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ABSTRACT

We provide a novel reduction from swap-regret minimization to
external-regret minimization, which improves upon the classical
reductions of Blum-Mansour and Stoltz-Lugosi in that it does not
require finiteness of the space of actions. We show that, whenever
there exists a no-external-regret algorithm for some hypothesis
class, there must also exist a no-swap-regret algorithm for that
same class. For the problem of learning with expert advice, our
result implies that it is possible to guarantee that the swap regret

is bounded by € after (log N)©(/€) rounds and with O(N) per
iteration complexity, where N is the number of experts, while the
classical reductions of Blum-Mansour and Stoltz-Lugosi require
at least Q(N/e?) rounds and at least Q(N?) total computational
cost. Our result comes with an associated lower bound, which—
in contrast to that of Blum-Mansour—holds for oblivious and £; -
constrained adversaries and learners that can employ distributions
over experts, showing that the number of rounds must be Q(N/e?)
or exponential in 1/e.

Our reduction implies that, if no-regret learning is possible in
some game, then this game must have approximate correlated equi-
libria, of arbitrarily good approximation. This strengthens the folk-
lore implication of no-regret learning that approximate coarse cor-
related equilibria exist. Importantly, it provides a sufficient condi-
tion for the existence of approximate correlated equilibrium which
vastly extends the requirement that the action set is finite or the
requirement that the action set is compact and the utility functions
are continuous, allowing for games with finite Littlestone or finite
sequential fat shattering dimension, thus answering a question left
open in “Fast rates for nonparametric online learning: from real-
izability to learning in games” and “ Online learning and solving
infinite games with an ERM oracle”. Moreover, it answers several
outstanding questions about equilibrium computation and/or learn-
ing in games. In particular, for constant values of e: (a) we show that
e-approximate correlated equilibria in extensive-form games can be
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computed efficiently, advancing a long-standing open problem for
extensive-form games; see e.g. “ Extensive-form correlated equilib-
rium: Definition and computational complexity” and “ Polynomial-
Time Linear-Swap Regret Minimization in Imperfect-Information
Sequential Games”; (b) we show that the query and communication
complexities of computing e-approximate correlated equilibria in
N-action normal-form games are N - polylog(N) and poly log N
respectively, advancing an open problem of “Informational Bounds
on Equilibria”; (c) we show that e-approximate correlated equilibria
of sparsity polylog N can be computed efficiently, advancing an
open problem of “Simple Approximate Equilibria in Large Games”;
(d) finally, we show that in the adversarial bandit setting, sublinear
swap regret can be achieved in only O(N) rounds, advancing an
open problem of “From External to Internal Regret” and “Tight
Lower Bound and Efficient Reduction for Swap Regret”.

CCS CONCEPTS

» Theory of computation — Convergence and learning in
games; Online learning theory.

KEYWORDS

swap regret, correlated equilibrium, large action space

ACM Reference Format:

Yuval Dagan, Constantinos Daskalakis, Max Fishelson, and Noah Golowich.
2024. From External to Swap Regret 2.0: An Efficient Reduction for Large
Action Spaces. In Proceedings of the 56th Annual ACM Symposium on Theory
of Computing (STOC °24), June 24-28, 2024, Vancouver, BC, Canada. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3618260.3649681

1 INTRODUCTION

No-regret learning has been a central topic of study in game theory
and online learning over the last several decades [10, 17, 20]. In
view of the worst-case nature of the associated learning guarantee,
no-regret learning has found myriad applications in a variety of
settings, with varying degrees of restriction on the adversary’s be-
havior. They are also particularly salient in game theory due to their
connection with decentralized equilibrium computation. Indeed, it
is well understood that, if players in a normal-form game iteratively
update their strategies using a no-regret learning algorithm, then
the empirical distribution of their strategies over time converges to
a type of correlated equilibrium, depending on the notion of regret
used.
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The most commonly studied type of regret, called external regret,
measures the amount of extra utility that the agent could have
gained if, instead of her realized sequence of strategies, she had
instead played her best fixed action in hindsight. In a multi-agent
interaction, if each agent uses a sublinear external regret learning
algorithm to iteratively update her strategy, the empirical distribu-
tion of the agents’ play converges to a coarse correlated equilibrium
(CCE). A CCE is a correlated distribution over actions under which
no player can improve her utility if, instead of playing according
to the distribution, she unilaterally switches to playing any single
fixed action. CCEs are a convex relaxation of Nash equilibria, which
are computationally intractable even for normal-form games with
a finite number of actions per player [11, 12]. While a plethora
of efficient algorithms for minimizing external regret are known
even when the size of the game is large (see e.g. [8, 10, 17]), the
twin notions of external regret and coarse correlated equilibrium
are too weak for many applications. In particular, the notion of
CCE does not capture the fact that the action sampled from the
CCE distribution for some player may leak information about what
actions were sampled for the other players, which the player could
potentially exploit to improve her utility.

