it becomes essentially a single particle screening in the bound mode
phase where b> π

4 .

4.1.1. Effect of magnetic field. We now consider the system in the presence of a magnetic
field H and add the magnetic term

Hmag =−HSzL−H
N∑
i=1

Szi . (37)

In the fermionic language this term corresponds to applying a chemical potential. It com-
mutes with the Hamiltonian given by equation (1), so the eigenstate of H also diagonalizes

12
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the Hamiltonian HT =H+Hmag. However, the ground state will change as spin starts to flip
to align in the direction of the applied field. Magnetization of the impurity can be computed
by minimizing the energy in the presence of the magnetic field, which is given by

EB =−2J
ˆ B

−B

1
cosh(λ)

ρB (λ)dλ−MH (38)

where

M=
N+ 1
2

−
ˆ B

−B
ρB (λ)dλ (39)

is the magnatization and B<∞ is the yet undetermined new Fermi level in the presence
of external magnetic field. Here the root density ρB(λ) in the presence of the magnetic
field is same as ρ(λ) because of the lack of backflow effect. Upon minimizing the energy
equation (38), we obtain the relation between the integral bound B and the magnetic field H
as

B= cosh−1
(
2J
H

)
. (40)

From equation (39), the magnetization solely due to impurity becomes

Mimp =
1
2
−
ˆ B

−B
ρimp (λ)dλ=

1
2
−

tan−1
(
sec(2b)

√(
2J
H − 1

)(
2J
H + 1

))
π

. (41)

Notice that

lim
H→0+

tan−1
(
sec(2b)

√(
2J
H − 1

)(
2J
H + 1

))
π

=
1
2
, (42)

which shows that the impurity spin is completely quenched in the ground state by the Kondo
cloud.

As shown in figure 5, the behavior of the impurity magnetization curve is different in the
deep and intermediate Kondo regimes. In the deepKondo regimewhere the impurity parameter
b is imaginary, the impurity magnetization is a concave function where the magnetization
smoothly increases from 0 at H= 0 and reaches 1

2 at the critical value Hc = 2J asymptotically.
However, in the intermediate Kondo phase where 0< b< π

4 , the magnetization is a convex
function which grows from 0 at H= 0 to 1

2 at the critical value Hc = 2J following a concave
upward trajectory.

For each of the bulk spins, the magnetization is given by

Mbulk =
1
2
−

tan−1
(√(

2J
H − 1

)(
2J
H + 1

))
π

(43)

Thus, in this phase, there is a critical magnetic field Hc = 2J at which each spin including
the impurity spin is fully polarized.

From equation (36), we obtain

cos(2b) =
4J2 − T2K

T2K
. (44)
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Figure 5. Impurity magnetization in the Kondo phase given by equation (41) obtained
from Bethe Ansatz shows that the impurity spin is screened at low field and it behaves
as a free impurity at high field H> 2J just like in conventional Kondo problem. Notice
that the shape of the curves are different for imaginary b ( deep Kondo phase) and real
b (intermediate Kondo phase).

such that the impurity magnetization becomes

Mimp =
1
2
−

tan−1

(
Tk2

√
2J
H −1

√
2J
H +1

4J2−Tk2

)
π

. (45)

In the Kondo regime which is when b is purely imaginary, expanding the impurity magnet-
ization around the critical value of magnetic field Hc = 2J, we obtain the asymptotic

Mimp (H→ 2J) =
1
2
−

√
2− H

J T
2
K

π
(
4J2 − T2K

) . (46)

This result indicates a deviation from the conventional Kondo problem, where the magnet-
ization of the impurities converges to 1

2 while exhibiting logarithmic corrections [32]. On the
contrary, the model examined in this study displays a Kondo phase characterized by impurity
magnetization approaching 1

2 with a power law as in equation (46).
Note that the impurity magnetization given by equation (41) is the magnetization contribu-

tion of the impurity computed in the rapidity space that includes the total contributions only
from the impurity part which is non local in space. However, for a discrete lattice problem like
the spin chain under consideration, we can also ask questions like what is the local magnetiz-
ation at each site. We will now compute the magnetization at the impurity site ⟨Sz(0)⟩ in the
presence of the global magnetic fieldH. Note that this quantity gets contribution from both the
bulk and boundary degrees of freedom at the impurity site.
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To compute this quantity, let us change the variables from rapidityλj to the quasi momentum
kj using

sinh
(

λj

2 + iπ
4

)
sinh

(
λj

2 − iπ
4

) =−e−ikj (47)

such that the Bethe Ansatz equation equation (24) becomes the quantization condition on the
quasi momenta

2cos(kj)sin((N+ 1)kj)− sec2 (b)sin(Nkj) = 0, (48)

and the energy relation equation (25) becomes

E=−2J
∑
kj

cos(kj) . (49)

The fermi points are located at kF =±π
2 .

