GACER: Granularity-Aware ConcurrEncy Regulation
for Multi-Tenant Deep Learning

Yongbo Yu!, Fuxun Yu?, Zhi Tian!, Xiang Chen?
1George Mason University, 2Microsoft, 3Peking University
yyu25@gmu.edu, fuxunyu@microsoft.com, ztian1@gmu.edu,xiang.chen@pku.edu.cn

Abstract

As deep learning continues to advance and is applied to increas-
ingly complex scenarios, the demand for concurrent deployment
of multiple neural network models has arisen. This demand, com-
monly referred to as multi-tenant computing, is becoming more
and more important. However, even the most mature GPU-based
computing systems struggle to adequately address the significant
heterogeneity and complexity among concurrent models in terms of
resource allocation and runtime scheduling. And this usually results
in considerable resource utilization and throughput issues. To tackle
these issues, this work proposes a set of optimization techniques that
advance the granularity of computing management from both the spa-
tial and temporal perspectives, specifically tailored to heterogeneous
model compositions for deep learning inference and training. These
techniques are further integrated as GACER — an automated opti-
mization framework that provides high-utilization, high-throughput,
and low-latency multi-tenant computing support. And our experi-
ments demonstrate that GACER significantly improves the overall
resource utilization and consistently achieves outstanding speedups
compared to native GPU computing frameworks and existing state-
of-the-art optimization works.

ACM Reference Format:
Yongbo Yu!, Fuxun Yu?, Zhi Tian!, Xiang Chen®. 2024. GACER: Granularity-

Aware ConcurrEncy Regulation for Multi-Tenant Deep Learning . In [EEE/ACM

International Conference on Computer-Aided Design (ICCAD ’24), October
27-31, 2024, New York, NY, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3676536.3676718

*Corresponding author: Xiang Chen (xiang.chen@pku.edu.cn)
1 Introduction

The explosive success of deep learning techniques in various cog-
nitive tasks, such as image classification and speech recognition,
has made neural network models the hot spot of computing systems
research. One of the primary drivers behind this trend is the support
provided by GPUs, which offer excellent computing capacity and
parallelism capability [1, 2]. Despite the active emergence of various
accelerators or systems based on ASIC and FPGA, GPUs remain
the most widely adopted platform in practice, accounting for >85%
market share in both cloud and edge applications [3].

However, for a long time in the past, due to the substantial pa-
rameters of neural network models, many research works tended to
adopt a generic setting: one GPU instance could only host a single
model. And even many recent outstanding efforts have not stepped
out of this rut (e.g., MetaFlow [4], IOS [5]). However, cutting-edge
developments have gradually revolutionized this setting: With the
miniaturization of neural networks and the massification of GPUs, it
is now possible for a single GPU to host multiple models simultane-
ously [6, 7]. Furthermore, the need for concurrent model processing

This work is licensed under a Creative Commons Attribution International 4.0 License.

ICCAD 24, October 27-31, 2024, New York, NY, USA
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-1077-3/24/10.
https://doi.org/10.1145/3676536.3676718

also scales up with multi-task or multi-modality intelligence integra-
tion, such as in autonomous driving [8—10]. Along with this trend,
GPU manufacturers like NVIDIA actively promote related software
and hardware techniques [11-13]. Thus, “multi-tenant” deep learn-
ing computing becomes more and more prominent, especially for
GPU-based systems.

However, multi-tenant deep learning presents a greater challenge
than conventional single-tenant deployment regarding computing
management. This is due to the increased heterogeneity and com-
plexity of the concurrency of multiple neural network models, which
can vary in operator composition, structural design, and model
scale [14, 15]. Unfortunately, these issues are not well addressed in
current GPU computing, even with emerging supporting techniques
from manufacturers: (1) When it comes to resource allocation, cur-
rent techniques for issuing concurrent models into the GPU either
result in using fixed hardware resource budgets or competing models
for resources in a greedy manner. These approaches at the model
level can lead to the wastage of hardware capabilities or resource con-
tention and the corresponding overhead [16-18]. (2) When it comes
to runtime scheduling, though many recent works have dived into
the operator level, most of them either cannot handle multi-tenant
scenarios or have overlooked the multi-tenant coordination overhead,
leading to ineffective and unscalable runtime management [5, 19].
(3) When rising to the system level for comprehensive optimization,
current approaches can only consider a certain compute stack, or a
single granularity optimization from spatial or temporal. Some of
these single-dimensional optimizations bring huge overheads, while
others are too narrow to deal with complex multi-tenant scenarios.
This hinders the flexibility of multi-tenant computing deployments
and ignores and obscures many optimization opportunities.

Given these observations, the primary motivation for multi-tenant
deep learning optimization is to develop a fine-grained and feasible
coordination computing framework to resolve resource contention
and enhance complementary resource utilization across different
model tenants with minimal regulation overhead. Therefore, several
optimization expectations for multi-tenant deep learning can be de-
rived: (1) From a spatial perspective, the resource allocation scheme
requires an operator-level granularity of regulation to dynamically
control the resource consumption of operators, thus adapting to
the resource consumption dynamics of intra-model operators and
therefore complement intra-model resource requirements [19, 20]
(2) From a temporal perspective, the granularity of multi-tenant run-
time scheduling should not only deepen to the operator level, but
also improve the manageability to regulate the runtime overhead
and balance the overall performance given different deployment
complexities [15, 19] (3)From the perspective of a cross-computing-
stack system optimization, co-optimization across computing stacks
should be used to circumvent the limitations of a single stack so as to
achieve complementary strengths of different optimization domains.
These optimization expectations from both the spatial and tempo-
ral perspectives point to the same optimization focus of this work:

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:54:09 UTC from IEEE Xplore. Restrictions apply.

ICCAD '24, October 27-31, 2024, New York, NY, USA

DNN-A Operator
Multi-Tenant DFGs

DNN-B Operator DNN-C Operator

Multi-Streams GPU Deployment

[cpu Thread}»[cu DA Streanﬂ"
[CPU Thread]—b[CU DA Strean}b
Datal»Conv Rel
[Pata}>Conv-> el [cpu Thread]-»[cu DA Streanﬂ-b
@®DL (2 DFG (3 Operator @) Runtime > (5 GPU
Framework|™ |Generate Generate Control Resource Deploy

Figure 1. Multi-Tenant Deep Learning with GPUs

Convtcan\
Relu

>
Conv—Con >
>

To optimize the computing performance across multiple computing
stacks and advance the current multi-tenant concurrency regulation
granularity from the both spatial and temporal domains.

