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ABSTRACT

We provide a novel reduction from swap-regret minimization to

external-regret minimization, which improves upon the classical

reductions of Blum-Mansour and Stoltz-Lugosi in that it does not

require �niteness of the space of actions. We show that, whenever

there exists a no-external-regret algorithm for some hypothesis

class, there must also exist a no-swap-regret algorithm for that

same class. For the problem of learning with expert advice, our

result implies that it is possible to guarantee that the swap regret

is bounded by n after (log# )$̃ (1/n ) rounds and with $ (# ) per
iteration complexity, where # is the number of experts, while the

classical reductions of Blum-Mansour and Stoltz-Lugosi require

at least Ω(# /n2) rounds and at least Ω(# 3) total computational

cost. Our result comes with an associated lower bound, which—

in contrast to that of Blum-Mansour—holds for oblivious and ℓ1-

constrained adversaries and learners that can employ distributions

over experts, showing that the number of rounds must be Ω̃(# /n2)
or exponential in 1/n .

Our reduction implies that, if no-regret learning is possible in

some game, then this game must have approximate correlated equi-

libria, of arbitrarily good approximation. This strengthens the folk-

lore implication of no-regret learning that approximate coarse cor-

related equilibria exist. Importantly, it provides a su�cient condi-

tion for the existence of approximate correlated equilibrium which

vastly extends the requirement that the action set is �nite or the

requirement that the action set is compact and the utility functions

are continuous, allowing for games with �nite Littlestone or �nite

sequential fat shattering dimension, thus answering a question left

open in “Fast rates for nonparametric online learning: from real-

izability to learning in games” and “ Online learning and solving

in�nite games with an ERM oracle”. Moreover, it answers several

outstanding questions about equilibrium computation and/or learn-

ing in games. In particular, for constant values of n : (a) we show that

n-approximate correlated equilibria in extensive-form games can be
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computed e�ciently, advancing a long-standing open problem for

extensive-form games; see e.g. “ Extensive-form correlated equilib-

rium: De�nition and computational complexity” and “ Polynomial-

Time Linear-Swap Regret Minimization in Imperfect-Information

Sequential Games”; (b) we show that the query and communication

complexities of computing n-approximate correlated equilibria in

# -action normal-form games are # · poly log(# ) and poly log#

respectively, advancing an open problem of “Informational Bounds

on Equilibria”; (c) we show that n-approximate correlated equilibria

of sparsity poly log# can be computed e�ciently, advancing an

open problem of “Simple Approximate Equilibria in Large Games”;

(d) �nally, we show that in the adversarial bandit setting, sublinear

swap regret can be achieved in only $̃ (# ) rounds, advancing an

open problem of “From External to Internal Regret” and “Tight

Lower Bound and E�cient Reduction for Swap Regret”.
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1 INTRODUCTION

No-regret learning has been a central topic of study in game theory

and online learning over the last several decades [10, 17, 20]. In

view of the worst-case nature of the associated learning guarantee,

no-regret learning has found myriad applications in a variety of

settings, with varying degrees of restriction on the adversary’s be-

havior. They are also particularly salient in game theory due to their

connection with decentralized equilibrium computation. Indeed, it

is well understood that, if players in a normal-form game iteratively

update their strategies using a no-regret learning algorithm, then

the empirical distribution of their strategies over time converges to

a type of correlated equilibrium, depending on the notion of regret

used.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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The most commonly studied type of regret, called external regret,

measures the amount of extra utility that the agent could have

gained if, instead of her realized sequence of strategies, she had

instead played her best �xed action in hindsight. In a multi-agent

interaction, if each agent uses a sublinear external regret learning

algorithm to iteratively update her strategy, the empirical distribu-

tion of the agents’ play converges to a coarse correlated equilibrium

(CCE). A CCE is a correlated distribution over actions under which

no player can improve her utility if, instead of playing according

to the distribution, she unilaterally switches to playing any single

�xed action. CCEs are a convex relaxation of Nash equilibria, which

are computationally intractable even for normal-form games with

a �nite number of actions per player [11, 12]. While a plethora

of e�cient algorithms for minimizing external regret are known

even when the size of the game is large (see e.g. [8, 10, 17]), the

twin notions of external regret and coarse correlated equilibrium

are too weak for many applications. In particular, the notion of

CCE does not capture the fact that the action sampled from the

CCE distribution for some player may leak information about what

actions were sampled for the other players, which the player could

potentially exploit to improve her utility.

