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Abstract—A diffraction-based channel model is developed for
characterizing the line-of-sight channel where the receive array
is partially blocked by near-field obstacles. An analytic receive
signal model is established where the range and size parameters
of the blockage are explicitly modeled in the array steering
vector. Based on the proposed model, we consider the joint
estimation of the direction of arrivals (DoAs) of impinging
RF signals and the parameters of interest for the blockage.
General analytical expressions are derived for the Cramér-Rao
bounds (CRBs) of both the source-dependent parameters and
environmental (common) parameters using both deterministic
and stochastic maximum likelihood models. Finally, a Newton’s
method-based approach is developed to optimize the maximum
likelihood criterion to obtain estimates of the DoAs and blockage
range of the sensing problem. Numerical results reveal that the
maximum likelihood estimates for the DoAs and the blockage
range attain the CRB for the stochastic model.

I. INTRODUCTION

Accurate modeling of propagation channels is fundamental
in wireless communications, radar sensing, and signal process-
ing, as it directly impacts system design and parameter esti-
mation. Traditional channel models often assume unobstructed
paths or incorporate multipath propagation, capturing reflec-
tions and scattering phenomena in the environment. However,
obstacles within the near-field region of the receive array can
partially block the array, introducing diffraction effects that
significantly alter the characteristics of the received signal [1].
Partial blockages present unique challenges in channel model-
ing, particularly affecting the estimation of critical parameters
such as the direction of arrival (DoA) of impinging signals.
At the same time, partial blockages also allow the sensing of
the obstruction such as its range from the array and its size.
Existing models often neglect the diffraction effects caused
by such blockages and rely on simple shadow- or mask-based
functions, effectively zeroing out the received signal outside
the “visible regions” [2, (79)]. This limitation hinders precise
parameter estimation as valuable geometrical information is
lost when diffraction is ignored. To address these challenges,
we develop a diffraction-based channel model that explicitly
incorporates the signal diffraction of partial blockage on the
array steering vector. Based on the blockage’s range and shape

This work was supported by the U.S. National Science Founda-
tion under grants CCF-2225575, Grant CCF-2322191, and in part, by
the Luxembourg National Research Fund (FNR), grant reference IN-
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Fig. 1. Illustration of the considered scenario.

parameters, we derive analytical signal models that capture
the diffraction phenomenon with closed-form expressions. Our
proposed model enables a more accurate representation of
partially-blocked channels and facilitates the joint estimation
of source DoAs and blockage parameters.

Building upon established maximum likelihood estimation
techniques in array signal processing [3], [4], we derive gen-
eral analytical expressions for the Cramér-Rao bounds (CRBs)
of both the source-dependent parameters and environmental
(common) parameters. We consider both deterministic and
stochastic maximum likelihood models, providing fundamen-
tal limits on the estimation accuracy achievable in environ-
ments with partial blockages. Furthermore, we implement
maximum likelihood estimations for the DoAs of signals
in the environment and the blockage range using a multi-
dimensional Newton’s search. Numerical simulations demon-
strate that the proposed estimators attain the stochastic CRBs
when initialized close to the true parameter values, validating
the effectiveness of our model and estimation approach.

II. SIGNAL DIFFRACTION MODELING

As illustrated in Fig. 1, we consider a scenario where
multiple far-field sources are transmitting signals to a multi-
antenna receive array while the line-of-sight (LOS) paths are
partially occluded by blockages. Exploiting the gain and phase
variations of the received signals across the array allows
the joint estimation of the DoAs of these sources and the
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parameters associated with the blockages. Suppose we have
K narrowband far-field signal sources with DoAs 64, - , 0,
where 0y, = (04, 0,%) is the DoAs vector with azimuth and
elevation components for the kth source. We assume an M-
antenna receive array, so that the M x 1 received signal vector
can be expressed as follows:

s(t) = A(6, p)x(t) + n(t) , (1)

where A = [a(01, ), - -a(Ok, p)] is the M x K array steer-
ing matrix, @ contains the DoA parameters of the sources, p
contains the environmental parameters of interest, potentially
including the ranges, locations, and shape parameters of the
blockages, x contains the signals transmitted by the sources,
and n ~ CN(0,01,,) is spatially white noise (Ip; is the
M x M identity matrix) with variance o.

