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critical innovations before it can achieve quantum supremacy. 

For example, while it is estimated to require a million-qubit-

scale system to realize a practical universal system, the largest 

gate-based quantum computer so far has only 127 qubits [4].

On the other hand, quantum annealing is an adiabatic 

quantum computer that finds the global minimum of a given 

objective function over a set of candidate states by the process 

of quantum fluctuations. In contrast to the gate-based quantum 

computer, quantum annealing is specialized to handle certain 

types of optimization, such as combinatorial optimization prob-

lems. Regardless of its relatively limited applications, quantum 

annealing remains an enticing solution due to its intrinsic fault 

tolerance [5], which provides a competitive edge in developing 

a large-scale quantum computer. The potential of large-scale 

quantum computers becomes apparent when comparing the 

number of qubits for state-of-the-art quantum computers using 

the two methods. Currently, D-Wave’s annealing solver, one of 

the most widely adopted quantum annealers, has 5,640 qubits 

[6], much larger than the gate-based counterpart.

Harnessing its relatively large scale for reflecting a practical 

system, quantum annealing has been successfully applied to 

various fields, including finance [7], machine learning [8], and 

cryptography [9] as well as optical [10] and microwave [11], [12] 

system designs. Noting its significant impact across a wide range 

of fields, including electromagnetism, Part I of this article intro-

duces the fundamentals of quantum annealing to the electro-

magnetic community, assuming little knowledge of readers on 

quantum physics. The quantum annealing process is illustrated 

through numerical examples, facilitating the readers’ compre-

hension of it. This allows one to discern the types of problems to 

which quantum annealing is applicable. At the end of Part I, we 

introduce recent advancements in quantum annealing methods 

for handling complex and large-scale problems.

PRINCIPLES OF QUANTUM ANNEALING

This section explains the basic principles of quantum anneal-

ing. To understand quantum annealing, it is necessary to review 

some properties of quantum mechanics. This section briefly 

explains these essential properties of quantum mechanics along 

with the principles of quantum annealing.

QUBIT
In quantum annealing (or quantum computers in general), the 

qubit acts as an information carrier, as the logical bit does in 

classical computers. Unlike the logical bit with a state of either 

zero or one, the qubit can be in a superposition of its zero or 

one state. The zero and one states are called the energy states 

because they have distinct energy values, say E0 and E1, and are 

denoted as kets |0H and |1H in the bra-ket notation, respectively. 

The instantaneous state, | ,H}  of a qubit in a linear superposition 

of two energy states is described as

 | | | .0 10 1
0

1
H H H} a a

a

a
= + = ; E  (1)

Since any qubit state can be expressed as a linear summa-

tion of |0H and | ,1H  | , |0 1H H" , is a basis of the vector space 

of the qubit state. When measuring the state of qubits, they 

collapse to one of their energy states. This collapse is a proba-

bilistic process, where the probability of collapsing to |0H and 

| ,1H  denoted as P|0H  and ,P|1H  can be obtained from the inner 

product with a corresponding bras, |0G  and |1G —for example, 

| | | | | ,P 0|0
2

0
2G H} a= =H  where the orthonormality of the basis is 

used in the second equality. Likewise, P|1H  is given by | | .1
2a  This is 

why the complex coefficients, 0a  and ,1a  are often called probabil-

ity amplitudes. Since the state should always be measured as either 

zero or one, the complex coefficients satisfy | | | | .10
2

1
2a a+ =

HAMILTONIAN OPERATOR Ĥ
In quantum physics, every physical observation is associated with 

a Hermitian operator. In other words, the measurement result of 

a physical observation must be an eigenvalue of the correspond-

ing Hermitian operator. For instance, one can find an operator 

associated with the position, another operator with the momen-

tum, and yet another operator with the energy, and so on.

In particular, the operator associated with the energy, called 

Hamiltonian ,Ht  is of greatest interest in quantum annealing. 