Using the perspective of Bayesian rationality, Aumann intro-

duced the concept of correlated equilibrium (CE), which corrects for

this de�cit [2]. A CE is a correlated distribution with the property

that the action sampled for each player maximizes her expected

utility against the distribution over actions sampled for the other

players, conditioning on the action sampled for this player. Like CCE,

the concept of CE is a convex relaxation of Nash equilibrium, and

it can be reached in a decentralized manner by averaging the em-

pirical play of algorithms which have sublinear swap regret. This

measures the amount of extra utility that the agent could have

gained, in hindsight, if she were to go back in time and transform

the strategies that she played using the best, �xed swap function

The stronger nature of swap regret leads it to have numerous appli-

cations, including in calibration and multicalibration [18, 23] and

Bayesian games [26], amongst others.

1.1 Swap Regret: Challenges with Large Action
Spaces

Despite the more appealing guarantees satis�ed by swap regret

minimization and its twin notion of CE, no-swap regret learning

algorithms have not been as widely adopted as no-external regret

ones. This is due in part to the substantially inferior quantitative

guarantees o�ered by the best-known swap-regret-minimizing al-

gorithms in terms of their dependence in the number of actions

available to the learner. In particular, existing algorithms are in-

e�cient in many settings of interest where the action space is

exponentially large in the game’s description complexity, or even

in�nite. To illustrate, we �rst consider the case of no-regret learning

with a �nite set of# actions, which is known as the “experts setting.”

Standard external-regret-minimizing algorithms, such as exponen-

tial weights [10], guarantee that the average external regret over )

rounds is bounded by n as long as ) ≳
log#

n2
.1 In contrast, the best-

known swap-regret-minimizing algorithms, which are all based

1We consider normalized regret throughout the paper, i.e., we divide the cumulative
regret by the number of rounds) .

on generic reductions from swap regret minimization to external

regret minimization [6, 29], guarantee that the average swap regret

over ) rounds is n as long as ) ≳
# log#

n2
. Thus, prior work left an

exponential gap between the best-known algorithms for swap and

external regret. It was explicitly asked by Blum and Mansour [6] if

this gap could be improved. This gap is particularly noteworthy in

light of many recent applications of no-regret learning, such as for

solving games such as Poker [7] and Diplomacy [4], all of which

have the property that # is moderate or large.

Prior work also left a polynomial-sized gap in the bandit setting,

in which the learner must choose a single action each round and

only receives the utility for that action. While it is known that

) ≳
#

2 log#

n2
rounds su�ce [21, 22] to ensure that swap regret is

bounded by n , the best known lower bound was that
# log#

n2
rounds

are necessary [6, 21]. The bandit setting is particularly useful due

to its applications in reinforcement learning [22] and related areas.

Prior to the present work, the gap between swap regret and

external regret was even larger in settings where the number of ac-

tions available to the learner is unbounded or in�nite. For instance,

suppose that each agent’s action space is the set of parameters of

a neural network: multi-agent interactions in which each agent

chooses a neural network can be used to model tasks such as train-

ing generative adversarial networks [19], autonomous driving [28],

or economic decision making [31]. In these cases, the number of

possible networks is very large. In a more general setting, the action

space is typically assumed to be constrained by a combinatorial

complexity measure, such as the Littlestone dimension or sequential

fat shattering dimension. In particular, if the learner’s action space

has Littlestone dimension !, then it was known [1, 5] that as long

as the number ) of rounds satis�es ) ≥ !

n2
, there is an algorithm

which achieves at most n external regret.2 Since the reductions

of [6, 29] for bounding swap regret assume that the number # of

actions is bounded, prior to our work it was not known whether

any class of �nite Littlestone dimension has an algorithm with > () )
swap regret, leaving open the possibility of an in�nite gap between

swap and external regrets for classes of �nite Littlestone dimension.

