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As a companion work to [1], this article presents a series of simple
formulae and explicit results that illustrate and highlight why clas-
sical variational phase-field models cannot possibly predict frac-
ture nucleation in elastic brittle materials. The focus is on
“tension-dominated” problems where all principal stresses are
nonnegative, that is, problems taking place entirely within the
first octant in the space of principal stresses.
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1 Introduction

In spite of the evidence laid out against them in Refs. [2—4], clas-
sical variational phase-field models of fracture, or variational phase-
field models for short,> continue to be used and pursued in an
attempt to describe fracture nucleation in elastic brittle materials.
In this context, the work recently presented in Ref. [1] has provided
a comprehensive review of the existing evidence that settles that
such a class of models cannot possibly describe—and hence

'Corresponding author.

?By variational phase-field models, we mean phase-field models of fracture that
I'-converge to the variational theory of brittle fracture [5]. Many other phase-field
models of fracture are variational but do not I'-converge to that theory; see, e.g.,
Refs. [6-9].
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predict—fracture nucleation in general. As a companion work to
[1], this article presents a series of simple formulae and explicit
results aimed at illustrating and highlighting why this is the case.

The focus of this article is on “tension-dominated” problems
where all principal stresses are nonnegative, that is, problems
taking place entirely within the first octant in the space of principal
stresses. In this octant, virtually all variational phase-field models
with energy splits that have been proposed in the literature reduce
to the corresponding base models without energy split. This is so
because energy splits have primarily been pursued to deal with
the unphysical results produced by variational phase-field models
in the presence of compressive strains and/or compressive stresses,
and not with the equally unphysical results that these models can
produce when the stresses are all tensile.

2 Variational Phase-Field Models for Elastic Brittle
Materials

We begin by introducing notation and recalling the variational
phase-field models of fracture for elastic brittle materials. Through-
out, attention is restricted to isotropic linear elastic brittle materials
and quasi-static loading conditions.

Consider a body made of an isotropic linearly elastic brittle mate-
rial with elastic energy density W(E), strength surface F(S) =0,
and toughness, or critical energy release rate, G, that, initially, at
time =0, occupies the open bounded domain Qy C R, we
denote the boundary of the body by 0€) and identify material
points by their initial position vector X € Q.

The body is subjected to a displacement u(X, #) on a part 6QOD of
the boundary, and a surface force (per unit undeformed area) (X, t)
on the complementary part 69{)\/ = 0Q\0QP . In response to these
stimuli—both of which are assumed to be applied monotonically
and quasi-statically in time—the position vector X of a material
point in the body will move to a new position specified by
x =X+ u(X, 7), where u(X, ¢) is the displacement field. We write
the associated strain at X and ¢ as E(u) = % (Vu + VuT).

In addition to the deformation, the applied boundary conditions
may result in the nucleation and subsequent propagation of cracks
in the body. We describe such cracks in a regularized fashion via
the phase field v = v(X, ) taking values in the range [0, 1].

According to the variational phase-field models (see, e.g., Refs.
[10-12]), making use of the notation w;(X)=1u(X, #) and
Si(X) =S(X, #), the displacement field w(X)=u(X, %)
and phase field v(X)=v(X, #) at any material point X €
Qy=QyUdQy and at any given discrete time # € {0=
105 Hs - s tms ttls - - - » tyy = T'} are determined by a Nash minimiz-
ing pair (uf, %), subject to uf =u; on QY and 0 < v§ <vi_| <1,
of the energy functional

E(uy, vp): =j (gvW* (E(w)) + W™ (E(uy)))dX—
Qo

3G, (1-
j 5w dX + J ( eV - Vvk) X (D
o) 8 Jo,\ ¢

where ¢ > 0 is a regularization length, g(v) is a function such that
g(0)=0 and g(1)=1, and W*(E) and W~(E) > 0 stand for any
“tensile” and “compressive” parts of choice from the split W(E) =
W*(E) + W~ (E) of the elastic energy density. Specifically, by a
Nash minimizing pair (uj, v;), we mean the minimization pair
(ug, v;) that is generated not by global minimization but by alternat-
ing minimization. This choice of minimization is consistent with the
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fact that, while not convex, the energy functional (1) is separably
convex in its arguments [1].

3 The Strength Surface Generated by the Variational
Phase-Field Models in the First Octant

As reviewed in Ref. [1], and as first shown in Ref. [4], when the
body is subjected to a state of spatially uniform stress S, the varia-
tional phase-field models (1) may predict that fracture nucleates at
some critical value of S. If and when fracture nucleation is predicted
depends on the value of the regularization length &, the specific type
of energy split W(E) = WH(E) + W~ (E), as well as on the choice of
the degradation function g(v).