In this work, we will consider the case of a single planar
blockage located within the z-y plane of the blockage’s coor-
dinate system. The signal sources are located in the far field
of the blockages and the array, with z coordinates satisfying
z < 0 and the receive antenna array is located in the plane
parallel to the blockage at z = R, where R is the distance
of the blockage from the array. For convenience, we define a

scaled coordinate system where u = %x and v = \/%y,
and )\ is the wavelength of the signal. In the plane z = 0
where the blockage lies, let {2 denote the region occupied by
the blockage. Using the scaled coordinates, the cross-section
of the blockage is defined by

0 if (u,v) € Q,
1 otherwise.

o(u,v) = 2
Note that (2) only indicates that the signal strength is zero
within €2 at z = 0. After being diffracted by the blockage, the
signal received at the receive array will exhibit a different gain
variation pattern. We use (z/,,y,.) to denote the coordinates

of the mth receive antenna. Similarly, we introduce scaled

. . : s : A 2 .
coordinate in the receiver’s coordinate system: u,, = 4/ 55y,

and v}, = \/ =Y.

According to the Hugyens-Fresnel principle [5], the mth
element of the array steering vector that captures the signal
diffraction can be formulated as follows:

a(gknu’) [fc( U m)+Jfé( U m)]
% ejkro(:vm sin 0, +y), sin Gy)’ (3)

where k( denotes the wave number of the signal and

sttty = [
r =3 [ /

) cos [g(u —u')?

“)
2(1)—1}) ]dudv’

) sin [g (u—u)?

®)
2 (va) ]dudv’

(a) Blockage illustration. (b) Analytical gain variation.

Fig. 2. Diffraction pattern of a straight edge.
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Fig. 3. Diffraction pattern of a rectangle.

are the Fresnel integrals associated with the cross-section
function o(u,v). Note that the environmental parameters
enter the definition of the steering vector in (3) through cross-
section function o (u,v) and the range R.

III. Two CASE STUDIES

In the following, we give examples of partially-blocked
channels for two different array configurations and blockage

types.

A. Diffraction from a straight edge

Here, we assume the blockage is due to a semi-infinite
screen located at z = 0. In this case, the vector of parameters
reduces to p = {yp, R}, where yj, is the y-coordinate of the
diffraction edge and R is the blockage range. Here, (3) reduces
to a simpler form:

(o B.0) = F[(sing — 22 Ymy [T o s )
T'm

where F'(u) \/% [ e dv is the complex Fresnel

integral, r,, = /(y» — ¥/,)? + R? is the distance from the

mth receive antenna to the edge of the blockage, and y/, is
the coordinate of the mth receive antenna. In Fig. 2(b), we plot
the amplitude of the received signal gain a,,, for a straight edge
at v, = 0 and one signal source with @ = (0,0) for a carrier
frequency of 10 GHz and R = 10 m. We see that, due to
diffraction effect, the signal power gradually increases when
passing the shadow edge, then oscillates around the baseline
value. According to (6), the position of the peak gain and the
oscillation frequency depend on R.
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B. Diffraction of a Rectangular Screen

In this example, we consider a rectangular object with width
A, and height A, and centered at (x¢,yo,0), as shown in
Fig. 3(a). In this case, the blockage parameter vector is defined
by p = {x0,%0, Az, Ay, R}. The cross-section function for
the rectangle is

o (u,v) { 0

up < u < uyand v; < v < vy,

1 otherwise,
(N
where u; = 20=8s 4, = Zothe 4 Y02y and vy =
N V2R’ V2AR’ V2AR’
Yo

\/7 are the scaled coordinates that correspond to the four
edges of the rectangle. Substituting (7) into (4) and (5), we
arrive at exact formulas for the gain functions of rectangular
screen as follows:

fC(u/a U/) =

1
§S(UI7U17UZ)S(U/7U17U2)
1
- §C(UI,U1,U2)C(U/,’01,UQ), (8)
fo(u',v')=1~- %S(u/,U17UQ)C('I)I7U1,U2)

1
- §C(UI,U17U2)S(’U’,’U1,02), (9)

= C(zz—z )+ C(2 —zl) S(2,21,22) =
S(za—2")+5(2' —21), C(z) = [, cos (5t2) dt, and S(z) =
foz sin (% tz) dt are the Fresnel integrals.

In Fig. 3(b), we plot the amplitude of the received signal
gain along z-axis for rectangles with widths A, = 0.5
and 0.25 m for a case with a carrier of 10 GHz and a
blockage range of R = 2 m. It can be observed that the
gain variation pattern critically depends on the size of the
rectangular blockage, especially for the region between the
shadow edges.

where C(2/, 21, 22)

IV. CRAMER-RAO BOUND ANALYSIS

In the previous section, we illustrated how the common
environmental parameters p affect the gain variation of the re-
ceived signal through the array steering matrix A (8, u). Based
on the model in (1), joint source DoA and blockage range
estimation can be performed by maximizing the proper max-
imum likelihood (ML) function. In this section, we analyze
the performance of maximum likelihood estimation for both
deterministic and stochastic ML signal models by deriving the
corresponding CRBs. One of the key differences between this
work and existing CRB analyses is that we consider both the
source dependent parameters € and environmental parameters
p that are common to all source signals. Mathematically
speaking, the DoA of the kth source only appears in the
kth column of A, while the common parameters affect all
the elements in A. In the following, we first introduce the
two types of models used for maximum likelihood estimation.
Then, we derive the CRBs for both cases.

