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Abstract— In this paper, we investigate the integration of
integrated sensing and communication (ISAC) and reconfigurable
intelligent surfaces (RIS) for providing wide-coverage and ultra-
reliable communication and high-accuracy sensing functions.
In particular, we consider an RIS-assisted ISAC system in which
a multi-antenna base station (BS) simultaneously performs multi-
user multi-input single-output (MU-MISO) communications and
radar sensing with the assistance of an RIS. We focus on
both target detection and parameter estimation performance in
terms of the signal-to-noise ratio (SNR) and Cramér-Rao bound
(CRB), respectively. Two optimization problems are formulated
for maximizing the achievable sum-rate of the multi-user commu-
nications under an SNR constraint for target detection or a CRB
constraint for parameter estimation, the transmit power budget,
and the unit-modulus constraint of the RIS reflection coefficients.
Efficient algorithms are developed to solve these two complicated
non-convex problems. We then extend the proposed joint design
algorithms to the scenario with imperfect self-interference cancel-
lation. Extensive simulation results demonstrate the advantages of
the proposed joint beamforming and reflection designs compared
with other schemes. In addition, it is shown that more RIS
reflection elements bring larger performance gains for direct-
of-arrival (DoA) estimation than for target detection.

Index Terms— Integrated sensing and communication (ISAC),
reconfigurable intelligent surface (RIS), multi-user multi-input
single-output (MU-MISO) communications, radar signal-to-noise
ratio (SNR), Cramér-Rao bound.
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I. INTRODUCTION

WHILE wireless communication and radar sensing have
been separately developed for decades, integrated

sensing and communication (ISAC) has recently arising as
a promising technology. The integration of communication
and sensing systems has evolved from coexistence, cooper-
ation, to co-design, thanks to similar hardware platforms and
signal processing algorithms and the same evolution direc-
tion towards high-frequency wideband multi-antenna systems.
ISAC not only allows communication and radar systems to
share spectrum resources, but also enables a fully-shared
platform transmitting unified waveforms to simultaneously
perform communication and radar sensing functions, which
significantly improves the spectral/energy/hardware efficiency
[2], [3], [4]. It is foreseeable that in next-generation wireless
networks, ISAC will be a supporting technology for diverse
applications that require both high-quality ubiquitous wire-
less communications and high-accuracy sensing, e.g., smart
home/factory, vehicular networks, etc. Therefore, researchers
from both academia and industry have explored various ISAC
implementations [5].

Advanced signal processing techniques have been investi-
gated for designing the dual-functional transmit waveforms.
Moreover, multi-input multi-output (MIMO) architectures are
also widely considered in ISAC systems. By exploiting the
spatial degrees of freedom (DoFs) of MIMO architectures,
the waveform diversity for radar sensing and the beam-
forming gains and spatial multiplexing for communications
can be greatly improved [6]. Therefore, the transmit wave-
forms/beamforming design for ISAC systems is a key problem
[7]. Extensive investigations have been conducted using var-
ious communication and radar sensing metrics [8], [9], [10],
[11], [12]. In addition, since radar sensing functions rely on
analyzing received signal echoes, the receive beamforming is
also jointly optimized to improve radar sensing performance
[10]. Although these approaches greatly enhance communi-
cation and radar sensing functions, performance deterioration
is still inevitable when encountering harsh propagation condi-
tions. In such complex electromagnetic environments, the use
of recently emerged reconfigurable intelligent surface (RIS)
technology [13], [14], [15] provides a potentially revolutionary
solution.

RIS technology has been regarded as another key enabler for
future wireless networks owing to its capability of efficiently
and intelligently shaping the propagation environment. An RIS
is generally a two-dimensional meta-surface consisting of
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many passive reflecting elements that can be independently
adjusted. By controlling specific parameters of the electronic
circuits associated with each element, electromagnetic charac-
teristics of the incident signals can be tuned, e.g., amplitude,
phase-shift, etc. Passive beamforming gains can be achieved
by cooperatively and intelligently adjusting these reflecting
elements [16], [17], [18]. The deployment of RIS estab-
lishes non-line-of-sight (NLoS) links between transmitter and
receivers, which expands coverage and introduces additional
DoFs for improving system performance. Therefore, the use
of RIS in various wireless networks has been extensively
investigated.

Inspired by extensive applications of RIS to various wire-
less communication systems [14], researchers have begun
exploring the deployment of RIS in radar sensing [19] and
ISAC systems [20], [21]. Studies for different RIS deployment
scenarios with different communication and radar sensing
metrics have been carried out [22], [23], [24], [25], [26], [27],
[28], [29], [30]. The initial works [22], [23], [24] assumed
that the RIS only assists with communications since it is
deployed near the users with negligible impact on the target
echoes. To further exploit the benefits of RIS, especially in
improving radar sensing performance, the authors in [25], [26],
[27], and [28] assumed that the RIS is deployed where the
direct links between the base station (BS) and the users/target
are blocked. However, it is likely more common that both
the direct and reflected links contribute to communication
and radar sensing functions, as considered in [29] and [30].
In particular, the authors in [29] focused on the single-user
scenario and used the signal-to-noise ratio (SNR) metric for
both communication and target detection, while the authors
in [30] studied the more common multi-user scenario in the
presence of clutter and proposed to maximize the radar signal-
to-interference-plus-noise ratio (SINR) under communication
constraints. However, the non-linear spatial-temporal beam-
forming assumed in [30] requires more complicated hardware
architectures and more complex algorithms. Moreover, in addi-
tion to the target detection function, parameter estimation is
also an important task in radar sensing and should be further
explored.

Motivated by the above discussion, in this paper we focus
on a general RIS-assisted ISAC system and consider both
target detection and parameter estimation functions for the
sensing component. In particular, we consider an RIS-assisted
ISAC system in which a multi-antenna BS delivers data to
multiple single-antenna users and simultaneously senses one
point-like target with the assistance of an RIS. Our goal is to
jointly design the BS transmit/receive beamforming and RIS
reflection coefficients to maximize multi-user communication
performance as well as guarantee target detection or direct-of-
arrival (DoA) estimation performance. The main contributions
of this paper are summarized as follows.

• First, we model the signals received at the users and the
BS receive array, and then derive performance metrics
for communications and radar sensing. Specifically, the
sum-rate metric is utilized to evaluate the multi-user com-
munications performance. For target detection, we show
that the radar output SNR is positively proportional

to the detection probability with a fixed probability of
false alarm and derive a worst-case radar SNR as the
performance metric. For target DoA estimation in the
considered general case, we derive the Cramér-Rao bound
(CRB) for estimating the target DoAs with respect to the
BS and the RIS, which to our knowledge has not been
investigated previously in the literature.

• Next, we formulate two optimization problems that maxi-
mize the sum-rate for multi-user communications subject
to a radar SNR constraint for target detection or a CRB
constraint for DoA estimation, the transmit power budget,
and the unit-modulus constraint of the RIS reflection
coefficients. In order to efficiently solve these two compli-
cated non-convex problems, we develop two algorithms
based on fractional programming (FP), majorization-
minimization (MM), alternative direction method of
multipliers (ADMM), and some sophisticated transfor-
mations to jointly solve for the BS transmit/receive
beamforming and RIS reflection coefficients.

• Finally, we provide extensive simulation studies to verify
the effectiveness of the proposed schemes and associated
algorithms. It is shown that the proposed designs achieve
notably higher sum-rates compared with other schemes.
We also present the enhanced beampattern to visually
demonstrate the dual communications and radar sensing
functions of the considered RIS-assisted ISAC system.

Notation: Boldface lower-case and upper-case letters indi-
cate column vectors and matrices, respectively. (·)∗, (·)T ,
(·)H , and (·)−1 denote the conjugate, transpose, transpose-
conjugate, and inverse operations, respectively. IM indicates
an M×M identity matrix. C and R denote the sets of complex
numbers and real numbers, respectively. |a|, ∥a∥, and ∥A∥F

are the magnitude of a scalar a, the norm of a vector a, and the
Frobenius norm of a matrix A, respectively. E{·} represents
statistical expectation. Tr{A} takes the trace of the matrix A
and vec{A} vectorizes the matrix A. ⊗ denotes the Kronecker
product. R{·} and I{·} denote the real and imaginary parts of
a complex number, respectively. ∠a is the angle of complex-
valued a.

II. SYSTEM AND SIGNAL MODELS

We consider an RIS-assisted ISAC system as shown in
Fig. 1, where a colocated multi-antenna BS performs multi-
user communications and radar sensing with the assistance of
an N -element RIS. In particular, the BS, which is equipped
with M transmit antennas and M receive antennas arranged
as uniform linear arrays (ULAs) with half-wavelength spacing,
simultaneously serves K single-antenna users and senses one
target. With the aid of advanced self-interference mitigation
techniques [31], we assume that the BS operates in full-duplex
mode with perfect self-interference mitigation. In this work,
we focus on two common and crucial radar sensing tasks:
target detection, which aims to identify whether a target of
interest is present, and parameter estimation, where the DoAs
of the target signals with respect to the BS and the RIS are
determined.