Centering on this research focus, our work extensively examines
the entire GPU-based system stacks and conducts a comprehensive
analysis of current multi-tenant computing issues with state-of-the-
art techniques. Subsequently, we propose a set of optimization tech-
niques that advance the granularity of computing management in
both the spatial and temporal management domains, significantly
improving runtime performance for both deep learning inference
and training. The contributions of this work are as follows:

o We reveal computing issues of multi-Tenant deep learning on both
front-end graph computing and back-end CPU-GPU coordination
stages and proposed advanced spatial and temporal optimization
schemes methods to solve these issues.

o In the spatial domain, we proposed a dynamic compiling method
by rewriting the model graph structure and therefore to enhance
the operator split and fusion manageability for resolving the model
contention and exploits resource utilization.

o In the temporal domain, we innovatively escalate the CPU-GPU
synchronization mechanisms by modifying the CUDA Streams
and introduce fine-grained synchronization pointers to further
coordinate run-time graph scheduling at the operator level.

e The proposed techniques are integrated into an automated op-
timization framework — GACER, which leverages a low-cost
search method to identify the particular spatial and temporal de-
ployment configuration for both offline and online multi-tenant
deep learning scenarios. This framework is lightweight and flexi-
ble and can be modified for any models.

GACER consistently provides high-utilization and high-throughput
computing support to multi-tenant deep learning on GPUs. Com-
pared to conventional computing framework without specific multi-
tenant support (e.g., TVM), GACER could consistently achieve al-
most ~70% speeds up. And compared to state-of-the-art multi-tenant
optimization works, it could also achieve ~30% acceleration with
~40% resource utilization enhancement, and demonstrate outstand-
ing capabilities for even more complex scenarios.

2 Background and Motivation

2.1 Multi-Tenant Deep Learning Deployment

This work focuses on a generic multi-tenant deep learning deploy-
ment setting on GPUs [26]. This process can be summarized as
five execution stacks at the bottom of Fig. 1. The stacks 1), @), ®
are computational front-end, and the stacks @, @ are back-end.

When multiple heterogeneous DNN models are deployed on a single
GPU, and each model is defined by the DL frameworks (1) and
the model compiler compiles the model structure into a data flow
graph () DFG) that defines the computing sequence of a series
of different operators by layers (e.g., Conv, ReLu, etc.). And these
generated operators ((3)) have a particular computational pattern and
resource requirements, including computing resources measured by
the occupancy of streaming multi-processors (SM), and memory
resources measured by memory bandwidth utilization. The DFG
compilation is generally performed on the CPU side, and the DFG
of each DNN tenant is wrapped into one or several threads for later
GPU deployment. It is worth noting that the simultaneous multi-
threads wrapping process from multi-DFG has less overhead than
initializing an operator at a time. On the GPU side, the runtime
control stack (@) uses several GPU computing streams [12] to con-
trol when and how operators are dispatched to the physical GPU
resource pool ((3).

2.2 Multi-Tenant Computing Support

Emerging GPU Techniques: There are some new features pro-
posed by NVIDIA, such MIG [13] and MPS [11], which enable
GPUs to divide the resource pool ((3)) into multiple concurrent por-
tions for multi-tenant deployment. Although these methods provide
GPUs with spatial resource management capabilities, they often
suffer from reconfiguration overhead and a lack of certain runtime
flexibility. Unlike MIG and MPS, Multi-Stream (MS) [12] differs
from the hardware resource partition mechanism; it could dynam-
ically share resources when running multiple tenants, facilitating
resource budget adjustment for multi-tenant models in runtime con-
trol stack (). This is usually done by the native black-box GPU
scheduler, often resulting in considerable resource contention and
inappropriate scheduling cases [19], but we could leverage certain
APIs to adjust the dispatching results.

State-of-the-Art Optimization Works: Based on these emerging
techniques, many front-end and the back-end optimization works
have been proposed, Table 1 gives the reviews of recent works for
multi-tenant computing. Some studies adjust the batch size on the
framework stack () and resource adaption with MIG or MPS to
implement software-hardware co-optimization for enhancing multi-
tenant resource sharing [18, 21]. KRISP [22] is a optimization
method on operator generation stack (3)) and use the AMD’s CU
masking mechanism to adjust the number of CU occupied by each
operator when deployed with multiple models. Meanwhile, very re-
cent works focus on DFG ((2)) and runtime stack (@) and expand the
computing granularity of MS into the operator level [5, 19, 23, 27].
These works are breaking the granularity of the runtime control,
thus enabling more flexible concurrent deployment of GPUs. For
instance, AutoMT [19] utilizes MS and implemented inter-operator
scheduling with DFG for optimizing multi-model by balancing the
workload to modify greedy resource contentions. In summary, cur-
rent approaches are optimizing how multi-tenants share GPU re-
sources across both spatial and temporal domains.

In addition to reviewing the basic mechanisms, pros and cons
of different techniques, Table 1 also provides a comparison of the
optimization granularity. While these works enable multi-tenant
deep learning on GPUs, most are still limited to a coarse granularity
(esp. model level) and focus on a singular optimization domain.

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:54:09 UTC from IEEE Xplore. Restrictions apply.

ICCAD '24, October 27-31, 2024, New York, NY, USA

GPU SM Pool [CICJC] Models Operator [] Residual
B e e 10 7 o e o i o
PR IO i e ey o G s o o e
DNN-3 AT Rttt (|| EIET
DFG Stage: 1st nd = Spatial Resource Underutilization ~ Temporal Resource Underutilization Time

Figure 2. GPU Resource Utilization Analysis from Spatial and Temporal Perspectives

3 Design Motivation and Challenges

This work focuses on advancing the manageability and efficiency of
multi-tenant deep learning at the fine-grained operator-level and ex-
panding the spatial-temporal optimization space for comprehensive
performance escalation from front-end and back-end stacks. Here
we refer to the unused portion of the GPU resources as “residue”,
and a GPU SM pool-oriented example is shown in Fig. 2, which is
further analyzed from both spatial and temporal perspectives.