Gaps in equilibrium computation. The above gaps between swap

and external regret also manifest as gaps between the best known

results for computing n-approximate CE and CCE in various models

of computation. We improve upon these gaps in the following

settings:

• Normal-form games with # actions. We consider two com-

putation problems. For simplicity we assume the number of

players and n are constants.

– In the communication complexity model of computation,

n-CCE may be computed with$ (log2 # ) bits of communi-

cation using no-external regret algorithms together with

a sampling procedure. In contrast, prior to this work, the

best known bound for n-CE was exponentially worse,

$ (# log2 # ), using the swap regret algorithm of [6].

– In the query complexity model of computation, n-CCE may

be computed using$ (# log# ) queries. Prior to this work,

2This bound is optimal; see [5].
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the best known bound of $ (# 2 log# ) was quadratically
worse for n-CE.

– Finally, n-CCE which are poly log(# )-sparse may be com-

puted in polynomial time [3], whereas prior to this work,

it was unknown how to e�ciently compute n-CE which

are > (# )-sparse, marking another exponential gap (in the

sparsity).

• In in�nite games of Littlestone dimension ! < ∞, for con-

stant n > 0, n-CCE may be found in a decentralized manner

by running$ (!) rounds of no-external regret algorithms [13].

In contrast, prior to our work it was not known if n-CE even

exist in games of �nite Littlestone dimension.

• Finally, in extensive form games with description length = de-

noting the size of the tree, for which the number of actions3

typically scales as # = exp(Θ(=)), n-CCE may be computed

in poly(=) time (e.g., [15]). However, prior to this work, the

best known algorithms for computing n-CE took time ex-

ponential in =. Determining the complexity of n-CE was a

well-known open question in this �eld; see e.g. [16, 30].4

1.2 Main Results: Near-Optimal Upper and
Lower Bounds for Swap Regret

Our main upper bound is a new reduction from swap regret to

external regret: any no-external regret learning algorithm can be

transformed into a no-distributional swap regret learner. We as-

sume that a learner chooses, in each iteration C ∈ [) ], a distribution
x
(C ) ∈ ΔX over a set of actions X. After observing x

(C ) , an ad-

versary selects a reward function f
(C ) : X → R, and the learner

receives the reward f
(C ) (x(C ) ) = E

B (C )∼x(C ) f
(C ) [B (C ) ]. We assume

the adversary’s choices f (C ) are constrained to lie in some convex

function class F ⊂ [0, 1]X .

Theorem 1.1. Let 3," ∈ N be given, and suppose that there is

a learner for some function class F which achieves external regret

of n after " iterations. Then there is a learner for F (TreeSwap;

Algorithm 1) which achieves a swap regret of at most n + 1
3
after

) = "3 iterations.

If the per-iteration runtime complexity of the external-regret learner

is� , then the swap regret learner TreeSwap has a per-iteration amor-

tized runtime complexity of $ (�).

Notice that the swap regret of TreeSwap depends only on the

external regret of the assumed learner, and is independent of the

number of actions of the learner. In particular, it holds also for

exponentially large or even in�nite function classes.

Applications: concrete swap regret bounds. As applications of The-

orem 1.1, in the setting of constant n , we are able to close all of

the gaps discussed for the regret minimization and equilibrium

computation problems in Section 1.1. We begin with the case that

the learner has # actions, also known as learning with expert advice.