In order to simultaneously enable satisfactory communica-
tion and radar sensing functions, the dual-functional signal that
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Fig. 1. An RIS-assisted ISAC system.

is transmitted in the l-th time slot is given by [6]

x[l] = Wcsc[l] + Wrsr[l] = Ws[l], (1)

where sc[l] ∈ CK contains the communication symbols for
the K users with E{sc[l]sH

c [l]} = IK , sr[l] ∈ CM includes
M individual radar waveforms with E{sr[l]sH

r [l]} = IM ,
E{sc[l]sH

r [l]} = 0, and Wc ∈ CM×K and Wr ∈ CM×M

denote the beamforming matrices for the communication sym-
bols and radar waveforms, respectively. In addition, we define
the combined beamforming matrix W ≜ [Wc Wr] and
symbol vector s[l] ≜ [sT

c [l] sT
r [l]]

T for brevity. Then, the
compound received signal at the k-th user can be expressed
as

yk[l] = (hT
d,k + hT

r,kΦG)x[l] + nk[l], (2)

where hd,k ∈ CM , hr,k ∈ CN , and G ∈ CN×M denote the
channels between the BS/RIS and the k-th user, and between
the BS and the RIS, respectively. The channels hd,k, hr,k, ∀k,
and G are assumed to follow Rician fading, e.g., the channel
G is formulated as G = αG

√
κ

κ+1GLoS + αG

√
1

κ+1GNLoS,
where αG is the distance dependent pathloss, κ represents the
Rician factor, GLoS is the LoS component that depends on
the problem geometry, and GNLoS denotes the NLoS Rayleigh
fading components with zero mean and unit variance. In par-
ticular, GLoS = aT

N (θRB)aM (θBR), where the steering vector
is aN (θRB) ≜ [1, e−ȷπ sin θRB , . . . , e−ȷ(N−1)π sin θRB ]T , and θRB
and θBR represent the DoA and direct-of-departure (DoD).
We assume that the overall channel is known at the BS given
advanced channel estimation approaches for RIS-aided com-
munication systems [32], [33], [34]. The RIS reflection matrix
is defined as Φ ≜ diag{ϕ}, where ϕ ≜ [ϕ1, ϕ2, . . . , ϕN ]T is
the vector of reflection coefficients satisfying |ϕn| = 1, ∀n.
The scalar term nk[l] ∼ CN (0, σ2

k) is additive white Gaussian
noise (AWGN) at the k-th user.

The transmitted signal will reach the target via both the
direct and reflected links and then also be reflected back to the
BS through these two links. It is noted that the RIS naturally
operates in full-duplex mode and is free of self-interference
since it is composed of passive reflecting elements [14]. Thus,
the baseband echo signal which is reflected by the target and
then collected by the BS receive array can be expressed as

yr[l] = αt(hd,t + GT Φhr,t)(hT
d,t + hT

r,tΦG)Ws[l] + nr[l],
(3)

where αt ∼ CN (0, σ2
t ) is the radar cross section (RCS),

hd,t ∈ CM and hr,t ∈ CN respectively represent the channels
between the BS/RIS and the target, and nr[l] ∼ CN (0, σ2

r IM )
is the AWGN. As typically done in radar sensing, we will
assume that the BS/RIS-target links are LoS. Specifically,
hd,t = αdtaM (θ1) and hr,t = αrtaN (θ2), where θ1 and
θ2 are the DoAs of the target with respect to the BS and
the RIS, respectively. The DoAs can be obtained by using
the classic localization methods [36] or maximum likeli-
hood estimation algorithms based on previous observations.
With the knowledge of θ1 and θ2, the target detection and
parameter estimation performance can be further improved
through beamforming designs at the BS. In addition, thanks
to the semi-static characteristic of the BS-RIS channel, a two-
timescale channel estimation framework [32] can be utilized to
estimate G. Radar sensing relies on analyzing received echo
signals over L samples, which we combine together and denote
as

Yr = αtHt(ϕ)WS + Nr, (4)

where we define Ht(ϕ) ≜ (hd,t + GT Φhr,t)(hT
d,t + hT

r,tΦG),
and the symbol/noise matrices as S ≜ [s[1], s[2], . . . , s[L]] and
Nr ≜ [nr[1],nr[2], . . . ,nr[L]], respectively. It is noted that the
equivalent channel Ht(ϕ) is known at the BS based on the
above assumptions.

III. PERFORMANCE METRICS

In this section, we separately derive the performance metrics
for communications and radar sensing, which are crucial in
formulating the optimization problems for the considered sys-
tem. The typical sum-rate metric is formulated to evaluate the
performance of multi-user communications. For radar sensing,
we consider both target detection and parameter estimation
performance in terms of SNR and CRB, respectively.

A. Sum-Rate for Multi-User Communications

The achievable sum-rate is the most widely used metric to
evaluate the performance of multi-user communications. Based
on the signal model in (2), the SINR of the k-th user is

SINRk =
|hT

k (ϕ)wk|2∑K+M
j ̸=k |hT

k (ϕ)wj |2 + σ2
k

, (5)

where for conciseness we define hk(ϕ) ≜ hd,k +GT Φhr,k as
the composite channel between the BS and the k-th user, and
wj as the j-th column of W, i.e., W = [w1,w2, . . . ,wK+M ].
The achievable sum-rate of the K users is then given by R =∑K

k=1 log2(1 + SINRk).

B. SNR for Target Detection in Sensing

Target detection is a primary task in radar sensing. In order
to achieve better target detection performance, i.e., a higher
probability of detection, the received echo signals are pro-
cessed by a matched filter using the information of transmitted
symbols S to improve the output SNR. The received signals
Yr after the matched-filtering can be written as

Ỹr = αtHt(ϕ)WSSH + NrSH . (6)
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By defining ỹr ≜ vec{Ỹr}, w ≜ vec{W}, and ñr ≜
vec{NrSH}, the vectorized signal can be expressed as

ỹr = αt(SSH ⊗ Ht(ϕ))w + ñr. (7)

Then, a receive filter/beamformer u ∈ CM×(K+M) is applied
to process ỹr and yields

uH ỹr = αtuH(SSH ⊗ Ht(ϕ))w + uH ñr. (8)

Thus, the hypothesis testing problem for the output of the
radar receiver is expressed as

y =

{
H0 : uH ñr,

H1 : αtuH(SSH ⊗ Ht(ϕ))w + uH ñr.
(9)

Noting that αt ∼ CN (0, σ2
t ) and Ht(ϕ) is known at the

BS, we have the conditional probability distributions y|H0 ∼
CN (0, η0) and y|H1 ∼ CN (0, η1) with η0 = Lσ2

r u
Hu and

η1 = σ2
t E

{
|uH(SSH⊗Ht(ϕ))w|2

}
+Lσ2

r u
Hu. The Neyman-

Pearson detector to identify whether the target is present can

be formulated as [35] and [36]: T = |y|2
H1

≷
H0

δ, where

the decision threshold δ is determined by the probability of
false alarm PFA. Accordingly, the statistic distribution of T is

given by T ∼
{ η0χ

2
2, H0,

η1χ
2
2, H1,

, where χ2
2 indicates the central

chi-squared distribution with two DoFs.
In the sequel, the probabilities of detection PD and false

alarm PFA can be calculated as

PFA = Pr(T > δ|H0) = 1− Fχ2
2
(δ/η0), (10a)

PD = Pr(T > δ|H1) = 1− Fχ2
2
(δ/η1), (10b)

where Pr(·) denotes the probability and Fχ2
2
(·) represents the

central chi-squared distribution function with two DoFs. For
a desired PFA, the achieved PD can then be calculated as

PD = 1− Fχ2
2

(
η0/η1F

−1
χ2

2
(1− PFA)

)
, (11)

where F−1
χ2

2
denotes the inverse central chi-squared distribution

function with two DoFs. Therefore, we have

PD ∝ η1/η0 =
σ2

t E
{
|uH(SSH ⊗ Ht(ϕ))w|2

}
Lσ2

r uHu
+ 1. (12)

We observe that PD is positively proportional to the radar SNR,
which is expressed as

SNRt =
σ2

t E
{
|uH(SSH ⊗ Ht(ϕ))w|2

}
Lσ2

r uHu
. (13)

Thus, we use radar SNR to evaluate the target detection perfor-
mance. Considering that the numerator in (13) is complicated
and difficult for optimization, we propose to optimize a lower
bound of it. In particular, since SNRt is a convex function
of SSH and E{SSH} = LIK+M , the Jensen’s inequality
E{f(x)} ≥ f(E{x}) is utilized to obtain a lower bound for
the SNR as

SNRt ≥
Lσ2

t |uH(IK+M ⊗ Ht(ϕ))w|2

σ2
r uHu

, (14)

which represents the worst-case achieved radar SNR.