For the prominent case when g(v) = V2, the stress S = diag(s; >0,
sp > 0, s3 > 0) is in the first octant in the space of principal stresses
(51, 52, 83), and W—(E) = 0 so that W(E) = W*(E), Kumar et al. [4]
showed that the resulting variational phase-field model does
indeed predict fracture nucleation at some critical value of S. The
set of all such critical stresses S defines the following surface in
stress space:

2
FS) =@ +5 _ 3G,
u 9 8¢

=0, s1,5,53 20 2)

Here,Z,=s1+s2+53, J2= 1/3(Sf +S% +s§ — 5187 — 8153 — 5253),
and x4 and x denote the shear and bulk moduli of the material.
For later convenience, we recall that 4 and x are given in terms
of the Young’s modulus £ and the Poisson’s v ratio by u=
E/2(1 +v)) and x=E/(B(1 —2v)). Virtually all energy splits
that have been proposed in the literature (see, e.g., the reviews
included in Refs. [13,14]) are such that W—(E)=0 when
S =diag(s; > 0,50 >0, 53 >0). As a result, the surface (2) can
be viewed as the strength surface that is generated in the first
octant of principal stresses by any variational phase-field model
(1) with g(v) =12,

Note, in particular, that for uniaxial tension, when
S =diag(s > 0, 0, 0), the surface (2) predicts the uniaxial tensile
strength

3G.E
e @
while for equi-biaxial and hydrostatic tension, when S = diag(s >
0,s>0,0) and S =diag(s >0, s> 0, s> 0), it predicts the equi-
biaxial and hydrostatic tensile strengths

3C.E G.E
AT) _ c AT ¢
Sos' =\ Te—oe 4 ' TR0 @

Clearly, the surface (2) is not an independent material property
that can be chosen to match the actual strength surface F(S) =0
of the material; recall that 7(S) = 0 is potentially any star-shaped
surface in stress space containing O in its interior [1,3,4]. In partic-
ular, the surface (2) is subordinate to the elasticity and toughness of
the material, even if € is viewed as a material length scale. This is in
contradiction with experimental observations and the fundamental
reason why variational phase-field models cannot possibly describe
fracture nucleation [1].

When considered as a material length scale, ¢ is the sole tunable
parameter in Eq. (2), one whose value can be selected so that the
strength surface (2) is forced to match the actual strength surface
F(S)=0 of the material at a single point of choice in stress
space. Making use of the popular prescription

,_3GE
8st,

(&)

proposed in Ref. [11], where s.s stands for the actual uniaxial
tensile strength of the material, the strength surface (2) specializes to
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Fig. 1 The unphysical dependence of the predicted equi-biaxial
tensile strength (7). and the hydrostatic tensile strength (7); on
the Poisson’s ratio v of the material. The results are plotted nor-
malized by the actual uniaxial tensile strength s. . of the material.

1-2v

FES) =21+0)J2 + I -5t =0,

s1, 82,53 >0 (6)

while relations (3) and (4) specialize to

AT, AT, Sts AT, _ Sts (7)

Yo T e T ATy e T AU - )

That is, the prescription (5) forces the uniaxial tensile strength
stTt predicted by the variational phase-field model to agree identi-
cally with the actual uniaxial tensile strength s.s of the material.
At the same time, it subordinates all other remaining points on
the surface (6) to s and the Poisson’s ratio v of the material.
Such a subordination is unphysical.

It proves instructive to visualize how the strength surface (6)
depends on v. To this end, Fig. 1 plots the equi-biaxial tensile
strength (7), and the hydrostatic tensile strength (7)3, normalized
by sts, as a function of v. Both s..' and si' are seen to increase
monotonically with increasing values of v, even though, again,
the actual strength of a material is independent of its elasticity. It
is also interesting to note that sp.' < s.¢ for all v, while si.' <
spt for v < 1/4 and sit' < sy for v < 1/3. For v>1/3, not
only sil'>s.. but sp.'=+c0 at v=1/2. This behavior is
nonsensical.

4 Final Comments

Per the large body of experimental observations that have been
gathered for over a century, as reviewed in Ref. [1], there are
three necessary requirements that any phase-field model, be it var-
iational or not, must satisfy if it is to potentially describe fracture
nucleation in elastic brittle materials. These are as follows:

(1) Accounting for the elastic energy density W(E), the strength
surface F(S)=0, and the toughness G. of the material,
whatever these properties may be;

(ii) Localization of the phase field v whenever a macroscopic
piece of the material is subjected to any uniform stress S
that exceeds the strength surface F(S) =0 of the material;
and

(iii) Having the Griffith energy competition as a descriptor of
fracture nucleation from the front of a large preexisting
crack.
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Failure to satisfy any of these requirements would prevent the
model from describing fracture nucleation even in the simplest of
scenarios, that is, under a spatially uniform stress and/or from
large preexisting cracks.

As illustrated by results presented in the preceding section, vari-
ational phase-field models fail to satisfy requirement (i) since they
cannot account for the strength surface 7 (S) = 0 as an independent
material property.

A class of phase-field models that satisfies all the aforementioned
three requirements is introduced in Refs. [2-4]; see, also, Refs.
[9,15]. The distinguishing feature of this class of models is that
they account for the strength surface F(S) =0 via a driving force
ce in the evolution equation for the phase field v. This driving
force is designed in a manner such that requirements (ii) and (iii)
are satisfied.