Following the physicists’ convention, the hat symbol ( )$t  above 

the character represents it as an operator in this article. The 

reason why the Hamiltonian is essential in quantum anneal-

ing is because quantum annealing exploits quantum physics to 

find the lowest-energy state of qubits. It recasts an optimiza-

tion problem of interest to the energy minimization problem of 

which the minimum solution can be naturally obtained from 

quantum physics. Since the Hamiltonian is used to obtain the 

energy of a state, it is the most important operator in quantum 

annealing. The Hamiltonian Ht  is also important because it 

describes how the state should change with time
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Alternatively, using the right-hand side of (1), the previous equa-

tion may be rephrased as
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where H without the hat symbol ( )$t  is the matrix representation 

of the Ht  operator in the basis of | , | .0 1H H" ,  To help readers get 

familiar with the Hamiltonian, let’s consider the Hamiltonian 

of a single qubit of which the energy is definite; i.e., the energy 

level does not change with time. Since the energy level does not 

change with time, one may attempt to regard the left-hand side 

of (3) as zero, leading to the Hamiltonian matrix being the zero 

matrix. Instead, in quantum mechanics, while the magnitude of 

the probability amplitude of a particle in a state of definite ener-

gy E0 is static, its phase changes with time as e /( )i E t0 '-  [13]. For 

0a  and 1a  with the time dependency of e /( )i E t0 '-  and e /( )i E t1 '-  

to satisfy (3), the Hamiltonian for a single qubit with a definite 

energy has the matrix expression of

 .H
E

E0
00

1
= ; E  (4)
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Indeed, note that the eigenvalues of the Hamiltonian operator, 

which are independent of the choice of the basis, correspond 

to the energy. In general, the Hamiltonian, which is a 2 2#

Hermitian matrix, is spanned by four bases , , , ,I x y zv v v" ,  

where I is the identity matrix and the other three matrices are 

the Pauli matrices

 , , .
i

i0
1

1
0

0
0

1
0

0
1x y z/ / /v v v

-

-
c c cm m m  (5)

For example, the Hamiltonian H of (4) can be expressed as 

/ ( ) ( ) .H E E I E E1 2 z0 1 1 0 v= + - -6 @

THE SIMPLEST QUANTUM ANNEALER:  
A SINGLE-QUBIT QUANTUM ANNEALER
Equipped with the knowledge of the qubit and the Hamil-

tonian, we can now understand the operation of the simplest 

quantum annealer, which consists of a single qubit. Assume that 

we want to solve the following optimization problem:

 ,  ( ) .x F Qx Q1 1 0Find that minimizes R1! !- =" ,  (6)

This is a toy problem of which the solution is trivial; x 1=-  

to minimize the cost function to .F Qmin =-  Nevertheless, we 

want to use this simple problem to illustrate how the quantum 

annealer operates to find the optimal solution. First of all, the 

cost function F is equivalent to the energy eigenvalue of the 

Hamiltonian [ , ; , ] .H Q Q0 01 = -  In other words, the state’s 

energy is Q-  when the qubit is in |0H state and Q when the 

qubit is in |1H state. The objective is equivalent to minimizing 

the energy of the state with the Hamiltonian .H Q z1 v=-
t t

To avoid being trapped in a local minimum, quantum 

annealing starts from a superposition of all possible states with 

equal weights. For a single qubit, for instance, we want to set the 

initial state to be /| | | .1 2 0 10 H H H} = +^ h  For this purpose, 

the initial Hamiltonian is set to be .H x0 v=-
t t  Physically, this 

can be set by applying an external magnetic field to the qubit 

[14], [15]. Interested readers may refer to “Hardware Imple-

mentation of Quantum Annealer” for details. The initial Ham-

iltonian H0
t  has two distinct energies (eigenvalues) –1 and 1, 

with the corresponding eigenstates of /| | |1 2 0 10 H H H} = +^ h 
and /| | | .1 2 0 11 H H H} = -^ h  Since the quantum annealer 

sets the temperature of the system sufficiently low (a few tens 

of milli-Kelvin), the qubit is in the lowest-energy (ground) state: 

| | .0H H} }=

After the initial setup, the external magnetic field slowly 

changes to convert the Hamiltonian from H0
t  to .H1

t  For exam-

ple, the Hamiltonian of the system at time ( ),t t t0 f# #  ( )H tt  

changes with time as

 ( )H t
t

t t
H

t
t H

f

f

f
0 1=

-
+

t t t  (7)

where t f  is the time duration during which the conversion 

occurs. If the Hamiltonian is converted slowly enough, the 

system’s state can retain the lowest energy state throughout 

the annealing process. How slowly should it be converted? 

According to the adiabatic theorem in quantum mechanics, the 

rate of change of the Hamiltonian must be sufficiently lower 

than the gap between the lowest and the second-lowest energy 

spectrum [16]. If this adiabatic condition is met, the qubit will 

still be in the lowest energy state of H1
t  when the annealing 

is finished at ,t t f=  which is |0H corresponding to the mini-

mum energy of .Q-  This is the correct result of minimization: 

.F Qmin =-

MULTIPLE QUBITS
In practice, a quantum computer comprises multiple qubits. 