C. CRB for Parameter Estimation in Sensing

Parameter estimation is another important task in radar
sensing. The accuracy of parameter estimation is usually
measured by the Cramér-Rao bound, which is a lower bound
for any unbiased estimator. In our considered setting, we focus
on DoA estimation of θ ≜ [θ1, θ2]T . To derive the CRB for
estimating θ, we first vectorize the received signal Yr as

yr = αtvec{Ht(ϕ)WS}+ nr, (15)

where nr ≜ vec{Nr}. We define the unknown target param-
eters as ξ ≜ [θT , αT ]T with α ≜ [ℜ{αt},ℑ{αt}]T and the
noise-free echo signal as η ≜ αtvec{Ht(ϕ)}WS.

As presented in [37], for the complex observation yr ∼
CN (η,Rr), Rr = σ2

r IML, the (i, j)-th element of the Fisher
information matrix (FIM) FIM ∈ C4×4 can be obtained as

FIM(i, j) =
2
σ2

r
ℜ
{∂Hη

∂ξi

∂η

∂ξj

}
. (16)

In addition, the CRB matrix C is the inverse of FIM and the
diagonal elements of C represent the CRB for ξ. In order
to obtain a closed-form expression of the CRB for DoA
estimation, we partition FIM and C into 2× 2 blocks as

FIM =
[
FθθT FθαT

FT
θαT FααT

]
=

[
CθθT CθαT

CαθT CααT

]−1

= C−1, (17)

in which the expressions for the sub-matrices of FIM can be
derived according to (15) and (16) as presented in Appendix A.
We should emphasize here that each element of FIM is a
function of both W and ϕ. The CRB for estimating θ can
then be obtained as [36].

CRBθ1 + CRBθ2 = Tr{CθθT } (18a)

= Tr{(FθθT − FθαT F−1
ααT FT

θαT )−1}.
(18b)

IV. SNR-CONSTRAINED JOINT BEAMFORMING AND
REFLECTION DESIGN

In this section, we consider the SNR-constrained joint
beamforming and reflection design problem. We aim to jointly
optimize the transmit beamforming matrix W, the receive
filter u, and the reflection coefficients ϕ to maximize the sum-
rate, and satisfy the worst-case radar SNR requirement Γt,
the transmit power budget Pt, and the unit-modulus property
of the RIS reflecting coefficients. Therefore, the optimization
problem is formulated as

max
W,u,ϕ

K∑
k=1

log2(1 + SINRk) (19a)

s.t.
Lσ2

t |uH(IK+M ⊗ Ht(ϕ))w|2

σ2
r uHu

≥ Γt, (19b)

∥W∥2
F ≤ Pt, (19c)

|ϕn| = 1, ∀n. (19d)

It is obvious that the non-convex problem (19) is very difficult
to solve due to the complicated objective function (19a) with
log(·) and fractional terms, the coupled variables in both
the objective function (19a) and the radar SNR constraint
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(19b), and the unit-modulus constraint (19d). In order to
tackle these difficulties, we propose to utilize FP, MM, and
ADMM methods to convert problem (19) into several tractable
sub-problems and iteratively solve them.

A. FP-Based Transformation

We start by converting the objective function (19a) into a
more favorable polynomial expression based on FP. As derived
in [38], by employing the Lagrangian dual reformulation and
introducing an auxiliary variable r ≜ [r1, r2, . . . , rK ]T , the
objective (19a) can be transformed to

K∑
k=1

log2(1 + rk)−
K∑

k=1

rk +
K∑

k=1

(1 + rk)|hT
k (ϕ)wk|2∑K+M

j=1 |hT
k (ϕ)wj |2+σ2

k

,

(20)

in which the variables w and ϕ are taken out of the log(·)
function and coupled in the third fractional term. Then,
expanding the quadratic terms and introducing an auxiliary
variable c ≜ [c1, c2, . . . , cK ]T , the expression in (20) can be
further converted to

F(w, ϕ, r, c) ≜
K∑

k=1

log2(1 + rk)−
K∑

k=1

rk −
K∑

k=1

|ck|2σ2
k

+
K∑

k=1

2
√
1+rkℜ{c∗khT

k (ϕ)wk}

−
K∑

k=1

|ck|2
K+M∑
j=1

|hT
k (ϕ)wj |2. (21)

To facilitate the algorithm development, we attempt to
re-arrange the new objective function (21) into explicit and
compact forms with respect to w and ϕ, respectively. By stack-
ing the vectors wj , ∀j, into w and applying hT

k (ϕ)wj =
hT

d,kwj + hT
r,kdiag{Gwj}ϕ, the following equivalent expres-

sions for F(w, ϕ, r, c) can be obtained:

F(w, ϕ, r, c) = ℜ{aHw} − ∥Bw∥2 + ε1 (22a)

= ℜ{gHϕ} − ϕHDϕ + ε2, (22b)

where the definitions of a, B, ε1, g, D, and ε2 can be easily
obtained through basic matrix operations and are omitted
here due to space limitations. Now, we can clearly see that
the re-formulated objective F(w, ϕ, r, c) is a conditionally
concave function with respect to each variable given the others,
which allows us to iteratively solve for each variable as shown
below.

B. Block Update

1) Update r and c: Given the other variables, the optimiza-
tion for the auxiliary variable r is an unconstrained convex
problem, whose optimal solution can be easily obtained by
setting ∂f

∂r = 0. The optimal r⋆
k is calculated as

r⋆
k =

|hT
k (ϕ)wk|2∑K+M

j ̸=k |hT
k (ϕ)wj |2 + σ2

k

, ∀k. (24)

Similarly, the optimal c⋆
k is obtained by setting ∂f

∂ck
= 0 as

c⋆
k =

√
1 + rkhT

k (ϕ)wk∑K+M
j=1 |hT

k (ϕ)wj |2 + σ2
k

, ∀k. (25)

2) Update u: Finding u with the other parameters fixed
leads to a feasibility check problem without an explicit objec-
tive. In order to accelerate convergence and leave more DoFs
for sum-rate maximization in the next iteration, we propose
to update u by maximizing the SNR lower bound. Thus, the
optimization problem is formulated as

max
u

Lσ2
t |uH(IK+M ⊗ Ht(ϕ))w|2

σ2
r uHu

, (26)

which is a typical Rayleigh quotient with the optimal solution

u⋆ =
(IK+M ⊗ Ht(ϕ))w

wH(IK+M ⊗ HH
t (ϕ)Ht(ϕ))w

. (27)

It is obvious that u⋆ in (27) is feasible to the original feasibility
check problem, since the solution obtained in the previous
iteration already satisfies the radar SNR constraint, and the
solution by maximizing the radar SNR undoubtedly complies
with this constraint. Moreover, we see that eȷϑu⋆ is also an
optimal solution to (26) for an arbitrary angle ϑ, since the
phase of the output uH ỹr does not change the achieved SNR.
Inspired by this finding, after obtaining u we can restrict the
term uH(IK+M ⊗ Ht(ϕ))w to be a non-negative real value,
and thus re-formulate the radar SNR constraint (19b) as

ℜ{uH(IK+M ⊗ Ht(ϕ))w} ≥ ε3, (28)

where for brevity we define ε3 ≜
√
Γtσ2

r uHu/(Lσ2
t ).

3) Update w: With fixed r, c, u, and ϕ, the optimization
for the transmit beamforming vector w can be formulated as

min
w

∥Bw∥2 −ℜ{aHw} (29a)

s.t. ℜ{uH(IK+M ⊗ Ht(ϕ))w} ≥ ε3, (29b)

∥w∥2 ≤ Pt. (29c)

Obviously, this is a simple convex problem that can be readily
solved by various well-developed algorithms or toolboxes [39].

(I ⊗ Ht(ϕ))w

=
(
I⊗hd,thT

d,t

)
w + vec

{
GT diag{hr,t}ϕhT

d,tW + hd,tϕ
T diag{hr,t}GW + GT diag{hr,t}ϕϕT diag{hr,t}GW

}
(23a)

=
(
I⊗hd,thT

d,t

)
w +

(
WT hd,t⊗GTdiag{hr,t}+WT GTdiag{hr,t}⊗hd,t︸ ︷︷ ︸

F

)
ϕ +

(
WT GTdiag{hr,t}⊗GTdiag{hr,t}︸ ︷︷ ︸

L

)
vec{ϕϕT }.

(23b)
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4) Update ϕ: Given r, c, u, and w, the optimization for
ϕ is formulated as

min
ϕ

ϕHDϕ −ℜ{gHϕ} (30a)

s.t. ℜ{uH(IK+M ⊗ Ht(ϕ))w} ≥ ε3, (30b)
|ϕn| = 1, ∀n, (30c)

which cannot be directly solved due to the implicit function
with respect to ϕ in constraint (30b) and the non-convex unit-
modulus constraint (30c).

