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Abstract—Integrated sensing and communication has emerged
as a transformative technology for future wireless communication
networks, enabling the simultaneous realization of radar sensing
and communication functions by sharing available resources.
To fully exploit the available spatial degrees of freedom in
monostatic ISAC systems, we propose a dynamic array par-
titioning architecture that allows the base station to allocate
antennas for transmitting dual-functional signals and receiving
the corresponding echoes. Based on this architecture, we jointly
design the transmit beamforming and array partitioning to
minimize the Cramér-Rao bound (CRB) for target direction-
of-arrival estimation, while ensuring compliance with signal-
to-interference-plus-noise ratio requirements for multiuser com-
munication, power budget constraints, and array partitioning
limitations. To address the resulting optimization problem, we
develop an alternating algorithm leveraging alternating direction
method of multipliers and semi-definite relaxation. Simulation
results demonstrate that the proposed joint array partitioning
and beamforming design significantly improves the CRB and the
resulting DOA estimation performance.

Index Terms—Integrated sensing and communication (ISAC),
array partitioning, Cramér-Rao bound, beamforming design

I. INTRODUCTION

In multi-input multi-output (MIMO) integrated sensing and
communication (ISAC) systems, beamforming design plays a
pivotal role in effectively utilizing the available spatial degrees
of freedom (DoFs) to enhance the trade-off between sensing
and communication performance. Beamforming designs under
various sensing and communication requirements have been
extensively studied in the literature [1]-[3]. However, most
existing studies assume fixed transmit and receive antenna
arrays, which limits the adaptability of the system to dynamic
requirements and environments. This fixed array architecture
inherently constrains the utilization of available spatial DoFs,
potentially leading to performance deterioration.

To address the limitations of fixed antenna arrays, antenna
selection has been proposed as an alternative in MIMO-ISAC
systems [4]-[7]. The works in [4]-[6] focused on transmit
antenna selection and beamforming that minimize the Cramér-
Rao bound (CRB) [4], maximize the weighted sum of the
communication rate and the Fisher information matrix [5],
or maximize the target directional power [6]. The authors of
[7] considered joint antenna selection at the dual-functional
transmitter and radar receiver. While these approaches have
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demonstrated the benefits of dynamic antenna selection, they
rely on fixed transmit/receive arrays and only activate subsets
of antennas, leaving many available antenna elements unuti-
lized. To fully harness the potential of a shared antenna array
at the dual-functional base station (BS), a more flexible array
partitioning architecture is essential for MIMO-ISAC systems.

Motivated by these issues, in this work we propose a
dynamic array partitioning architecture that allows each in-
dividual antenna element to function as either a transmit
or a receive antenna. Based on this architecture, we for-
mulate a joint optimization framework for array partitioning
and transmit beamforming, aiming to minimize the CRB for
target direction-of-arrival (DOA) estimation while satisfying
communication signal-to-interference-plus-noise ratio (SINR)
requirements, the transmit power budget, and inherent con-
straints on the array partitioning. In order to solve the result-
ing complicated problem with fractional quadratic terms and
binary integer variables, we employ dedicated transformations
and typical algorithmic frameworks to convert it into several
tractable subproblems leveraging the Schur complement and
alternative direction method of multipliers (ADMM). These
subproblems are solved iteratively with the aid of semi-definite
relaxation (SDR). Simulation results demonstrate that the pro-
posed array partitioning and beamforming design significantly
improves performance, achieving notable reductions in root-
CRB (RCRB) and root mean squared error (RMSE) compared
to conventional fixed antenna configurations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We study a monostatic ISAC system, where a BS is
equipped with an N -element uniform linear array. The dual-
functional BS simultaneously supports communication with
K single-antenna users and performs sensing of a point-like
target. To optimize the utilization of the available antennas, the
BS dynamically partitions the array into transmit antennas for
dual-functional signal transmission and receive antennas for
echo signal collection. The array partitioning vector is denoted
as a ≜ [a1, a2, . . . , aN ]T ∈ {0, 1}N , where an = 1 indicates
that the n-th antenna operates as a transmit antenna and an = 0
represents a receive antenna. The transmitted dual-functional
signal in the l-th time slot is expressed as