By applying Theorem 1.1 with action set X = [# ], and reward

3An action is speci�ed by a contingency plan, mapping each information set to an
outgoing edge at that information set.
4To be clear, n-CE here refers to the notion of n-approximate normal-form correlated
equilibrium (sometimes denoted n-NFCE), as opposed to relaxations of this notion,
such as extensive-form correlated equilibrium, which have been recently proposed,
motivated in part by the apparent intractability of n-NFCE [30].

class given by all [0, 1]-bounded functions, i.e., F = [0, 1] [# ] , we
obtain:

Corollary 1.2. Fix # ∈ N and n ∈ (0, 1), and consider the setting
of online learning with # actions. Then for any ) satisfying ) ≥
(log(# )/n2)Ω (1/n ) , there is an algorithm that, when faced with any

adaptive adversary, has swap regret bounded above by n . Further, the

amortized per-iteration runtime of the algorithm is $ (# ), its worst-
iteration runtime is $ (# /n) and its space-complexity is $ (# /n).

In the regime of constant n , Corollary 1.2 improves on the pre-

viously best-known complexity of ) ≥ Ω̃(# /n2), providing an

exponential improvement in the dependence on # . We note that

# /n2 is tight for all n in the non-distributional setting, where the

learner is allowed to randomize over her actions but has to play

a concrete action rather than a probability distribution [6]. Thus,

Theorem 1.2 shows that for a constant n , a distributional swap re-

gret of at most n can be achieved with exponentially fewer rounds.

Another advantage of our result is an improved total runtime of

$̃ (# ) for constant n , compared to the previous Ω(# 3) runtime of

[6], which answers an open question from that paper for constant

n .

Next, we apply Theorem 1.1 to an arbitrary function class F ⊂
{0, 1}X whose dual has �nite Littlestone dimension. That is, the

class of functions indexed by actions of the learner, which, via slight

abuse of notation, we denote by X := {5 ↦→ 5 (B) : B ∈ X} ⊂
{0, 1}F , 5

Corollary 1.3 (Swap regret for Littlestone classes). If the class X
has Littlestone dimension at most !, then for any ) ≥ (!/n2)Ω (1/n ) ,
there is a learner whose swap regret is at most n . In particular, games

with �nite Littlestone dimension admit no-swap regret learners and

thus have n-approximate CE for all n > 0.

We remark that even the existence of approximate CEs in games

of �nite Littlestone dimension was previously unknown.

Finally, we prove an upper bound on the swap regret in the

bandit setting that is tight up to poly log# factors when n = $ (1).
While the result is not a direct consequence of Theorem 1.1, the

overall structure of the algorithm and analysis are similar:

Theorem 1.4 (Bandit swap regret). Let # ∈ N, n ∈ (0, 1) be given,
and consider any ) ≥ # · (log(# )/n)$ (1/n ) . Then there is an algo-

rithm in the adversarial bandit setting with # actions which achieves

swap regret bounded above by n after ) iterations.

Concretely, for n = $ (1), Theorem 1.4 guarantees that $̃ (# )
rounds su�ce to achieve swap regret of at most n . Interestingly,

this implies that, for obtaining swap regret bounded by n = $ (1),
there is only a polylogarithmic gap between the number of rounds

needed in the adversarial bandit setting and the full-information

non-distributional setting [6]. This is in stark contrast to the sit-

uation for external regret, for which there is an exponential gap

between the full-information non-distributional setting (where

$ (log# ) rounds su�ce) and the adversarial bandit setting (where

Ω(# ) rounds are needed) [25]. Finally, we remark that our algo-

rithm for the bandit setting is readily seen to be computationally

e�cient.
5Technically, in order to ensure convexity of F, we need to apply Theorem 1.1 to the
convex hull of F. Doing so does not materially a�ect the guarantees.
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Applications: equilibrium computation. Next, we discuss implica-

tions of Corollary 1.2 for equilibrium computation. By considering

the setting where players in a normal-form game run (a slight vari-

ant of) the algorithm of Corollary 1.2, we may obtain low query

and communication protocols for learning in normal-form games.

Corollary 1.5 (Query and communication complexity upper bound).

In normal-form games with a constant number of players and # ac-

tions per player, the communication complexity of computing an

n-approximate CE is log(# )$̃ (1/n ) and the query complexity of com-

puting an n-approximate CE is # · log(# )$̃ (1/n ) .

Finally, we remark that our main reduction can be used to obtain

e�cient algorithms for computing n-CE when # is exponentially

large if there are nevertheless e�cient external regret algorithms.