Using the perspective of Bayesian rationality, Aumann intro-
duced the concept of correlated equilibrium (CE), which corrects for
this deficit [2]. A CE is a correlated distribution with the property
that the action sampled for each player maximizes her expected
utility against the distribution over actions sampled for the other
players, conditioning on the action sampled for this player. Like CCE,
the concept of CE is a convex relaxation of Nash equilibrium, and
it can be reached in a decentralized manner by averaging the em-
pirical play of algorithms which have sublinear swap regret. This
measures the amount of extra utility that the agent could have
gained, in hindsight, if she were to go back in time and transform
the strategies that she played using the best, fixed swap function
The stronger nature of swap regret leads it to have numerous appli-
cations, including in calibration and multicalibration [18, 23] and
Bayesian games [26], amongst others.

1.1 Swap Regret: Challenges with Large Action
Spaces

Despite the more appealing guarantees satisfied by swap regret
minimization and its twin notion of CE, no-swap regret learning
algorithms have not been as widely adopted as no-external regret
ones. This is due in part to the substantially inferior quantitative
guarantees offered by the best-known swap-regret-minimizing al-
gorithms in terms of their dependence in the number of actions
available to the learner. In particular, existing algorithms are in-
efficient in many settings of interest where the action space is
exponentially large in the game’s description complexity, or even
infinite. To illustrate, we first consider the case of no-regret learning
with a finite set of N actions, which is known as the “experts setting.”
Standard external-regret-minimizing algorithms, such as exponen-
tial weights [10], guarantee that the average external regret over T
log N

rounds is bounded by e aslong as T 2 —
known swap-regret-minimizing algorithms, which are all based

2 In contrast, the best-

'We consider normalized regret throughout the paper, i.e., we divide the cumulative
regret by the number of rounds T.
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on generic reductions from swap regret minimization to external

regret minimization [6, 29], guarantee that the average swap regret

NIOZgN. Thus, prior work left an

exponential gap between the best-known algorithms for swap and
external regret. It was explicitly asked by Blum and Mansour [6] if
this gap could be improved. This gap is particularly noteworthy in
light of many recent applications of no-regret learning, such as for
solving games such as Poker [7] and Diplomacy [4], all of which
have the property that N is moderate or large.

Prior work also left a polynomial-sized gap in the bandit setting,
in which the learner must choose a single action each round and
only receives the utility for that action. While it is known that

N?log N

over T rounds is € as long as T 2

rounds suffice [21, 22] to ensure that swap regret is

bounded by e, the best known lower bound was that Nlozg N

are necessary [6, 21]. The bandit setting is particularly useful due
to its applications in reinforcement learning [22] and related areas.

Prior to the present work, the gap between swap regret and
external regret was even larger in settings where the number of ac-
tions available to the learner is unbounded or infinite. For instance,
suppose that each agent’s action space is the set of parameters of
a neural network: multi-agent interactions in which each agent
chooses a neural network can be used to model tasks such as train-
ing generative adversarial networks [19], autonomous driving [28],
or economic decision making [31]. In these cases, the number of
possible networks is very large. In a more general setting, the action
space is typically assumed to be constrained by a combinatorial
complexity measure, such as the Littlestone dimension or sequential
fat shattering dimension. In particular, if the learner’s action space
has Littlestone dimension L, then it was known [1, 5] that as long
as the number T of rounds satisfies T > eL—Z there is an algorithm

rounds

which achieves at most e external regret.” Since the reductions
of [6, 29] for bounding swap regret assume that the number N of
actions is bounded, prior to our work it was not known whether
any class of finite Littlestone dimension has an algorithm with o(T)
swap regret, leaving open the possibility of an infinite gap between
swap and external regrets for classes of finite Littlestone dimension.