In the presence of the global magnetic H, the Fermi sea is shifted, and now the new Fermi
points are located at

kF (H) =±cos−1

(
−H

2

)
. (50)

Thus, the magnetization at the first site is given by

⟨Sz (0)⟩=
∑

k<kF(H)

Szk (0) , (51)

where

Szk (0) = F∗
k (0)Fk (0)−

1
2
. (52)

Here F(0) is the normalized wavefunction at the impurity site. As shown in appendix, the
normalized wavefunction at the impurity site is

Fk (0) =
sin(kN)√

1
4 sec

2 (b)(csc(k)sin(k− 2kN)+ 2N− 1)+ sin2 (kN)
. (53)

Since the quantization condition, equation (48) is a transcendental equation which cannot
be solved in closed form. We graphically solve for kj when N= 999 (such that the total sites
including the impurity is 1000), and plot the magnetization curve for various values of b< π

4 .
We also directly calculated the magnetization at the impurity site using exact diagonalization
(ED) with 999 bulk sites and 1 impurity and show both the curve from equation (51) and ED
as shown in figure 6.

4.1.2. Finite temperature effects. We now turn to the finite-temperature susceptibility calcu-
lation. The free energy is given by

f =−T
ˆ π

0
dk ρ(k) ln

(
1+ e−

2h−2J cos(k)
T

)
. (54)
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Figure 6. Local magnetization at the impurity site in the Kondo phase. The magnetiz-
ation grows smoothly and reaches 1

2 at Hc = 2J for all values of H in the Kondo phase
for N= 999. The solid curve is obtained from equation (51) and the dotted points are
obtained from exact diagonalization.

Using equation (47) in the density of the solution of the Bethe equation equation (27) and
recalling that the model has particle-hole symmetry, we can find the density of the quasi-
momenta in the thermodynamic limit

ρ(k) =
N+ 1
π

− cos(2b)

π
(
sin2 (2b)cos2 (k)− 1

) − δ (k) . (55)

Taking the impurity contribution upon using equation (44) becomes

ρimp (k) =
4J2T2K − T4K

π
(
T4K − 8J2T2K cos

2 (k)+ 16J4 cos2 (k)
) . (56)

Thus, the free energy contribution due to the impurity becomes

fimp =−T
ˆ π

0
dk

4J2T2K − T4K
π
(
T4K − 8J2T2K cos

2 (k)+ 16J4 cos2 (k)
) ln(1+ e−

2h−2J cos(k)
T

)
, (57)

such that the finite temperature susceptibility becomes

χimp =− d2

dh2
fimp

∣∣
h→0

=

ˆ π

0

cos(2b)sech2
(
Jcos(k)

T

)
πT

(
1− sin2 (2b)cos2 (k)

)dk. (58)

The low temperature asymptotic expansion of the susceptibility at

χimp(T→0) =
2cos(2b) tanh

(
J
T

)
π J

+O (T) =
8J tanh

(
J
T

)
πT2K

−
2tanh

(
J
T

)
π J

+O (T) (59)
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Figure 7. Susceptibility at low temperature for various values of impurity parameter in
the Kondo regime. The solid line is obtained by performing numerical integration of
equation (58) and the discrete points are obtained by numerically computing the impur-
ity susceptibility for a chain of total 500 number of sites and J= 1 using exact diagon-
alization by subtracting the susceptibility of the chain with 500 site and impurity from
the susceptibility of a chain with 499 sites without any impurity.