We first propose to handle constraint (30b) by re-arranging
its left-hand side as an explicit expression with respect to
ϕ and then employing the MM method to find a favorable
surrogate function for it. By recalling the definition of Ht(ϕ)
and employing the transformations Φhr,t = diag{hr,t}ϕ and
vec{ABC} = (CT ⊗A)vec{B}, the term (IK+M⊗Ht(ϕ))w
can be equivalently transformed into (23b), shown at the
bottom of the previous page. Then, constraint (30b) is further
re-arranged as

ℜ
{
uH(I ⊗ hd,thT

d,t)w + uHFϕ + uHLvec{ϕϕT }
}

(31a)

= ℜ
{
uH(I ⊗ hd,thT

d,t)w + uHFϕ + ϕT L̃ϕ
}
≥ ε3, (31b)

where L̃ ∈ CN×N is a reshaped version of LT u∗.
Now, it is clear that the third term in (31b) is a non-

concave function, which leads to an intractable constraint.
To solve this problem, we convert the complex-valued function
ℜ{ϕT L̃ϕ} into the real-valued term −ϕ

T
Lϕ by defining

ϕ ≜ [ℜ{ϕT } ℑ{ϕT }]T and L ≜

[
−ℜ{L̃} ℑ{L̃}
ℑ{L̃} ℜ{L̃}

]
, and then

employ the MM method to seek a series of tractable surrogate
functions for it. In particular, with the solution ϕ̂ obtained in
the previous iteration, an approximate upper-bound for ϕ

T
Lϕ

is constructed by using the second-order Taylor expansion as

ϕ
T
Lϕ ≤ ϕ̂

T
Lϕ̂+ϕ̂

T
(L+L

T
)(ϕ−ϕ̂)+

λ

2
(ϕ−ϕ̂)T (ϕ−ϕ̂)

(32a)

= ℜ
{
ϕ̂

T
(L+L

T−λI2N )Uϕ
}
−ϕ̂

T
L

T
ϕ̂+λN, (32b)

where λ is the maximum eigenvalue of matrix (L+L
T
), U ≜

[I ȷI]H converts a real-valued expression into a complex-
valued one, and ϕ

T
ϕ = ϕ̂

T
ϕ̂ = N due to the unit-modulus

property of the reflecting coefficients. Thus, plugging the result
in (32) into (31), the radar SNR constraint in each iteration
can be concisely re-formulated as

ℜ{ũHϕ} ≤ ε4, (33)

where we define ũ ≜ (−uHF + ϕ̂
T
(L + L

T − λI2N )U)H

and ε4 ≜ −ε3 + ϕ̂
T
L

T
ϕ̂ + ℜ{uH(I ⊗ hd,thT

d,t)w} − λN .
After converting the radar constraint (30b) to (33), we pro-

pose to utilize ADMM to solve for ϕ under the new constraint
(33) and the unit-modulus constraint (30c). Specifically,
an auxiliary variable φ ≜ [φ1, φ2, . . . , φN ]T is introduced
to transform the problem of solving for ϕ into

min
ϕ,φ

ϕHDϕ −ℜ{gHϕ} (34a)

Algorithm 1 SNR-Constrained Joint Beamforming and
Reflection Design
Require: hd,t, hr,t, G, σ2

t , σ2
r , hd,k, hr,k, σ2

k, ∀k, Pt, L, Γt,
ρ.

Ensure: W⋆, ϕ⋆, and u⋆.
1: Initialize ϕ and W using RCG.
2: while no convergence do
3: Update rk, ∀k, by (24).
4: Update ck, ∀k, by (25).
5: Update u by (27).
6: Update w by solving problem (29).
7: Update ϕ by solving problem (35) given other variables.

8: Update φ by (36).
9: Update µ by (37).

10: ρ := 0.8ρ.
11: end while
12: Reshape w to W.
13: Return W⋆ = W, ϕ⋆ = ϕ, and u⋆ = u.

s.t. ℜ{ũHϕ} ≤ ε4, (34b)
|ϕn| ≤ 1, ∀n, (34c)
|φn| = 1, ∀n, (34d)
ϕ = φ. (34e)

Based on ADMM, the solution to (34) can be obtained by
solving its augmented Lagrangian function:

min
ϕ,φ

ϕHDϕ −ℜ{gHϕ}+ 1
2ρ

∥ϕ − φ + ρµ∥2 (35a)

s.t. (34b)− (34d), (35b)

where µ ∈ CN is the dual variable and ρ > 0 is a pre-set
penalty parameter. This multivariate problem can be solved
by alternately updating each variable given the others.

Update ϕ: It is obvious that with fixed φ and µ, the
optimization problem for updating ϕ is convex and can be
readily solved by various existing efficient algorithms.

Update φ: Given ϕ and µ, the optimal φ⋆ can be easily
obtained by phase alignment

φ⋆ = eȷ∠(ϕ+ρµ). (36)

Update µ: After obtaining ϕ and φ, the dual variable µ is
updated by

µ := µ + (ϕ − φ)/ρ. (37)

C. Summary and Initialization

Based on the above derivations, the proposed
SNR-constrained joint beamforming and reflection design
is straightforward and summarized in Algorithm 1. With an
appropriate initialization, we iteratively update each variable
until convergence. It is noted that the penalty parameter ρ is
shrunk in each iteration to force the equality constraint to be
satisfied. As the penalty parameter gradually decreases, i.e.,
ρ → 0, the solution to the problem (35) ultimately ensures that
the unit-modulus constraint is satisfied. While for any fixed
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ρ, we note that the achieved objective value of problem (35)
is an upper bound of that achieved by the optimal solution
to the problem (30). By alternately solving the problem
(35), the upper bound can be gradually tightened. Since each
sub-problem of the problem (35) is optimally solved, the
objective function (35a) is monotonically non-increasing,
and the solution acquired via alternative optimization can
ensure convergence to a stationary point of the problem (30).
In addition, we see that the original problem (19) is solved
by alternately updating r, c, u, w, and ϕ, whose stationary
points are achieved respectively. Note that the objective
value (19a) is non-decreasing over iterations, and any limit
point of {r, c,u,w, ϕ} is a stationary point of the original
optimization problem (19). Furthermore, the objective value
of (19a) is upper bounded by a finite value owing to the
transmit power budget. Therefore, Algorithm 1 guarantees
convergence to a stationary point and a locally optimal
solution.

Since the starting point is important for the proposed
alternating algorithm, we investigate some straightforward
methods for appropriately initializing ϕ and w. Intuitively,
the RIS is deployed for the purpose of improving the quality
of the propagation environment between the BS and the tar-
get/communication users, and the channel gain can be regarded
as a metric for channel quality. Therefore, we propose to
initialize ϕ by maximizing the channel gains of the target and
the communication users, which can be formulated as a typical
problem in the literature of RIS and then efficiently solved
using the Riemannian conjugate gradient (RCG) algorithm
[18]. After initializing ϕ, we propose to initialize w by using
the available transmit power to maximize the sum power of
the received signals of the target and the communication users,
which can also be solved using the RCG algorithm.

Finally, we briefly analyze the computational complexity
of the proposed SNR-constrained joint beamforming design
algorithm. As shown in Algorithm 1, the computational burden
mainly results from the update for w and ϕ. We assume that
the popular interior point method is utilized to solve these
convex sub-problems. Thus, the complexities of updating w
and ϕ is of order O{M3.5(M+K)3.5} and O{N3.5}, respec-
tively, and the overall complexity is of order O{M3.5(M +
K)3.5 + N3.5}.

V. CRB-CONSTRAINED JOINT BEAMFORMING AND
REFLECTION DESIGN

In this section, we focus on the CRB-constrained joint
beamforming and reflection design to ensure the parameter
estimation performance. In particular, we investigate optimiz-
ing W and ϕ to maximize the sum-rate while satisfying a CRB
constraint, the transmit power budget and the unit-modulus
constraint. The optimization problem is thus formulated as

max
W,ϕ

K∑
k=1

log2(1 + SINRk) (38a)

s.t. Tr
{
(FθθT − FθαT F−1

ααT FT
θαT )−1

}
≤ ε, (38b)

∥W∥2
F ≤ Pt, (38c)

|ϕn| = 1, ∀n, (38d)

where ε is the CRB threshold. The same FP-based procedure
in Sec. IV-A can be utilized to transform the objective function
into F(w, ϕ, r, c) as in (22), which is a concave function with
respect to each variable. Thus, the CRB constraint (38b) is
the major difficulty that requires sophisticated derivations and
transformations to facilitate the algorithm development.