x[l] = AWcsc[l] +AWrsr[l] = AWs[l], (1)

where A ≜ diag{a}, W ≜ [Wc Wr] ∈ CN×(N+K) with
Wc ∈ CN×K and Wr ∈ CN×N representing the beamformers
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for the communication symbols sc ∈ CK and the radar probing
signals sr ∈ CN , respectively. We assume that E{ssH} =
IN+K . The received signal at the k-th user is written as

yk[l] = hT
kAWs[l] + nk[l], (2)

where hk ∈ CN denotes the channel between the BS and
the k-th user and nk[l] ∼ CN (0, σ2

k) denotes additive white
Gaussian noise (AWGN). The SINR of the k-th communica-
tion user is calculated as

SINRk =
|hT

kAwk|2∑K+N
j ̸=k |hT

kAwj |2 + σ2
k

. (3)

The signals received at the BS for radar sensing can be
expressed as

yr[l] = αt(IN−A)hth
T
t AWs[l]+HSIWs[l+τ ]+(IN−A)nr[l],

(4)
where αt is the radar cross section (RCS) of the target,
ht ∈ CN denotes the line-of-sight (LoS) channel between
the N -antenna BS and the target at direction θt, ht ≜
βt[e

−ȷ 1−N
2 π sin θt , e−ȷ 3−N

2 π sin θt , . . . , e−ȷN−1
2 π sin θt ]T , βt rep-

resents the distance-dependent path loss, HSI ∈ CN×N de-
notes the self-interference channel, τ is the round-trip delay
for the target echoes, and nr ∼ CN (0, σ2

r IN ) is AWGN.
Leveraging knowledge of s[l] and using advanced interfer-
ence cancellation techniques, the self-interference between the
transmit and receive antennas can be effectively mitigated
and is therefore neglected in the subsequent formulation.
Consequently, the radar echoes collected over L time slots
are expressed as

Yr = αtHtWS+ (IN −A)Nr, (5)

where S ≜ [s[1], . . . , s[L]], Nr ≜ [nr[1], . . . ,nr[L]], and the
equivalent channel for the target echoes is defined as

Ht ≜ (IN −A)hth
T
t A. (6)

Given the echo signals in (5), the BS attempts to estimate
the parameters of the target defined as ξ ≜ [θ, αT ]T where
α ≜ [ℜ{αt},ℑ{αt}]T . In order to derive the CRB for DOA
estimation, we vectorize the received signals ỹr = vec{Yr} as

ỹr = η + n ≜ αtvec{HtWS}+ vec{(IN −A)Ñr}, (7)

which has the distribution ỹr ∼ CN (η, σ2
r (IN − A)). Then,

according to [8], the (i, j)-th element of the Fisher information
matrix F ∈ R3×3 for estimating η is given by

Fi,j =
2

σ2
r
ℜ
{∂ηH

∂ξi

∂η

∂ξj

}
. (8)

To derive F, we respectively calculate the partial derivatives
of η with respect to the DOA θt and the RCS α as

∂η

∂θ
= αtvec{ḢtWS}, (9a)

∂η

∂α
= [1 ȷ]T ⊗ vec{HtWS}, (9b)

where Ḣt represents the derivative of Ht with respect to θt.
It is noted that both Ht and Ḣt are functions of the array
partitioning vector a. Then, the Fisher information matrix can

be obtained as

F =

[
Fθθ FθαT

FT
θαT FααT

]
, (10a)

Fθθ =
2L|αt|2

σ2
r

Tr{ḢtWWHḢH
t }, (10b)

Fθα =
2L

σ2
r
ℜ{α∗

t Tr{HtWWHḢH
t [1 ȷ]T }}, (10c)