Gaps in equilibrium computation. The above gaps between swap
and external regret also manifest as gaps between the best known
results for computing e-approximate CE and CCE in various models
of computation. We improve upon these gaps in the following
settings:

o Normal-form games with N actions. We consider two com-
putation problems. For simplicity we assume the number of
players and € are constants.

— In the communication complexity model of computation,
€-CCE may be computed with O(log? N) bits of communi-
cation using no-external regret algorithms together with
a sampling procedure. In contrast, prior to this work, the
best known bound for e-CE was exponentially worse,
O(Nlog? N), using the swap regret algorithm of [6].

— In the query complexity model of computation, e-CCE may
be computed using O(N log N) queries. Prior to this work,

2This bound is optimal; see [5].
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the best known bound of O(N? log N) was quadratically
worse for e-CE.

— Finally, e-CCE which are poly log(N)-sparse may be com-
puted in polynomial time [3], whereas prior to this work,
it was unknown how to efficiently compute e-CE which
are o(N)-sparse, marking another exponential gap (in the
sparsity).

In infinite games of Littlestone dimension L < oo, for con-

stant € > 0, e-CCE may be found in a decentralized manner

by running O(L) rounds of no-external regret algorithms [13].

In contrast, prior to our work it was not known if e-CE even
exist in games of finite Littlestone dimension.

Finally, in extensive form games with description length n de-
noting the size of the tree, for which the number of actions®
typically scales as N = exp(©(n)), e-CCE may be computed
in poly(n) time (e.g., [15]). However, prior to this work, the
best known algorithms for computing e-CE took time ex-
ponential in n. Determining the complexity of e-CE was a
well-known open question in this field; see e.g. [16, 30].*

1.2 Main Results: Near-Optimal Upper and

Lower Bounds for Swap Regret

Our main upper bound is a new reduction from swap regret to
external regret: any no-external regret learning algorithm can be
transformed into a no-distributional swap regret learner. We as-
sume that a learner chooses, in each iteration ¢t € [T], a distribution
x(t) e Ay over a set of actions X. After observing x(t), an ad-
versary selects a reward function f 0. x - R, and the learner
receives the reward f(*) (x(t)) = EsmNme(t) [s(t)]. We assume
the adversary’s choices f(! ) are constrained to lie in some convex
function class ¢ [0,1]¥X.

Theorem 1.1. Let d,M € N be given, and suppose that there is
a learner for some function class & which achieves external regret
of € after M iterations. Then there is a learner for ¥ (TreeSwap;
Algorithm 1) which achieves a swap regret of at most € + é after
T = M? iterations.

Ifthe per-iteration runtime complexity of the external-regret learner
is C, then the swap regret learner TreeSwap has a per-iteration amor-
tized runtime complexity of O(C).

Notice that the swap regret of TreeSwap depends only on the
external regret of the assumed learner, and is independent of the
number of actions of the learner. In particular, it holds also for
exponentially large or even infinite function classes.

Applications: concrete swap regret bounds. As applications of The-
orem 1.1, in the setting of constant €, we are able to close all of
the gaps discussed for the regret minimization and equilibrium
computation problems in Section 1.1. We begin with the case that
the learner has N actions, also known as learning with expert advice.
By applying Theorem 1.1 with action set X = [N], and reward

3An action is specified by a contingency plan, mapping each information set to an
outgoing edge at that information set.

4To be clear, e-CE here refers to the notion of e-approximate normal-form correlated
equilibrium (sometimes denoted e-NFCE), as opposed to relaxations of this notion,
such as extensive-form correlated equilibrium, which have been recently proposed,
motivated in part by the apparent intractability of e-NFCE [30].
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class given by all [0, 1]-bounded functions, i.e., 7 = [0, 1] [N], we
obtain:

Corollary 1.2. Fix N € N and € € (0, 1), and consider the setting
of online learning with N actions. Then for any T satisfying T >
(log(N)/ez)Q(l/e), there is an algorithm that, when faced with any
adaptive adversary, has swap regret bounded above by €. Further, the
amortized per-iteration runtime of the algorithm is O(N), its worst-
iteration runtime is O(N/€) and its space-complexity is O(N/€).

In the regime of constant €, Corollary 1.2 improves on the pre-
viously best-known complexity of T > Q(N/e?), providing an
exponential improvement in the dependence on N. We note that
N/€? is tight for all € in the non-distributional setting, where the
learner is allowed to randomize over her actions but has to play
a concrete action rather than a probability distribution [6]. Thus,
Theorem 1.2 shows that for a constant €, a distributional swap re-
gret of at most € can be achieved with exponentially fewer rounds.
Another advantage of our result is an improved total runtime of
O(N) for constant e, compared to the previous Q(N?) runtime of
[6], which answers an open question from that paper for constant
€.

