This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

FedMT: Multi-Task Federated Learning with
Competitive GPU Resource Sharing

Yongbo Yu, Fuxun Yu, Zirui Xu, Di Wang, Minjia Zhang, Member, IEEE, Ang Li, Member, IEEE,
Chenchen Liu, Member, IEEE, Zhi Tian, Fellow, IEEE, and Xiang Chen, Member, IEEE

Abstract—Federated learning (FL) nowadays involves het-
erogeneous compound learning tasks as cognitive applications’
complexity increases. For example, a self-driving system hosts
multiple tasks simultaneously (e.g., detection, classification, seg-
mentation, etc.) and expects FL to retain life-long intelligence
involvement. However, our analysis demonstrates that, when
deploying compound FL models for multiple training tasks on
a GPU, certain issues arise: As different tasks’ skewed data
distributions and corresponding models cause highly imbalanced
learning workloads, current GPU scheduling methods lack ef-
fective resource allocations; Therefore, existing FL schemes,
only focusing on heterogeneous data distribution but runtime
computing, cannot practically achieve optimally synchronized
federation. To address these issues, we propose a full-stack FL
optimization scheme to tackle both intra-device GPU schedul-
ing and inter-device FL coordination for multi-task training.
Specifically, our works illustrate two key insights in this research
domain: Competitive resource sharing is beneficial for parallel
model executions, and the proposed concept of “virtual resource”
could effectively characterize and guide the practical per-task
resource utilization and allocation; Additionally, architectural-
level coordination improves FL performance by aligning task
workloads with GPU utilization. Our experiments demonstrate
that the FL performance could be significantly escalated. Specif-
ically, we observed a 2.16x-2.38 x increase in intra-device GPU
training throughput and a 2.53x-2.80x boost in inter-device FL
coordination efficiency across diverse multi-task scenarios.

Index Terms—Federated Learning; Multi-Task Learning; GPU
Resource Allocation; Resource Sharing

I. INTRODUCTION

EDERATED learning (FL) is a distributed training

methodology allowing multiple computing devices to
jointly train cognitive tasks without sharing private data [1],
[2], [3]. This approach not only mitigates privacy concerns but
also significantly reduces the bandwidth and latency require-
ments typically associated with centralized data aggregation,
making FL especially suitable for edge computing scenarios
where devices are resource-constrained and communication
is often unreliable. As the deployment of intelligent appli-
cations is widely spreading in ever more complex settings,
FL becomes an essential technique for leveraging distributed
resources and enabling timely model improvement. Given the

Y. Yu and Z. Tian:
ztian1 } @gmu.edu).

F. Yu, Z. Xu, and D. Wang: Microsoft
wangdi } @microsoft.com).

M. Zhang: University of Illinois Urbana-Champaign (minjiaz@illinois.edu).

A. Li: University of Maryland at College Park,USA (angliece@umd.edu).

C. Liu: University of Maryland Baltimore County, USA (ccliu@umbc.edu).

X. Chen (corresponding author): Peking University, China
(xiang.chen@pku.edu.cn).

George Mason University, USA ({yyu25,

({fuxunyu, v-ziruixu,

Multi-Task Federated Learning Multi-Task Federated Scenarios

Task A f Input Model Deployment
- { \Devicetl Head - -
. TaskB ~ ﬁﬂ b d -
Devicet#2| = £ - - -
_ TaskC E A - -

A\ TaskD

~ ({0
L‘vi('e#.? ‘ e

Fig. 1: Federated Learning with Multi-Tasks

increasing complexity of these intelligent applications, it be-
comes imperative to explore more efficient ways to coordinate
participating devices, as each one may have vastly differ-
ent computational capabilities and varying data quality [4].
Meanwhile, the nature of these applications is expanding in
complexity: As illustrated in Fig. 1, each device (e.g., a self-
driving system[5]) can host multiple FL tasks (e.g., detection,
classification, segmentation), each with its own neural network
model or sub-model structure, together forming a compound
multi-task learning scenario[6]. Similarly, a hospital may
participate in training several federated models at once (for
different diseases)[7], [8], all on one machine. These scenarios
demand efficient GPU sharing to fully utilize hardware and
speed up learning.

However, a series of challenges arise when we put FL
frameworks into practice under multi-task settings: (1) From
the FL algorithm perspective, data and task heterogeneity are
still the leading cause of difficult convergence issues [9], [10].
As shown in Fig. 1, significant heterogeneity generally exists
across clients regarding learning tasks and accessible data
volumes, causing potential synchronization complexity and
degraded model accuracy if not properly handled. (2) From the
local node computing perspective, each client typically needs
a fine-grained multi-task computing approach, because each
node might train multiple models (or multiple sub-branches
of a larger model) in parallel [11], [12], [13]. This leads to
the need for carefully managing concurrent task executions
on GPUs, where suboptimal scheduling would result in re-
source contention or underutilization. (3) From the system
federation perspective, multi-task FL still needs to ensure
effective intra-device and inter-device coordination. On the one
hand, the local device must maximize GPU usage to handle
concurrent tasks; on the other hand, these tasks also require
global synchronization cycles and model aggregation across
different devices. If the local scheduling or workload balance
is inadequate, the training process may suffer from uneven
progress across the federation, slowing the training time or
requiring more communication overhead[14].

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

In the state-of-the-art, much attention has been paid to im-
proving the convergence and generalization performance of FL
under statistical heterogeneity scenarios (e.g., heterogeneous
FL [15], asynchronous FL [16], clustered FL [17]), often
through algorithmic innovations like model pruning [18] or
gradient compression [19]. However, these methods are gen-
erally designed under the traditional single-task setup, leaving
the emerging multi-task context—which is closer to real-world
FL deployments—underexplored. In this paper, we focus on
a complementary problem—how to efficiently schedule mul-
tiple co-running models under constrained GPU resources in
multi-task FL scenarios, regardless of data distribution. Each
federated task in this work is a supervised learning task for
evaluation purposes; however, the method is agnostic to the
training modality and would equally benefit unsupervised or
self-supervised tasks running in parallel. In complex multi-task
scenarios, multiple DNNs must be trained concurrently, often
vying for limited GPU resources and requiring sophisticated
scheduling beyond naive parallelism. Conventional parallelism
techniques such as NVIDIA Multi-Process Service MPS [20]
can partition GPU resources for co-located models, but they
fail to account for significant differences in unbalance work-
load, DNN size, and runtime workload fluctuations. This can
lead to performance bottlenecks where certain tasks may dom-
inate resources while others remain idle or progress slowly.

Hence, in contrast to prior FL. works that primarily focus
on Non-IID learning optimization [9], [10] or single-task
optimization, this paper takes a deeper look at the GPU
architectural level scheduling problem in multi-task FL de-
ployment. Concretely, three major obstacles must be tackled:
(1) With heterogeneous model structures and workloads across
tasks, how to adaptively allocate resources among different
co-running DNN models to fully exploit the GPU? (2) When
running multiple tasks concurrently, how to find an effective
parallel strategy that leverages inter-task resource complemen-
tarities while avoiding severe contention? (3) How to extend
such resource scheduling insights to a broader FL system,
ensuring that multi-device coordination can benefit from the
improved local throughput and thus accelerate global model
training time to reach convergence?

By targeting these questions, we propose a full-stack opti-
mization approach, named FedMT, which bridges intra-device
GPU scheduling and inter-device FL coordination:

o We analyze competitive resource sharing that arises when
multiple DNNs co-locate on a single GPU. Our study
identifies severe contention and underutilization issues in
naive allocations, motivating a novel “virtual resource”
concept to systematically capture and optimize GPU
concurrency.

e We develop a data-driven throughput model that ac-
curately predicts multi-task performance under various
batch sizes and resource budgets. This allows us to effi-
ciently allocate virtual resource to maximum throughput.

« We propose a batch size adaptation mechanism to balance
workloads between tasks at the inter-device level. By
aligning each task’s batch size with its data volume, we
ensure no single task dominates or remains underutilized
during local synchronization cycles, improving fairness

Task Multi-Tasks DFG Multi-Process Service ~ GPU Deployment
4 | D> G5 > [33% SMs]
Relu»
N @Convﬂom—» A |;33% SMsj

* ConvRelu-»

8 |[33% SMs:II

GPU
Resource Allocation

DL DFG
Framework) |Generate

Runtime
Control

Operator
Generate

Fig. 2: Multi-Task Deep Learning with GPUs

and utilization.

e« We introduce a communication overlap strategy that
hides parameter upload/download latencies behind par-
allel computations. Through flexible scheduling priorities
that consider both compute and communication times, we
minimize idle waiting and accelerate global progress.

« We present an extensive experimental evaluation across
diverse DNN architectures, datasets, and hardware plat-
forms. Our results consistently show over 2x speedup
compared to standard baselines. In particular, by as-
signing appropriate GPU resource budgets and flexibly
sharing these resources among heterogeneous tasks, we
not only avoid underutilization but also effectively exploit
concurrency. This acceleration of local training translates
into faster system-wide FL convergence in a wide range
of multi-task scenarios.

II. BACKGROUND AND MOTIVATION
A. Multi-Task Federated Learning on GPU

Multi-Task FL: Instead of a single-model setup, multi-task
FL handles multiple learning objectives simultaneously. Each
task’s training data remains local to the client and is strictly
used by that task’s model training process only. Multi-task FL
does not allow any direct data exchange between co-located
tasks, and tasks only communicate their model updates to the
central server. Therefore, the privacy of each task’s data is
preserved just as in standard FL. Specifically, each device j
can hold I tasks, each with its own dataset D; ; and model
parameters W; ;. The overall FL objective is to minimize the
global loss across all tasks and devices, often expressed as:

J
IVB}n > “Loss(Dij, Wij),

i J j=1

Local Training:

i | Ds (k—1)
j=1 Zj:1‘Di,j| e ’
1
where each task’s local updates get fused periodically. As the
number of tasks grows and their data distributions differ (Non-
IID across tasks and devices), properly balancing computation
and communication becomes much more complex [11], [12].