The states of multiple qubits form a new vector space and 

can be constructed from the vector spaces of individual qubit 

states using the tensor product, denoted by .,  For instance, 

an instantaneous state | H}  of two qubits can be expressed as 

| | ,1 27H Hz p  where | 1Hz  and | 2Hp  refers to the state of the first 

and second qubits, respectively.

To understand the vector space of multiple qubit states, 

it is essential to figure out the basis of the vector space. 

The basis of, say, a two-qubit vector space can be con-

structed as follows. When the states of two qubits are mea-

sured, each should collapse to one of their energy states: 

either |0H  or | .1H  Explicitly, labeling the basis of qubit 

1’s state as | , |0 11 1H H" ,  and qubit 2’s state as | , | ,0 12 2H H" ,  

the basis of two-qubit states consists of | | ,0 01 2H , H"  

| | ,0 11 2H , H  | | ,1 01 2H , H  | | ,1 11 2H , H ,  often labeled as 

| , | , | , |00 01 10 11H H H H" ,  for brevity. This implies, in gen-

eral, that an instantaneous state | H}  of two qubits can be 

ex pressed a s  | | | | | ,00 01 10 110 1 2 3H H H H H} a a a a= + + +  

where the complex coeff icients are the probabi l-

ity amplitudes, representing the probability that the 

qubits are measured to be the corresponding state; e.g., 

| | | | | .P 10|10
2

2
2G H} a= =H

Likewise, in a quantum computer with N qubits, the state 

of the whole qubits is the superposition of 2N  energy states. 

The 2N  energy states forming the basis of N-qubit states 

are | , | , , | .0 00 0 01 1 11f f f fH H H" ,  Mathematically, the 

instantaneous state of N multiple qubits is the superposition 

of the basis as
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where .1i i0
2 1 2N

; ;aR ==

-

Operators acting in the vector space of multiple qubits 

can also be constructed by the tensor product with the same 

symbol .,  For a two-qubit system, for example, let At  be an 

operator acting on the state | 1Hz  of the first qubit and Bt be an 

operator acting on the state | 2Hp  of the second qubit. We can 

construct the operator A B7t t for a two-qubit state defined to 

act as follows [17]:

 | | | | .A B A B1 2 1 27 7 7/H H H Hz p z pt t t t^ ^ ^h h h  (9)
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HARDWARE IMPLEMENTATION OF QUANTUM ANNEALER

This tutorial article mainly discusses the mathematical modeling 

of quantum annealing to understand how it works. Although 

the hardware implementation of the quantum annealer is out of 

the scope of this tutorial article, we briefly cover it in this sidebar. 

In short, it is about how the qubit is implemented and how the 

coefficients Qi for individual qubits and Qij for the interaction 

between qubits in (14) are physically manipulated.

How is the Qubit Implemented in Quantum Annealer?
As stated in the “Introduction” section, qubits are being 

implemented in various ways for the gate-based quantum 

computer. For quantum annealing, on the other hand, there 

is a prominent method to implement it, which is to use a 

superconducting loop, as shown in Figure S1(a). 

Why do we need a superconductor for quantum annealing in the 

first place? That is because we want to invoke quantum mechanical 

behavior on a macroscopic scale. In general, we can measure 

the phenomena on the macroscopic scale very well, such as the 

current or charge amount, in which billions of electrons are typically 

engaged. The critical problem is that the electron is a fermi particle, 

which means that there can be at most one electron for each state, 

making the observation of its quantum behavior extremely difficult.

If a conductor turns into a superconductor, things change in 

a very intriguing way other than that its resistivity goes to zero. 

When it becomes a superconductor, two electrons form a bound 

pair called the Cooper pair. Interestingly, this pair does not act like 

a fermi particle but does act like a boson particle, meaning that 

they like to be in the same state.

Returning to our story of the quantum annealer, we need 

many particles, whether they are electrons or Cooper pairs, to 

be in the lowest energy state to enable the measurement on a 

macroscopic scale. In a superconductor at a very low temperature, 

all the electrons turn into the Cooper pairs, and all the Cooper 

pairs are technically occupied in the lowest state, enabling the 

measurement. This is why we want to use a superconductor 

despite the pain of lowering the operation temperature.