Next, we apply Theorem 1.1 to an arbitrary function class ¥ C
{0,1}X whose dual has finite Littlestone dimension. That is, the
class of functions indexed by actions of the learner, which, via slight
abuse of notation, we denote by X = {f — f(s) : s € X} C
{0, 1}7': 5

Corollary 1.3 (Swap regret for Littlestone classes). If the class X
has Littlestone dimension at most L, then for any T > (L/e?)R(1/e),
there is a learner whose swap regret is at most €. In particular, games
with finite Littlestone dimension admit no-swap regret learners and
thus have e-approximate CE for all € > 0.

We remark that even the existence of approximate CEs in games
of finite Littlestone dimension was previously unknown.

Finally, we prove an upper bound on the swap regret in the
bandit setting that is tight up to poly log N factors when e = O(1).
While the result is not a direct consequence of Theorem 1.1, the
overall structure of the algorithm and analysis are similar:

Theorem 1.4 (Bandit swap regret). Let N € N, € € (0, 1) be given,
and consider any T > N - (log(N)/e)o(1/€>. Then there is an algo-
rithm in the adversarial bandit setting with N actions which achieves
swap regret bounded above by € after T iterations.

Concretely, for € = O(1), Theorem 1.4 guarantees that O(N)
rounds suffice to achieve swap regret of at most €. Interestingly,
this implies that, for obtaining swap regret bounded by € = O(1),
there is only a polylogarithmic gap between the number of rounds
needed in the adversarial bandit setting and the full-information
non-distributional setting [6]. This is in stark contrast to the sit-
uation for external regret, for which there is an exponential gap
between the full-information non-distributional setting (where
O(log N) rounds suffice) and the adversarial bandit setting (where
Q(N) rounds are needed) [25]. Finally, we remark that our algo-
rithm for the bandit setting is readily seen to be computationally
efficient.

STechnically, in order to ensure convexity of F, we need to apply Theorem 1.1 to the
convex hull of F. Doing so does not materially affect the guarantees.
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Applications: equilibrium computation. Next, we discuss implica-
tions of Corollary 1.2 for equilibrium computation. By considering
the setting where players in a normal-form game run (a slight vari-
ant of) the algorithm of Corollary 1.2, we may obtain low query
and communication protocols for learning in normal-form games.

Corollary 1.5 (Query and communication complexity upper bound).

In normal-form games with a constant number of players and N ac-
tions per player, the communication complexity of computing an
e-approximate CE is log(N)é(l/e) and the query complexity of com-
puting an e-approximate CE is N - log(N)O(l/e).

Finally, we remark that our main reduction can be used to obtain
efficient algorithms for computing e-CE when N is exponentially
large if there are nevertheless efficient external regret algorithms.
This is the case in particular for the setting of extensive form games
(14, 15, 24]:

Corollary 1.6 (Extensive form games). For any constant e, there
is an algorithm which computes an e-approximate CE of any given
extensive form game, with runtime polynomial in the representation
of the game (i.e., polynomial in the number of nodes in the game tree
and in the number of outgoing edges per node).

Corollary 1.6 is an immediate consequence of Theorem 1.1 and
the fact that there are efficient external regret minimization al-
gorithms in extensive-form games. This is classically known as a
consequence of the counterfactual regret minimization algorithm,
i.e., Theorem 4 of [32], or improved recent results, such as Theorem
5.5 of [15], as well as [9, 14, 24].

Near-matching lower bounds. Theorem 1.1 and Corollary 1.2 re-
quire the number of rounds T to be exponential in 1/¢, where €
denotes the desired swap regret. The following lower bound shows
this dependence is necessary, even facing an oblivious adversary
that is constrained to choose reward vectors with constant £; norm:

Theorem 1.7 (Lower bound for swap regret with oblivious adver-
sary). Fix N € N, e € (0,1), and let T be any number of rounds
satisfying
N
T <0O(1) - min{exp(O 6_1/6 —}
(1) { PO

Then, there exists an oblivious adversary on the function class ¥ =
{f € [0, 1]N|||f||1 < 1} such that any learning algorithm run over T
steps will incur swap regret at least €.°

1

Theorem 1.7 establishes:
e The first Q (min(l, \/N/T)) swap regret lower bound for

distributional swap regret.

e The first Q (min( 1,4/N/ T)) swap regret lower bound achieved

by an oblivious adversary. In particular, the adversary sam-
ples reward functions f (T) from some fixed distribution be-
fore the first round of learning, independently of the actions
of the learner. Moreover, this distribution is independent of
the description of the learning algorithm.