This is the case in particular for the setting of extensive form games

[14, 15, 24]:

Corollary 1.6 (Extensive form games). For any constant n , there

is an algorithm which computes an n-approximate CE of any given

extensive form game, with runtime polynomial in the representation

of the game (i.e., polynomial in the number of nodes in the game tree

and in the number of outgoing edges per node).

Corollary 1.6 is an immediate consequence of Theorem 1.1 and

the fact that there are e�cient external regret minimization al-

gorithms in extensive-form games. This is classically known as a

consequence of the counterfactual regret minimization algorithm,

i.e., Theorem 4 of [32], or improved recent results, such as Theorem

5.5 of [15], as well as [9, 14, 24].

Near-matching lower bounds. Theorem 1.1 and Corollary 1.2 re-

quire the number of rounds ) to be exponential in 1/n , where n
denotes the desired swap regret. The following lower bound shows

this dependence is necessary, even facing an oblivious adversary

that is constrained to choose reward vectors with constant ℓ1 norm:

Theorem 1.7 (Lower bound for swap regret with oblivious adver-

sary). Fix # ∈ N, n ∈ (0, 1), and let ) be any number of rounds

satisfying

) ≤ $ (1) ·min

{

exp($ (n−1/6)), #

log12 (# ) · n2

}

. (1)

Then, there exists an oblivious adversary on the function class F =
{

f ∈ [0, 1]#
�

�∥f ∥1 ≤ 1
}

such that any learning algorithm run over )

steps will incur swap regret at least n .6

Theorem 1.7 establishes:

• The �rst Ω̃
(

min(1,
√

# /) )
)

swap regret lower bound for

distributional swap regret.

• The �rst Ω̃
(

min(1,
√

# /) )
)

swap regret lower bound achieved

by an oblivious adversary. In particular, the adversary sam-

ples reward functions f (1:) ) from some �xed distribution be-

fore the �rst round of learning, independently of the actions

of the learner. Moreover, this distribution is independent of

the description of the learning algorithm.

6If we replace the requirement that ∥f ∥1 ≤ 1 with ∥f ∥∞ ≤ 1, then the bounds are
slightly improved, with 1/6 replaced with 1/5 and 12 with 10.

• The �rst Ω̃
(

min(1,
√

# /) )
)

swap regret lower bound from

an adversary that plays distributions over a function class

of constant Littlestone dimension (namely, the class of point

functions on [# ], which has Littlestone dimension 1).

Finally, while the lower bound of exp(n−1/6) rounds necessary
(to ensure swap regret is bounded by n) from Theorem 1.7 does

not quite match the upper bound of exp(n−1) (from Corollary 1.2;

ignoring log# factors), we can improve the lower bound somewhat

if we allow the adversary to be adaptive. In particular, we give an

entirely di�erent (and somewhat simpler) construction which shows

that ) ≥ exp(Ω(n−3)) rounds are necessary to ensure that swap

regret is bounded above by n .

Concurrent work. We have been recently made aware of concur-

rent work by Peng and Rubinstein [27], which proves similar upper

and lower bounds to Theorems 1.1 and 1.7. Moreover, they derive a

similar set of applications for equilibrium computation problems.

1.3 Proof Sketch of the Upper Bound
(Theorem 1.1)

We overview the proof of Theorem 1.1. Recall that we are given

",3 ∈ N, and will construct a swap regret learner for ) = "3

rounds. We assume access to a no-external regret learner (AlgExt)

that, over " rounds, produces a sequence of distributions which

has an external regret of at most n ∈ (0, 1). We will show that there

is an algorithm TreeSwap with swap regret at most $ (n + 1
3
).

Algorithm 1 TreeSwap(F ,X, Alg,) , ",3)
Require: Action set X, utility class F , no-external regret algo-

rithm Alg, time horizon ) , parameters",3 with ) ≤ "3 .

1: For each sequence f ∈ ⋃

3

ℎ=1
{0, 1, . . . , " − 1}ℎ−1, initialize an

instance of Alg with time horizon" , denoted Algf .