A. Deterministic and Stochastic ML Models

The so-called deterministic or conditional model assumes
the source signals, x(¢), to be nonrandom parameters to

be estimated [4]. Based on (1), this results in s(t) ~
CN(A(O, n)x(t),clps). In contrast, the stochastic or uncon-
ditional model assumes the signals to be random such that
s(t) ~ CN(0,R;) where R, = AR, A" + oI, and R, is
the covariance matrix of the transmitted signals x.

B. CRB Analysis for the Deterministic ML Model

The likelihood function of the data in this case is

N
1 1
L6, p, x) = (ro?)MN exp (UQ Z st — AXt||2> .
t=1
(10
where x; = [21(t), -+ ,2x(t)]" is the transmitted signal

at snapshot ¢ and NNV is the total number of snapshots. We
assume there are KX DoAs and 7' common parameters. Since
0 only appears in the kth column of the steering matrix A, the
derivative of A with respect to the DoAs can be written as the

M x K matrix Dy = [83599011’”) S 8359901;,#)]. For the com-

0 0
mon parameters, we denote D, = [aaé;’“),~-- : aa(ﬁlf’”)],

where 7 € {1,2,--- ,T}, and we stack these matrices to form
the M x KT matrix D, = [D,,,,---,D,,,]. For notational
convenience, we further deﬁne the following signal matrices:
X; = diag{z1(t), -+ ,zx(t)} and Y; = I ® x;. The key
result of this section is contained in the follow theorem.

Theorem 1. For the deterministic ML model, the CRBs for
source DoAs 0 and common parameters p are given by

N
2
CRB™'(8) == 3 _Re {X:D;Pngxt
77 (11)
~ Cou(YiD}PAD,Y,) "' Cy, .
CRB™ ZRe[Y D'PiD,Y;
(12)
~ Cou(X;DjP5D,X,) " C;, .
where P4 = 1 — A(A*A)'A* and Cy, =
23" Re [X;DyP4D,Y,].
Proof. See Appendix A. O

C. CRB Analysis for the Stochastic ML Model

A key drawback of the deterministic ML model is that the
CRB cannot in general be asymptotically achieved as N — oo,
since the dimension of the signal parameters to be estimated
grows linearly with N and consistent estimates of the signal
parameters cannot be obtained. As a result, when applicable
the stochastic ML approach is preferred since in general it is
statistically efficient. In this case, we assume a known source
signal covariance and the likelihood function is given by:

1
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Fig. 4. Root CRB (RCRB) versus true range for the blockage (proposed) and blockage-free (conventional) models.

From [4, (2.10)], the Fisher information matrix (FIM) for this
case is given by:

(14)

FIM = [F” FW]

Fuo Fuu,

with elements FIM; ; = NTr [Rs_l %R;l %] and where
: ; v

we define ¢ = [0, u]”. Denoting the M? x K matrix Dy =

[vec (%%;) ,vec (%%;) e, vec <8R°>} , the M2 x T ma-

905
= OR, <6RS )] . and

1 — aR‘S “e
trix D, = |vec o) o )

using the identity Tr(ABCT) = vec(C) " (I® A)vec(B), we
can explicitly write the FIM submatrices as follows:

Fug = 2N -Re (Dff (R;' @ R;Y) Dy ), (15)
F,.. =2N -Re (f);‘ (R;'@RY) Du) ; (16)
Fyu = Fju = 2N -Re (D} (R;' @ R;)D,). (7

Finally, using the Schur complement of the FIM matrix in
(14), we arrive at the following theorem.

Theorem 2. For the stochastic ML model, the CRBs for the
source DoAs 0 and common parameters p are

CRB*(9) :%Re [ﬁg‘ (R;'®R;') Dy

~ ~ (18)
~ Fuu (D} (R @ R;1) D) ' F, |,
2N ~ -
CRB~ () == Re [fo (R;'®@R;1) D,
7 ) (19)
~ Fou(D}f (R @R;") Do) 'Fj,|.
Proof. The proof is relegated to future work. O

V. NUMERICAL RESULTS

In this section, we numerically evaluate the CRBs for
the deterministic and stochastic models and implement ML
estimators of the source DoA and blockage range. We consider
the simple scenario depicted in Fig. 5 where two far-field
sources with DoAs #; and 6, transmit signals to a uniform
linear array with M = 41 antenna elements. The true DoAs are

Y

Signal sources Blockage Receive array

d

Within shmhmTﬁ
“[9\; (8 E
! R &
- LI \;J ////’
y :13/92

Fig. 5. Set up for the numerical study.
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set as 01 = 15° and 03 = —30°. The carrier frequency of the
signal is f. = 5.9 GHz and the size of the blockage is L = 0.5
m. The receive array is linear with uniformly spaced elements
of one-half wavelength spacing, and thus the total aperture
is D = 1 m. In the following simulations, we consider a
blockage-free scenario as the baseline. For this case, the signal
model is simply given by s(t) = [ag(01), ag(62)] - x(¢t) +n(t),
where a(f) = 1,750 ... I (M-D)7sin0)T s the far-field
array steering vector.