Persistent Resource Utilization Issues Fig. 2 highlights common
multi-tenant computing issues that arise when deploying heteroge-
neous DNN models on a GPU with MS techniques and the ideal
operator-level resource allocation. In this process, each operator is
issued from different model DFGs into CUDA streams to share the
computing resource at each cycle. Despite the utilization of the best
available multi-tenant deployment settings above, resource under-
utilization issues are still inevitable. In most deployment scenarios,
even with operator-level resource allocation in place, the total re-
source requirements from concurrent tenants of a DFG stage will not
exactly match the available GPU resource volume. In Fig. 2, when
the three operators Conv, MLP and ATT in the 1st stage are simulta-
neously sent to the streams for deployment, only the first Conv from
DNN-1 is deployed in time cycle Ty, whereas the MLP from DNN-2,
ideally processed concurrently with the orange layer, is postponed
to time cycle Tj for activation due to a lack of available resources.
This inability to deploy results in parallel conflict and thus spatial
resource under-utilization. On the other hand, the unpredictable or-
der of operator execution makes some operators which could been
concurrently executed, but to be delayed, such as the Relu of DNN-1
in Fig. 2. This operator can be deployed at time cycle T; without

CPU =
e e

Thread Under Emsmwsw s Parallel

CUDA Utilization Conflict
Stream 1|4 B 1] B . CEEEsen .
Stream 2

GPU - iOO%
Utilization

Figure 3. Issues Shown in NVIDIA Nsight

computational dependency errors. This situation leads to some tem-
poral resource under-utilization. To illustrate this persistent issue, the
fig. 3 displays an empirical example using the NVIDIA Nsight [28].
As shown there: In some GPU cycles, concurrent operator deploy-
ment cannot be established for parallel processing, resulting in even
worse resource under-utilization. In other cycles, the concurrently
deployed operators are unable to utilize the SM pool fully.

Spatial Residue Optimization by Operator Transformation
is well known to adjust the operator workload by compiling stack
optimizations like split into multiple smaller operators. However,
when it comes to the multi-tenant scenario, the operator transforma-
tion becomes more challenges in terms of complexity and granular-
ity. Therefore, a more dynamic compiling mechanism is urgently
needed to adjust the operator workload and general the DFG. How-
ever, certain challenges arise: (1) Current workload adjustment is
applied to all operators through batch size direction in the DL frame-
works [18, 21]. These adjustments are model-level coarse-grained,
which can leave significant fine-grain under-utilization. Meanwhile,
these works reliance on model-scoped partitioning techniques, exist-
ing spatially partitioned inference servers incur high reconfiguration
overheads (in the 10’s of seconds). Even though some work [22]
try to adjust the size of each operator to solve the above problem,
such tuned operators cannot take advantage of optimized operator
acceleration libraries (e.g., CuUDNN), leading to deployments that
are not always optimal. Existing frameworks need to be modified
at the library-level so that the model structure can be dynamically
compiled into different DFGs at the front-end, thus enabling each
operator to be split into multiple workloads for deployment. And
this process should be flexible, maximizing the effectiveness of ex-
isting optimization systems. (2) Meanwhile, operator transformation
introduces split and fusion to achieve operator-level workload parti-
tion. While the reconfiguration overhead of these operations is only
microseconds, the optimization involves multiple operators in multi-
tenant scenarios. Therefore, the optimization complexity also scales
up to determine the appropriate operator for workload adjustment or
split, taking into account the transformation overhead.

Temporal Residue Optimization by Operator Reordering is
also applied to adjust operator computing sequences by manipu-
lating the DFG. When it comes to the multi-tenant scenario, an

Table 1. Granularity and Performance of Recent Works on Multi-Tenant DL. Computing Optimization

Major Stack Techniques Approaches Granularity Remaining Issues
- . o Multi-Tenant with MPS o Coarse-Grained Optimization
;§ * O Framework - Gslice[18], Salus(21] o Batching Configuration * Model Level o Reconfiguration Overhead
X o Operator Resizing e Only Support AMD GPU
A

* ® Operator KRISP[22] e Resource Partitioning * Operator Level o Incompatibility with Acceleration Libraries
- * 2 DFG AutoMT[19] o DFG-based Scheduling with MS o Operator Level o Unregulated Resource Allocation
g o (@) Runtime POS[23] o Resource Contention Optimization P o Runtime Regulation Overhead
’§~ o @ Runtime EdgeBatch [24] o Time-Sliced Sharing e Sub-Model/ e Tenant Switch Overhead
& Gpipe [25] o Runtime Singe-Tenant Switch Model Level e Not Really concurrent

3

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:54:09 UTC from IEEE Xplore. Restrictions apply.

ICCAD "24, October 27-31, 2024, New York, NY, USA

GPU A100 GPU 1080Ti

550

150
25

Throughput (x10000)

75% 100% 125% 150% 75% 90% 115% 130%
Under Light Severe Sequential
Utilization Competition Exe cu

*Bia * Iill IIII ot

Ts To time Ts
Flgure 4. Operator Deployment Analysis

escalated CPU-GPU coordination mechanisms is needed to seg-
ment multi-DFGs into several operator stages and introduce fine-
grained synchronization at back-end. In addition to conventional
scheduling issues, such as layer dependency, new challenges are
posed: (1) Most of current runtime scheduling work focus on single
DFG and cannot handle multi-tenant scenarios [5, 23]. Multi-tenant
runtime control involves multiple operators across various DFG set-
tings, resulting in unprecedented dynamic complexity. Although the
CPU-GPU synchronization provided by MS could achieve model
reordering, specific library-level optimization is required to mod-
ify the CUDA Stream to introduce fine-grained synchronization.
(2) Even, some work consider the complexity of multi-DFGs, they
overlook the multi-tenant coordination overhead (~microseconds),
which is caused by CPU and multi-stream synchronization, thus
leading to ineffective and unscalable runtime management. There-
fore, a significant DFG reconfiguration delay would be introduced,
requiring an effective runtime overhead regulation scheme.

Spatial and Temporal Co-optimization: It is important to note
that, both spatial and temporal optimization involves more than just
minimizing residue and thus improve utilization; it also requires
identifying the diverse "sweet-zones" of the GPU resource pool and
make the total resource utilization falls in this "sweet-zone". We con-
ducted a straightforward experiment. By simultaneously running two
identical operators (e.g., Convolution or MaxPooling) and adjusting
their batch sizes, we varied each operator’s SM occupancy. We then
examined the correlation between throughput (calculated as the total
batch size divided by the combined runtime of both operators) and
the overall SM occupancy. Each data point in our study represents a
unique instance of concurrent operation, as exemplified in Fig. 4.