2: for 1 ≤ C ≤ ) do

3: Let f = (f1, . . . , f3 ) denote the base-" rep of C − 1.

4: for 1 ≤ ℎ ≤ 3 do

5: if fℎ+1 = · · · = f3 = 0 or ℎ = 3 then

6: if fℎ > 0 then

7: call Algf1:ℎ−1 .update
(

1
"3−ℎ

∑

C−1
B=C−"3−ℎ f

(B )
)

8: end if

9: Algf1:ℎ−1 .curAction ← Algf1:ℎ−1 .act().
10: end if

11: end for

12: Output the uniform mixture

13: x
(C ) := 1

3

∑

3

ℎ=1
Algf1:ℎ−1 .curAction, and observe f (C ) .

14: end for

The algorithm simulates multiple instances of AlgExt at levels

8 = 0, 1, . . . , 3 − 1, which are arranged as the nodes a depth-3 "-

ary tree. We traverse the ) = "3 leaves of the tree in order, one

per round. At each round C , the TreeSwap algorithm outputs the

uniform mixture over the 3 distributions produced by the AlgExt
instances on the root-to-leaf path for the current leaf.

Updating AlgExt instances. Next we describe how the AlgExt
instances at each node of the tree are updated over the course

of the ) rounds. Notice that the "8 instances of AlgExt at each
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level 8 are used during a disjoint set of "3−8 consecutive rounds:
the �rst algorithm in level 8 is used during rounds 1, . . . , "3−8 , the
second during rounds"3−8 +1, . . . , 2"3−8 , and so on. Each of these
AlgExt instances will be run in a lazy fashion, only producing "

di�erent distributions over the corresponding "3−8 rounds. The
�rst algorithm in level 8 will be called to produce a distribution

at round 1, and then play that distribution repeatedly for rounds

1, . . . , "3−8−1. At round"3−8−1, we �nally update the state of the

algorithm based on the average reward over the previous "3−8−1

rounds. The algorithm then produces a new distribution, which it

plays for rounds"3−8−1+1, . . . , 2"3−8−1, and so on. All algorithms

in level 8 will be run in this way: updating every "3−8−1 rounds
on an average reward function from the previous "3−8−1 rounds.
According to the guarantee of our external regret algorithm, each

of these instances will have external regret bounded above by n

relative to the" distributions it produces and the" average reward

functions on which it updates.

Swap regret bound. To bound the swap regret of our algorithm,

let us �rst denote by '8 the average reward of all the algorithms

AlgExt in level 8 over all ) rounds. Further, for each 8 = 0, . . . , 3 ,

we de�ne (8 in the following manner. For each block of rounds

of size"3−8 , consider the average reward of the best �xed action

in hindsight; then we de�ne (8 to be the average of these best-in-

hindsight rewards over all blocks at level 8 . By the external regret

guarantee of AlgExt, we know that (8−'8 ≤ n . This is due to the fact

that each level-8 algorithm is run during a block of "3−8 rounds,
and therefore competes with the best �xed action over that block of

rounds. Moreover, the contribution to the swap regret of TreeSwap

from all algorithms at level 8 is at most (8+1 − '8 . This is due to

the fact that these level-8 algorithms repeatedly play actions for

blocks of "3−8−1 rounds, and so the best swaps of these actions

correspond to the best �xed actions over the blocks of that length.

The total swap regret is then bounded by

1

3

3−1
∑

8=0

((8+1 − '8 ) =
1

3

3−1
∑

8=0

((8 − '8 ) +
(3 − (0

3
≤ n + 1

3
,

where we used that (8 − '8 ≤ n and that (3 − (0 ≤ 1 since the

utilities are bounded between 0 and 1. This concludes the proof.