A. CRB versus true blockage range

In Fig. 4, we compare the CRBs for the given scenarios
with and without the blockage. For each case, we further
compare the CRBs for the deterministic and stochastic signal
models. From Fig. 4(a) and (b), we can see that the presence
of the blockage significantly increases the CRBs for DoA
estimation. This is because a substantial portion of the received
signal energy does not receive the array and thus the effective
signal-to-noise ratio is lower compared with the blockage-free
scenario. In addition, we note that the deterministic model
always gives a more optimistic CRB result compared to the
stochastic model. Interestingly, the stochastic CRB for 65 first
increases with R, reaches a peak value at R = 6, then begins
to decrease for larger R. This can be explained by inspecting
the shadow edge of the blockage. In Fig. 5, we use E to denote
the edge of the shadow cast on the receive array by the second
source. As R increase, E will move towards the top edge of
the array. When R is sufficiently large, the entire array will be
outside of the shadow. In other words, the blockage is moving
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Fig. 6. RMSE:s for the stochastic MLE under blockage (proposed) and blockage-free (conventional) models.

outside of the first few Fresnel zones [6] of the line-of-sight
channel and thus the blockage has a smaller impact on the
received signal. In Fig. 4(c), we see that the deterministic and
stochastic CRBs for the range estimate are similar and increase
R. This results because the diffraction effects that are critical
for determining R become weaker as the distance between the
array and the blockage increases.

B. Comparison of ML estimates with CRBs

To demonstrate near-field sensing capabilities, we optimize
the ML criterion to obtain estimates for 61, 2, and R using
the stochastic ML model in (13). The signal model derived
in (3), (8), and (9) allows us to find the analytical derivatives
of the likelihood function with respect to the parameters of
interest, and we then use Newton’s method to implement a
simple 3-dimensional search for the parameters. In Fig. 6(a)
and (b) we plot the root mean square error (RMSE) of the ML
DoA estimates versus R for the case where the blockage is
taken into account and also when its presence is ignored. The
stochastic CRBs for the cases with and without a blockage
are also provided. We observe that the performance of the
ML estimates generally matches the CRB, while ignoring
the blockage leads to considerable degradation in the DoA
estimates. This demonstrates the importance of incorporating
blockage parameters p into the signal model and the ability to
conduct near-field sensing with the appropriate signal model.

VI. CONCLUSIONS

We have proposed a diffraction-based model for partially-
blocked channels that analytically captures the effects of
signal diffraction in the array steering vectors in closed-form.
We presented two case studies where the range and size
parameters of the blockage are explicitly modeled in the array
steering vector. Based on the proposed model, we analyzed
the performance of maximum likelihood estimation for both
deterministic and stochastic ML signal models by deriving
the corresponding CRBs. Finally, we numerically evaluated
the derived CRBs and compared them with the RMSE of the
maximum likelihood estimates obtained by multi-dimensional
Newton’s search. Simulations revealed that the CRB of the
range estimates steadily increases as the diffraction effects

weaken, and the CRB of DoA estimates largely depends on the
proportion of receive antennas that fall within the shadowed
region created by the blockage.

APPENDIX A
PROOF OF THEOREM 1
Based on the likelihood function given in (10), we write

T
the FIM as FIM — E[Q%) (%) } where ¥ —

[Z1,%1, - ,ZN, %N, 07, uT]T is the vector containing the
source and blockage parameters as well as the signal samples

over the N snapshots. Here, we use Z and Z to denote
the real and imaginary part of x, respectively. Similarly, we
define H = 2Re{A*A} and H = 2Imag{A*A}. Using the
notation above and the results given in [3], we have

[ —-H A,
H 0 e 0 A,

A,
0 0 A,
FIM = . . _ . -

asfgas

-H
H

s s

Ay
H H AL
AL AL T

0 0
AT A7

AT A7
) (A1)
where I' contains the FIM elements for 8 and u, and we define
the K x (K + T) matrix A; = [%A*DgXt, %A*DuYt].
Finally, using the Schur complement for matrix inversion, the
CRBs for 8 and p can be obtained.
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