An important lesson that emerged from Refs. [2-4] is that any
willy-nilly attempt to account for the strength surface F(S)=0
will impact how the resulting model predicts fracture nucleation
from the front of a large preexisting crack. Put differently, even if
one manages to correctly account for the strength surface
F(S) =0, additional steps must be taken to ensure that the model
remains consistent with the Griffith energy competition as a descrip-
tor of fracture nucleation from the front of a large preexisting crack.
This is because fracture nucleation predictions by a phase-field
model, with a finite value for regularization length &, are generally
strongly dependent on all of the specifics of the model, including
the choice of degradation function g(v). Below, we illustrate this
key point by making use of the two different degradation functions

[16,17]
-1 v
g(v)=a<1—<“a ) ) ®)

and

1 ifv>p

gv) = { 2

v ifv<p ©)

where @ > 1 and 0 < # < 1 in the variational phase-field model (1) to
predict fracture nucleation from a large preexisting crack in a “pure-
shear” fracture test. Consistent with the focus of this article, the
stresses around the crack front (where fracture nucleation or crack
growth occurs) in such a test are all within the first octant in the
space of principal stresses. We remark that both degradation func-
tions (8) and (9) are such that the resulting variational phase-field
model (1), with W~(E) =0, ["-converges to the variational theory
of brittle fracture [5]. While Eq. (8) is introduced to be able to deal
with large structures [16], the prescription (9) was suggested as a
simple modification to prevent undesirable fracture nucleation
[17]. For our purposes here, we use them simply as representative
examples of degradation functions that generalize the basic choice
g(v) =12, Indeed, observe that Eq. (8) reduces to g(v) =1? when
a = +o0, while Eq. (9) reduces to g(v) =v*> when f = 1.

Because of its experimental convenience together with the fact
that its analysis can be carried out explicitly, the “pure-shear” frac-
ture test is one of a handful of tests preferred by practitioners to
measure the toughness G, of materials. As schematically depicted
by Fig. 2, the test makes use of a specimen in the form of a plate
of initial height H, much smaller thickness B <« H, and much
larger length L > H that contains a large preexisting crack, of
initial size A > H, on one of its sides along its centerline. The speci-
men is clamped on its top and bottom and subjected to a prescribed
deformation h between the grips. For an isotropic linear elastic
brittle material, the critical value h., of the applied deformation &
at which the preexisting crack will start growing according to the
Griffith energy competition can be accurately estimated from the
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Fig.2 Schematics of the “pure-shear” fracture test in the initial
configuration and in a deformed configuration at an applied
deformation h

following equation [18]:

. 2(1 —12)G.
ho=(+e)H with ey = Y% 10
(1+e,)H with e HE (10)

in terms of the critical value e., of the global strain e = (h — H)/H.

Tables 1 and 2 report the error in the critical global strains pre-
dicted by the variational phase-field models (1) with W=(E) =0
and degradation functions (8) and (9) at which fracture
nucleates in “pure-shear” fracture tests for various values of the
parameters « and f. In particular, the results in Table 1 correspond
to four of the values examined in Ref. [16], namely,
a=1.0148, 1.017, 1.1, 200. The results in Table 2 correspond to
£ =0.4,0.65, 0.9, 1, the last of which, again, amounts to nothing
more than the basic choice g(v) =1 for the degradation function.
All the results pertain to simulations for specimens of initial
height H =5mm, length L=50mm, thickness B=1mm, and
crack length A = 10 mm that are made of a material with elastic con-
stants and toughness that are representative of titania, to wit,
E=250GPa, v =0.29, and G. = 36 N/m; see Sec. 4.3 in Ref. [1].
For such specimens and material constants, expressions (10) yield
e, =0.2296 x 1073 and h,, = 5.0012mm. All the simulations are
carried out with the same regularization length, £ = 0.33 mm, and
the same finite-element mesh of size h = &/5 = 0.066 mm.

Table 1 Error in the critical global strains *e., predicted by the
variational phase-field model (1) with degradation function (8)
for various values of the parameter «

a 1.0148 1.017 1.1 200

(“eer = eer)/eer 34% 33% 31% 13%

Note: All results pertain to the same regularization length (¢ = 0.33 mm).

Table 2 Error in the critical global strains ?e., predicted by the
variational phase-field model (1) with degradation function (9)
for various values of the parameter g

B 0.4 0.65 0.9 1

CPew — e0)/eer 222% 39% 22% 4%

Note: All results pertain to the same regularization length (¢ = 0.33 mm).
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The results in Tables 1 and 2 call for the following observations.
The prediction by the variational phase-field model (1) with the
basic choice g(v) =1? for the degradation function is practically
in perfect agreement with the sharp solution. This is because such
a model features a fast convergence as & \, 0 and, for the
problem at hand, the value € =0.33mm is already sufficiently
small to yield agreement with the sharp solution (10). By contrast,
the variational phase-field models (1) with degradation functions (8)
and (9) exhibit slower convergence as ¢ \, 0. In particular, e = 0.33
mm is not sufficiently small for these models to yield agreement
with the sharp solution. The disagreement increases significantly
with decreasing values of a and f. These results illustrate one of
the difficulties that one must face in constructing computationally
tractable phase-field models of fracture that are aimed at describing
fracture nucleation in general.
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