Multi-Task Federated Learning GPU Deployment: Modern
FL training heavily relies on GPUs as the primary compu-
tational units. When multiple tasks are deployed on a single
GPU, each task’s model is compiled into a data flow graph
(DFG) within the deep learning framework, comprising vari-
ous operators (e.g., convolution, ReL.U, batch norm) arranged

. e cyel
Parameter Fusion: W, P)

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

CUDA MPS Control
(a) Temporal Scheduling i L

Resource

100%
I I

50%

Resource

0%

(b) Spatial Scheduling

100% | A—

| &
50% o B

o L

(c) Competitive-Sharing Spatial Scheduling

DEREREN
NEEEEEE
01
HENRENN
OEREREA
DEDEREE

..

Streaming Multiprocessors

Resource

Fig. 3: Temporal and Spatial GPU Scheduling Schemes

by layer. At runtime, each DFG is typically wrapped into a sep-
arate process or stream and dispatched to the physical GPU’s
streaming multiprocessors (SMs) [20], as shown schematically
in Fig. 2. Parallel execution occurs if different processes can
run simultaneously on separate or overlapping subsets of SMs.
However, naive resource partitioning often leads to either
underutilization (if SMs are exclusively isolated) or severe
contention (if operators from different tasks interfere heavily).

Multi-Task Resource Allocation and Scheduling on GPU: As
deploying the aforementioned multi-task FL into individual
devices, the major computing unit — GPU is facing a com-
plex scheduling issue to host multiple training models. Cur-
rently, there are two major resource allocation and scheduling
schemes: Temporal scheduling in Fig. 3 (a) isolates GPU
resources into sequential time slices for individual tasks (e.g.,
round-robin [21]). Each task takes the whole GPU resource
in its time slice without interfering with others [22]. Spatial
scheduling in Fig. 3 (b) processes multiple GPU tasks in
parallel by assigning a sub-set of SMs to individual tasks as
independent processing threads [23]. Latest GPU scheduling
technologies are still within these schemes, such as NVIDIA
Multi-Instance GPU (MIG) [24], and Multi-Process Service
(MPS) [20]. While these technologies provide basic mecha-
nisms for resource partitioning, they often lack the flexibility
to adapt to the dynamic workloads characteristic of multi-task
FL, leading to under-utilization.

Although spatial scheduling is more preferred by its par-
allelism, there occurs competitive resource sharing between
tasks. It is used to describe the complex interactions between
concurrent tasks within a single GPU, such as the resource
contention between similar computing operators from different
training models, or the resource underutilization caused by
insufficient resource allocation. However, it is still a newly
emerging design consideration. Therefore, how to demystify
it to achieve optimal resource allocation and bring it into a
large-scale FL is our major research motivation.

B. Performance and Existing Approaches in Multi-Task FL

Multi-task FL introduces additional complexity compared
to traditional single-model FL, posing unique challenges both
in local training and global coordination. Below, we briefly re-
view relevant works from three perspectives—model-oriented,

resource-oriented, and coordination-oriented—highlighting
their focus and limitations in tackling multi-task concurrency.

First, model-oriented studies often emphasize personal-
ization or multi-task model structures. Approaches such as
MOCHA [11] and variational multi-task FL [25] specifically
focus on situations where each device may handle multiple
related tasks simultaneously. They typically improve conver-
gence by learning shared representations or latent factors
across tasks while preserving task-specific parameters. Other
works [18], [19], [26], [27] leverage model compression or
pruning to reduce communication overhead. Although valu-
able, these methods generally assume each device’s internal
scheduling is a black box, leaving operator-level concurrency
on the GPU under-explored.

Next, resource-oriented studies focus on hardware and run-
time optimizations, such as GPU sharing primitives (MPS,
MIG) or dynamic scheduling frameworks [28], [29]. While
they enable parallel executions of multiple DNN training
jobs, they often target either large-scale data-center workloads
or single-task edge devices. FL-centric research on device
selection or adaptive local epochs [30], [31] also seeks to
mitigate straggling, but seldom deals with multi-task resource
contention at the operator or sub-model level.

Finally, coordination-oriented studies address how FL ag-
gregates or synchronizes training among distributed devices.
Classical synchronous FL (FedAvg [32]) can stall if one
device’s multi-task training is slower, while asynchronous
FL [16] partially alleviates waiting but may degrade accu-
racy due to out-of-sync parameters. Hierarchical or clustered
FL [17], [33] groups devices with similar data or hardware
capabilities to reduce waiting overhead. Nonetheless, these
coordination methods typically abstract each device as a
single-task participant, overlooking the fact that multiple tasks
can be interleaved locally on a single GPU.

In sum, these works provide valuable insights into different
aspects of FL (model structures, hardware resource usage, or
global scheduling), yet few address the fundamental problem
of running multiple tasks together on a single GPU while
aligning that concurrency with the larger FL. workflow. Our
work aims to bridge this gap by jointly optimizing multi-task
GPU scheduling and federated coordination, ensuring each
device can effectively handle parallel tasks and seamlessly
participate in global aggregation.

C. Design Motivation

We illustrate the high-level design of our framework in
Fig. 4, where each sub-figure (a), (b), and (c) highlights a
different facet of our multi-task FL approach:

1) Intra-Device Resource Allocation: As shown in Fig. 4(a),
model heterogeneity and task concurrency can cause sig-
nificant GPU underutilization due to competitive resource
sharing. To address this, we introduce a virtual resource
allocation mechanism to precisely model operator-level
resource interactions. By optimizing virtual resource bud-
gets for each task, we achieve maximum GPU throughput,
significantly improving local resource efficiency over
naive spatial or temporal schemes.

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

(a) Intra-Device Resource Partitioning

(¢) Computation and
Communication Coordination

[
| GPU Under—Utilizatior\J

| Maximum GPU Uﬁlim-‘ —

Corfputing Waiting Time ‘

Model Heterogeneity Virtual
Resource
Task Concurrency Allocation

Maximize GPU Throughput

Operator-level Complementation

High Communication Latency

Communication Heterogeneity

(b) Workload Balancing and Synchronization

Fine-tuning Resource to
Overlap Communication

_»@

GPUWUM,_I N

| High GPU Avg-Utitization| +——

M;Wrm]-—»ﬁ

Data Imbalance Batch Size
Adaptation

Task Complexity

Balanced Workload

Efficient Synchronization

Reduced Latency

Accelerated Global Training

Fig. 4: Comprehensive Optimization in Multi-Task Federated Learning (FedMT): This figure presents the key strategies
in the FedMT framework: (a) Intra-Device Resource Partitioning: Virtual resource allocation improves GPU utilization
and training throughput. (b) Workload Balancing: Balances workloads by aligning batch sizes with task data volumes.
(c) Computation and Communication Coordination: Reduces synchronization delays by overlapping communication with
computation. These components collectively enhance performance across multi-task federated learning scenarios.

2) Batch Size Adaptation for Workload Balancing: As illus-
trated by Fig. 4(b), data imbalance and task complexity
heterogeneity across tasks can lead to inefficient GPU
utilization and unbalanced synchronization progress. To
overcome this, we propose a batch size adaptation mech-
anism that dynamically adjusts each task’s batch size
according to its data volume. This ensures that tasks
with larger datasets are allocated proportionally larger
batches, maintaining a balanced workload and improving
synchronization efficiency.

3) Computation and Communication Overlap: Fig. 4(c)
addresses inefficiencies caused by high communication
latency during parameter uploads and downloads. Beyond
optimizing local resource usage, we overlap communi-
cation with computation by scheduling smaller or faster
models to communicate during other tasks’ compute
phases. This intelligent scheduling strategy eliminates
idle “waiting slots,” reduces latency, and accelerates
global FL convergence.

Together, these three components form a cohesive solution
to multi-task federated learning. First, we focus on analyzing
and maximizing intra-device throughput via virtual resource
modeling. Next, we detail inter-device coordination strate-
gies—namely batch size adaptation and communication over-
lap to address system-wide imbalances. Finally, we validate
our design with extensive experiments, demonstrating notable
gains in both local efficiency and global convergence rates.

III. COMPETITIVE RESOURCE SHARING IN
MULTI-TASK FEDERATED LEARNING ON GPU

In this section, we analyze the competitive resource sharing
mechanism that arises when multiple DNNs are co-trained on
a single GPU under a multi-task FL. paradigm. Our goal is
twofold: (1) Identify the performance bottlenecks introduced
by concurrent tasks’ competition for limited GPU resources;
(2) Propose a “virtual resource” concept to effectively manage
and coordinate this competitive sharing.

A. Competitive Resource Sharing Analysis

When multiple tasks run in parallel on a single GPU, we
must decide how to allocate SMs and other shared resources
among them. As illustrated in Fig. 3, two broad scheduling
strategies exist: temporal (each task owns the entire GPU
in turn) and spatial (tasks simultaneously share SMs). While
spatial scheduling can boost utilization via parallelism, it also
introduces potential resource contention.