A. CRB Constraint Transformation

To handle the CRB constraint, we first introduce an auxiliary
variable J ∈ C2×2, J ⪰ 0. Since the matrix FθθT −
FθαT F−1

ααT FT
θαT is positive semidefinite and the function

Tr{A−1} is decreasing on the space of positive semidefinite
matrices, the CRB constraint (38b) can be converted into the
following two constraints [27]:

Tr{J−1} ≤ ε, (39a)

FθθT − FθαT F−1
ααT FT

θαT ⪰ J. (39b)

Then, by applying the Schur complement [40], we can
re-formulate (39b) as[

FθθT − J FθαT

FT
θαT FααT

]
⪰ 0. (40)

We see that constraint (39a) is convex, while constraint (40)
is still very difficult to tackle since the variables W and
ϕ are non-linearly coupled in each element of the positive
semidefinite matrix. To solve this problem, we introduce an
auxiliary variable f ≜ [f1, f2, f3, f4, f5, f6]T to take W and ϕ
out of the positive semidefinite matrix constraint and transform
the problem to

max
w,ϕ,r,c,J,f

F(w, ϕ, r, c) (41a)

s.t. Tr{J−1} ≤ ε, J ⪰ 0, (41b)
2L|αt|2

σ2
r

ℜ
{[

f1 f2

f2 f4

]}
−J 2L

σ2
r
ℜ
{
α∗

t

[
f3

f5

]
[1 ȷ]

}
2L
σ2

r
ℜ
{

α∗
t

[
1
ȷ

]
[f3 f5]

}
2L
σ2

r
f6I2

 ⪰ 0, (41c)

∥w∥2
2 ≤ Pt, (41d)

|ϕn| = 1, ∀n, (41e)
fi = Fi(W, ϕ), ∀i, (41f)

where Fi(W, ϕ), ∀i are functions with respect to W and ϕ
according to the definition of FIM in (17) and (77). Detailed
expressions for them are presented in Appendix B, where we
re-arrange them into explicit forms with respect to W and ϕ
for the following algorithm development.

Then, the augmented Lagrangian function of problem (41)
is formulated as

min
w,ϕ,r,c,J,f

−F(w, ϕ, r, c) +
1
2ρ1

6∑
i=1

|Fi(W, ϕ)−fi+ρ1ζi|2

(42a)
s.t. (41b)− (41e), (42b)

where ζ ≜ [ζ1, ζ2, . . . , ζ6]T is the dual variable and ρ1 > 0 is
the penalty parameter. Now we can use the block coordinate
descent (BCD) method to alternately update each variable as
presented in what follows.
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B. Block Update

1) Update r and c: Fixing other variables, the optimal
solution for the auxiliary variables r and c introduced based
on FP can be obtained as in (24) and (25), respectively.

2) Update J and f : Given other variables, the optimization
problem for updating J and f can be formulated as

min
J,f

6∑
i=1

|Fi(W, ϕ)− fi + ρ1ζi|2 (43a)

s.t. (41b), (41c). (43b)

We observe that this is a semidefinite programming (SDP)
problem, which can be readily solved by standard algorithms.

3) Update w: Substituting the definitions of F(w, ϕ, r, c)
in (22) and Fi(W, ϕ) in (75), shown at the bottom of page 13,
into (42), the sub-problem of solving for w can be expressed
as

min
w

∥Bw∥2 −ℜ{aHw}+ 1
2ρ1

6∑
i=1

|Tr{AiWWH}+di|2

(44a)

s.t. ∥w∥2
2 ≤ Pt, (44b)

where we define the constant term di ≜ −fi + ρ1ζi for
notational simplicity and Ai, ∀i in Appendix B. It is obvious
that the third term in the objective function (44a) is non-convex
and quartic with respect to W, which greatly hinders the
solution. To tackle this difficulty, we utilize the MM method
to find a series of tractable surrogate functions.

Specifically, we first expand the third non-convex quartic
term in (44a) as

|Tr{AiWWH}+di}|2 = |wH(IK+M⊗Ai)w + di|2 (45a)

= |di|2 + 2ℜ{d∗
i w

H(I⊗Ai)w}
+ |wH(I⊗Ai)w|2, (45b)

in which we utilize the transformation Tr{ABCD} =
vecH{DH}(CT ⊗A)vec{B} to obtain (45a). Then, we derive
tractable surrogation functions for the second and third terms
of (45b). A convex surrogate function for the second term of
(45b) is derived as

2ℜ{d∗i wH(I⊗Ai)w} = wHÃiw (46a)

≤ 2ℜ{wH(Ãi−λt,iI)wt}+ β1,i,

(46b)

where we define Ãi ≜ d∗i I ⊗ Ai + diI ⊗ AH
i to drop the

real operation. In (46b), a second-order Taylor expansion and
the power constraint ∥w∥2

2 ≤ Pt are applied, and λt,i denotes
the maximum eigenvalue of Ãi. According to the properties
of Kronecker product, λt,i equals to the maximum eigenvalue
of the matrix (d∗

i Ai + diAH
i ). In addition, wt represents the

obtained solution in the t-th iteration, and the constant term
β1,i is defined as β1,i ≜ λt,iPt + (wt)H(λt,iI − Ãi)wt.

Similarly, a convex surrogate function for the third term of
(45b) can be derived as

|wH(I ⊗ Ai)w|2 (47a)

= Tr{(I ⊗ Ai)wwH(I ⊗ AH
i )wwH} = wHAiw (47b)

≤ ℜ{(wt)H(Ai + A
H

i − 2λb,iI)w}+ β2,i (47c)

= |wHvec{AiWt}|2 + |wHvec{AH
i Wt}|2

− 2λb,iwHwt(wt)Hw + β2,i, (47d)

where we define w ≜ vec{wwH} and Ai ≜ (I ⊗ A∗
i ) ⊗

(I⊗Ai). In (47c), we apply a second-order Taylor expansion
and the power constraint (41d), denote λb,i as the maximum
eigenvalue of Ai, which equals max{|λi,j |2, ∀j} where λi,j

represents the j-th eigenvalue of Ai, and define β2,i ≜

λb,iP
2
t + λb,i(wt)Hwt − (wt)T A

T

i (w
t)∗. We see that only

the third term of (47d) is non-convex, whose convex surrogate
function is derived using a first-order Taylor expansion as

wHwt(wt)Hw ≥ ∥wt∥4+2ℜ{∥wt∥2(wt)H(w−wt)}.
(48)

Substituting the results obtained in (45)-(48) into (44a), the
sub-problem for updating w can be written as

min
w

∥Bw∥2 −ℜ{aHw}+ 1
2ρ1

6∑
i=1

(|wHvec{AiWt}|2

+ |wHvec{AH
i Wt}|2 + ℜ{ãH

i w}) (49a)

s.t. ∥w∥2
2 ≤ Pt, (49b)

where for simplicity we define ãH
i ≜ 2(wt)H(Ãi − λt,iI −

2λb,i∥wt∥2I). It is clear that problem (49) is convex and can
be readily solved by standard convex optimization algorithms.

4) Update ϕ: Fixing other variables, the sub-problem of
solving for ϕ is formulated as

min
ϕ

ϕHDϕ −ℜ{gHϕ}+ 1
2ρ1

6∑
i=1

|Fi(W, ϕ) + di|2 (50a)

s.t. |ϕn| = 1, ∀n. (50b)

As given in (75), Fi(W, ϕ), ∀i are complicated and
non-convex functions with respect to ϕ, which makes the third
term in (50a) very difficult to handle. To solve this problem,
we introduce three auxiliary variables φ ≜ [φ1, φ2, . . . , φN ]T ,
v ≜ [v1, v2, . . . , vN2 ]T and ν ≜ [ν1, ν2, . . . , νN2 ]T , and
convert Fi(W, ϕ) into linear functions with respect to each
variable:

F1(ϕ, φ,v, ν) = q1 + ϕHu1 + uH
1 φ + ϕHU1φ, (51a)

F2(ϕ, φ,v, ν) = uH
2 φ + ϕHU2φ+zH

2 ν+ϕHC2ν, (51b)

F3(ϕ, φ,v, ν) = q3 + ϕHu3 + uH
3 φ + ϕHU3φ

+ zH
3 ν + ϕHC3ν, (51c)

F4(ϕ, φ,v, ν) = ϕHU4φ + vHC4φ+ϕHC
H

4 ν+vHZ4ν,

(51d)

F5(ϕ, φ,v, ν) = ϕHu5 + ϕHU5φ + vHz5 + vHZ5ν

+ vHC5φ + ϕHC5ν, (51e)

F6(ϕ, φ,v, ν) = q6 + ϕHu6 + uH
6 φ+ϕHU6φ+vHC6φ

+zH
6 ν+vHz6+ϕHC

H

6 ν+vHZ6ν. (51f)
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Then, the optimization problem for finding these variables can
be formulated as

min
ϕ,φ,v,ν

ϕHDϕ−ℜ{gHϕ}+ 1
2ρ1

6∑
i=1

|Fi(ϕ, φ,v, ν)+di|2

(52a)
s.t. φ = ϕ, v = ϕ ⊗ φ, ν = v, (52b)

|φn| = |ϕn| = 1, ∀n, |νj | = |vj | = 1, ∀j. (52c)