1.4 Proof Sketch of the Lower Bound
(Theorem 1.7)

To prove Theorem 1.7, we consider two cases depending on the

values of #,) (which correspond to which of the terms on the

right-hand side of (1) is larger):

Case 1: # ≥ 4) . As a warm-up, we present a strategy for the

adversary that does not quite work. Then, we show how to �x it,

describing a true strategy that achieves the desired lower bound. In

both the warm-up and true strategies, we will consider an adversary

that selects “point function” rewards at each time step C : one action

D (C ) ∈ [# ] will receive a reward of 1, and all other actions 0. To

describe these strategies, we will relate the actions to vertices in

a full binary tree. Assume that ) = 2� for some � ∈ N. Consider
a full binary tree of depth � , containing 2�+1 − 1 vertices, and

denote its vertex set by+ . In our warm-up construction, each vertex

will correspond to a single-action.7 That is, in each round C , the

learner plays a vertex E (C ) ∈ + and the adversary plays a vertex

D (C ) ∈ + . The reward of the learner is 1[E (C ) = D (C ) ]. While our

lower bound is valid also for the distributional setting, we analyze

for simplicity the case where the learner has to play a concrete

action in each round. However, the same proof goes through if

they are allowed to output a distribution over vertices. Here is the

strategy of the adversary: let us order the children of each internal

node by ‘left’ and ‘right’. This will create an ordering over the

root-to-leaf paths in the tree: the �rst path goes left until reaching

the leaf, the second path goes left except for the last step that is

taken right, etc. Enumerate the paths by indices in [) ] according
to this ordering, where path C is called %C . For each time step C , the

adversary will select at random a vertex, out of the � + 1 vertices in
path %C , according to the following distribution: the probability of

the vertex at depth 8 is (8 + 1)/(1 + 2 + · · · + (� + 1)). The important

property here, is that vertices get higher weight as we go down the

tree.

Let us analyze the swap regret of any learner facing this adver-

sary. Recall that this approach does not quite work for the adversary,

but we will show how to �x it. At a high level, the goal of the adver-

sary strategy is to increase swap regret every round C as follows.

• If the learner plays an internal node on %C , they will incur

swap regret to the node at depth one greater on %C , which

gets slightly more expected reward.

• If the learner plays the leaf node of %C , there is a constant

probability that the adversary will not play this leaf. In this

case, the learner will incur a swap regret from that leaf.

• If the learner plays a node not on %C , they will receive no

reward and incur swap regret.

However, the problem is that the learner will later have a chance

to undo this incurred swap regret. For an internal node E , let [C
E
, C̄E]

be the interval of time steps for which E is on %C . Let’s say the

learner plays E heavily during the �rst half of these time steps

[C
E
, (C

E
+ C̄E)/2]: the times in which the left child of E is present

on %C . The learner will incur swap regret from E to its left child.

However, let’s say the learner continues to play E for much of the

second half of the interval [(C
E
+ C̄E)/2, C̄E]. During these times, the

adversary never plays the left child of E , while continuing to play E

with some probability, undoing the swap regret of E .

To account for this, the adversary actually plays the following

“true” strategy instead. In this strategy, each node is associated with

two actions: E, ¤E . During the �rst half [C
E
, (C

E
+ C̄E)/2], as before, the

adversarywill choose E with probability (depth(E)+1)/(1+· · ·+(�+
1)). However, with probability 1/2, the adversary replaces E with ¤E
at the halfway point C = (C

E
+ C̄E)/2. That means, with probability

1/2, for the second half [(C
E
+ C̄E)/2, C̄E], the adversary will choose ¤E

with probability (depth(E) + 1)/(1+ · · · + (� +1)) and never choose
E . On the other hand, with probability 1/2 there is no replacement,

and the adversary continues to select E with probability (depth(E) +
1)/(1 + · · · + (� + 1)), not ¤E . This accomplishes the following. With

probability 1/4, E will get replaced at the halfway point C = (C
E
+

C̄E)/2 but the left child of E will not get replaced at its halfway point
C = (3/4)C

E
+ (1/4)C̄E . In this event, which happens with constant

7Eventually, we will consider a construction wherein each vertex corresponds to two
actions.
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probability, both E and its left child will be played with non-zero

probability over the interval [C
E
, (C

E
+ C̄E)/2] and at no other time

steps. Thus, the learner will not have a chance to undo the swap

regret.