Our experiments on two distinct GPUs, NVIDIA A100 and
1080Ti, yield insightful results. On the A100, when total resource
utilization is below capacity, the throughput is comparatively lower,
as indicated in A. Intriguingly, the peak throughput doesn’t occur at
100% resource utilization, but rather at around 115%, as indicated
in B. At this point, there is competition sharing in some of the SMs,
but this actually improves the utilization of resources. Beyond this
point, increased competition between operators leads to a reduction
in throughput (C). Further enlarging the size of the operators results
in a fallback to sequential execution due to deployment constraints
(D), as in the Tj and T; in Fig. 2. A similar pattern is observed on
the 1080Ti, though it emerges sooner, attributable to the 1080Ti’s
finer granularity in SM deployment and lower SM sharing power.

Hence, the objective of GPU optimization is to break the deploy-
ment and scheduling granularity by operator transformation and
reordering to change the size of the residue. This is a full-stack

optimization that ultimately aims to make GPU resource utilization
from A, C and D to B. Consequently, the subsequent section will
concentrate on strategies for optimizing residue.

4 Granularity-Aware Multi-Tenant Regulation

Fig. 5 shows the architecture of GACER. We describe the key com-
ponents of GACER and their roles below.

4.1 Problem Formulation

Multi-tenant DNN consists of n models: M1, M3, ..., Mp. And each
model M can be represented by a DFG with a series of operators O.
So we have the model operator list M, = [Op.1,0p.2, ..., On,i], and
each Oy ; has two attributes Uy, ;, Ty ;, U is resource utilization (SM
occupancy), and T is execution time.

Optimization Objective: We abstract the total GPU SM resource

as resource utilization Ugpy . The residual in time cycles S¢ could
be formulated as

Rs, : [U,T] =Rs, : [Uspu — Ut, Ty]. (D
We sum Rs, across all cycles to compute the total residue R.
R=) (Uspu ~Up) *Ti. @
Sp— 5t

Our objective is to minimize R, and in the equation 2, R has two
variables: the operator size U, ; and computing sequence So — St,
and the former is determined by BSy, ;. Therefore, we could optimize
two sub-objectives, finding the appropriate BS,; and Sy — S; to
minimize the R.

T (BSn,i» So — St) — MinR, (3)

where 7 is an approximation approach.

4.2 Spatial Utilization Optimization
We design a novel dynamic compiling method by rewriting the
model graph structure to optimize the first sub-objective.

DFG Dynamic Compiling allows a model’s DFG to be de-
ployed at a finer granularity. (1)Finer-grained operator splitting: An
original operator is split into multiple copies of the operator using
the split operation, and each operator has a sub-batch as input for sep-
arate computation. The result of the computation is then fused back
to the original operator (Fig. 6 (ii)). (2)Operator workload adapta-
tion: The batch size for each sub-operator relates to the size of the
workload for each operator, and adjusting the appropriate size can
effectively reduce the spatial residual in Fig. 6 (i). (3)Transformation

Stacks Original Deploy

@oL Model
Definition l-am::'ucue
(2. DFG torech. sl "
Generate Single-DFG Stage Segment _modules_

- Single-Worlkdoad Opera
o), msent % s"'“"" S Diménson AP
Generate nninear()— 9”"“’*\" torch.chunkf),

Insert Function Function Support

torch.catf)
Greedy
() P2 e o[o
Made] DNNI - Pointer Insert
Contral _J et 0 R rins
Made] DNNZ) Scheduling
ooy il T

Figure 5. GACER Architecture Design

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:54:09 UTC from IEEE Xplore. Restrictions apply.

Input Batch DFG Dynamic Compiling GPU Timeline
BS; .—> 0 +» q —» o |:|q
U B N
Residual

._—b- o +» q —»
(i) ._—E: Py —* Fusion

P2

o [la

Split BSh

A
Split Overhead

N -

o A
i) @ * & M) —— g =
'a+h e —
- L4 - Time € N :l“‘ ¢ i

Fu sior‘]r Overhead

ICCAD "24, October 27—31, 2024, New York, NY, USA

DFG Scheduling GPU Timeline
-+ A —» D —» A c
. D
iv
(v) » B ——» a
-+ £ —> >
Residual "
1
-+ A -» D —» AE 5
vy ————— B —» L
»> ¢ +—» c i
_—’
Pointer Pointe’r Overhead
I* 1
: I 1
- * D..
> A > D i i D
1
. Time
_—

Figure 6. Operator Transformation and Reordering

overhead invoking optimization: The operator transformation reg-
ulation must introduce additional split and fusion operations along
the batch size dimensional, which also brings additional overhead
(Fig. 6 (ii)). The size of this overhead is related to the hardware, for
example, on NVIDIA 1080Ti GPU, this time is about 15us. There-
fore, some layers with GPU computation time smaller than this
overhead will not be able to gain after the transformation, e.g., split
Q brings more overhead than the original residual in Fig. 6 (iii).

Dynamic Compiling Support: The current DNN model defini-
tion structure employs the same batch size for all layers, resulting in
a model-level granularity that fails to consider varying workloads
in each layer. Therefore, we extend the layer structure of the model
in the DL framework, which enables our framework to split the
batch size of each operator. We rewrite the API model definition us-
ing PyTorch’s some operator dimension APl "torch.chunk ()"
and "torch.cat ()". The "chunk()" can decompose the opera-
tor’s workload in the batch direction. Thus the operator splits into
multiple copies for separate calculations. Then we can perform a
"cat()" operation on the result to restore the input feature map size.
By decomposing heavy workload operators into smaller ones and
concatenating the resulting micro-batches, we can effectively control
runtime resource consumption. This case does not affect the feature
map of each input, and thus the result of the computation.

Operator Split and Fusion: To find which operator should be
split, we need to determine the size of the current time cycle residual
Rs, and the resource usage corresponding to the different batch sizes
of the next operator. We need to make sure that the split batch size
can fit into the current residual.

The operator size is determined by the layer structure LS, the
input size IS, and the batch size BS. We analyze DNN operators with
different batch settings using the GPU analysis tool, NVIDIA Nsight
Computing [29], and set up offline lookup tables:

O[U] = fi (0, BS) and O[T] = fr(O, BS). @)

‘We use the IS, LS as the feature of O. With the above lookup tables,
we can also simply set up two reverse lookup tables to lookup BS
based on U and T.

BS = fas(0,0[U1) or BS = fis (O, O[T]). 5)

Split in stage: We calculate the Rs, of time cycle S; within some
operators stage according to Eq. 1. We then give two conditions Eq. 6
and 7 to determine the appropriate batch size. The conditions show
that this residue can fit at least one batch of the potential operator

Op,; from resource utilization and execution time, respectively.