By treating equality constraints (52b) as penalty terms, the
augmented Lagrangian function of problem (52) is written as

min
ϕ,φ,v,ν

ϕHDϕ−ℜ{gHϕ}+ 1
2ρ1

6∑
i=1

|Fi(ϕ, φ,v, ν)+di|2

+
1
2ρ2

∥ϕ − φ + ρ2µ∥2 +
1
2ρ3

∥v − ϕ ⊗ φ + ρ3λ∥2

+
1
2ρ4

∥ν − v + ρ4ω∥2 (53a)

s.t. |φn| = |ϕn| = 1, ∀n, |νj | = |vj | = 1, ∀j, (53b)

where µ ∈ CN , λ ∈ CN2
and ω ∈ CN2

are dual variables,
and ρ2, ρ3 and ρ4 are penalty parameters. Thanks to the defi-
nitions in (51), the term Fi(ϕ, φ,v, ν)+di can be re-arranged
as linear functions with respect to each variable as

Fi(ϕ, φ,v, ν) + di = aϕ,i + ϕHbϕ,i = aφ,i + bH
φ,iφ (54a)

= av,i + vHbv,i = aν,i + bH
ν,iν, (54b)

where the definitions of aϕ,i, bϕ,i, aφ,i, bφ,i, av,i, bv,i, aν,i,
and bν,i are straightforward based on (51). In addition, the
term ϕ ⊗ φ can be re-arranged as

ϕ ⊗ φ = vec{φϕT }
= (ϕ ⊗ IN )φ
= (IN ⊗ φ)ϕ. (55)

Plugging the results of (54) and (55) into (53), we can explic-
itly formulate the sub-problem for each variable as follows.

Update ϕ: The sub-problem of updating ϕ is written as

min
ϕ

ϕHDϕϕ + ℜ{gH
ϕ ϕ} (56a)

s.t. |ϕn| = 1, ∀n, (56b)

where we define

Dϕ ≜ D +
1
2ρ1

6∑
i=1

bϕ,ibH
ϕ,i, (57a)

gϕ ≜
1
ρ1

6∑
i=1

a∗
ϕ,ibϕ,i + µ − φ

ρ2
− (IN⊗φH)(λ +

v
ρ3

)− g.

(57b)

This is a typical optimization problem in the literature
of RIS. Considering that the popular semi-definite relax-
ation (SDR) [17] may suffer from high complexity and the
alternating-based algorithms such as RCG and element-wise
BCD require additional iterative loops, a direct closed-form
solution is preferred especially for large N . Therefore, we rely
on the MM method to seek a favorable surrogate objective

function whose optimal solution under the unit-modulus con-
straint can be easily obtained in closed form.

Particularly, we observe that matrix Dϕ is positive-definite
and it is the summation of several rank-one matrices. In addi-
tion, using the second-order Taylor expansion, a linear
surrogate function for the term ϕHbbHϕ can be derived as

ϕHbbHϕ ≤ N∥b∥2 + 2ℜ{(ϕt)H(bbH−∥b∥2IN )ϕ}
+(ϕt)H(∥b∥2IN − bbH)ϕt, (58)

where ϕt represents the solution obtained in the t-th iteration
and we use the fact that the maximum eigenvalue of bbH

equals ∥b∥2 and (ϕt)Hϕt = N due to the unit-modulus
constraint (56b). Based on the result in (58), a linear surrogate
function for ϕHDϕϕ can be obtained as

ϕHDϕϕ ≤ N∥Dϕ∥2
F + 2ℜ{(ϕt)H(Dϕ − ∥Dϕ∥2

F IN )ϕ}
+(ϕt)H(∥Dϕ∥2

F IN − Dϕ)ϕt. (59)

Substituting (59) into (56a), the problem of solving for ϕ can
be written as

min
ϕ

ℜ{g̃H
ϕ ϕ} (60a)

s.t. |ϕn| = 1, ∀n, (60b)

where we define g̃ϕ ≜ gϕ+2(Dϕ−∥Dϕ∥2
F I)ϕt for simplicity.

The optimal solution to problem (60) can then be easily
obtained as

ϕ⋆ = eȷ(π+∠g̃ϕ). (61)

Update φ, v, and ν: Using the results in (53)-(55) and
following the same procedure as in (58)-(61), the updates of
φ, v, and ν can be obtained as

φ⋆ = eȷ(π+∠g̃φ), (62a)

v⋆ = eȷ(π+∠g̃v), (62b)

ν⋆ = eȷ(π+∠g̃ν), (62c)

where the expressions of g̃φ, g̃v , and g̃ν can be readily
obtained in a similar manner.

Update dual variables: After obtaining the variables r, c,
J, f , w, ϕ, φ, v, and ν, the dual variables are updated by

ζi := ζi + (f̃i − fi)/ρ1, (63a)
µ := µ + (ϕ − φ)/ρ2, (63b)
λ := λ + (v − ϕ ⊗ φ)/ρ3, (63c)
ω := ω + (ν − v)/ρ4. (63d)

C. Summary

Given the above derivations, the proposed algorithm for
CRB-constrained joint beamforming and reflection design is
straightforward and summarized in Algorithm 2. We use the
same method in Sec. IV-C to successively initialize ϕ and W.
After that, all the variables are alternately updated until con-
vergence. The penalty parameters are shrunk in each iteration
to accelerate the process to satisfy the equality constraints.
For any fixed penalty parameters, the achieved objective value
of problem (53) is an upper bound of the objective value of
problem (50) in solving for ϕ. The upper bound is gradually
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Algorithm 2 CRB-Constrained Joint Beamforming and
Reflection Design

Require: hd,t, ḣd,t, hr,t, ḣr,t, G, σ2
t , αt, σ2

r , hd,k, hr,k, σ2
k,

∀k, Pt, L, ε, ρ1, ρ2, ρ3, ρ4.
Ensure: W⋆ and ϕ⋆.

1: Initialize ϕ and W using RCG.
2: while no convergence do
3: Update J and f by solving (43).
4: Update w by solving (49).
5: Update ϕ by (61).
6: Update φ, v, and ν by (62).
7: Update dual variables ζ, µ, λ, and ω by (63).
8: ρ1 := 0.8ρ1, ρ2 := 0.8ρ2, ρ3 := 0.8ρ3, and ρ4 :=

0.8ρ4.
9: end while

10: Reshape w to W.
11: Return W⋆ = W and ϕ⋆ = ϕ.

tightened by alternately updating each variable. It is noted that
the objective value of (53a) is monotonically non-increasing
[41], and the solution obtained by alternately optimization
ensures convergence to a stationary point of the problem (50).
Similarly, we see that the achieved objective value of problem
(42) is a lower bound of the objective value of problem (41),
which is equivalent to the original optimization problem (38),
and the lower bound is tightened over iterations. Considering
that the optimal solution to r, c, J, and f can be obtained and
the stationary points of w and ϕ are achieved, respectively, the
objective value (38a) is non-decreasing. Moreover, since the
objective value (38a) is upper bounded by a finite value due to
the transmit power budget, any limit point of {r, c,J, f ,w, ϕ}
is a stationary point of the original problem (38). Therefore,
a stationary point and a locally optimal solution can be guaran-
teed by Algorithm 2. Then, we provide a brief analysis of the
computational complexity of the proposed CRB-constrained
joint beamforming and reflection design algorithm. It is obvi-
ous that the update for w and v dominate the computational
cost, whose complexities are of order O{M3.5(M + K)3.5}
and O{N4}, respectively. Thus, the overall complexity of the
proposed algorithm is of order O{M3.5(M + K)3.5 + N4}.

VI. EXTENSIONS TO IMPERFECT SELF-INTERFERENCE
CANCELLATION SCENARIO

In this section, we extend the proposed joint transmit
beamforming and reflection design algorithms to the scenario
with imperfect self-interference cancellation (SIC). Specifi-
cally, although with the aid of advanced SIC technologies
[42], [43], there still exists residual SI that interferes with
the echo signal processing of the BS receive antenna array.
Without loss of generality, we model the residual SI signal as
HSIx, where HSI ∈ CM×M denotes the residual SI channel
between transmit and receive antenna arrays [44]. Therefore,
the received signal at the BS including both target echo signal
and SI plus noise can be re-formulated as

Yr = αtHt(ϕ)WS + HSIWS + Nr. (64)

Undoubtedly, the existence of SI will influence both perfor-
mance metrics and algorithm designs for the target detection
and parameter estimation functions as presented below.