Baseline Example of Spatial Scheduling: In Fig. 5 (D),
we show a baseline “fully-isolated” assignment in which
MPS [20] statically divides SMs among tasks (e.g., each
model gets a distinct subset of SMs). Small operators often
do not fully utilize their assigned SM subsets, leading to
underutilization; large operators may occupy their allocated
SMs for a longer time yet cannot leverage others’ idle SMs.

Spatial Resource Sharing: One improvement is to overlap
resource assignments, letting tasks share certain SM groups
dynamically (Fig. 5@)). This approach can raise GPU occu-
pancy by matching complementary workloads—for instance,
a compute-intensive operator from Task A could run concur-
rently with a memory-bound operator from Task B. However,
the scheduling of these overlapping SMs is intricate, as dif-
ferent operators contend for the same resources, potentially
degrading each other’s performance.

Excessive Contention Overhead: As we increase the shared
resources by making more overlapped resources assignments
in Fig. 5 3), task models compete for resources more fiercely,
leading to resource competition and considerable contention
overhead. This is the major research focus of our analysis.

Extreme Contention Kills Parallelism: The resource con-
tention issue is not only causing overhead. Here, when large
operators exist, it is hard to achieve complementary resource
assignment and thus the scheduling mechanism is pushed back
to temporal scheduling as shown in Fig. 5 @&). Therefore, in
addition to complementary operators, special attention is also
required for such cases, which further increases the analysis
complexity of competitive resource sharing.

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

“t Task-A Competitive Contention)
DNN Operators i Lask-. Resource Sharing Delay Virtual Resour ce
T 1
I:N l Under-utilization Higher Util. Light Competition [P
" g | —m 2——+ g Physical |
ReLU ' é S [:/ﬁi\f\ ®
£ =3 ~
" v ReLU @ |— L time é ,4I Throug’hggu\l\\@
g / c
s | p+1 0 50 100 150 0 I)
00
l l Severe Competition 2 / : Il
/
U
< 7 I
2 G i 1 Competitioh
S | [Comvle] Convid] g Y :
= / [
l l time) -
0 50 100 150 0 50 100 150 0% 100% 200%

Fig. 5: Illustration of operator-level concurrency under different resource-sharing schemes: (1) fully isolated, (2) partial overlap,
(3) excessive overlap leading to contention and (4) fully sharing.

B. Competitive Resource Sharing Coordination
with Virtual Resource

Motivated by the above findings, we introduce a novel
virtual resource concept to manage GPU allocations among
multiple co-running tasks. Rather than naively assigning each
task a fixed percentage of SMs or forcing them all to share
100% of SMs equally, we propose a scheme where the sum
of assigned resources can exceed 100%—up to a limit we call
virtual resource R,.

Definition of Virtual Resource: As Fig. 5 (right side) illus-
trates, suppose there are I tasks sharing the GPU. The physical
SM capacity is considered 100%. In a “virtual resource”
framework, we allow the total assigned resource to range up
to I x 100%. For instance, with I = 2 tasks, R, could be as
high as 200%. This does not imply we create extra SMs, but
rather that each task can compete for the same pool of SMs to
a certain fraction. The key is to find an optimal R, balancing
concurrency and contention.

Empirical Analysis of Virtual Resource: To showcase how R,
affects performance, we co-run three neural network models
(DensNetl121, VGG16, MobileNetV3) under different assign-
ment configurations. We vary R, from 100% (fully-isolated)
to 300% (fully-shared across 3 tasks). As different models can
have different stand-alone training speeds, we use two metrics
to evaluate the performance: raw throughput P and fairness
throughput P;. The latter is computed as:

Pr=>
i=1

where n is the number of co-running DNN models, P; is the
i™ model’s co-running throughput, and P, ; is the stand-alone
throughput of the same model when running alone. By such
normalization, we treat each model’s speedup or slowdown
with fair importance.

As shown in Fig. 6, the best performance emerges around
R, =~ 200%, indicating a beneficial degree of overlap that
yields high utilization without intolerable contention. By con-
trast, near 300% we see excessive slowdown due to opera-
tor collisions, while at 100% the GPU is underutilized by
smaller operators. Hence, moderate sharing—i.e., competitive
resource sharing—consistently outperforms both extremes.

P
) (2)
b_i

P

Coordination via Virtual Resource: In practice, to exploit this

g
>

Competitive Sharing

o
n

v

>

%
o
ES

>
EN

>
w

>
IS

Fully
| Isolated i

100

: Fully
* Sharing

o

Raw Throughput (x1000)

" Sharing

IS

Fairness Throughput (x1000)

4

S

150 250 300 100

Virtual Resource (%)

150 250
Fig. 6: Throughput analysis with different virtual resource
values (R,) from 100% (fully-isolated) to 300% (fully-shared).
Left: raw throughput P. Right: fairness throughput P, (Eq. 2).
idea, we assign each task ¢ a “virtual resource budget” R;
such that >, R; = R,. When R, > 100%, tasks overlap
on some SM sets, but each still has a target fraction. We
can systematically tune R; based on task FLOPs, batch size,
and memory intensity, aiming to maintain a sweet spot of
concurrency. This provides a flexible knob to handle multi-task
GPU concurrency: 1) If tasks are complementary (e.g., one
heavily compute-bound, another memory-bound), a larger R,
can yield higher overall utilization. 2) If tasks are uniformly
compute-intensive, we keep R, closer to left side to avoid
severe contention. FedMT avoids excessive contention by
limiting the total virtual GPU allocation. While tasks are
allowed to share GPU resources competitively, the algorithm
detects when contention causes diminishing returns. In such
cases, FedMT moderates the concurrency level (e.g., reducing
a task’s resource share) so that the GPU scheduler does not
revert to pure time-slicing.

By evaluating different levels of resource overlap, we
demonstrate that there is an optimal competitive sharing
region where throughput is maximized. This virtual resource
perspective allows fine-grained control over concurrency, sur-
passing naive partitioning strategies. In the following sections,
we will leverage this concept to ensure that both intra-device
scheduling and inter-device coordination can benefit from
enhanced parallelism.

IV. INTRA-DEVICE GPU SCHEDULING WITH
COMPETITIVE RESOURCE SHARING

In the previous section, we established that virtual resource
(R,) allocation can effectively enhance concurrency among

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

multiple DNN tasks on a single GPU. However, in practice,
one must determine (1) how to assign each task’s virtual
resource fraction R;, and (2) how to choose the per-task batch
size B; to accommodate potentially heterogeneous data scales
and model complexities. This section proposes a modeling-
based approach that predicts the multi-task throughput under
varied {B;, R;} settings and thus guides us toward near-
optimal resource scheduling.

Problem Definition: Suppose we have n tasks {1,...,n} to
be executed concurrently on one single GPU. Each task ¢ is
described by:

(fi7mi)7

1) f;,m; are static features, representing the FLOPs and
memory intensity of task ¢. They can be derived from the
DNN model architecture (e.g., ResNet vs. MobileNet).

2) B; is the batch size, which we can adjust to alter the
workload per iteration.

3) R; is the allocated “virtual resource fraction” for task ¢,
subject to Y. | R; = R,,. Typically, R, < n x 100%.

We denote O; as the workload for task :

O; = afiB; + Bm; B, 3)

and variables (B;, R;).

where «, 8 are coefficients reflecting how compute-bound or
memory-bound we expect tasks to be. Instead of manually
fixing «, 3, we propose to learn them from profiling data
(detailed in the modeling-fitting phase). Our ultimate goal is
to assign {B;} and {R;} so as to maximize the aggregated
throughput:

n
max E P;
i=1

where P; denotes the actual runtime throughput (images/sec)
of task ¢ under the given (B;, R;).

Multi-Input Multi-Output Predictive Model: A key challenge
is that P; depends not only on O; and {B;, R;} itself, but also
on interactions with other tasks’ resource usage. To capture
this, we adopt a multi-input multi-output function:

n
st. > R;=R,, B;eB"™,

i=1

(Py. s Pa) = Pre((fi,ma, Bi, Ra), .y (Fuyim, By Rn)).

4)
where all tasks’ (f;, m;, B;, R;) are fed into a unified predictor
Pre(-). The output is the per-task throughput {Py,..., P,}
when these n tasks compete on the same GPU. This captures
sublinear scaling, memory contention, and other concurrency
effects.

Data-Driven Model Fitting: To build Pre, we conduct of-
fline profiling on representative DNN models (e.g., VGG16,
ResNet50, MobileNetV3, etc.):

1) Random/Grid Sampling of {B;, R;}: We sample diverse
configurations {(B;, R;)} for each task, combining them
into multi-task scenarios with up to n concurrent tasks.

2) Collect Throughput: In each scenario, we measure
{Py,..., P,} on areal GPU, thus recording concurrency
behavior for varied resource shares.

3) Regression to Learn Pre: We form a dataset
{((fi,mi, Bi, Ri)an askss (P1,-..,P,))} and train a

multi-output regressor. One may use a neural net,
polynomial, or log-based model.

4) Fitting «, 8 in Eq. (3): Alongside throughput regression,
we also handle «, § by fitting them to partial concurrency
or single-task measurements. We express

time; = vo + 71 - (o fs B + fm; By),

then solve via least squares for «, 8. This yields a data-
driven ratio of “FLOPs cost” vs. “memory cost” in the
workload expression.
After training, Pre can quickly predict each task’s through-
put under any new combination {B;, R;}. This eliminates the
need to brute-force on real hardware for every scenario.

Solving for Optimal Batch Size and Virtual Resource: Given
the learned model Pre, we then tackle:

e, > Pi((f1sm1, Bi, R, ooy (fos s Ba Ra))s ()

subject to >, R; = R, and feasible B; € By,

There are two types of maximum throughput:

1) Theoretical maximum: If {B;, R;} can be any allowed
values (e.g., batch size up to 512, resource fraction up
to n x 100%), we find an upper bound that may ignore
synchronization constraints.