The susceptibility at T = 0 is

χimp (T= 0) =
2
π J

cos(2b) =
8J
πT2K

− 2
π J
. (60)

This finite value of susceptibility at T = 0 shows that the impurity is screened at low temper-
ature. Now, looking at the asymptotic of the integrand at T→∞, we obtain

χimp(T→∞)
=

ˆ π

0

4cos(2b)

πT
(
−2sin2 (2b)cos(2k)+ cos(4b)+ 3

)dk
=

1
T

(
1− T2K

4T2
+J2T2K
12T4

+
T4K
48T4

)
+O

(
1
T6

)
(61)

when 0< b< π
4 or b is purely imaginary, i.e. in the entire Kondo regime. In the last step, we

used equation (44). This Curie-like susceptibility as high temperature (as shown in figure 7)
shows that the impurity behaves like a free spin at high temperature.

Before we proceed to discuss the physics in the bound mode regime, we would like to
remind that the impurity is screened by multiparticle Kondo cloud in all eigenstates of the
model in this phase at zero temperature and zero field. We will see that, in the bound mode
phase, there are two distinct kinds of eigenstates: one where the impurity in screened by a
localized bound mode and one where where impurity is unscreened.
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Figure 8. Boundary string energy as a function of b for π
4 < b< π

2 .

4.2. Bound mode Phase

We now solve the Bethe Ansatz equation in the parametric regimes π
4 < b< π

2 which corres-
ponds to Jimp > J

√
2. Notice that in this regime, the Bethe Ansatz equation equation (24) has

a unique purely imaginary solution of the form

λb =
i
2
(4b−π) (62)

on top of other real λ solutions. This solution is called the boundary string solution and
describes the boundary bound mode that exists at the boundary of various one-dimensional
integrable models [13, 21, 39, 40, 42–45]. Notice that, using equation (47), one finds that the
momenta k for this mode is complex i.e.

kb =−i log(tan(b)) (63)

which shows that there is a single particle bound mode in the spectrum. This bound mode
appears suddenly exactlywhen Jimp =

√
2Jwhich is the point that demarcates the phase bound-

ary between the Kondo and bound mode phase. The effect of this single particle bound mode
appears in all thermodynamic quantities as we shall see in this section. The energy of the bound
mode is

Eb =−2Jcsc(2b) . (64)

The energy of the boundary string ranges from −2J> Eb >−∞ as shown in the figure 8.
Since, the boundary string has negative energy, it exists in the ground state when π

4 < b< π
2 .

The ground state is made up of all real root described by the continuous root distribution ρ(λ)
and the isolated purely imaginary boundary string solution. The impurity is screened by the
bound mode formed at the impurity site. A unique excited state with boundary excitations can
be constructed by removing the boundary string solution from the ground state and adding a
hole. The state thus constructed contains an unscreened impurity.

Notice that at the phase transition line b= π
4 , |Eb|= TK and Eb, which is the boundary gap,

sets the scale for the problem in this regime.
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The density of continuous real root distribution in the ground state is given by

2ρ(λ) =
sech(λ)
π

(
2cosh2 (λ)

(
cos(2b)

cos(4b)+ cosh(2λ)

)
+N+ 1

)
− δ (λ) . (65)

Hence, the the state described by this continuous distribution of all the real root is

Ear =
ˆ

dλρ(λ)
2J

cosh(λ)
=−2J(N+ 1)

π
− 2J tan−1 (tan(2b))csc(2b)

π
+ J. (66)

The ground state contains the discrete imaginary root λb with energy Eb since this solution
has negative energy. Adding the energy of the boundary string solution, we obtain the ground
state energy as

Egs = Eb+Ear =−2J(N+ 1)
π

− 4bJcsc(2b)
π

+ J. (67)

Notice that the functional form of the equation is same as that of the ground state in the Kondo
phase given by equation (31) which shows that the energy is continuous across the phase
boundary at b= π

4 .
Notice that at the phase boundary b= π

4 , the last two terms in equation (67) cancel and
hence

E|gs⟩

(
b=

π

4

)
=−2J

π
(N+ 1) , (68)

which is equal to the energy of a periodic XX chain with N+ 1 sites. This is the only point in
the entire phase space where the energy density is independent of the system size, as mentioned
earlier. Notice that while it may initially appear that the energy density becomes independent
of the system size when b= 0, i.e. when the lattice has uniform coupling. This is only true for
periodic boundary condition but this is not the case here because of the presence of the open
boundary; the energy gets a non-zero O(1) boundary contribution (π−2)J

π when b= 0, which
can be seen from the b→ 0 limit of equation (67).