FααT =
2L

σ2
r

Tr{HtWWHHH
t }I2. (10d)

The CRB matrix is found by inverting F, and the diagonal el-
ements of the CRB provide the lower bounds on the variances
of the parameters in ξ. Thus, the CRB for DOA estimation
can be expressed as

CRBθ = [F−1]1,1 = [Fθθ − FT
θαTF

−1
ααTFθαT ]−1

=
σ2

r /(2L|αt|2)

Tr{ḢtWWHḢH
t } − |Tr{HtWWHḢH

t }|2
Tr{HtWWHHH

t }

. (11)

This paper studies minimization of the CRB for DOA
estimation, subject to constraints on communication SINR,
transmit power, and array partitioning. The optimization prob-
lem for the joint design of the array partitioning a and the
transmit beamforming W is formulated as

max
a,W

Tr{ḢtWWHḢH
t } − |Tr{HtWWHḢH

t }|2

Tr{HtWWHHH
t }

(12a)

s.t.
|hT

kAwk|2∑N+K
j ̸=k |hT

kAwj |2 + σ2
k

≥ Γk, ∀k, (12b)

∥AW∥2F ≤ P, (12c)

K ≤ 1Ta ≤ N − 1, (12d)
an ∈ {0, 1}, ∀n, (12e)

where Γk is the communication SINR threshold for the k-th
user, P is the transmit power budget, and (12d) is imposed
to guarantee K different data streams and the desired sensing
capability. This optimization problem is inherently complex
and highly non-convex, primarily due to the fractional and
quadratic terms in the objective and constraints, as well as
the binary integer constraints on the array partitioning. In the
next section, we propose an efficient alternating optimization
algorithm that decomposes the problem into several tractable
sub-problems and solves them iteratively.

III. CRB-ORIENTED JOINT ARRAY PARTITIONING AND
BEAMFORMING DESIGN

A. Problem Reformulation

Since the array partitioning vector a is implicitly embedded
in the objective function (12a), we first derive an equivalent
reformulation of (12a) to explicitly express its dependence on
a. According to the definition of Ht in (6), we can re-write
the effective channel Ht and its derivative Ḣt as

Ht = diag{ht}baT diag{ht}, (13a)

Ḣt = (IN −A)ḣth
T
t A+ (IN −A)htḣ

T
t A

= diag{ḣt}baT diag{ht}+ diag{ht}baT diag{ḣt} (13b)
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= −ȷπ cos θt
[
diag{ht}QbaT diag{ht}
+ diag{ht}baTQdiag{ht}

]
, (13c)

where for notational simplicity we define b ≜ 1 − a, and
ḣt ≜ ∂ht/∂θt = −ȷπ cos θtQht with Q ≜ diag{q} and q ≜
[ 1−N

2 , 3−N
2 , . . . , N−1

2 ]T . Then, each term in (12a) can be re-
written as

Tr{ḢtWWHḢH
t } = β2

t π
2 cos2 θt(a

TCabTQ2b

+aTCQabTQb+aTQCabTQb+aTQCQabTb), (14a)

|Tr{HtWWHḢH
t }|2 = β4

t π
2 cos2 θt

∣∣aTCabTQb

+ aTCQabTb
∣∣2, (14b)

Tr{HtWWHHH
t } = β2

t a
TCabTb, (14c)

where we define

C ≜ diag{ht}WWHdiag{hH
t }. (15)

Based on the above expressions, we can equivalently trans-
form the objective function as

Tr{ḢtWWHḢH
t } − |Tr{HtWWHḢH

t }|2

Tr{HtWWHHH
t }

(16a)

= β2
t π

2 cos2 θt

(
aTCabTQ2b+ aTQCQabTb

− aTCabTQbbTQb

bTb
− bTbaTCQaaTQCa

aTCa

)
. (16b)

Without loss of generality, we ignore the constant term and
define the new objective for the following algorithm develop-
ment as a function of a and W as f(a,W) ≜ aTCabTQ2b+

aTQCQabTb− aTCabTQbbTQb
bTb

− bTbaTCQaaTQCa
aTCa

.