R.S} [U] > fu{on,j,BS = 1}, where On,j € St and YOp, ¢ 5¢ (6)

Rs, [T] > fr(On,i, BS = 1) + Transformation Overhead, ,
where On,i € St+1 andVOn ¢ St
If there is Oy, ; satisfying the above condition, we then calculate the
feasible batch using Eq. 8, otherwise skip S; into S;,1.
Min(fss(Onis Rs, [U)), fss (Ons, Rs, [T1) ®)

‘We compute feature maps from different batch sizes and fuse the
feature maps as the output. Then, we go to the S¢.1 and repeat the
above calculations until stage last period. At this point all residues
within the stage are eliminated, leaving only the last residue.

Q)

4.3 Temporal Utilization Optimization

In the temporal domain, we break through multiple DFGs into fine-
grained operator segments, and therefore operator scheduling across
multiple different models is implemented.

DFG Graph Scheduling: (1)Finer-grained stage segmenta-
tion: For reordering the operator execution sequence, we introduce
specific pointers into the DFG. The pointer is a CPU/GPU synchro-
nization mechanism that ensures operators continue to be deployed
only after previously issued operators have been completed. Through
these pointers, we could divide the DFGs into several different stages
(Fig. 6 (v)). Such stage splittings ensure the operators only share
the assigned resources in the same stage, thus supporting the stage-
level concurrency control. (2)Stage-level concurrency control: By
adjusting where the pointers are inserted, we could control how
many operators are assigned in each stage. This enables us to reduce
the temporal residual, such as the residual in Fig. 6 (iv). (3)Pointer
overhead invoking optimization: However, the reordering method
uses synchronization operation which is the runtime control, so this
inevitably introduces scheduling overhead, as shown in Fig. 6 (vi).
The GPU waits until the CPU finishes synchronizing the pointer and
then sends a new operator to the GPU. This situation can lead to a lot
of GPU wait time, resulting in additional residual resources. Adding
a large number of pointers leads to frequent GPU waits, which can
seriously slow down the overall efficiency of the GPU.

Escalated CPU/GPU Coordination: To support this method,
we also re-design the DNN API at the library level. This requires
simultaneous efforts in both stacks (2) and (4): stage segment and
pointer insert, as shown in Fig. 5. For the stage segment, we use
some layer structure API splitting layers into different stages without
changing the computational dependencies between layers. First, we

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:54:09 UTC from IEEE Xplore. Restrictions apply.

ICCAD '24, October 27-31, 2024, New York, NY, USA

use the "torch.model .named_modules () " method to get all
the model layer objects and then use "torch.nn.Sequential"
to refine all the objects into several stages of DFG objects. For
pointer insert between different stages, we use the runtime control
API "torch.cuda.stream.wait_event ()" to insert syn-
chronization pointers to different stages. At each time, the CPU
will only send operators within the same stage from different DFGs
to different streams of the GPU for deployment, so that we could
only co-run the layers in the same stages. Then we insert the syn-
chronize API "torch.cuda.synchronize ()" at end of the
stages. This situation forces the CPU to wait for all GPU streams to
finish computation and achieve CPU/GPU synchronization before
proceeding to the next stage for parallel computation. Based on the
above operations, we can implement operator reordering and thus
fine-grained scheduling of operators.

Run-Time Graph Scheduling: The runtime deployment case
in Fig. 6 (v) can be abstracted as a series of operators concurrently
occupying the GPU resource pool. We divide this process into mul-
tiple periods S; according to the different resource occupancy, and
the resource occupancy remains the same within the same S; for
several time cycles. Therefore, S; is a binary array, the first index is
the aggregate SM occupancy U; of several concurrent operators and
the second is the the number of sustained time cycles T;. Therefore,
the period in Fig. 2 can be abstracted as following:

So : [Ua+Uc, Tal, S1: [U, T, Sz : [Up, Ipl, ...

Sy : [Up, T;], where Uy = Z Uni, and Uy <= Ugpy 9
Un,i in St

Thus, S; is possible to react to the operators’ computation sequence.

There are two considerations, the number of pointers (the number
of stages - 1) and the location of the pointers. For the number of
pointers, we adaptively determine it based on the computation time
of the DFGs. Since each model may have a different computation
time, we first align the different DFGs. We pair the computation se-
quences of multiple models so that the operators of different models
can be evenly distributed to multiple stages. This method is crucial
for maintaining a balanced workload during the execution of multi-
ple models, thus avoiding the overall under-utilization of GPUs in
the tail of some models with too long computation time.

Stage Initialization: We set the number of stages based on the min-
imum operator count Min(|M,|) in any model for even distribution.
Then, we divide other models into equal stages, considering each
model’s total execution time:ZTeo)OeMj Tj,i/min(|Mp]). Operators
on the boundary of two neighboring stages are assigned to the side of
the stage occupied by the operator according to the occupancy ratio.
Therefore, we divide the operators of all models into Min(|Mp|)
stages and also get an initialized pointer location.

Scheduling Cross Stages: The purpose of this step is to adjust
the position and number of pointers to reduce residual. We fill in
the last period residue in stage using the operator within the next
stagey,1. We need to determine whether this residue is greater than
the computation time required for potential O.

Rs, [T] >Op;[T] + Pointer Overhead,

1
where Op ; € St+1 and VO, ¢ St 10

If Rs, [T] is less than that, then the pointer here will bring less
overhead than gain, in which case the pointer will be deleted. If
Rg, [T] is greater than that, then continue to determine whether the

utilization is sufficient:

Rs, [U] > Op,i, where Op; € Sp+1 and VO, ¢ S ¢8))

If the Eq. 11 holds, then the operator Oy ; can be moved in. After
moving in the new operator, recalculate the residue of the tail period
and go back to the start of Scheduling Cross Stages to determine if
the next operator can be moved.

Delete Pointer: After the above synchronization overhead analy-
sis, we check if the pointer can be removed. There are two ways to
delete a pointer besides the way in Eq. 10. First, if the time duration
of stagey. < synchronization overhead, then delete pointer and merge
stagey. and stagey..1; Second, if stagey has only one operator, then
delete pointer and merge stagey and stagey, . After deleting, the
algorithm goes back to Step 2, until finishing all stages.

4.4 Spatial and Temporal Joint Optimization

Algorithm 1 Joint Optimization Algorithm for DFGs

Require: N DFGs
Ensure: The optimization strategy
1: Step 1: Stage Initialization
2: for Ugpy = 90%; Ugpyu < 125%; Ugpy += 5% do
3: Step 2: Split in stage
4 for stage; from 0 to k do
5 for each S; in stage; do
6: Calculate the residual Rg, according to Eq. 1.
7
8
9

if Eq. 6 and 7 are true then
Compute the feasible batch using Eq. 8.
else Skip S; to the next period S;41.