The bound mode is an exponentially localized mode with support around the impurity
site. The wavefunction Fb( j) for the bound mode can be obtained using λb = i

2 (4b−π) in
equation (A.10), and properly normalizing which gives

Fb ( j) =
2γ (b, j)

(
tanj−N−1 (b)− tan−j+N+1 (b)

)√
sec(2b) tan−2(N+1) (b)

(
3− 8sin4 (b) tan4N+2 (b)+ cos(4b)

)
− 4cos(2b)− 8(N+ 1)

,

where γ(b,0) = cos(b) and γ(b, j ̸= 0) = 1. Upon taking the thermodynamic limit N→∞,
the normalized wavefunction can be written as

Fb ( j) =
2tan−j (b)γ (b, j)√

(cos(4b)− 1)sec(2b)
. (69)

Using the relation (64), we write the wavefunction in terms of the boundary string energy,
the fundamental scale in the bound mode phase as

Fb ( j) = 2j−
1
2
√
EbJ

j−1 4

√
E2
b− 4J2

(
Eb+

√
E2
b− 4J2

)−j

υ (b, j) , (70)
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where υ(b,0) = cos
(

1
2 sin

−1
(

2J
Eb

))
and υ(b, j ̸= 0) = 1. This allows us to determine the loc-

alization length of the bound mode through writing Fb( j)∼ e−j/ξb , which yields

1
ξb

= log

Eb
2J

+

√
E2
b

4J2
− 1

 . (71)

In this phase, apart from the bulk excitations that are constructed by adding spinons, bound-
ary excitations are also possible. The boundary excitations are constructed by removing the
boundary string solutions. For example, we could remove the boundary string from the ground
state and add a hole to construct a four-fold degenerate state with energy

E|ar,θ⟩ = Ear+Eθ =−2J(N+ 1)
π

+ J+
2J

cosh(θ)
. (72)

The impurity is unscreened in this phase and hence, it can make singlet or triplet pairing with
the spinon. In the thermodynamic limit, the singlet and triplet has the same energy. Thus, this
is a four-fold degenerate state.

Starting from either the ground state |gs⟩ or the state |ar,θ⟩, two distinct towers of the
excited state can be built by adding an even number of spinons. The first tower built on top of
the ground state |gs⟩ contains all excited states in which the impurity is screened by the bound
mode formed at the impurity site. However, the second tower built on top of |ar,θ⟩ contains all
the states in which impurity is not screened. Notice that this is in sharp contrast with the Kondo
phase where the impurity is screened in all eigenstates at zero field and zero temperature.

Due to the presence of the isolated imaginary root, the ratio of the boundary and bulk con-
tribution to the spinon density of states becomes

Rb (E) = R(E)+ δ (E−Eb) , (73)

where R(E) given by equation (33) is negative in this phase and all the spectral weight comes
from the bound mode thereby showing that impurity is screened by an exponentially localized
bound mode formed at the impurity site. This qualitative difference in the observable like
density of states in the Kondo and bound-mode phase shows that the boundary phase transition
manifests itself in local physical quantities.

4.2.1. Effect of magnetic field. In this subsection, we will compute the magnetization at the
impurity site and show that the magnetization curve is qualitatively different compared to the
Kondo phase. We obtain the values of kj < kF in the presence of magnetic field H for a chain
with N= 999 and plot the magnetization in at the impurity site given by equation (51).

Notice that only one λ and hence one k is complex. Thus, there is only one single particle
mode that has an energy (−2Jcos(k)) greater than the maximum energy of the spinon 2J while
the rest have an energy between 0< E< 2J. Thus, when a global magnetic field H is applied,
the magnetization at the impurity given by ⟨Sz(0)⟩=

∑
k<kF(H)

Szk(0) grows smoothly between
H= 0 and Hc = 2J where there are propagating spinons. However, when the magnetic field
surpasses the critical field, there are no more spinons available to polarize. However, there is
yet an unpolarized bound mode with energy Eb. Thus, the magnetization at the impurity site is
constant between Hc = 2J and H= Eb and exactly at H= Eb, the bound mode polarizes and
hence the magnetization at the impurity site abruptly jumps to 1

2 as shown in figure 9. The
value of Sz(0) at the plateau between Hc < H< Eb, which is the contribution from all real λ
roots of Bethe equation, can be analytically computed for different values of b as