B. Schur Complement Transformation
To address the fractional terms in f(a,W), we introduce

two auxiliary variables t1 and t2 as

t1 = bTQ2b− bTQbbTQb

bTb
, (17a)

t2 = aTQCQa− aTCQaaTQCa

aTCa
. (17b)

Leveraging the Schur complement, the optimization problem
can be converted to

max
a,W,t1,t2

aTCat1 + bTbt2 (18a)

s.t.
[
bTQ2b− t1 bTQb

bTQb bTb

]
⪰ 0, (18b)[

aTQCQa− t2 aTQCa
aTCQa aTCa

]
⪰ 0, (18c)

(12b) − (12e).

C. Binary Integer Constraint
Since the binary integer constraint (12e) introduces com-

binatorial complexity that makes the problem challenging to
solve directly, we approximate this constraint by reformulating
it as a smooth penalty term in the objective function accom-
panied by a box constraint:

max
a,W,t1,t2

aTCat1 + bTbt2 − ρ1a
T (1− a) (19a)

s.t. 0 ≤ an ≤ 1, ∀n, (19b)
(12b) − (12d), (18b), (18c),

where ρ1 > 0 is a preset penalty parameter that regulates the
extent to which the binary integer constraint is enforced.

D. ADMM-Based Transformation

We observe that both the objective (19a) and the constraint
(18b) involve quadratic terms with respect to b, where b ≜
1 − a. To simplify the problem, it is natural to introduce
b = 1 − a as an axillary variable. Then, by employing the
ADMM framework, the corresponding augmented Lagrangian
formulation of the problem can be expressed as

max
a,b,W,t1,t2

aTCat1 + bTbt2 − ρ1a
T (1− a)

− ρ2∥b− 1+ a+ µ/ρ2∥2 (20a)
s.t. 0 ≤ an, bn ≤ 1, ∀n, (20b)

1 ≤ 1Tb ≤ N −K, (20c)
(12b) − (12d), (18b), (18c),

where ρ2 > 0 is a penalty parameter and µ ∈ RN is the
dual variable. Then, we employ the block coordinate ascent
method to solve this multivariate optimization problem. The
update rules for each variable are presented in detail in the
following subsection.

E. Block Update

1) Update W: Given solutions for the other variables, the
sub-problem for finding W is formulated as

max
W,t2

aTCat1 + bTbt2

s.t. (12b), (12c), (18c),
(21)

where C is defined in (15). Considering that both the objective
and constraints involve quadratic terms with respect to W, we
define R ≜ WWH and Rk ≜ wkw

H
k , ∀k. Then using the

typical SDR approach, we transform problem (21) as

max
R,Rk,∀k,t2

aTCat1 + bTbt2 (22a)

s.t.
[
aTQCQa− t2 aTQCa

aTCQa aTCa

]
⪰ 0, (22b)

(1 + Γ−1
k )aT diag{hk}Rkdiag{hH

k }a
− aT diag{hk}Rdiag{hH

k }a ≥ σ2
k, ∀k, (22c)

Tr{diag{a}Rdiag{a}} ≤ P, (22d)

R, Rk, ∀k, R−
K∑

k=1

Rk ∈ S+
N . (22e)

This is a semi-definite programming (SDP) problem, whose
solution can be found using standard optimization tools.

After obtaining the optimal solutions R̃ and R̃k to (22),
we can construct the optimal solutions R = R̃ and Rk that
satisfy the rank-one constraint Rank{Rk} = 1, ∀k as

wk = (hT
kAR̃kAh∗

k)
−1/2R̃kAh∗

k, ∀k, (23a)

Rk = wkw
H
k , (23b)
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where wk is the k-th column of the communication beam-
former Wc. Then, recalling that R = WWH = WcW

H
c +

WrW
H
r , the radar beamformer Wr should satisfy

WrW
H
r = R−

K∑
k=1

Rk, (24)

from which we can calculate the optimal radar beamformer
Wr using either a Cholesky or an eigenvalue decomposition.