2) Max throughput under given batch setting: If we fix or
partially constrain {B;} (e.g., all tasks must use the same
batch, or certain tasks cannot exceed batch 64), then we
only optimize {R;} for concurrency within that batch
arrangement.

For each discrete batch-size combo and resource fraction
increments, we evaluate Zl P; via Pre. We pick the best
solution as the optimal results. This approach is much faster
than real-hardware trial-and-error, as Pre infers concurrency
outcomes offline.

Example: Profiling-based Schedules: In Fig. 7, we illustrate
how, across eight different multi-task settings (each with cer-
tain {f;,m;} and candidate batch sizes), our method searches
around 125 random or grid-sampled {B;, R;} schedules. We
then highlight a Pareto front of top solutions. Notably, our final
modeling-based solution lands in the top 3-15% among all
candidates, demonstrating near-optimal resource assignments.
Meanwhile, the “best single solution” may correspond to an
extreme batch-size choice that is infeasible in a later FL
synchronization step, so we can easily re-run the search under
a restricted batch range to respect those constraints.

Overall, this modeling-based approach clarifies both the “the-
oretical maximum throughput” (unconstrained {B;}) and the
“maximum throughput under certain batch constraints”. By
systematically searching over {B;} and {R;} with a learned
multi-task concurrency predictor Pre, we obtain near-optimal
concurrency decisions for multi-task FL. In the subsequent
sections, we will integrate these solutions with higher-level
FL synchronization and workload-balancing policies.

V. INTER-DEVICE MULTI-TASK COORDINATION

Having optimized local GPU concurrency in the previous
section, we now turn to the broader challenge of inter-

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

4600
4400
4200
4000
3800
3600
3400
3200
3000
2800
2600

9% 7%
0, 15%
Ours IOAQ f

\A+12% : .
$ 3%
.

%15% .

Fig. 7: Our modeling-based solutions across eight different
settings yield top 3-15% training throughput among all ran-
domly searched schedules (125 schedules for each setting).

Throughput (img/s)
(801 1) surpag

EEEENENEN

device coordination in multi-task FL. Even if each device
runs multiple tasks efficiently, the global training loop can
still experience slowdowns when devices are out of sync or
tasks finish their local phases at vastly different times. To
address these issues, our scheme integrates: (1) A batch size
adaptation method that refines each device’s per-task batch
sizes to better balance workloads across multiple tasks. (2)
A communication-aware scheduling extension that overlaps
compute and communication phases, thereby reducing idle
periods and improving overall efficiency.

A. Multi-Task Coordination by Batch Size Adaptation

Motivation and Basic Idea: Although each device can achieve
locally optimal throughput for a particular batch configuration,
multiple tasks on the same device may still be imbalanced in
terms of data volume or model size. A task with a relatively
large dataset but a small batch size risks underutilizing the
GPU in crucial moments; conversely, a task with minimal
data but an overly large batch could monopolize resources
unnecessarily.

Such imbalances lead to idle time or suboptimal progress,
especially during the global synchronization phases, as shown
in Fig. 8(a). To mitigate them, we define a simple mismatch
metric to keep tasks’ batch sizes proportional to their data
volumes, as shown in Fig. 8(b). For instance, if Task A has
double the data of Task B, we target B4 ~ 2 X Bp to balance
their local progress.

Problem Formulation: Let D; be the data volume for task 3,
and B; be its batch size. To formalize these two objec-
tives—mismatch minimization and local throughput maxi-
mization—we adopt the following formulation:

Objective 1: min), Zb(‘lg‘;‘l - %‘;),
Objective 2: max . P;,

(6)

where the first objective measures how well batch sizes
match the ratio of data volumes, and the second objective
evaluates the overall local throughput), P; once batch sizes
are decided.

Specifically, for each candidate {B;}, we compute the
device’s maximum achievable throughput by applying our
modeling-based resource allocation approach from Section IV
(i.e., solving Eq. 5 for {R;}). By balancing batch sizes among
co-located tasks, we ensure no single task finishes drastically
earlier or later, thus preventing synchronization delays at the
global level.

7
Synchronization Cycle
Downlink Comm. Training Uplink Comm.
B 8 €|
X 30% sk A (a)
Virtual 40% Task B Maximum Overall Throughout
Resource 60% But Training Cycle Unbalance
Multi-Task Coordination .
AN\ . ()

70%
60%
130% |

Communication-Aware

= e ©
1me =
¥ 60% l—>:

¥55%

o [

Fig. 8: Aligning tasks’ batch sizes with their respective data
volumes and overlapping the communication time help reduce
idle GPU time and shortens global synchronization.

Timeline

Algorithmic Sketch: We use the following algorithm to solve
the optimization of the Eq. 6.

1) Search Over Batch Sizes: Enumerate feasible B; for each
task. Calculate the mismatch measure (Objective 1) to
filter out poorly balanced configurations.

2) Local Scheduling: For each promising batch setting, run
the intra-device scheduling (Eq. 5) to obtain the maxi-
mum local throughput (Objective 2).

3) Best Combination: Choose the batch-resource configu-
ration that yields minimal mismatch and highest local
throughput.

By aligning each task’s batch size with its data volume,
we avoid major imbalances that would otherwise slow global
synchronization or waste GPU cycles. For highly variable task
loads, FedMT could incorporate a damping mechanism for
batch size adjustment. Instead of instantaneously responding
to a spike or drop in one task’s workload, the scheduler updates
batch sizes gradually, using a smoothed estimate of each task’s
load. This prevents oscillations and ensures fairness even if
task loads fluctuate violently from round to round.

B. Communication-Aware Multi-Task Coordination
by Overlap Communication Time

While the batch-size adaptation in Eq. 6 helps balance
local computation, it does not explicitly account for the
communication phase. In realistic multi-task FL scenarios,
each task ¢ must upload (model/gradient) and download (up-
dated parameters) after local training. Efficiently overlapping
computation and communication can further improve device-
level utilization during full synchronization cycles, as shown
in Fig. 8(b) and (c).

For each task ¢, let

T_compute — & and Teomm TupP + Tdown

K3 PZ ? K3 (2)
where D, is the local data volume, P; is the per-task through-
put (determined by batch size and resource allocation), and
T, Tdov™ are uploading/downloading times. A task can only
start its upload after finishing its compute; similarly, the

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

download may happen in parallel with other tasks’ compute
if resources allow.

Basic Overlap Idea: Using Workload-based Priority: A
straightforward strategy is to rank tasks by their local training
workload (i.e., O; as discussed in Section IV), then let the
largest workload start first. Suppose we have three tasks
A, B,C with Oy > Op > Oc¢. Concretely: (1) Task A
begins downloading its weights and then proceeds with local
compute. (2) Task B starts second. (3) Task C, having the
smallest workload, starts last.

Because C' has minimal compute, it often finishes early and
can upload first, overlapping its communication 75™™ with A
or B’s remaining compute time. Meanwhile, A—the heaviest
compute—uploads last, but that does not necessarily stall other
smaller tasks, as shown in Fig. 8 (c).

This simple heuristic often demonstrates why communi-
cation overlap helps: smaller tasks’ communication naturally
“hides” behind the larger tasks’ compute windows. However,
It only considers compute volume. Tasks with large model size
but small local data could still become suboptimal if forced
to start first (thus incurring a big download immediately),
or if they finish compute too quickly but require extensive
communication afterward.

Extending to Flexible Priority for Broader Overlap: In real
deployments, workload-based priority is not always optimal,
as in the following two cases, a task may have:

1) Small compute but large communication (e.g., big model
weights but few local samples), making an early compute
start suboptimal if it forces a long idle while the task
uploads.

2) Both large compute and large communication, where
placing it first might cause a heavy download that blocks
other tasks from computing in the very beginning.

Hence, beyond simple “largest-workload-first,” we propose a
flexible scheduling priority that considers both compute time
T;°™"° and communication 7™,

Formulation and Constraints: Let T;"™"° = Lt represent
local computation time (given batch size B;, resource R;), and
Teomm — TP 4 Tdown represent upload/download overhead.
We fix a permutation 7 of tasks {1,..., N} to define the start

order. T; "™ starts after 7°"", and T} starts after T} *""".
Algorithmic: Algorithm 1 illustrates a combined approach:

1) Initial Batch Sizes: Start with the batch configuration
{B;} that minimizes mismatch and maximizes through-
put (Section V-A).

2) Enumerate Priority Orders: Generate permutations 7 for
tasks {1,...,N}.

3) Local Search around {B;}: For each candidate order ,
we try slight adjustments to each B; (e.g., +20%) to see
if partial scaling helps overlap communication further.

4) Simulate Overlap: Compute each task’s T;°"™" and
TFomm, then place tasks in order 7, letting them share
GPU resources.

5) Compute Makespan: Arrange according to the order 7
and the limitations between computation and communi-
cation. We record the final “makespan.”

6) Select Best: Pick 7 and { B;} with minimal total finishing
time.

Algorithm 1 Flexible Priority Scheduling.

1: Input:
o N tasks; local data volumes {D;};
o Initial batch sizes {B;} from Section V-A;
« Communication times (7}, T{°™™) per task;
o A small search factor J (e.g., 20%).

2: Output: Optimal (7, {B;}) for minimal total finishing time.
3: II « All permutations of {1,...,N}.