STf we replace the requirement that ||f||; < 1 with ||f||, < 1, then the bounds are
slightly improved, with 1/6 replaced with 1/5 and 12 with 10.
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e The first Q (min(l, \/N/T)) swap regret lower bound from

an adversary that plays distributions over a function class
of constant Littlestone dimension (namely, the class of point
functions on [N], which has Littlestone dimension 1).

Finally, while the lower bound of exp(e_l/ %) rounds necessary
(to ensure swap regret is bounded by €) from Theorem 1.7 does
not quite match the upper bound of exp(e~!) (from Corollary 1.2;
ignoring log N factors), we can improve the lower bound somewhat
if we allow the adversary to be adaptive. In particular, we give an
entirely different (and somewhat simpler) construction which shows
that T > exp(Q(e~3)) rounds are necessary to ensure that swap
regret is bounded above by e.

Concurrent work. We have been recently made aware of concur-
rent work by Peng and Rubinstein [27], which proves similar upper
and lower bounds to Theorems 1.1 and 1.7. Moreover, they derive a
similar set of applications for equilibrium computation problems.

1.3 Proof Sketch of the Upper Bound
(Theorem 1.1)

We overview the proof of Theorem 1.1. Recall that we are given
M,d € N, and will construct a swap regret learner for T = M4
rounds. We assume access to a no-external regret learner (A1gg,)
that, over M rounds, produces a sequence of distributions which
has an external regret of at most € € (0, 1). We will show that there
is an algorithm TreeSwap with swap regret at most O(e + é)

Algorithm 1 TreeSwap(¥F, X,Alg, T, M, d)

Require: Action set X, utility class ¥, no-external regret algo-
rithm Alg, time horizon T, parameters M,d with T < M.
1: For each sequence o € UZZI{O, 1,....M- 1}h_l, initialize an
instance of Alg with time horizon M, denoted Alg,.
2 for1 <t <Tdo

3 Let o = (o1, ..., 04) denote the base-M rep of t — 1.

4 for1 <h<ddo

5 if oy = - =045 =00r h=d then

6 if oj, > 0 then

7: call Alg,,,  .update (ﬁ XL f(S))
8: end if

9: Algg , ,.curAction « Alg, . .act().

10: end if

11: end for

12: Output the uniform mixture
13: x() = é Zgzl Algs,, ,-curAction, and observe £(0),
14: end for

The algorithm simulates multiple instances of Algg,; at levels
i=0,1,...,d — 1, which are arranged as the nodes a depth-d M-
ary tree. We traverse the T = M leaves of the tree in order, one
per round. At each round ¢, the TreeSwap algorithm outputs the
uniform mixture over the d distributions produced by the Algg,
instances on the root-to-leaf path for the current leaf.

Updating Algg,; instances. Next we describe how the Algp,
instances at each node of the tree are updated over the course
of the T rounds. Notice that the M" instances of Algg,; at each
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level i are used during a disjoint set of M- consecutive rounds:
the first algorithm in level i is used during rounds 1,.. ., Md_i, the
second during rounds MA-iy 1,..., 2Md_i, and so on. Each of these
Algg,: instances will be run in a lazy fashion, only producing M
different distributions over the corresponding M¢~! rounds. The
first algorithm in level i will be called to produce a distribution
at round 1, and then play that distribution repeatedly for rounds
1,..., MA=1=1 At round Md’i’l, we finally update the state of the
algorithm based on the average reward over the previous Md-i-1
rounds. The algorithm then produces a new distribution, which it
plays for rounds Ma=i=1 +1,..., ZMd_i_l, and so on. All algorithms
in level i will be run in this way: updating every M4=1 rounds
on an average reward function from the previous M?=1=1 rounds.
According to the guarantee of our external regret algorithm, each
of these instances will have external regret bounded above by €
relative to the M distributions it produces and the M average reward
functions on which it updates.