2) Update a: After obtaining the other variables, the sub-
problem for updating a is formulated as

max
a,t2

aTCat1 + bTbt2 − ρ1a
T (1− a)

− ρ2∥b− 1+ a+ µ/ρ2∥2 (25a)
s.t. 0 ≤ an ≤ 1, ∀n, (25b)

(12b) − (12d), (18c).

This problem involves both quadratic and linear functions of
a along with constraints that include fractional expressions
and semidefinite conditions. To address these difficulties, we
define the variable ã ≜ [aT 1]T , and the primary variable

Ã ≜ ããT =

[
Ã1 a
aT 1

]
where Ã1 = aaT . After some matrix

manipulations and using the SDR approach, problem (25) can
be transformed as

max
Ã∈S+

N+1,t2

Tr{t1CÃ1} − Tr{Ã(ρ1E1 + ρ2Eb)} (26a)

s.t.

[
Tr{QCQÃ1} − t2 Tr{QCÃ1}

Tr{CQÃ1} Tr{CÃ1}

]
⪰ 0, (26b)

Tr{DkÃ1} ≥ σ2
k, ∀k, (26c)

Tr
{∑K+N

j=1
diag{|wj |2}Ã1

}
≤ P, (26d)

K2 ≤ Tr{Ã11} ≤ (N − 1)2, (26e)

0 ≤ Ã1(n, n) ≤ 1, ∀n, (26f)

Ã(N + 1, N + 1) = 1, (26g)

where

E1 =

[
−IN 0.5
0.5T 0

]
. (27)

Eb =

[
IN b− 1+ µ/ρ2

(b− 1+ µ/ρ2)
T 0

]
. (28)

Dk = (1 + Γ−1
k )diag{hk}wkw

H
k diag{hH

k }
−diag{hk}WWHdiag{hH

k }. (29)

After obtaining Ã1 by solving problem (26), we can construct
the optimal solution as

a = (1T Ã11)
−1/2Ã11 (30)

if the rank-one constraint is satisfied; otherwise Gaussian
randomization is necessary to recover an approximate solution.

3) Update b: Fixing the other variables, the update pro-
cedure for b is similar to that for a. In particular, defining

b̃ ≜ [bT 1]T and B̃ ≜ b̃b̃T =

[
B̃1 b
bT 1

]
where B̃1 = bbT ,

Algorithm 1 CRB-Oriented Joint Array Partitioning and
Beamforming Design Algorithm

Input: ht, αt, σ2
r , hk, σ2

k, Γk, ∀k, P , ρ1, ρ2.
Output: a, W.

1: Initialize an = bn = 0.5, ∀n, W, t1, t2, µ = 0.
2: repeat
3: Obtain R̃, R̃k, ∀k by solving (22).
4: Update W by (23) and (24).
5: Obtain Ã1 by solving (26).
6: Update a by (30) or Gaussian randomization.
7: Obtain B̃1 by solving (31).
8: Update b by (33) or Gaussian randomization.
9: Update µ by (34).

10: until Convergence
11: Return a, W.

the optimization problem is transformed as

max
B̃∈S+

N+1,t1

t1a
TCa+ Tr{t2B̃1} − Tr{ρ2B̃Ea} (31a)

s.t.