Szc (0) = F∗
kb (0)Fkb (0) , (74)
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Figure 9. Impurity magnetization in the bound mode phase for N= 999. The magnet-

ization grows smoothly up to Hc = 2J, then it saturates to a finite value Szc(0) =
cot2(b)

2

(shown in the dashed horizontal lines) before abruptly jumping to 1
2 when the applied

magnetic field H is equal to the energy of the bound mode |Eb|= 2Jcsc(2b) (shown in
the dashed vertical lines).

where kb is the one imaginary k solution which, in the thermodynamic limit, is given as

kb = i log(tan(b)) . (75)

Thus, in the thermodynamic limit, the value at the plateau given by equation (74) becomes

Szc (0) =
cot2 (b)

2
(76)

and the contribution to the magnetization at the impurity site due to single imaginary k solution
which measures the height of the vertical jump bh in figure 9 is

bh =
1
2
− Szc (0) = 1− csc2 (b)

2
. (77)

All the contribution to magnetization at the impurity site comes from the real roots of the
Bethe equation at the phase boundary π

4 where bh is 0, at b= π
2 , all the contribution comes from

the complex root. At b= tan−1
(√

2
)
, the contribution from N− 1 real roots and 1 complex

root is equal as depicted in figure 10.
The bound mode is localized at the left edge of the chain as shown in figure 11. Hence,

the jump in magnetization also happens only at the sites close to the left edge. For a chain
of N= 999 bulk sites, we explicitly compute 1000 values of kj by solving the transcendental
equation equation (48) for b= 2

6π and compute the magnetization at various sites in the pres-
ence of a global magnetic field H. As shown in figure 12, the magnetization jumps only at a
few sites on the left and of the chain. For every site other than the first few sites, the magnetiz-
ation reaches 1

2 at H= 2J continuously. However, for the initial few sites, due to the presence
of the localized bound mode, the magnetization reaches a finite value less than 1

2 at H= 2J
and plateaus until H= Eb where it abruptly jumps to 1

2 . We can compute the contribution to

21



J. Phys. A: Math. Theor. 57 (2024) 265004 P Kattel et al

Figure 10. The plot of the magnetization at the impurity site contribution due to the all
real roots of the Bethe equation (Szc(0)) given by equation (74) and the contribution from
the lone complex root (bh) given by equation (77).

Figure 11. The modulus of the bound mode wavefunction localized at the left edge for
different values of impurity coupling strength b given by equation (69). Here, 0 is the
impurity site and j ∈ [1,N] are the bulk sites. In bulk, the impurity wavefunction falls
off exponentially.

the magnetization due to all real root solutions of the Bethe equations for all the bulk sites in
the thermodynamic limit

Szc ( j) = F∗
kb ( j)Fkb ( j) =

cos(4b)− 8cos(2b)cot2j (b)− 1
2(cos(4b)− 1)

. (78)

Likewise, the value of the vertical jump at each site can be computed in the thermodynamic
limit as

bh ( j) =
1
2
− Szc ( j) =

4cos(2b)cot2j (b)
cos(4b)− 1

. (79)
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Figure 12. The plot on the left shows the magnetization Szc( j) at various sites for impur-
ity parameter b= 2

6π given by equation (78). The magnetization jumps only for a few
initial sites at the left edge of the chain. For all other sites, the magnetization grows con-
tinuously and reaches 1

2 exactly at H= 2J. The plot on the right shows the contribution
to the magnetization from all real roots of the Bethe equation Szc( j) and the single com-
plex root bh( j) at various sites for b= 2

6π. The inset shows the exponential falloff of the
Szc( j). The Bethe equation’s real root solutions dominate magnetization contributions
deep in the bulk. Although the bound mode affects initial few bulk sites due to exponen-
tial localization at the left edge, the magnetization in subsequent sites has a contribution
solely from the real roots.

Clearly the function Szc( j) exponentially increases to 1
2 as j increases as shown in figure 12.

This shows that deep in the bulk all the contribution to the magnetization comes from the real
roots of the Bethe equation. In the few initial sites, the contribution from the bound mode bh( j)
is significant but then it quickly approaches zero as j increases.