4: bestTime <— oco; bestConfig < @

5: for 7 € 1I do

6: B; « {(1-06)B;, Bf, (1+0)B;} for each i

7: for each combination {b;} in [], B; do

8: C()mputg Ticompule _ pf()f;i) : Ticomm :Tiup 4 Tidown
9: SimulateOverlap(r, {T;°*™™" T£o™™}) — makespan
10: if makespan < bestTime then

11: bestTime < makespan

12: bestConfig < (7, {b;})

13: return bestConfig

In summary, the flexible-priority approach explicitly ac-
counts for tasks that might have imbalanced compute vs. com-
munication patterns. This helps ensure long communication
windows are “hidden” behind another task’s compute, thereby
reducing idle periods. Through this method, FedMT overlaps
each task’s communication with other tasks’ computation
without cutting short any task’s local training. If one task
finishes its epoch earlier than others, it immediately begins
transmitting its update while the remaining tasks continue
GPU computation. Moreover, FedMT’s adaptive batch sizing
brings task completion times closer together in subsequent
rounds, preventing prolonged idle waits and ensuring that
overlap never results in suboptimal scheduling.

By jointly considering both compute and communication over-
head, we improve multi-task FL'’s inter-device synchronization.
In the following experiments, we show that this overlap-based
scheduling can further speed up convergence, especially when
tasks differ markedly in model size or local data volumes.

VI. EXPERIMENTAL EVALUATION
A. Experimental Setup

Training Setup: To thoroughly assess our proposed frame-
work, we construct several multi-task FL scenarios involving
a diverse set of DNN architectures: AlexNet (Alex), VGG16
(V16), ResNet18 (R18), ResNet50 (R50), ResNet101 (R101),
MobileNetV3 (M3), ShuffleNetV2 (S2), and DensNetl21
(D121). These models cover a wide spectrum of computational
and memory demands.

We evaluate each multi-task setting on the CIFAR10 and
CIFARI100 datasets (image resolution 32 x 32 x 3) and run
experiments on three different GPUs (NVIDIA Titan V, 3080,
and 3090), ensuring our conclusions hold across varying hard-
ware generations. For the sake of evaluating the scheduling
improvements in a controlled manner, we assumed an IID data
partition across clients for each task. This allowed us to focus
on runtime performance metrics without the additional variable
of accuracy differences due to non-IID data.

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

mm Temporal == Fully Isolated == Moderate

W Aggressive 3 Fully Sharing 2 FedMT
3

S 2.26 2.24
L « 2,122'170 1.96 18%'12 19 g £
5. r 1.9 1.86' R4
3 g
K =

S N
= S

DI21+V16+R 101 RIS+M3+S2 R50+VI16+M3

= 23 w oW
£ 203, 216 208 223 2.05 g s
S S 3
: 3
9
= S =

R50+V16+M3

DI21+V16+R101

Fig. 9: Intra-Device Multi-Task GPU Throughput (Titan V)

RI18+M3+S82

Baseline Methods: To contextualize our results, we compare
FedMT against resource scheduling baselines:

o Temporal (T): The default CUDA scheduling, training
tasks sequentially on the full GPU (one task at a time).
Many real-world deployments without advanced sched-
ulers effectively behave temporally, making this a practi-
cal baseline for sequential execution.

o Fully-Isolated (FI): Each task is statically allocated a
dedicated subset of GPU resources (e.g., via NVIDIA
MPS partitioning) throughout training. This represents
commercially available spatial scheduling with strong
isolation and no operator-level overlap.

o Fully-Sharing (FS): All tasks share the GPU concurrently
using MPS with no enforced isolation. This enables fine-
grained parallelism but may cause resource contention
due to uncoordinated execution.

Metrics: We mainly report:

e Raw Throughput (P): Per-model training speeds (im-
ages/second), indicating overall system throughput.

o Fairness Throughput (Py): Each model’s throughput nor-
malized by its standalone speed, then summed across
tasks. This treats speed on each model equally.

e« GPU Utilization: SM occupancy to highlight how effec-
tively each scheme uses GPU resources.

Unless otherwise noted, we normalize all throughput values

against the temporal baseline to highlight relative speedups.

B. Intra-Device Speed-Up Evaluation

In this section, we demonstrate how our intra-device re-
source partitioning approach accelerates multi-task training
on a single GPU. Specifically, we compare our FedMT
method against three baselines (Temporal, Fully-Isolated,
Fully-Sharing), measuring both total throughput and fairness
throughput.

Experimental Scenarios: Fig. 9 presents results from three
contrasting multi-task settings: (1) D121 + V16 + R101: A
heavy scenario with large computational volumes and memory
footprints. (2) R18 + M3 + S2: A lightweight scenario
representative of mobile/edge tasks. (3) R50 + V16 + M3:
A hybrid scenario with mixed operator latencies and resource
demands. All tasks use a fixed batch size of 128 for simplicity.
In addition, we add two baseline scenarios: 1) Moderate
static sharing—Each task is statically assigned 60% of GPU
resources, resulting in a moderate overlap (20%) between

tasks; 2) Aggressive static sharing—Each task is statically
assigned 80% of GPU resources, leading to higher overlap
(60%) and potentially significant resource contention.

Overall Speed-up: Across all three settings, our realloca-
tion strategy achieves a consistent 2.16x to 2.38x speed-
up compared to the temporal (sequential) training baseline.
Compared to the static spatial baseline (Fully-Isolated and
Fully-Sharing), FedMT achieves higher GPU utilization; if
one task finishes early or has a lighter workload, FedMT
reallocates its unused GPU time to other tasks, whereas in
static partitioning that portion of the GPU would remain idle.
As a result, FedMT improves training throughput by 20—-40%
over the best static partition setting in our experiments, in
addition to vastly outperforming the temporal schedule. The
outcomes also confirm observations consistent with those
depicted in Fig. 6: Moderate exhibits reduced GPU idleness
compared to fully isolated scenarios but still suffers from
inefficiencies when tasks vary in computational demands over
time. Aggressive, on the other hand, often leads to excessive
resource contention, diminishing throughput.

Speed-up in Fairness Throughput: Our method also provides
higher fairness throughput—reflecting that smaller models
(e.g., M3, S2) receive adequate SM resources rather than
being bottlenecked by larger models (e.g., R50, R101). Fully-
Sharing, by contrast, can allow large models to monopolize
SM usage, leaving small models starving. Hence, by enabling
complementary resource sharing and informed concurrency
(recall Section 1V), FedMT improves both the total throughput
and the per-model balance of progress.

C. Multi-Task Coordination by Batch Size Adaptation

In addition to optimizing concurrency within a single GPU
(Section IV), our method also coordinates multiple tasks at the
inter-device level by refining each task’s batch size to match
its data volume and capacity (detailed in Section V-A). This
ensures that the global training loop remains efficient across
devices, preventing bottlenecks or prolonged idle times.

Experimental Setup: We simulate an FL system with mul-
tiple devices, each co-training exactly three DNN tasks (e.g.,
VGG16, R18, M3), but in imbalanced data-volume proportions
of 1:2:3. For all baseline approaches, we fix a uniform batch
size of 128 to highlight the effects of naive scheduling. By
contrast, our scheme jointly tunes batch sizes in proportion
to each task’s data scale, then applies the modeling-based
resource allocation from Section IV to finalize {R;}.

Results: Figure 10 shows the average throughput (top) and
fairness throughput (bottom) across all devices within a single
FL synchronization cycle. We observe that our approach
yields a significant 2.53x-2.80x acceleration relative to the
baselines, outperforming both simpler resource partitions and
single-batch-size strategies.

These results confirm that aligning batch sizes to each task’s
local data volume (Section V-A) is crucial when co-training
multiple heterogeneous DNNs in an FL system. Not only
does this strategy maintain higher local GPU utilization, but it
also prevents global synchronization delays by ensuring tasks

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

m Temporal == Fully Isolated == Fully Sharing 1 FedMT
-

=

g g 2.65 259 L | s
s 2 2.04F 7
§:° 1.7 ? 1'931‘92 1.711.75 Ee
SR /
S S2 ’ 1 VA 1 / S
% % 715
< 2 3

DI21+VI6+R 101 RIS+M3+S2 R50+VI6+M3 ~
-§ pt g 1.95[7 g §
KBS 1.63'-7" 1.85 % ’ 1.631.65 £3

- S

vLEIEE ’ I ,’ I S §
< 3 % SIS

DI2I+VI6HR101 RIS+M3+S2 RS0+VI6+M3

Fig. 10: Average throughput across multiple devices within
one FL synchronization cycle (Titan V)

progress more evenly. Overall, we see a clear synergy between
batch-size adaptation and competitive resource sharing, lead-
ing to enhanced performance across multiple devices.

D. Verifying the Effect of Communication Overlap

While our proposed FedMT incorporates multiple compo-
nents, here we focus on isolating the communication overlap
strategy (discussed in Section V-B) to evaluate its standalone
impact. Specifically, we compare scenarios with and without
overlapping upload/download phases under otherwise identical
conditions, highlighting how concurrency in communication
can reduce idle time and improve efficiency.

Experimental Setup: We select three multi-task settings in
which each device co-trains three DNN models (from the
models in Training Setup) on a single GPU (3090). For each
model, we assume the following parameter sizes: DensNet121:
~ 30 MB, VGG16: ~ 55 MB, ResNetl0l: ~ 170 MB,
ResNet50: ~ 100 MB, ResNetl8: ~ 45 MB, MobileNetV3:
~ 15 MB, ShuffleNetV2: ~ 9 MB. Since each FL iteration
typically involves uploading local updates and downloading
aggregated parameters, we emulate a realistic edge bandwidth
of 400 Mbps (uplink and downlink) for all experiments.