For the target detection function, by following the same
procedure as in (6)-(14), the worst-case radar SINR that is
positively proportional to the target detection probability can
be expressed as

SINRt =
σ2

t E
{
|uH(SSH ⊗ Ht(ϕ))w|2

}
Lσ2

r uHu + E
{
|uH(SSH ⊗ HSI)w|2

}
≈ Lσ2

t |uH(IK+M ⊗ Ht(ϕ))w|2

σ2
r uHu + |uH(IK+M ⊗ HSI)w|2

. (65)

It is obvious that this radar SINR requirement is more complex
since the SI term is associated with the transmit beamforming
w and the receive filter u. Thus, some modifications to the
proposed SNR-constrained joint beamforming and reflection
design in Algorithm 1 are required to handle this radar SINR
constraint. Particularly, by using the typical Rayleigh quotient,
the optimal solution u⋆ for maximizing the worst-case radar
SINR is given by

u⋆ =
M−1(w)s(ϕ,w)

sH(ϕ,w)M−1(w)s(ϕ,w)
, (66)

where for simplicity we respectively define the following
functions with respect to w and ϕ as

M(w) ≜ (IK+M⊗HSI)wwH(IK+M⊗HH
SI ) + σ2

r I, (67a)

s(ϕ,w) ≜ (IK+M ⊗ Ht(ϕ))w. (67b)

Then, substituting u⋆ in (66) into (65), the worst-case radar
SINR is re-formulated as

SINRt = Lσ2
t s

H(ϕ,w)M−1(w)s(ϕ,w). (68)

In order to tackle the inverse term with respect to w,
we propose to utilize the idea of MM again and construct
a lower-bound for SINRt. As shown in [41], by using the
first-order Taylor expansion, a surrogate function of sHM−1s
at point (st,Mt) is given by

sHM−1s ≥ −Tr{M−1
t stsH

t M−1
t M}+ 2ℜ{sH

t M−1
t s},

(69)

where matrix M must be positive-definite. Based on this
finding, a lower-bound for SINRt can be calculated as

SINRt ≥ Lσ2
t

[
2ℜ{sH(ϕt,wt)M−1(wt)s(ϕ,w)} (70a)

− Tr
{
M−1(wt)s(ϕt,wt)sH(ϕt,wt)M−1(wt)M(w)

}]
= Lσ2

t

[
2ℜ

{
gH

t (I⊗Ht(ϕ))w
}
− |wHdt|2 − ct

]
,

(70b)

where wt and ϕt respectively represent the solution obtained
in the t-th iteration and the variables dt, gt, and ct are defined
as follows

dt ≜ (I ⊗ HH
SI )M

−1(wt)s(ϕt,wt), (71a)

gt ≜ M−1(wt)s(ϕt,wt), (71b)

ct ≜ σ2
r s

H(ϕt,wt)M−1(wt)M−1(wt)s(ϕt,wt). (71c)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 03,2025 at 21:59:03 UTC from IEEE Xplore.  Restrictions apply. 



7466 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 7, JULY 2024

Now we see that the surrogate function of the radar SINR
(i.e. (70b)) is concave with respect to w, and the update for
w can be easily solved using various existing algorithms.
While given other variables, the update for ϕ, r and c can
be re-arranged as similar forms as those in (30), (24), and
(25), respectively. Thus, Algorithm 1 can be utilized to solve
the SINR-constrained joint design problem under an imperfect
SIC scenario.

For the parameter estimation function, we first vectorize the
SI-corrupted received signal Yr in (64) as

yr = αtvec{Ht(ϕ)WS}+ vec{HSIWS}+ nr, (72)

from which we have yr ∼ CN (η,Rr) with Rr = σ2
r IML +

IL⊗HSIWWHHH
SI . As presented in [37], the FIM under the

imperfect SIC scenario is given by

FIM(i, j) = 2ℜ
{∂Hη

∂ξi
R−1

r
∂η

∂ξj

}
. (73)

Following the same procedure as that in (76) and (77), the
elements of FIM can be respectively calculated, e.g., the
element of the first row and the second column is expressed
as

Fθ1,θ2 =
2L|αt|2

σ2
r

ℜ{Tr{Ḧt(ϕ)WWHḢH
t (ϕ)R−1(W)}},

(74)

where we define the function with respect to W as R(W) ≜
IM + HSIWWHHH

SI /σ2
r . We observe that the residual SI

introduces the term HSIWWHHH
SI to FIM, which will lead to

very complicated optimization with respect to W. In order to
simplify the optimization on W, in each iteration we update
W with fixed R(W), and then calculate R(W) using the
resulting W. In the sequel, Algorithm 2 can be utilized to
solve the CRB-constrained joint design problem under an
imperfect SIC scenario.

VII. SIMULATION RESULTS

In this section, we present simulation results to ver-
ify the advantages of the proposed SNR-constrained and
CRB-constrained joint beamforming and reflection designs.
We assume that M = 6, K = 4, σ2

r = σ2
k = −90dBm,

∀k, σ2
t = 1, and L = 1024. We set the distances of the BS-

RIS, the RIS-target, and the RIS-user links as dBR = 50m,
dRT = 3m, and dRU = 8m, respectively. Furthermore we
set θBR = θ2 = π

4 , θRB = −π
4 , and θ1 is calculated as

θ1 = atan(dBR sin θBR−dRT cos θ2
dBR cos θBR+dRT sin θ2

). The distances of the BS-target
and BS-user can then be calculated accordingly. We adopt
a typical distance-dependent path-loss model [17] and set
the path-loss exponents for the BS-RIS, RIS-target, RIS-user,
BS-target and BS-user links as 2.2, 2.2, 2.3, 2.4, and 3.5,
respectively. Since the users are several meters farther away
from the target, the reflected signals from the target to the
users are ignored due to severe channel fading. In addition,
the Rician factor for the BS-RIS/user and RIS-user links is
set as κ = 3dB. The residual SI channel is modeled as
HSI(i, j) =

√
αSIe

−ȷ2πdi,j/λ, where αSI, di,j and λ denote the
power of residual SI, the distance between the i-th transmit

Fig. 2. Enhanced beampattern of the RIS-assisted system (BS: diamond;
RIS: square; target: star; users: circles).

Fig. 3. Convergence performance of the proposed algorithms.

antenna and the j-th receive antenna, and the wavelength,
respectively. For simplicity, we set αSI = −110dB and let
e−ȷ2πdi,j/λ be a unit-modulus variable with random phase
[44]. Since our focus is target DoA estimation, we assume
αt = 1 for simplicity.

A. Illustration of Radar Sensing Performance

We first visually demonstrate the communications and radar
sensing functions by plotting the enhanced beampattern of the
RIS-assisted ISAC system in Fig. 2. We clearly see that the
BS generates strong beams towards the areas where the RIS,
the target, and the users are located, meanwhile the RIS forms
multiple passive beams to direct the signals towards the target
and the users.

B. Convergence Performance of the Proposed Algorithms

We show the convergence performance of Algorithm 1
and Algorithm 2 in Figs. 3(a) and 3(b), respectively. The
achievable sum-rate versus the number of iterations under
different settings is presented to verify the convergence of our
proposed algorithms. We observe that both Algorithm 1 and
Algorithm 2 converge within 100 iterations. Moreover, only
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Fig. 4. Sum-rate versus transmit power Pt (N = 49).

small increases in the achievable sum-rate can be acquired
after 30 iterations, which verifies the fast convergence and the
effectiveness of the proposed algorithms.

C. Impact of Transmit Power

To verify the advantages of the proposed joint beamforming
and reflection designs (denoted as “Proposed”), we also
include the following schemes for comparisons.

• “Comm only”: Only the multi-user communication func-
tion is optimized for the considered system. The proposed
joint beamforming and reflection design algorithm is
utilized without considering the radar sensing constraint.

• “BF only”: With a fixed ϕ which is determined by
maximizing the sum channel gain, the beamformers W
and u are iteratively solved for using Algorithm 1 for the
SNR-constrained scenario, or W is iteratively solved for
using Algorithm 2 for the CRB-constrained scenario.

• “Separate”: The reflection coefficients ϕ, the radar
beamformer Wr, the communication beamformer Wc,
and the receive filter u are separately optimized. In partic-
ular, ϕ is obtained by maximizing the sum channel gain,
Wr is determined by solving the power minimization
problem under the radar SNR or CRB constraint, Wc
is then designed by solving the sum-rate maximization
problem under the power constraint, and finally for the
SNR-constrained scenario u is given by (27).

In simulations, we consider both perfect SIC and imperfect
SIC scenarios, which are represented by solid and dashed
lines, respectively. To distinguish the imperfect SIC scenario,
we also mark it with “w/ SI”.