How Do We Control the Qi for an Individual Qubit, 

A(T), and B(T)?
A superconducting flux qubit consists of a main loop and a 

small loop interrupting in the middle of the main one, as seen in 

Figure S1(a). Notice that there are two thin insulators on the small 

loop, called the Josephson junction, which is another key element 

in the superconducting flux qubit. The main loop can support 

two current flows [15], clockwise and anticlockwise circulating 

currents, effectively representing quantum binary states |0H  and 

| ,1H  respectively. The Josephson junction allows a small chance of 

flip-flopping the current direction and of changing a superposition 

state between |0H  and | .1H

The probability amplitudes of the states can be effectively 

controlled by changing the external magnetic flux to the main 

loop, denoted as .x1U  In quantum mechanics, the flux entering 

into a superconducting coil is quantized in units of the flux 

quantum .0U  When the external flux x1U  is given as half of the 

flux quantum / ,20U  the flux through the main loop may or may 

not exist with a 50/50 chance, implying that the qubit state is 

/| | | .1 2 0 10 H H H} = +^ h  From the perspective of the Hamiltonian, 

it means that ,H x0 v=-
t t  and from the perspective of the energy 

landscape, it means that the energy levels of |0H  and |1H  are 

equally low, as shown in Figure S1(b) (left). This is the initial state 

of the qubit in the quantum annealing, in which ( ) ( )A t B t&  and 

( ) ( ) .H t H t0.t t

When the external magnetic flux x1U  changes, it changes 

the energy landscape. One of the current directions may have 

a lower potential energy due to the nonzero /( ),2x1 0U U-  

tilting the landscape as in Figure S1(b) (center) and Figure S1(b) 

(right) by time. This shows that the external magnetic flux x1U  

determines the energy difference 2  h between two minima 

[Figure S1(b) (center)]. The qubit is more likely to be measured at 

a lower energy state than the other state, which is equivalent to 

introducing the term Q zv- t  in the Hamiltonian. In other words, by 

controlling the ,x1U  one can manipulate /( ) ( )B t A t  as well as Qi for 

individual qubits.

Next, we want to discuss the role of the small loop and the 

magnetic flux 2U  into it. During the transition from the initial to the 

final Hamiltonian, the energy barrier Ud  between the two states 

may appear high. If this barrier height appears too high before 

the energy difference is given, the state may be trapped in a local 

minimum, failing to reach the global minimum at the end of the 

annealing process. We want to suppress the rise of the barrier Ud  

until the energy difference is sufficiently applied. The two Josephson 

junctions and the magnetic flux 2U  can handle this. One can show 

that the barrier height Ud  depends on 2U  as [S1] 

Φ1Φ1 Φ1

UU U

δU

2h

|1〉|0〉

(b)

Φ1 ⊗Φ1x⊗Φ2x Φ2

Josephson 

Junction
(a)

|1〉

|0〉

FIGURE S1. (a) A schematic of a superconducting flux qubit. (b) The evolution of the qubit energy diagram along the 
annealing schedule.

(Continued)
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Note that the first ,  symbol in (9) represents the tensor 

product between two operators, while the others represent the 

tensor products between the qubit states.

To grasp the tensor product between the opera-

tors better, let’s consider the matrix representation of 

the operators A B,t t  constructed from At  and .Bt  We 

further assume that their matrix representations are 

[ , ; , ]A a a a a11 12 21 22=  and [ , ; , ],B b b b b11 12 21 22=  both on 

the basis of energy states of each. The matrix element of 

the operator A B,t t  can be found by mapping between 

bases via the operator. For example, one can check that 

| | ,A B a b00 00 11 11G , H=t t  which will be the matrix element 

at the first row and the first column. By repeating this 

process for every pair of bases, one can show that A B,t t  

has the representation of

 .A B

a b

a b

a b

a b

a b

a b

a b

a b

a b

a b

a b
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a b

a b
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11 11
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21 11
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12 11
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22 11
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12 22
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This 4 4#  matrix represents the expanded operator A B,t t and 

acts on a 4 1#  column vector representing the two-qubit state 

| | | .1 2H H , H} z p=

For a concrete example, we can consider the Hamilto-

nian operator [ , ; , ]H a a a a1 11 12 21 22=  that acts on qubit 1 and 

[ , ; , ]H b b b b2 11 12 21 22=  that acts on qubit 2. They can be 

upgraded to act on the two-qubit state as

 H H I
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a
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a
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These are some essential algebras to describe the operation of 

quantum annealing. Based on these, we shall see how the multi-

qubit quantum annealing works in the next section.