4.2.2. Finite temperature effects. The susceptibility of the impurity in this phase takes the
form

χimp (T) =
ˆ π

0

cos(2b)sech2
(
Jcos(k)

T

)
πT

(
1− sin2 (2b)cos2 (k)

)dk+ 2sech2
(
Jcsc(2b)

T

)
T

, (80)

where the first term is the impurity contribution from the continuous real root distribution
just like in the Kondo phase (ref equation (58)) and the second term is the contribution from
explicitly adding the isolated complex root of the Bethe Ansatz equations.

At low temperature, the asymptotic value of susceptibility is

χimp(T→0) =
2cos(2b) tanh

(
J
T

)
π J

+
2sech2

(
Jcsc(2b)

T

)
T

+ · · ·

=
2sech

(
Eb
2T

)
T

−
2
√
1− 4J2

E2
b
tanh

(
J
T

)
π J

+ · · · (81)

where · · · represent the higher order correction terms that vanish when T→ 0. Note that at
T = 0, the susceptibility of impurities becomes 2

π cos(2b)which is negative in the bound mode
phase i.e. when π

4 < b< π
2 . We interpret the negative susceptibility as a result of the bound

mode acting as a local magnetic field in the opposite direction of the external magnetic field
due to the nature of the impurity tending to form a singlet with the bound state. Similar physics
was also observed in the Kondo impurity in a superconducting wire [22].
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Figure 13. At zero temperature, the susceptibility in the bound mode phase is finite and
negative: − 2

π
cos(2b). As the temperature increases, the susceptibility first decreases

and then increases to a positive value and attains a maximum. After that, the suscept-
ibility falls off as 1

T at high energy showing that the impurity behaves as free spin at
high temperature. The solid line is obtained by plotting equation (80) whereas the dis-
crete values shown in the plot are obtained from exact diagonalization by computing
the impurity susceptibility upon subtracting the susceptibility of the free chain with 499
site containing no impurity from the susceptibility of a chain with 500 sites with the
impurity at its edge.

As the temperature increases, the susceptibility first decreases, attains a minimum value,
and then starts to increase to become positive. After it attains a maximum positive value at
some finite temperature, it starts to fall off as 1

T demonstrating that the impurity behaves as free
spin at high temperature as shown in figure 13. The high-temperature asymptotic expansion
of susceptibility can be written as

χimp(T→∞)
=

1
T

(
1− J2 sec2 (b)

2T2

)
+O

(
1
T4

)
=

1
T
−
E2b

(√
1− 4J2

E2
b
+ 1

)
4T3

+O
(

1
T4

)
(82)

where we used equation (64) at the last step.

5. Conclusion

We summarize the key aspect of our work. Considering the spin- 12 XX chain with boundary
impurity which is equivalent to the lattice version of the spin sector of conventional Kondo
problem in the low energy regime, we analyze it analytically using Bethe Ansatz as well as
numerically using ED. We found that the boundary phenomena depend on the ratio of the
boundary couplings to the bulk coupling.We showed that the model exhibits two distinct kinds
of phase: the Kondo phase, which is characterized by screening of the impurity by the multi-
particle Kondo cloud, and the bound mode phase, which is characterized by screening of the
impurity spin by a single-particle bound mode formed at the impurity site. The signature of
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the phase transition is seen in several physical quantities such as the spinon density of states.
impurity magnetization and susceptibility. The impurity density of states changes from the
characteristic Kondo peak at E= 0 to a peak at E= 2J and eventually becomes a delta function
peak at Eb in the bound mode regime. Using both Bethe Ansatz and ED we showed that the
magnetization at the impurity site in theKondo phase shows a smooth crossover from 0 to 1

2 just
as in the Fermi liquid Kondo. However, in the boundmode phase, the magnetization undergoes
a sudden jump from some finite value to 1

2 as the magnetic field increases. The sudden jump
of impurity magnetization occurs when the external magnetic field is equal to the energy of
the bound mode. Likewise, the finite temperature susceptibility behaves differently in these
two phases. In the Kondo phase, the susceptibility is finite and positive at zero temperature
and asymptotically free exhibiting Curie law behavior in the high temperature regime just
like in the conventional Kondo problem. However, due to the competition between the local
bound mode formed at the impurity site and the applied global magnetic field, the impurity
susceptibility is finite but negative at zero temperature. Upon increasing the temperature, the
susceptibility first decreases and then starts to increase and attains some finite maximum value.
Eventually, the susceptibility falls off as 1

T demonstrating the Curie law which shows that at
high temperature, the impurity is essentially free.