10: Step 3: Reordering Cross Stages

11: for last Rs, in stage; do

12: if Eq. 11 is true then

13: if Eq. 10 is true then

14: Move pointer; Go back to step 3.

15: else Go to Step 4.

16: else Delete the pointer;i + +; Go to Step 2.

17: Step 4: Delete Pointer

18: Check if the pointer here can be removed.

19: Step 5: Strategy Profiling

20: Run the current optimization strategy and record the latency.

21: Go to Step 1.

22: Step 6: Compare and Output the Final Result

23: Compare the latency under different Ugpy and take the shortest
latency as the final result.

Based on the formulation and regulation design, we propose our
spatial and temporal co-optimization framework to minimize R by
finding the optimal batch size for each operator and multi-DFGs’
computing sequence. We propose a 6-step optimization method, as
shown in Algorithm 1, which is a combination of heuristics and
search which allows it to find effective results quickly.

5 Performance Evaluation
In this section, we evaluate the proposed system performance, includ-
ing end-to-end speedup and GPU utilization enhancement targeting
multi-tenant batched-job tasks [30].

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:54:09 UTC from IEEE Xplore. Restrictions apply.

mmmmCuDNN-Seq === TVM-Seq Stream Compe.titive
Parallel sharing

—1 AutoMT w3 Split ——1Reordering ——— GACER

18 1.65

o 16 151 135
K] 135 e o L8 = 151(1.49
4 13 - 138 =

S 124333 13 = 13 ? =
8 212 = = 1.15 ’ =
3 1.08) = 11 = i ’ =
] 1 - 1 - 1 ’ -
g - - =
< J = I = I NS
08 = = =
ALEX+V16+R18 R101+D121+M3 R50+V16+M3

1.66 1.67

18 1.61 1.62 1.65
2 157) 15 15861 1570
% 142 4 F = 144 F = ﬁ =
S - - 131 -
NE YN e PNE
g, NS 11'12 Ao 0 NS
Q — — —
§ NE 1 RE 1 RE
08 I = = =
Bert+DLRM+R101 R34+LSTM+BST Bert+LSTM+BST

Figure 7. Runtime Performance of GACER (with A100)

5.1 Multi-Tenant Setting

Model Type: In this work, we selected three types of DNN models
for multi-tenant combinations, namely, convolutional-based vision
CNN models (including AlexNet (Alex), VGG16 (V16), ResNet18
(R18), ResNet34 (R34), ResNet50 (R50), ResNet101 (R101), Mo-
bileNetV3 (M3) and DenseNet (D121)); language model (including,
BERT-base [31], LSTM [32]), and recommendation model (includ-
ing DLRM [33], BST [34]).

Model Workload: In this work, we manipulate the workload
mainly with the computing batch size, which is the most fundamental
workload regulation unit, that could also demonstrate other potential
workload factors such as input sizes. Specifically, for vision models,
we select a batch size range of 4 to 128 with an image scale of
224x224x3, which covers most of the intervals in the inference.
For the language model, we use the emotion classification dataset
ML2020spring with batch size 128. In the case of recommendation
models, we chose batch size 64 on the Amazon dataset Book [35].

Hardware Variation: We take into consideration three different
GPUs, namely, 1080Ti, P6000, and A100.

State-of-the-Arts: Given different hardware platforms, we adopted
several state-of-the-art works for comparative evaluation. Regarding
particular resource allocation optimization and runtime scheduling
strategies. CuDNN-Seq [36] is the most fundamental method, which
only relies on the default sequential graph compiling of Pytorch
and basic CuDNN operator optimization. TVM-Seq [37] is an op-
erator optimization method that adopts the TVM library to search
for the optimal kernel for each operator. However, it is limited to
sequential execution of these kernels. Stream-Parallel [12] is the

100 (1.6X)
High-Utilization

40
20

SM Occupancy (%)
(=}
o

0 100 200 300 400 500
CuDNN-Seq Stream-Parallel GACER

Figure 8. Analysis on GPU Utilization Enhancement

ICCAD '24, October 27-31, 2024, New York, NY, USA

concurrent execution strategy from native GPU multi-stream support.
Competitive-Sharing [14] is a spatial technique based on MPS and
allocates the resources to each model based on the models’ FLOPS.
This method is used to verify the efficiency of a static resource
allocation method. AutoMT [19] coordinates DNN computing on
the runtime level and maintain a continuously balanced resource
utilization across the entire inference process. However, this method
only supports convolutional networks.

5.2 Overall GACER Performance

Before analyzing the four factors, we first show the GACER general
performance by comparing the general latency of the baselines and
our methods GACER. To demonstrate the effectiveness of each
design component, we decompose and evaluate our method step
by step, i.e., using spatial granularity regulation (Split), the method
only using temporal granularity regulation (Reordering), and the
combined optimization (GACER). The results are shown in Fig. 7.
All latency is normalized by the CuDNN-Seq baseline to show the
relative acceleration ratio.

Based on the results, it can be observed that our framework
GACER could consistently yield 1.35x~1.67x speed-up compared
to the sequential baselines across all six model combinations. The
Stream-Parallel solution also yields a certain speed-up than CuDNN-
Seq, but the acceleration ratio is much less, usually 1.24x~1.51x.
Also, the Competitive-Sharing acceleration effect is very unstable,
specifically due to the fact that fixed resource allocation cannot
satisfy many particularly unbalanced model workload scenarios. Au-
toMT only supports the CNN model, so it does not yield results on
some model combinations. However, even on the CNN model com-
bination, it performs poorly in combinations with simpler models,
such as only 1.25x acceleration on the first combination.

To delve deeper into the performance of model combinations
under parallelization, we analyze GPU runtime statistics to assess
overall GPU utilization in various scenarios. We use the achieved
SM Occupancy from NVIDIA NSight Profiler as an indicator metric
of GPU utilization information. Fig. 8 presents a comprehensive
comparison of utilization statistics among CuDNN-Seq, Stream-
Parallel, and GACER, on the R101+D121+M3. As observed, our
method significantly improves utilization, achieving approximately
60% higher utilization than the sequence method and almost 40%
more than the Stream-Parallel method. This enhancement aligns
well with our observed speed-up performance.