Regarding GPU resource management, we employ: (i) GPU
Resource Partition with our modeling-based approach from
Section IV to ensure fair baselines, (ii) Batch Size Adapta-
tion from Section V-A to maintain proportional batch sizes
across tasks. We only vary whether communication overlap is
activated:

o Overlap-Off: Each task computes locally, but all upload-
s/downloads occur sequentially (i.e., one task’s commu-
nication must complete before another’s begins).

o Overlap-On: Our flexible scheduling ensures a smaller
task’s communication phase can be overlapped with a
larger task’s computation (see Section V-B).

Metrics and Results: We measure both the average local iter-
ation time (seconds) and the overall throughput (images/sec-
ond). As summarized in Table I, enabling overlap (Overlap-
On) yields appreciable gains over no overlap (Overlap-Off):
Across all tested configurations, Overlap-On reduces lo-
cal iteration time by 13-19%. Notably, the scenario with
D121+V16+R101 has a relatively large communication over-
head, so overlapping communication with compute yields the
most pronounced speedup (+19.4%). Overall, these results

10

TABLE I: Ablation on Communication Overlap: Local Itera-
tion Time (s) / Throughput (img/s)

Setting Overlap-Off Overlap-On Speedup
DI121+V16+R101 20.40s / 3.10K 17.08s / 3.70K +19.4%
R18+M3+S2 8.62s / 573K 7.61s / 649K +13.3%
R50+V16+M3 14.40s / 421K 12.27s / 494K +17.3%

TABLE II: Search Overhead for Flexible Priority with 3 Tasks

Item Value
Permutation Count 6
Batch Variation per Task 3
Total Search Points 162
Avg. Prediction Time per Point 1.8 ms
Total Search Time 0.29 s

validate the effectiveness of the communication overlap com-
ponent, demonstrating that upload/download concurrency is
especially advantageous for heavier models and multi-task
environments.

E. Cost of Flexible Priority Search

Recall that our flexible priority scheduling mechanism (Al-
gorithm 1) systematically searches all permutations and minor
batch-size variations to discover an optimal communication
overlap schedule. We now quantify the overhead of this search
procedure and show that it is minimal—on the order of a
few hundred milliseconds—compared to the lengthier training
cycles in typical multi-task FL.

Experimental Setup: For this study, we pick a 3-task scenario
{VGG16, R18, M 3}. The total number of possible permuta-
tions is 3! = 6. We then allow {£+20%} batch-size scaling
for each model, thus creating 33 = 27 micro-variations for
each permutation. In total, the space of search points is
6 x 27 = 162. For each configuration, we compute a predicted
makespan via our learned concurrency model (see Section IV).

Results:

As summarized in Table II, we measured FedMT’s schedul-
ing overhead (under 0.3s) to be minor (approximately 2—3% of
the total training time per round). This overhead is negligible
in light of the 2x or higher training throughput improvements
FedMT achieves, and it is often amortized by overlapping
scheduling computations with GPU execution. Moreover, even
for scenarios with 4-5 concurrent tasks (thereby increasing the
number of permutations), the total search time remains below
one second in our implementation. These findings confirm that
the search procedure is both feasible and efficient, ensuring
that the scheduling overhead does not offset the performance
gains from flexible priority overlap.

FE. Scheduling Visualization with Nsight

To illustrate how each model executes at the operator
level under different resource-sharing strategies, we profile
the combination of D121, V16, and M3 using the NVIDIA
Nsight tool. The primary goal of this visualization is to
offer a clearer, more intuitive, and realistic view of runtime
behaviors under different resource-sharing schemes (Spatial-
Isolated, Moderate Sharing—190%, Excessive Competition,

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

Procl: DenseNet121 Proc2: MobileNetV3 Proc3: VGG16

o))

Slight Contention

(ZOE0

R e . X I D 0 0 EmoeE

(a) 33%, 33%, 33% Partition (b) 70%, 50%, 70% Partition

) e) o i T e e D@ (o) @
Large Contention . .
— Time Slicing
=D @00 EEEE) P @0 o=
CRES B ==

(¢) 90%, 90%, 90% Partition (d) 100%, 100%, 100% Shared

Fig. 11: Operator-level scheduling visualization via NVIDIA
Nsight, showing the GPU kernel timelines of three models.

and Fully Sharing) as initially discussed conceptually in Fig.5.
Unlike the quantitative metrics (e.g., throughput and fairness
throughput) shown earlier, Fig.11 qualitatively illustrates GPU
kernel execution timelines, clearly highlighting differences in
operator-level parallelism, contention, and GPU resource uti-
lization. This visual evidence complements and substantiates
the numerical evaluations, providing deeper insight into the
practical implications and runtime performance characteristics
of the proposed FedMT strategy.

As shown in Fig. 11, each scheduling configuration cor-
responds to a distinct row, displaying the kernel execution
timeline of three streams (one per model):

« Spatial-Isolated: Each model is allocated a disjoint subset
of SMs. Although simpler to manage, certain operators
remain underutilized, prolonging model latency.

e Moderate Sharing — 190%: By letting the sum of al-
locations exceed 100%, streams can overlap selectively,
improving concurrency while limiting contention.

« Excessive Competition: Over-allocating virtual resources
leads to increased contention. Even smaller models (e.g.,
M3) experience greater operator delays.

o Fully Sharing: Tasks share the entire GPU dynamically,
often reverting to time-sliced usage when contention is
high, thereby undermining parallelism.

From these traces, we observe that moderate or balanced
resource sharing strikes a better trade-off between concurrency
and contention. In contrast, naive fully shared or heavily
overcommitted allocations can degrade performance for both
large and small models.

G. Resource Utilization Assessment

To evaluate how effectively FedMT utilizes GPU resources,
we collect both compute and memory usage during train-
ing and conduct a detailed analysis of operator-level execu-
tion patterns under parallelization. Specifically, we leverage
the NVIDIA Nsight Profiler to measure the achieved SM
Occupancy—an indicator of how many warps are actively
running on the GPU’s streaming multiprocessors (SMs).

Fig. 12 displays the SM occupancy over time (milliseconds)
for four different scheduling approaches when running the
multi-task combination {R101, D121, M3}. From the occu-
pancy timeline, we make the following observations:

Temporal

100

Fully Isolated Fully Sharing

W
(=}

GPU Utilization(%)

S

0 100 200 300 500

Fig. 12: GPU SM Occupancy
"1 Throughpu: N Fairness Throughput

3 0.980.97 0.960.99 Lol 0.930.95
¥ 1
Q
§
= 0.5
3
g
S o
Setting 1 Setting 2 Setting 3 Setting 4

Fig. 13: Performance Comparison]
TABLE III: Resource Allocation in Varied Multi-Task Settings

Setting R50 V16 Setting R50 V16 M3 D121
[©) 128 32 @ 128 128 128 128
Best 80% 70% Best 70% 80% 60% 70%
Ours 80% 80% Ours 0% 90% 60% 80%
Setting R50 M3 Setting R50 V16 M3 D121
® 128 512 @ 32 32 32 32
Best 80% 80% Best 60% 80% 50% 70%
Ours 80% 80% Ours 0% 90% 70% 70%

o Temporal: Each model sees exclusive GPU access during
its slot, but idle gaps commonly appear between task
switches.

o Fully-Isolated: If a large operator is scheduled alone on
its subset of SMs, that subset can briefly reach high
occupancy. However, such events are relatively scarce,
and smaller operators underutilize those SMs for much
of the time.

o Fully-Sharing: Parallel execution can boost utilization but
also causes contention when big operators collide, leading
to suboptimal occupancy in critical intervals.

o FedMT: By adaptively partitioning SMs according to
“virtual resource” fractions, FedMT mitigates severe con-
tention while still permitting beneficial overlaps, sustain-
ing higher average occupancy over time.

Hence, these results confirm that FedMT outperforms naive
scheduling methods in fully exploiting the GPU’s parallel exe-
cution capabilities, leading to higher throughput and improved
consistency across co-running tasks.

H. Generality Performance

We now evaluate the broader applicability of our modeling-
based resource allocation beyond the specific use cases dis-
cussed earlier. In particular, we seek to verify whether the
proposed method can consistently approach near-optimal so-
lutions under a variety of model and batch-size configurations.

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

TABLE IV: Scalability Evaluation: Throughput (img/s) for Different Task Combinations (Titan V)

Models Combination Temporal Fully Isolated Fully Sharing FedMT

V16 + R34 1.75K 2.12K (1.21x) 2.28K (1.30x) 2.80K (1.60x)

2% RI18 + R34 1.77K 2.19K (1.24x) 2.25K (1.27x) 2.75K (1.55x)
R34 + R50 1.40K 1.82K (1.30x) 1.83K (1.31x) 2.33K (1.66x)

R50 + R101 1.20K 143K (1.19x) 143K (1.19x) 1.73K (1.44x)

ax V16 + R18 + M3 + D121 1.78K 3.60K (2.02x) 3.95K (2.22x) 4.91K (2.75x)
M3 + R34 + R50 + R101 1.69K 3.52K (2.08x) 3.80K (2.25x) 4.64K (2.74x)

5% V16 + R18 + R34 + R50 + D121 1.73K 3.51K (2.03x) 3.78K (2.18x) 4.93K (2.84x)

TABLE V: GPU Generality Evaluation (img/s). T: Temporal; FI: Fully Isolated; FS: Fully Sharing.