Across the Kondo-boundmode phase boundary, there is a distinctive change in the nature of
the ground state. In the Kondo phase, the ground state (and all other states built on it) hosts an
impurity that is screened by a many body Kondo cloud whereas in the bound mode phase the
screening shifts to a single-particle effect. Moreover, the entire structure of the Hilbert space
reorganizes into two distinct towers of excited state in the bound mode phase: one containing
all the states where impurity is screened by bound mode, and the other one containing all
the states where impurity is unscreened. This phenomenon of the change in the number of
towers of called ‘boundary eigenstate phase transition’ is observed in other one-dimensional
models [13, 45, 46]. Our study demonstrates that these boundary phase transitions reflect in
local observables, such as the impurity density of states and local magnetization at the impurity
site, exhibiting distinct behaviors in the Kondo and bound mode phases.

The interacting case of XXX model with XXX impurity was studied in [13] and it was shown
that the boundary phase transition occurs between the Kondo phase and the bound mode phase
when the boundary and bulk coupling ratio is Jimp/J= 4

3 . Here, we showed that all of the essen-
tial boundary features reported there exist in the this case also. Thus, the σzjσ

z
j+1 interaction

seems to only play a role in dressing up the bare parameter like in Fermi liquid theory.
The implication of the existence of boundary bound mode in the dynamics of the model is

an important question. In an upcoming work, we study the non-equilibrium aspect of the model
focusing on quench dynamics and also the effect of the boundary eigenstate phase transition
in the dynamics.
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Appendix A. One particle wavefunction

Rewrite the Hamiltonian equation (1) as

H=
N−1∑
j=1

J
(
σ+
j σ

−
j+1 +σ+

j+1σ
−
j

)
+ Jimp

(
σ+
1 σ

−
0 +σ+

0 σ
−
1

)
(A.1)

using the relation σ±
j = 1

2

(
σxj ± iσyj

)
.

The wavefunction in the one particle sector can be written as
N∑
j=0

F( j) | ↑0,↑1, · · · ,↑( j−1),↓j,↑j+1, · · · ,↑N⟩. (A.2)

For j ̸= 0,1 and N, the schrodinger’s equation becomes

JF( j− 1)+ JF( j+ 1) = EF( j) . (A.3)

Proposing the wavefunction of the form

F( j) = A(k)e−ikj+B(k)eikj+C(k)δj,0 (A.4)

we obtain the energy to be

E= 2Jcosk (A.5)

and the wavefunction at j = 0,1 and N can be written as

JimpF(1) = 2JcoskF(0) (A.6)

JF(N− 1) = 2JcoskF(N) (A.7)

JimpF(0)+ JF(2) = 2JcoskF(1) . (A.8)

Solving these equations, we obtain the quantization condition

2J2 cos(k)sin(kN)− Jimp
2 sin(k(N− 1)) = 0. (A.9)

Such that the non-normalized wavefunction takes the form

F( j) =

{
Jsin(k(N+ 1)) when j = 0

Jimp sin(k(N+ 1− j)) when j ̸= 0.
(A.10)

Notice that the quantization condition equation (A.14) is just the Bethe equation
equation (24). To prove this, consider the Bethe equation sinh

(
λj

2 + iπ
4

)
sinh

(
λj

2 − iπ
4

)
2N+2

sinh
(

λj

2 + ib+ iπ
4

)
sinh

(
λj

2 − ib− iπ
4

) sinh
(

λj

2 − ib+ iπ
4

)
sinh

(
λj

2 + ib− iπ
4

) = 1 (A.11)

and perform a change of the variable

sinh
(

λj

2 + iπ
4

)
sinh

(
λj

2 − iπ
4

) = e−ikj (A.12)

such that upon using Jimp = Jsec(b), one obtains

e−2ikj(N+1)−e2ikj (Jimp)
2
+ J2e2ikj + J2

−(Jimp)
2
+ J2 (1+ e2ikj)

= 1 (A.13)
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which can be written as

(Jimp)
2 sin(kN)− 2J2 cos(k)sin(k(N+ 1)) = 0 (A.14)

which is exactly the same as the quantization condition obtained in (A.14).
Moreover, the energy relation equation (25) becomes

E= 2J
∑
kj

cos(kj) . (A.15)
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