Swap regret bound. To bound the swap regret of our algorithm,
let us first denote by R; the average reward of all the algorithms
Algg,: in level i over all T rounds. Further, for each i = 0,...,d,
we define S; in the following manner. For each block of rounds
of size M?~%_ consider the average reward of the best fixed action
in hindsight; then we define S; to be the average of these best-in-
hindsight rewards over all blocks at level i. By the external regret
guarantee of A1gg,;, we know that S; —R; < e. This is due to the fact
that each level-i algorithm is run during a block of M?~% rounds,
and therefore competes with the best fixed action over that block of
rounds. Moreover, the contribution to the swap regret of TreeSwap
from all algorithms at level i is at most S;4+1 — R;. This is due to
the fact that these level-i algorithms repeatedly play actions for
blocks of Md—i~1 rounds, and so the best swaps of these actions
correspond to the best fixed actions over the blocks of that length.
The total swap regret is then bounded by

14 149 Sy —So 1
E;(Si“ -Ri) = P ;(Si_Ri)"'T e+,

where we used that S; — R; < € and that S; — Sp < 1 since the
utilities are bounded between 0 and 1. This concludes the proof.

1.4 Proof Sketch of the Lower Bound
(Theorem 1.7)

To prove Theorem 1.7, we consider two cases depending on the
values of N, T (which correspond to which of the terms on the
right-hand side of (1) is larger):

Case 1: N > 4T. As a warm-up, we present a strategy for the
adversary that does not quite work. Then, we show how to fix it,
describing a true strategy that achieves the desired lower bound. In
both the warm-up and true strategies, we will consider an adversary
that selects “point function” rewards at each time step ¢: one action
u®) e [N] will receive a reward of 1, and all other actions 0. To
describe these strategies, we will relate the actions to vertices in
a full binary tree. Assume that T = 2P for some D € N. Consider
a full binary tree of depth D, containing 2D+ _ 1 vertices, and
denote its vertex set by V. In our warm-up construction, each vertex
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will correspond to a single—action,7 That is, in each round ¢, the
learner plays a vertex 0(t) € V and the adversary plays a vertex
u(®) € V. The reward of the learner is 1[0(*) = u(!)]. While our
lower bound is valid also for the distributional setting, we analyze
for simplicity the case where the learner has to play a concrete
action in each round. However, the same proof goes through if
they are allowed to output a distribution over vertices. Here is the
strategy of the adversary: let us order the children of each internal
node by ‘left’ and ‘right’. This will create an ordering over the
root-to-leaf paths in the tree: the first path goes left until reaching
the leaf, the second path goes left except for the last step that is
taken right, etc. Enumerate the paths by indices in [T] according
to this ordering, where path t is called P;. For each time step t, the
adversary will select at random a vertex, out of the D + 1 vertices in
path P, according to the following distribution: the probability of
the vertex at depth i is (i+1)/(1+2+---+ (D +1)). The important
property here, is that vertices get higher weight as we go down the
tree.

Let us analyze the swap regret of any learner facing this adver-
sary. Recall that this approach does not quite work for the adversary,
but we will show how to fix it. At a high level, the goal of the adver-
sary strategy is to increase swap regret every round ¢ as follows.

o If the learner plays an internal node on Py, they will incur
swap regret to the node at depth one greater on P;, which
gets slightly more expected reward.

o If the learner plays the leaf node of P;, there is a constant
probability that the adversary will not play this leaf. In this
case, the learner will incur a swap regret from that leaf.

o If the learner plays a node not on P;, they will receive no
reward and incur swap regret.

However, the problem is that the learner will later have a chance
to undo this incurred swap regret. For an internal node v, let [¢,, ]
be the interval of time steps for which v is on P;. Let’s say the
learner plays v heavily during the first half of these time steps
[t,. (t, + E)/2]: the times in which the left child of v is present
on P;. The learner will incur swap regret from v to its left child.
However, let’s say the learner continues to play v for much of the
second half of the interval [(t, + #,)/2, &]. During these times, the
adversary never plays the left child of v, while continuing to play v
with some probability, undoing the swap regret of v.