Models T-3080 T-3090 FI-3080 FI-3090 FS-3080 FS-3090 FedMT-3080 FedMT-3090
ALEX+V16+R18 1.94K 298K 3.20K (1.65x) 5.00K (1.68x) 3.30K (1.70x) 5.16K (1.73x) 4.01K (2.07x) 6.32K (2.12x)
D121+V16+R34 1.56K 234K 2.81K (1.80x) 4.17K (1.78x) 2.82K (1.81x) 4.17K (1.78x) 3.47K (2.22x) 5.43K (2.32x)

R50+V16+M3 176K 2.70K 3.15K (1.79x) 4.73K (1.75x) 3.17K (1.80x) 4.83K (1.79x) 3.97K (2.25x) 5.98K (2.21x)
R101+D121+M3 146K 2.25K 248K (1.70x) 3.80K (1.69x) 2.60K (1.78x) 4.10K (1.82x) 3.35K (2.30x) 5.10K (2.27x)
R34+R50+R101 142K 2.19K 2.39K (1.68x) 3.61K (1.65x) 2.56K (1.80x) 3.88K (1.77x) 2.98K (2.10x) 4.70K (2.15x)

Table III lists four representative multi-task settings in-
volving either 2 or 4 concurrent DNN models. Each setting
indicates the targeted batch sizes (e.g., 128 for R50, 32 for
V16) and compares two resource allocation strategies:

o Best: The top-performing configuration found via a (po-
tentially exhaustive) search, serving as a reference base-
line.

e Ours: The allocations yielded by our modeling-based
approach without manual fine-tuning.

We also define a completion degree metric, which measures
the ratio of our method’s throughput (I" or T%) to that of
the best solution. A value close to 1.0 indicates near-optimal
performance.

Fig. 13 provides a graphical summary of these results.
Across all four settings, our approach attains a Completion
Degree consistently above 0.9, demonstrating that it closely
tracks the best-known solution. Notably, in Setting (3), our
allocations match the “Best” configuration exactly (i.e., a
Completion Degree of 1.0).

These findings validate the generality and robustness of
our modeling-based scheduling approach. Even when facing
different DNN models and batch sizes (spanning from large
models like R50 to lighter ones like M3), it can systematically
discover high-quality resource partitions that approach or
achieve the best possible throughput. Consequently, we expect
the same methodology to generalize to additional tasks or
system constraints with minimal tuning effort.

1. Scalability Evaluation

A key question for multi-task FL is whether our proposed
FedMT framework continues to scale effectively as the number
of concurrently trained tasks grows. To investigate this, we
evaluate FedMT under increasingly larger task sets on a single
NVIDIA Titan V GPU, with configurations of 2x, 4x, and 5x
simultaneous tasks (see Table IV for specific combinations).

From Table IV, two key observations emerge:

o Throughput and Fairness Gains: Compared to both
the Temporal (sequential) and conventional MPS-based
(Fully Isolated, Fully Sharing) baselines, FedMT con-
sistently achieves higher overall throughput. Fairness

throughput also improves, indicating a more balanced
resource distribution across tasks.

« Stronger Acceleration at Larger Scales: As the number
of concurrent tasks increases (e.g., from 2x to 5x),
the relative speedup of FedMT grows accordingly. This
highlights the framework’s ability to exploit more op-
portunities for parallelism and complementary resource
usage under heavier workloads.

Overall, these results demonstrate robust scalability in
FedMT: even when multiple DNNs run together, our adaptive
resource-sharing and modeling-based scheduling can effec-
tively mitigate contention. Hence, FedMT remains well-suited
for federated learning scenarios featuring multiple tasks with
heterogeneous resource demands.

J. Generality across Different GPUs

Although the above results are primarily based on a Titan V
GPU, practical deployments involve a variety of hardware plat-
forms. To assess how FedMT performs across different GPUs,
we repeat multi-task experiments on NVIDIA RTX 3080 and
3090 cards. Table V compares four scheduling strategies —
Temporal (T), Fully Isolated (FI), Fully Sharing (FS), and
FedMT — for five representative model combinations.

o FedMT consistently outperforms all baselines: On both
3080 and 3090, FedMT provides substantial throughput
gains, often doubling naive sequential performance.

o Speedups remain stable across hardware generations:
Even though the 3090 boasts higher raw compute ca-
pability, FedMT maintains a clear advantage in relative
speedups, highlighting that our method scales well when
GPU capacity increases.

« Competitive resource sharing remains crucial: Both Fully
Isolated and Fully Sharing can suffer from either un-
derutilization or contention, whereas FedMT splits GPU
resources to capitalize on concurrency benefits.

Overall, these findings reinforce the versatility of FedMT.
Whether the device is a mid-tier 3080 or a more powerful
3090, the proposed modeling-based competitive sharing ap-
proach consistently yields robust improvements over conven-
tional GPU scheduling paradigms.

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

VII. CONCLUSION

As the demand for multi-task Federated Learning (FL)
continues to grow, driven by its ability to accommodate hetero-
geneous and complex learning objectives, this work introduces
a comprehensive optimization framework, FedMT. By bridging
intra-device GPU scheduling and inter-device FL coordination,
we address critical challenges in resource contention, workload
balancing, and synchronization efficiency.

At the intra-device level, our proposed competitive resource-
sharing mechanism utilizes a novel “virtual resource” abstrac-
tion to achieve optimal GPU utilization, balancing concurrency
and contention dynamically. At the inter-device level, we
integrate batch size adaptation with communication-aware
scheduling to minimize idle periods and improve global
synchronization. These innovations significantly enhance the
system’s throughput and resource efficiency.

Experimental results validate the effectiveness of FedMT,
demonstrating substantial improvements in both intra- and
inter-device performance. Specifically, compared to the stan-
dard temporal (sequential) scheduling baseline, we observed a
2.16x-2.38x increase in intra-device GPU training throughput
and a 2.53x-2.80x boost in inter-device FL coordination
efficiency across diverse multi-task scenarios. Further com-
parisons with state-of-the-art spatial scheduling approaches
(such as NVIDIA MPS-based Fully-Isolated and Fully-Sharing
schemes) confirm that FedMT consistently provides substantial
gains (up to 1.4x—1.7x improvement) even against these base-
lines, demonstrating the practical efficiency of our proposed
scheduling strategies.

Future work could naturally extend FedMT to multiple
GPUs per client. Tasks may be mapped to different GPUs
to minimize contention (e.g., several tasks per GPU when
feasible), and our competitive sharing approach can manage
any GPUs running multiple tasks. This would further improve
training throughput, as tasks benefit from both inter-GPU
parallelism and intra-GPU optimization.

REFERENCES

[11 T. Li et al., “Federated learning: Challenges, methods, and future
directions,” IEEE Signal Processing Magazine, no. 3, pp. 50-60, 2020.

[2] J. Wen, Z. Zhang, Y. Lan, Z. Cui, J. Cai, and W. Zhang, “A survey on
federated learning: challenges and applications,” International Journal
of Machine Learning and Cybernetics, vol. 14, no. 2, pp. 513-535, 2023.

[3] S. Banabilah, M. Aloqaily, E. Alsayed, N. Malik, and Y. Jararweh,
“Federated learning review: Fundamentals, enabling technologies, and
future applications,” Information processing & management, vol. 59,
no. 6, p. 103061, 2022.

[4] E. T. M. Beltran, M. Q. Pérez, P. M. S. Sanchez, S. L. Bernal,
G. Bovet, M. G. Pérez, G. M. Pérez, and A. H. Celdran, “Decentralized
federated learning: Fundamentals, state of the art, frameworks, trends,
and challenges,” IEEE Communications Surveys & Tutorials, 2023.

[5] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso,
A. Forechi, L. Jesus, R. Berriel, T. M. Paixao, F. Mutz et al., “Self-
driving cars: A survey,” Expert systems with applications, vol. 165, p.
113816, 2021.

[6] J. Mills, J. Hu, and G. Min, “Multi-task federated learning for person-
alised deep neural networks in edge computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 3, pp. 630-641, 2021.

[7]1 L. Che, J. Wang, Y. Zhou, and F. Ma, “Multimodal federated learning:
A survey,” Sensors, vol. 23, no. 15, p. 6986, 2023.

[8] Z.-A. Huang, Y. Hu, R. Liu, X. Xue, Z. Zhu, L. Song, and K. C. Tan,
“Federated multi-task learning for joint diagnosis of multiple mental
disorders on mri scans,” IEEE Transactions on Biomedical Engineering,
vol. 70, no. 4, pp. 1137-1149, 2022.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]
[20]
(21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

13

J. Pan, X. Lin, J. Xu, Y. Chen, and C. Zhuo, “Lithography hotspot de-
tection based on heterogeneous federated learning with local adaptation
and feature selection,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2023.

J. Xia, T. Liu, Z. Ling, T. Wang, X. Fu, and M. Chen, “Pervasivefl:
Pervasive federated learning for heterogeneous iot systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 11, pp. 4100-4111, 2022.

V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-
task learning,” in Advances in Neural Information Processing Systems,
2017, pp. 4424-4434.

F. Yu et al., “Fed2: Feature-aligned federated learning,” in Proceedings
of the 27th ACM KDD, 2021, pp. 2066-2074.

C.-H. Wang et al., “Heterogeneous federated learning through multi-
branch network,” in Proceedings of the IEEE ICME. 1EEE, 2021.

Z. Tang, J. Huang, R. Yan, Y. Wang, Z. Tang, S. Shi, A. C. Zhou,
and X. Chu, “Bandwidth-aware and overlap-weighted compression for
communication-efficient federated learning,” in Proceedings of the 53rd
International Conference on Parallel Processing, 2024, pp. 866-875.
Z. Xu et al, “Helios: heterogeneity-aware federated learning with
dynamically balanced collaboration,” in Proceedings of the 58th
ACM/IEEE DAC. IEEE, 2021, pp. 997-1002.