[
Tr{Q2B̃1} − t1 Tr{QB̃1}

Tr{QB̃1} Tr{B̃1}

]
⪰ 0, (31b)

1 ≤ Tr{B̃11} ≤ (N −K)2, (31c)

0 ≤ B̃1(n, n) ≤ 1, ∀n, (31d)

B̃(N + 1, N + 1) = 1, (31e)

where

Ea =

[
IN a− 1+ µ/ρ2

(a− 1+ µ/ρ2)
T 0

]
. (32)

After solving (31), the optimal solution is obtained as

b = (1T B̃11)
−1/2B̃11, (33)

or using Gaussian randomization.
4) Update dual variable µ: After updating W, a and b,

the update for the dual variable µ is given by

µ := µ+ ρ2(b− 1+ a). (34)

Based on the above derivations, we summarize the proposed
CRB-oriented joint array partitioning and beamforming design
approach in Algorithm 1. With an appropriate initialization, we
alternatingly update the beamformer W, the array partitioning
vector a, the auxiliary variable b, and the dual variable µ until
convergence.

IV. SIMULATION RESULTS

In this section, we evaluate the advantages of the proposed
joint array partitioning and beamforming design via simula-
tion. Unless otherwise specified, the following settings are
used: N = 32, K = 4, αt ∼ CN (0, σ2

t ), σ
2
t = 1, θt = π/6,

σ2
k = σ2

r = −80dBm, P = 10W, and Γ = Γk = 10dB, ∀k.
We compare the proposed array partitioning scheme (denoted
as “Prop.”) against two benchmarks that assume contiguous
array partitions, both of which are commonly used in the
ISAC literature. The first (denoted as “Even”) evenly divides
the array into equally-sized contiguous transmit and receive
subarrays, i.e. with Nt = Nr = N/2. The second (denoted
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Fig. 2. RCRB versus communication requirement Γ.

as “Heu.”) imposes the condition Nr ≥ Nt +K; for example
when N = 32, this approach assigns Nt = 14 and Nr = 18.

We first show the DOA estimation performance versus the
transmit power in Fig. 1. The root CRB (RCRB) is the theoret-
ical lower bound determined for the given array partitioning,
while the root mean squared error (RMSE) is calculated
based on estimation results using the classical MUltiple SIgnal
Classification (MUSIC) algorithm [9]. We see that the RMSE
approaches the RCRB in the high-power regime. Furthermore,
the proposed approach achieves the lowest RCRB, providing
approximately a 60% reduction compared to the two contigu-
ous array partitioning benchmarks.

Next, we present the RCRB versus the communication
SINR requirement in Fig. 2. A clear trade-off between DOA
estimation performance and multiuser communication perfor-
mance is observed. Additionally, increasing the number of an-
tennas enhances the estimation performance by leveraging the
increased spatial DoFs. These results highlight the superiority
of the dynamic array partitioning architecture and demonstrate
the effectiveness of the proposed joint design algorithm.

Finally, we present several examples of the array partition-
ing results in Fig. 3 to illustrate typical spatial distribution of
the transmit/receive antennas. Notably, the receive antennas
are predominantly positioned at the edges of the array, which
increases the effective aperture and exploits spatial sparsity to

4 8 12 16 20 24 28 32
Antenna index

1

2

3

4

5

6

7

8

D
iff

er
en

t r
ea

liz
at

io
ns

Tx
Rx

Fig. 3. Representative antenna allocations.

improve DOA estimation accuracy with fewer antennas. This
then allows allocation of more antennas to enhance transmit
beamforming gains. These findings motivate a heuristic strat-
egy of positioning the receive antennas at the array edges for
the considered monostatic ISAC system when sensing a single
point-like target.

V. CONCLUSION

We have proposed an array partitioning architecture for
monostatic ISAC systems in which we jointly optimize the
array partitioning and transmit beamforming to minimize the
CRB for target DOA estimation under constraints on com-
munication SINR, power budget, and the array partitioning.
Simulation results demonstrated that the proposed scheme can
achieve a significant reduction in RCRB and RMSE compared
to conventional contiguous array partitioning benchmarks.
Furthermore, our findings revealed that positioning receive
antennas at the array edges is favorable for sensing a single
point-like target. Future research will extend this work to more
complex sensing scenarios.
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