The achievable sum-rate versus transmit power Pt for the
SNR-constrained joint beamforming and reflection design is
presented in Fig. 4(a). We observe that the schemes that jointly
design the radar and communication beamforming achieve
a remarkable performance improvement compared with the
“Separate” scheme. Undoubtedly, the “Comm only” scheme
achieves the best sum-rate performance, and the proposed
scheme is much better than the “BF only” scheme. Moreover,
we observe that the performance gap between “Comm only”
and the proposed scheme becomes smaller with the increase

Fig. 5. Sum-rate versus the number of reflecting elements N (P = 32dBm).

of Pt, since more transmit power is exploited to improve
the communication performance for a fixed radar sensing
requirement. Besides, it is clear that residual SI causes certain
performance losses to all ISAC schemes. The performance of
the CRB-constrained design is shown in Fig. 4(b), in which the
same performance relationship as that for the SNR-constrained
scenario is observed and similar conclusions can be drawn.
Moreover, compared to Fig. 4(a) we notice that the residual
SI has a more pronounced effect on the parameter estimation
performance. This is because the target detection performance
depends only on the power of interference and useful signals,
while the parameter estimation performance is also sensitive
to the phase of the received signals.

D. Impact of the Number of Reflecting Elements

Next, we illustrate the achievable sum-rate versus the num-
ber of reflecting elements N in Fig. 5. It is obvious that
more reflecting elements provide larger passive beamforming
gains since they can exploit more DoFs to manipulate the
propagation environment. Moreover, comparing Fig. 5(a) and
Fig. 5(b), we see that additional reflecting elements provide
more pronounced performance gains for the CRB-constrained
schemes. Specifically, the achievable sum-rate increases by
40% in the target detection scenario, and 76% in the target
DoA estimation scenario. This phenomenon implies that a
larger RIS not only directs more energy to the target for
detection but more importantly, improves the accuracy of the
DoA estimation.

E. Impact of the Radar Sensing Performance

The impact of different radar sensing requirements is shown
in Fig. 6. We clearly observe the performance trade-off
between multi-user communications and radar target detection
or DoA estimation. In addition, a huge performance degrada-
tion for the “Separate” scheme occurs when the radar SNR
changes from 0dB to 2dB. This is because a tighter target
detection constraint requires more power in designing Wr,
thus leaving less power for optimizing Wc to maximize the
sum-rate.
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Fig. 6. Impact of radar sensing performance (N = 49, P = 30dBm).

VIII. CONCLUSION

In this paper, we considered a general case for RIS-assisted
ISAC systems, in which both the direct and reflected links
contribute to MU-MISO communications and radar sensing.
In addition to the sum-rate performance metric for multi-user
communications, we derived the radar SNR metric for target
detection and the CRB for estimating target DoAs. We formu-
lated the optimization problems that maximize the sum-rate
as well as satisfy a worst-case radar SNR or CRB constraint,
the transmit power budget, and the unit-modulus constraint of
the RIS reflection coefficients. Efficient alternating algorithms
were developed to solve the resulting non-convex problems.
Simulation results verified the advantages of the proposed
algorithms, illustrated the performance improvements intro-
duced by more resources, and demonstrated the performance
trade-off between communications and radar sensing with
limited resources. Motivated by this work, we will further
explore more application scenarios of RIS in ISAC systems,
e.g., active/multiple RIS, and some practical issues including
clutter suppression.

APPENDIX A

According to (15), the derivatives of η with respect to each
parameter can be calculated as

∂η

∂θ1
= αtvec{Ḣt(ϕ)WS}, (76a)

∂η

∂θ2
= αtvec{Ḧt(ϕ)WS}, (76b)

∂η

∂α
= [1 ȷ]T ⊗ vec{Ht(ϕ)WS}, (76c)

where Ḣt(ϕ) and Ḧt(ϕ) denote the partial derivatives of
Ht(ϕ) with respect to θ1 and θ2, respectively. Thus, plugging
(76) into (16), the elements of FIM can be calculated as

Fθ1,θ1 =
2|αt|2

σ2
r

ℜ{vecH{Ḣt(ϕ)WS}vec{Ḣt(ϕ)WS}}

=
2L|αt|2

σ2
r

Tr{Ḣt(ϕ)WWHḢH
t (ϕ)}, (77a)

Fθ1,θ2 =
2L|αt|2

σ2
r

ℜ{Tr{Ḧt(ϕ)WWHḢH
t (ϕ)}}, (77b)

Fθ2,θ1 = Fθ1,θ2 , (77c)

Fθ2,θ2 =
2L|αt|2

σ2
r

Tr{Ḧt(ϕ)WWHḦH
t (ϕ)}, (77d)

Fθ1,αT =
2L
σ2

r
ℜ{Tr{α∗

t Ht(ϕ)WWHḢH
t (ϕ)}[1 ȷ]}, (77e)

Fθ2,αT =
2L
σ2

r
ℜ{Tr{α∗

t Ht(ϕ)WWHḦH
t (ϕ)}[1 ȷ]}, (77f)

Fα,αT =
2L
σ2

r
Tr{Ht(ϕ)WWHHH

t (ϕ)}I2. (77g)

It is noted that we assume that SSH = LIK due to the
fact that sufficient samples are usually collected for parameter
estimation. Based on the above derivations, the sub-matrices
of F can be constructed as

FθθT =
[

Fθ1,θ1 Fθ1,θ2

Fθ2,θ1 Fθ2,θ2

]
, FθαT =

[
Fθ1,αT

Fθ2,αT

]
. (78)

F1(W, ϕ) ≜ Tr{Ḣt(ϕ)WWHḢH
t (ϕ)} =

K+M∑
k=1

wH
k ḢH

t (ϕ)Ḣt(ϕ)︸ ︷︷ ︸
A1

wk =
K+M∑
k=1

(q1,k + U1,kϕ)H(q1,k + U1,kϕ) (75a)

=
K+M∑
k=1

qH
1,kq1,k︸ ︷︷ ︸

q1

+2ℜ
{

ϕH
K+M∑
k=1

UH
1,kq1,k︸ ︷︷ ︸

u1

}
+ ϕH

K+M∑
k=1

UH
1,kU1,k︸ ︷︷ ︸

U1

ϕ, (75b)

F2(W, ϕ) ≜ Tr{Ḧt(ϕ)WWHḢH
t (ϕ)} = Tr{A2WWH} = uH

2 ϕ + ϕHU2ϕ + zH
2 (ϕ⊗ϕ) + ϕHC2(ϕ⊗ϕ), (75c)

F3(W, ϕ) ≜ Tr{Ht(ϕ)WWHḢH
t (ϕ)} = Tr{A3WWH} = q3 + ϕHu3 + uH

3 ϕ + ϕHU3ϕ + zH
3 (ϕ⊗ϕ) + ϕHC3(ϕ⊗ϕ),

(75d)

F4(W, ϕ) ≜ Tr{Ḧt(ϕ)WWHḦH
t (ϕ)} = Tr{A4WWH} = ϕHU4ϕ + 2ℜ

{
(ϕ⊗ϕ)HC4ϕ

}
+ (ϕ⊗ϕ)HZ4(ϕ⊗ϕ), (75e)

F5(W, ϕ) ≜ Tr{Ht(ϕ)WWHḦH
t (ϕ)} = Tr{A5WWH}

= ϕHu5 + ϕHU5ϕ + (ϕ⊗ϕ)Hz5 + (ϕ⊗ϕ)HZ5(ϕ⊗ϕ) + (ϕ⊗ϕ)HC5ϕ + ϕHC5(ϕ⊗ϕ), (75f)

F6(W, ϕ) ≜ Tr{Ht(ϕ)WWHHH
t (ϕ)} = Tr{A6WWH}

= q6 + 2ℜ
{
ϕHu6

}
+ ϕHU6ϕ + 2ℜ

{
(ϕ⊗ϕ)Hz6

}
+ (ϕ⊗ϕ)HZ6(ϕ⊗ϕ) + 2ℜ

{
(ϕ⊗ϕ)HC6ϕ

}
. (75g)
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APPENDIX B

In order to re-arrange each element of FIM as explicit
expressions with respect to W and ϕ, we first utilize the trans-
formation vec{ABC} = (CT⊗A)vec{B} to re-formulate the
term Ht(ϕ)wk as

Ht(ϕ)wk = (wT
k hd,tGTdiag{hr,t}+wT

k GTdiag{hr,t}⊗hd,t︸ ︷︷ ︸
U0,k

)ϕ

+(wT
k GTdiag{hr,t}⊗GTdiag{hr,t}︸ ︷︷ ︸

Z0,k

)vec{ϕϕT}

+hd,thT
d,twk︸ ︷︷ ︸

q0,k

. (79)

Similarly, the terms Ḣt(ϕ)wk and Ḧt(ϕ)wk can be re-
formulated as

Ḣt(ϕ)wk = q1,k + U1,kϕ, (80a)

Ḧt(ϕ)wk = U2,kϕ + Z2,kvec{ϕϕT }. (80b)

Then, the functions F1(W, ϕ) ∼ F6(W, ϕ) are defined and
re-arranged in (75), presented at the bottom of the previ-
ous page. Considering that the derivations are similar and
straightforward, we only present the detailed derivations and
expressions for F1(W, ϕ). The details for other variables
irrelevant to ϕ can be obtained in the same way and are
omitted in this paper due to space limitations.
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