5.3 GACER with Model Type Combinations

To delve deeper into GACER performance with various model com-
binations, we quantify the utilization of resizing and reordering
techniques in each combination. This helps to discern which model
types are more amenable to these methods. We examine four dis-
tinct model combinations, with the findings illustrated in Fig. 9. The

Reordering Split
A @ C
2
2 2
12 16 8 8 5 s 3
3
BERT LSTM BST ALEX V16 R18
B D
0 3 0
6 > 5 4 N
2 20 8
R34 LSTM BST R101 D121 M3

Figure 9. Analysis of Split and Reordering Usage

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:54:09 UTC from IEEE Xplore. Restrictions apply.

ICCAD '24, October 27-31, 2024, New York, NY, USA

Table 2. Scalability Evaluation (GPU: A100, Latency: ms)

Models Names CuDNN-Seq TVM-Seq Stream-Parallel ~ Com-Sharing GACER
" V16 + LSTM 432 4.2 (1.03x) 381 (1.13x) 3.89(1.11x) 3.30 (1.31x)
2 RIS + R34 5.12 4.08(1.25x) 3.91(1.31x%) 393(1.3x) 3.46 (1.48x)
>E< R34 + R50 7.52 6.59 (1.14x) 6.10 (1.23x) 599 (1.26x) 5.01 (1.50x)
N
R50 + R101 13.73 13.39 (1.03x) 11.54 (1.19x) 11.52 (1.19x) 9.80 (1.40x)
. V16 +R18 + M3 + LSTM 9.42 9.23(1.02x) 7.54(1.25%x) 8.02(L.17x) 6.51 (148x)
X
M3 + R34 + RS0 + BST 18.36 1535(1.2x) 13.30(1.38x) 14.01 (1.31x) 11.27 (1.63x)
5x VGG + R18 + R34 + BERT + DLRM 37.86 32.24 (1.17x) 25.31 (1.5x) 27.22 (1.39x) 22.14 (1.71x)
Table 3. GACER Optimization Cost (s) 5.5 GACER Optimization Overhead with Workload Variation
#Batch Size 4 3 16 32 64 128 The efficiency of optimization is a crucial metric in evaluating an
R34VI6DIZL 090 092 098 104 108 Llo algorlthmlc-framework. A ke.:y factor mﬂuf.:nc?ng this e.fﬁ01.ency is
the change in workload, which can vary significantly in different
R50+V16+M3 .10 1.13 1.19 122 125 126
applications and use cases. Our comprehensive examination, as
R34+LSTM+BST 0.84 085 088 090 093 094

Table 4. GPU Generality Evaluation (ms). C is CuDNN-Seq and S
is Stream-Parallel, P is on GPU P6000 and T is on GPU 1080Ti.

C-p
18.74
17.83
28.54
40.51
1235

CT S-P ST
19.56 14.99 15.28
18.02 14.73 15.27
32.88 20.88 23.48
44.89 29.35 32.06
1450 823 10.13

GACER-P
13.48(1.39x)
12.92(1.38x)
19.02(1.50x)
25.63(1.58x)
7.97(1.55x)

GACER-T
14.81(1.32x)
13.54(1.33x)
21.07(1.56x)
27.37(1.64x)
8.51(1.70x)

Models
ALEX+V16+R18
D121+V16+LSTM
R50+V16+M3
R101+4D121+M3
R34+LSTM+BST

optimization strategies applied to different combinations of model
types can vary dramatically, Spatial granularity adjustment is partic-
ularly beneficial for models with extensive operator workloads. In
combination A, both BERT and BST, are transformer-based models,
in particular, the BERT model stacks a structure of 12 encoders with
resource-intensive multi-head attention and feed-forward operations.
In such scenarios, coarse deployment granularity can lead to signif-
icant resource contention, necessitating using resizing to mitigate
deployment granularity. Therefore, as many as 28 reordering and
split are applied to BERT and 16 to BST. On the other hand, tempo-
ral granularity regulation significantly boosts the efficiency of model
combinations with a higher layer number. An exemplary case is the
R101+D121+M3, due to the large number of operators, reordering
is used up to 38 times.

5.4 GACER with Model Number Variation

Another key factor impacting multi-tenant DNN scenarios is the
number of concurrent models. To analyze this, we thoroughly evalu-
ate the scalability of GACER under various model inference loads
on a single GPU. Our tests include configurations of 2x, 4x, and 5x
models, encompassing several multi-tenant combinations.

Our findings, as detailed in Table 2, demonstrate GACER robust
scalability with varying numbers of tenants. Notably, the framework
consistently achieves acceleration ranging from 1.31x to 1.71Xx com-
pared to the sequential baseline across all evaluated benchmarks. A
key factor behind this is GACER ability to rapidly adjust the number
of models by setting the initial number of GPU streams. Furthermore,
our heuristic optimization algorithm efficiently computes residuals
based on the current set of concurrent operators.

detailed in Table 3, looks at the optimization times required by
GACER across various batch sizes and model combinations. The
data indicates that, regardless of the workload’s complexity or the
batch size, the optimization time required by GACER is consistently
brief, remaining within a few seconds. GACER is flexible for both
online and offline settings, capable of pre-optimization in static or
infrequently changed models to reduce runtime overhead, and also
suitable for online tasks that can tolerate minor delays.

5.6 GACER with Hardware Variation

‘We then evaluate the generality of our method with different GPU
platforms. We conduct extensive tests on five multi-tenant setups
using two distinct GPUs: the NVIDIA P6000 (P) and the NVIDIA
1080Ti (T). The results are detailed in Table 4, which compares
the performance of CuDNN-Seq (C) and Stream-Parallel (S). We
standard the batch sizes 8 for each vision model. In these tests,
GACER demonstrates a significant performance improvement. On
the P6000, we observe an acceleration ranging from 1.38x to 1.58x,
while on the 1080Ti, the acceleration varied from 1.32x to 1.70x.

Interestingly, the performance gains exhibited by GACER are
more pronounced on the 1080Ti. This suggests that GACER op-
timization mechanisms are particularly effective in environments
where resource constraints are more stringent, thereby offering
greater relative improvements in such scenarios. When platform
resources are constrained, their ability to be concurrent and deployed
is reduced. Without granularity optimization, its resource utilization
drops severely, especially when faced with large models.

6 Conclusion

In this work, we focus on multi-tenant deep learning for GPU-based
systems and reveal several computing issues. We find that the gran-
ularity of computing management in both the spatial and temporal
management domains is extremely important. Based on the opti-
mization of granularity, we proposed GACER, an automated opti-
mization framework that provides high-utilization, high-throughput,
and low-latency multi-tenant deep learning computing support. This
framework is a revolutionary approach to multi-tenant deployment
and can provide a solid foundation for the future development of
multi-tenant deep learning.