To account for this, the adversary actually plays the following
“true” strategy instead. In this strategy, each node is associated with
two actions: v, 0. During the first half [t , (£, +,)/2], as before, the
adversary will choose v with probability (depth(v)+1)/(1+- - -+(D+
1)). However, with probability 1/2, the adversary replaces v with ¢
at the halfway point ¢ = (t, + f,) /2. That means, with probability
1/2, for the second half [ (¢, +)/2, &,], the adversary will choose ¢
with probability (depth(v)+1)/(1+---+(D+1)) and never choose
0. On the other hand, with probability 1/2 there is no replacement,
and the adversary continues to select v with probability (depth(v) +
1)/(1+---+ (D +1)), not 9. This accomplishes the following. With
probability 1/4, v will get replaced at the halfway point ¢ = (¢, +
ty)/2 but the left child of v will not get replaced at its halfway point
t = (3/4)t, + (1/4)ty. In this event, which happens with constant

"Eventually, we will consider a construction wherein each vertex corresponds to two
actions.
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probability, both v and its left child will be played with non-zero
probability over the interval [¢,, (¢, + f)/2] and at no other time
steps. Thus, the learner will not have a chance to undo the swap
regret.

The formal version of this argument breaks into case work. We
lower bound the swap regret of action v by considering the reward
of swapping v with the best of the 4 actions associated with its 2
children. In addition, we consider a swap from o to the root of the
tree, in the event that v is played on many rounds outside of the
interval [t,, ,]. Bounds for each case culminate in the following.
Letting X, be the total number of rounds the learner plays action
v, we show that the best swap of action v increases expected total
reward by Q(X,). Thus, the total swap regret of the learner would
be Q XoXo) = Q(T), and her average swap regret would be

Q) =9 ( ) which is at least € for T < exp(poly 1/¢).

polyl(l)g(T)

Case 2: N < 4T. This case is very similar to the first. In fact, we
define the adversary strategy in a general way that avoids breaking
into cases manually. The key difference in this case is that we don’t
have enough actions to associate 2 actions with each node of a full
binary tree with T leaves. In this case, we consider a full binary
tree with N/4 leaves. We again have an adversary that iterates
through the root-to-leaf paths in DFS order. In this case though,
each iteration corresponds to a batch in which the adversary plays
a distribution over that root-to-leaf path repeatedly for 4T /N time
steps.

The other key difference here is that we need to associate each
leaf with two actions ¢, £. As discussed before, there is a single coin
flip for each of the internal nodes v that determines if it gets replaced
at time ¢ = (t,,+%,)/2. On the other hand, for leaf nodes ¢, we have a
coin flip at every single time step in its batch, determining which of
¢, ¢ will be played with non-zero probability. Letting X; be the total
number of rounds the learner plays ¢, due to the random deviation
in the selection of the adversary, the expected swap regret to £ in
Q (VXz). Thus, the total swap regret of a learner that plays only

leaf actions over all N /4 batches will be Q (Z[ \/T/N) =Q (VNT)
and her average swap regret will be Q (\/N/T), as desired.

1.5 Discussion

We next compare the guarantees of Corollary 1.2, Theorem 1.7, and
our adaptive lower bound (recall that our adaptive lower bound
yields a quantitatively stronger lower bound than Theorem 1.7 with
the stronger notion of adaptive adversary). Let .# (N, €) denote the
smallest Ty € N so that, for all T > Tp, there is a learning algorithm
whose action set is [ N] and for which the swap regret over T rounds
is bounded above by €. Then by Corollary 1.2, Theorem 1.7, and
our adaptive lower bound,?

< JM(N,€) < O(1) - min {(1og(N)/ez)0“/6>, Nl;’—ZgN} ®)

N

29(671/3) [
"log'*(N) - €2

logN
Q(1) -min{%
€

8The IOEE—ZN term in the lower bound of (2) comes the classic external regret lower
bound. The second term in the minimum of the upper bound of (2) comes from the

Blum-Mansour algorithm [6].
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The second terms in the upper and lower bounds in (2) differ by a
poly log(N) factor, which is insignificant compared to N. The first
terms differ in that (a) the log(N) is in the base of the exponent in
the upper bound but not the lower bound, and (b) the exponent in
the lower bound is € ~!/3 but is ¢! in the upper bound. We remark

that the term 22(€™""*) in the lower bound comes from our adaptive
lower bound, which is stronger than the bound of 29(5_1/6) from
Theorem 1.7.

The swap regret bound of Corollary 1.2 improves upon those of
of Stoltz-Lugosi and of Blum-Mansour [6, 29] when the accuracy
loglog N In

log N
particular, for e = O(1), our reduction bounds swap regret above by
€ via an efficient algorithm with T < poly log N rounds, whereas [6,

29] require T > Q(N).

parameter ¢ and number of actions N satisfy € >
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