Y. Chen et al., “Asynchronous online federated learning for edge devices
with non-iid data,” in Proceedings of the 2020 IEEE Big Data. 1EEE,
2020, pp. 15-24.

M. Xie et al., “Multi-center federated learning,” arXiv preprint
arXiv:2108.08647, 2021.

Y. Jiang et al., “Model pruning enables efficient federated learning on
edge devices,” arXiv preprint arXiv:1909.12326, 2019.

Y. Lin et al., “Deep gradient compression: Reducing the communication
bandwidth for distributed training,” arXiv preprint:1712.01887, 2017.
Nvidia, “Multi-Process Service,” 2021. [Online]. Available: https://docs.
nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

R. V. Rasmussenet al., “Round robin scheduling—a survey,” European
Journal of Operational Research, vol. 188, no. 3, pp. 617-636, 2008.
S. Kato et al., “Timegraph: Gpu scheduling for real-time multi-tasking
environments,” in Proceedings of the USENIX ATC, 2011, pp. 17-30.
Y. Liang et al., “Efficient gpu spatial-temporal multitasking,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 3, pp.
748-760, 2014.

N. Inc., “NVIDIA Multi-Instance GPU User Guide,” 2021. [Online].
Available: https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

L. Corinzia and J. M. Buhmann, “Variational federated multi-task
learning,” in 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2019, pp. 1-8.

Z. Chen, C. Jia, M. Hu, X. Xie, A. Li, and M. Chen, “Flexfl:
Heterogeneous federated learning via apoz-guided flexible pruning in
uncertain scenarios,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 43, no. 11, pp. 4069—4080, 2024.
D. Wu, W. Yang, H. Jin, X. Zou, W. Xia, and B. Fang, “Fedcomp: A
federated learning compression framework for resource-constrained edge
computing devices,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2023.

Y. Yu, Y. Shao, Y. Chen, and Y. Chen, “Salus: Fine-grained gpu
sharing primitives for deep learning applications,” in Proceedings of
the Fourteenth EuroSys Conference 2019, 2019, pp. 1-15.

W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep
learning,” in 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), 2018, pp. 595-610.

T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in ICC 2019-2019 IEEE
International Conference on Communications (ICC). 1EEE, 2019, pp.
1-7.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205-1221, 2019.

B. McMabhan et al., “Communication-efficient learning of deep networks
from decentralized data,” in Proceedings of the AISTATS. PMLR, 2017,
pp. 1273-1282.

M. S. H. Abad et al., “Hierarchical federated learning across het-
erogeneous cellular networks,” in Proceedings of the ICASSP IEEE
International Conference on Acoustics, Speech and Signal Processing.
IEEE, 2020, pp. 8866-8870.

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3600367

Yongbo Yu received the B.S. degree from Ocean
University of China, Qingdao, China, in 2017, and
M.S. degree from Ocean University of China, Qing-
dao, China, in 2020. He is currently pursuing his
Ph.D. degree in the Department of Electrical and
Computer Engineering at George Mason University
under the supervision of Prof. Zhi Tian. His cur-
rent research interests include Graphic Computing
Optimization for Deep Learning, Multi-Tenant Al
Computing on GPU, and Federated Learning.

Fuxun Yu received the B.S. degree from the Harbin
Institute of Technology, Harbin, China, in 2017, and
obtained the Ph.D. degree from the Department of
Electrical and Computer Engineering, George Ma-
son University, Fairfax, VA, USA, in 2022, under the
supervision of Prof. X. Chen. He is currently a Prin-
cipal Research Manager with Microsoft, Redmond,
WA, USA. His current research interests include
high-performance deep neural network computing,
full-stack DNN computing optimization, deep learn-
ing security, interpretability, and explainability of

deep learning.

Zirui Xu received the B.S. and M.S. degrees
from Beijing Jiaotong University, Beijing, China,
in 2014 and 2017, respectively, and obtained the
Ph.D. degree from the Department of Electrical and
Computer Engineering, George Mason University,
Fairfax, VA, USA, in 2022, under the supervision of
Prof. X. Chen. He is currently a Senior ML Research
Scientist at Microsoft. His current research interests
include high-performance mobile computing sys-
tems and mobile intelligent application robustness
and security.

Di Wang received the B.E. degree in computer
science and technology from Zhejiang University,
Hangzhou, China, in 2005, the M.S. degree in com-
puter systems engineering from the Technical Uni-
versity of Denmark, Kongens Lyngby, Denmark, in

2008, and the Ph.D. degree in computer science and

g A engineering from The Pennsylvania State University,
} University Park, PA, USA, in 2014. He is currently

\ a Principal Research Manager with Microsoft, Red-
\ 3 Al mond, WA, USA. His research spans the areas of
artificial intelligence, computer systems, computer

architecture, and energy-efficient system design and management. Dr. Wang
received five best paper awards and two best paper nominations.

Minjia Zhang (Member, IEEE) is an Assistant Pro-
fessor at the Department of Computer Science, Uni-
versity of Illinois Urbana-Champaign. His research
focuses on efficient machine learning systems, ef-
fective algorithms, and large-scale Al applications.
Before joining the University of Illinois Urbana-
Champaign, he completed his Ph.D. in the Computer
Science Department at Ohio State University in May
2016, where he worked on building efficient and
scalable systems with strong semantics for parallel
programs.

Ang Li (Member, IEEE) received the Ph.D. degree
from Duke University, Durham, NC, USA, in 2022,
under the supervision of Prof. Y. Chen. He is a
tenure-track Assistant Professor with the Department
of Electrical and Computer Engineering, University
of Maryland at College Park, College Park, MD,
USA. His research interests lie in the intersection of
machine learning and edge computing, with a focus
on building large-scale networked and trustworthy
intelligent systems to solve practical problems in a
collaborative, scalable and secure.

ChenChen Liu (Member, IEEE) received the M.S.
degree from Peking University, Beijing, China, in
2013, and the Ph.D. degree from the ECE Depart-
ment, University of Pittsburgh, Pittsburgh, PA, USA,
in 2017. She is currently an Assistant Professor with
the Department of Computer Science and Electrical
Engineering, University of Maryland at Baltimore
County, Baltimore, MD, USA. Her current research
interests include brain-inspired computing systems,
machine learning, and emerging nonvolatile memory
technologies.

Zhi Tian (Fellow, IEEE) is a Professor with the
Electrical and Computer Engineering Department,
George Mason University, since 2015. Prior to that,
she was a faculty member at Michigan Technological
University from 2000 to 2014. She served as a Pro-
gram Director with the U.S. National Science Foun-
dation from 2012 to 2014. Her research interest lies
in the areas of statistical signal processing, wireless
communications, and distributed machine learning.
Her current research focuses on distributed network
optimization and learning, wireless spectrum sens-
ing, and millimeter-wave systems. She received the IEEE Communications
Society TCCN Publication Award in 2018. She served as an Associate Editor
for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and
the IEEE TRANSACTIONS ON SIGNAL PROCESSING. She was a General
Co-Chair of the 2016 IEEE GlobalSIP Conference and the 2023 IEEE SPAWC
Workshop. She was a Member-at-Large of the Board of Governors of the IEEE
Signal Processing Society from 2019 to 2021. She was an IEEE Distinguished
Lecturer for both the IEEE Communications Society and the IEEE Vehicular
Technology Society.

Xiang Chen (Member, IEEE) received the
bachelor’s degree from Northeastern University,
Shenyang, China, in 2010, and the M.S. and
Ph.D. degrees in computer engineering under the
supervision of Dr. Y. Chen from the University of
Pittsburgh, Pittsburgh, PA, USA, in 2012 and 2016,
respectively. In 2023, he joined Peking University,
Beijing, China, where he is a tenure-track Associate
Professor with the Department of Computer Science
and Technology, School of Computer Science. After
his Ph.D. graduation in 2016, he directly joined
George Mason University, Fairfax, VA, USA, where he led seven National
Science Foundation (NSF) projects. His research focuses on mobile and
distributed computing systems, high-performance intelligence computing,
and related edge, IoT, and CPS applications. Dr. Chen achieved the NSF
CAREER Award.

Authorized licensed use limited to: George Mason University. Downloaded on October 18,2025 at 01:51:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	Background and Motivation
	Multi-Task Federated Learning on GPU
	Performance and Existing Approaches in Multi-Task FL
	Design Motivation

	Competitive Resource Sharing in Multi-Task Federated Learning on GPU
	Competitive Resource Sharing Analysis
	Competitive Resource Sharing Coordination [5mm][l] with Virtual Resource

	Intra-Device GPU Scheduling with Competitive Resource Sharing
	Inter-Device Multi-Task Coordination
	Multi-Task Coordination by Batch Size Adaptation
	Communication-Aware Multi-Task Coordination [5mm][l] by Overlap Communication Time

	Experimental Evaluation
	Experimental Setup
	Intra-Device Speed-Up Evaluation
	Multi-Task Coordination by Batch Size Adaptation
	Verifying the Effect of Communication Overlap
	Cost of Flexible Priority Search
	Scheduling Visualization with Nsight
	Resource Utilization Assessment
	Generality Performance
	Scalability Evaluation
	Generality across Different GPUs

	Conclusion
	References
	Biographies
	Yongbo Yu
	Fuxun Yu
	Zirui Xu
	Di Wang
	Minjia Zhang
	Ang Li
	ChenChen Liu
	Zhi Tian
	Xiang Chen