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:54:09 UTC from IEEE Xplore. Restrictions apply.

References

(1]

[2

[3]

[4

[5

[6

[7

8

[9

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and
James C Phillips. Gpu computing. Proceedings of the IEEE, 96(5):879-899, 2008.
Stephen W Keckler, William J Dally, Brucek Khailany, Michael Garland, and
David Glasco. Gpus and the future of parallel computing. /EEE micro, 31(5):
7-17,2011.

Market Reports. Global data center accelerator market size, status and
forecast 2020-2025, 2021. https://www.mynewsdesk.com/brandessence/
pressreleases/data-center-accelerator-market-size-2021-cagr-38-dot- 7-
percent-3112488.

Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, and
Alex Aiken. Optimizing dnn computation with relaxed graph substitutions. Pro-
ceedings of Machine Learning and Systems, 1:27-39, 2019.

Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, and Song Han. Ios:
Inter-operator scheduler for cnn acceleration. Proceedings of Machine Learning
and Systems, 3:167-180, 2021.

Shaohui Lin, Rongrong Ji, Chengian Yan, Baochang Zhang, Liujuan Cao, Qixiang
Ye, Feiyue Huang, and David Doermann. Towards optimal structured cnn pruning
via generative adversarial learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2790-2799, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. Edge
computing for autonomous driving: Opportunities and challenges. Proceedings of
the IEEE, 107(8):1697-1716, 2019.

Magdalini Eirinaki, Jerry Gao, Iraklis Varlamis, and Konstantinos Tserpes. Rec-
ommender systems for large-scale social networks: A review of challenges and
solutions, 2018.

Stylianos Mystakidis. Metaverse. Encyclopedia, 2(1):486-497, 2022.

NVIDIA. Multi-Process Service, 2021. URL https://docs.nvidia.com/deploy/
pdf/CUDA_Multi_Process_Service_Overview.pdf.

NVIDIA. Multi-Stream, 2020. URL https://on-demand.gputechconf.com/
gtc/2014/presentations/S4158-cuda- streams-best-practices-common-
pitfalls.pdf.

NVIDIA. Nvidia multi instance gpu (mig). 2020.

Yongbo Yu, Fuxun Yu, Zirui Xu, Mingjia Zhang Di Wang, Ang Li, Shawn Bray,
Chenchen Liu, and Xiang Chen. Powering multi-task federated learning with
competitive gpu resource sharing. 2022.

Yujeong Choi, Yunseong Kim, and Minsoo Rhu. Lazy batching: An sla-aware
batching system for cloud machine learning inference. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 493-506.
IEEE, 2021.

Oscar Koller, Necati Cihan Camgoz, Hermann Ney, and Richard Bowden. Weakly
supervised learning with multi-stream cnn-Istm-hmms to discover sequential
parallelism in sign language videos. IEEE transactions on pattern analysis and
machine intelligence, 42(9):2306-2320, 2019.

Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-Gon Chun. Nimble:
Lightweight and parallel gpu task scheduling for deep learning. Advances in
Neural Information Processing Systems, 33:8343-8354, 2020.

Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan. Gslice: Controlled
spatial sharing of gpus for a scalable inference platform. In Proceedings of the
11th ACM Symposium on Cloud Computing, pages 492-506, 2020.

Fuxun Yu, Shawn Bray, Di Wang, Longfei Shangguan, Xulong Tang, Chenchen
Liu, and Xiang Chen. Automated runtime-aware scheduling for multi-tenant dnn
inference on gpu. In 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pages 1-9. IEEE, 2021.

Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali Annavaram.
Warped-slicer: Efficient intra-sm slicing through dynamic resource partitioning for
gpu multiprogramming. In 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), pages 230-242. IEEE, 2016.

Peifeng Yu and Mosharaf Chowdhury. Fine-grained gpu sharing primitives for
deep learning applications. Proceedings of Machine Learning and Systems, 2:
98-111, 2020.

Marcus Chow, Ali Jahanshahi, and Daniel Wong. Krisp: Enabling kernel-wise
right-sizing for spatial partitioned gpu inference servers. In 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), pages
624-637. IEEE, 2023.

Ziyang Zhang, Huan Li, Yang Zhao, Changyao Lin, and Jie Liu. Pos: An operator
scheduling framework for multi-model inference on edge intelligent computing.
In Proceedings of the 22nd International Conference on Information Processing
in Sensor Networks, pages 1-1, 2023.

Daniel Zhang, Nathan Vance, Yang Zhang, Md Tahmid Rashid, and Dong Wang.
Edgebatch: Towards ai-empowered optimal task batching in intelligent edge
systems. In 2019 IEEE Real-Time Systems Symposium (RTSS), pages 366-379.
IEEE, 2019.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Advances in

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

ICCAD '24, October 27-31, 2024, New York, NY, USA

neural information processing systems, 32, 2019.

Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and
Jaehyuk Huh. Multi-model machine learning inference serving with gpu spatial
partitioning. arXiv preprint arXiv:2109.01611,2021.

Aodong Chen, Fei Xu, Li Han, Yuan Dong, Li Chen, Zhi Zhou, and Fangming
Liu. Opara: Exploiting operator parallelism for expediting dnn inference on gpus.
arXiv preprint arXiv:2312.10351, 2023.

NVIDIA. NVIDIA Nsight Systems, 2020. URL https://on-demand.
gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-
practices-common-pitfalls.pdf.

NVIDIA. NVIDIA Nsight Computing, 2020. URL https://developer.nvidia.
com/nsight-compute.

Sheng-Chun Kao and Tushar Krishna. Magma: An optimization framework for
mapping multiple dnns on multiple accelerator cores. In 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 814-830.
IEEE, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent
neural networks: Lstm cells and network architectures. Neural Computation, 31
(7):1235-1270, 2019.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. Deep learning recommendation model for
personalization and recommendation systems. arXiv preprint arXiv:1906.00091,
2019.

Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. Behavior sequence
transformer for e-commerce recommendation in alibaba. In Proceedings of the Ist
International Workshop on Deep Learning Practice for High-Dimensional Sparse
Data, pages 1-4, 2019.

Guorui Zhou, Xiaogiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma,
Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. Deep interest network for click-
through rate prediction. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 1059—-1068, 2018.
NVIDIA. Nvidia CuDNN Documentation,, 2020. URL https://docs.nvidia.com/
deeplearning/cudnn/developer-guide/index.html.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An
automated {End-to-End} optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), pages
578-594, 2018.

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:54:09 UTC from IEEE Xplore. Restrictions apply.