The formal version of this argument breaks into case work. We

lower bound the swap regret of action E by considering the reward

of swapping E with the best of the 4 actions associated with its 2

children. In addition, we consider a swap from E to the root of the

tree, in the event that E is played on many rounds outside of the

interval [C
E
, C̄E]. Bounds for each case culminate in the following.

Letting -E be the total number of rounds the learner plays action

E , we show that the best swap of action E increases expected total

reward by Ω̃(-E). Thus, the total swap regret of the learner would

be Ω̃ (∑E -E) = Ω̃ () ), and her average swap regret would be

Ω̃ (1) = Ω

(

1
polylog() )

)

, which is at least n for ) ≤ exp(poly 1/n).

Case 2: # < 4) . This case is very similar to the �rst. In fact, we

de�ne the adversary strategy in a general way that avoids breaking

into cases manually. The key di�erence in this case is that we don’t

have enough actions to associate 2 actions with each node of a full

binary tree with ) leaves. In this case, we consider a full binary

tree with # /4 leaves. We again have an adversary that iterates

through the root-to-leaf paths in DFS order. In this case though,

each iteration corresponds to a batch in which the adversary plays

a distribution over that root-to-leaf path repeatedly for 4) /# time

steps.

The other key di�erence here is that we need to associate each

leaf with two actions ℓ, ¤ℓ . As discussed before, there is a single coin

�ip for each of the internal nodes E that determines if it gets replaced

at time C = (C
E
+C̄E)/2. On the other hand, for leaf nodes ℓ , we have a

coin �ip at every single time step in its batch, determining which of

ℓ, ¤ℓ will be played with non-zero probability. Letting -ℓ be the total

number of rounds the learner plays ℓ , due to the random deviation

in the selection of the adversary, the expected swap regret to ¤ℓ in
Ω̃
(√
-ℓ

)

. Thus, the total swap regret of a learner that plays only

leaf actions over all # /4 batches will be Ω̃
(

∑

ℓ

√

) /#
)

= Ω̃

(√
#)

)

and her average swap regret will be Ω̃
(

√

# /)
)

, as desired.

1.5 Discussion

We next compare the guarantees of Corollary 1.2, Theorem 1.7, and

our adaptive lower bound (recall that our adaptive lower bound

yields a quantitatively stronger lower bound than Theorem 1.7 with

the stronger notion of adaptive adversary). Letℳ(#, n) denote the
smallest)0 ∈ N so that, for all) ≥ )0, there is a learning algorithm

whose action set is [# ] and for which the swap regret over) rounds

is bounded above by n . Then by Corollary 1.2, Theorem 1.7, and

our adaptive lower bound,8

Ω(1) ·min

{

log#

n2
+ 2Ω (n−1/3 ) ,

#

log10 (# ) · n2

}

≤ ℳ(#, n) ≤ $ (1) ·min

{

(log(# )/n2)$ (1/n ) ,
# log#

n2

}

. (2)

8The
log#

n2
term in the lower bound of (2) comes the classic external regret lower

bound. The second term in the minimum of the upper bound of (2) comes from the
Blum-Mansour algorithm [6].

The second terms in the upper and lower bounds in (2) di�er by a

poly log(# ) factor, which is insigni�cant compared to # . The �rst

terms di�er in that (a) the log(# ) is in the base of the exponent in

the upper bound but not the lower bound, and (b) the exponent in

the lower bound is n−1/3 but is n−1 in the upper bound. We remark

that the term 2Ω (n−1/3 ) in the lower bound comes from our adaptive

lower bound, which is stronger than the bound of 2Ω (n−1/6 ) from
Theorem 1.7.

The swap regret bound of Corollary 1.2 improves upon those of

of Stoltz-Lugosi and of Blum-Mansour [6, 29] when the accuracy

parameter n and number of actions # satisfy n ≫ log log#
log#

. In

particular, for n = $ (1), our reduction bounds swap regret above by

n via an e�cient algorithm with) ≤ poly log# rounds, whereas [6,

29] require ) ≥ Ω̃(# ).
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