 .cosU
0

2?d
r
U

U  (S1)

Therefore, by controlling the magnetic flux 2U  from the external 

flux ,x2U  one can manipulate the barrier height Ud  as necessary 

and avoid falling in a local minimum.

How to Control the Qij?
The programmable Qij in (14) is physically synthesized by a block 

named the coupler. The coupler is based on the superconducting 

loop with the Josephson junctions [14], similar to the qubit 

design. Figure S2 shows an example of the coupler, in which the 

main loop is mutually coupled to two qubits. In the discussion of 

barrier height control in a single qubit, we have seen that a pair 

of Josephson junctions on a small loop plays the role of a switch, 

in the sense that it controls the isolation (the barrier height), 

depending on the magnetic flux into the loop. Similarly, the 

magnetic flux ,xcoU  into the small loop of the coupler can control 

the net current and affect the coupling between the qubits. In 

addition, the magnetic flux ,xactU  into the main loop of the coupler 

tunes the spin-spin coupling energy between ferromagnetic and 

antiferromagnetic coupling, which is equivalent to deciding the 

sign and the amplitude of Qij.

Potential Error Sources in Quantum Annealer
Controlling individual qubits and their interactions accurately 

is quite challenging due to the numerous potential errors that 

can affect the quantum annealer. To list a few error sources, 

the qubit state may be excited unexpectedly by violating the 

quantum adiabatic condition or absorbing the thermal energy 

from the environment. Moreover, the biasing circuit of the qubit 

is susceptible to an error from /f1  noise that can propagate to the 

qubit [S1], [S2]. Some errors may originate from the physical device 

itself. For instance, some physical qubits may have a coupling-like 

effect that is not accounted for in the Hamiltonian formulation 

[14], [S1]. A truncation error may arise due to the finite resolution 

of the digital-to-analog converter that provides external flux to 

manipulate qubits. Aside from those, the result can be influenced 

by I/O systems and small variations in the physical properties of 

individual qubits [S3].
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FIGURE S2. A schematic of a coupler between two qubits.
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QUANTUM ANNEALING OF MULTIPLE QUBITS
Quantum annealing utilizes the natural evolution of a multi-

ple-qubit quantum system to find the lowest energy solutions 

to a given Hamiltonian [18]. Generalizing the optimization 

problem that quantum annealing with a single qubit could 

solve in the “The Simplest Quantum Annealer: A Single-

Qubit Quantum Annealer” section, quantum annealing with 

multiple qubits can solve the quadratic unconstrained binary 

optimization (QUBO) problems that are in the form of the 

following [19]:

 

, , ,  ,x x x x

F Q x Q x x

1 1Find where that

minimizes 

N i

i

i

N

i ij

j i

N

i

N

i j

1 2

1 11

f ! -

= +

= = +=

^ h" ,
/ //  

(13)

where Qij i j N1# # #^ h are real numbers. As we have done 

for the single qubit, one can show that the following Hamilto-

nian, called the Ising model, has the same energy spectrum as 

the cost function of the QUBO problem:

 H Q Q( ) ( ) ( )
i

i

N

z
i

ij

j i

N

i

N

z
i

z
j

1 11

ising v v v=- +

= = +=

t t t t/ //  (14)

where the subscript and the superscript (i and j) denote the 

index of qubits. Note that each xi is translated to ( )
z
iv- t  in the 

Ising model, which makes x xi j  translated to .( ) ( )
z
i

z
j

v v+ t t  The 

coefficients Qi are set in a physical annealer by applying the 

external magnetic field and Qij by creating the interaction 

between the ith and jth qubit [14]. Then, the lowest energy of 

the Ising Hamiltonian (14) matches with the minimum value of 

the QUBO problem in (13).

To reach the state of the minimum energy without being 

trapped in a local minimum, again the quantum annealer starts 

from an initial condition: .H ( )
i x

iN
0 1vR=- =
t t  The annealing sched-

ule can be finely tuned to balance the simulation time and the 

risk of being trapped in a local minimum. Therefore, the Hamil-

tonian of the system can be generally expressed as

 ( ) ( ) ( )H t A t H B t H0 ising= +
t t t  (15)

where A(t) and B(t) are the anneal fraction ( ),t t0 f# #  

abstract parameters to control the contribution of each Hamil-

tonian in time. When the quantum annealing schedule begins, 

A(t) is set to be much greater than B(t). Waiting to be cooled 

down, all the states are superposed with equal weights, which 

is our initial state. Next, the system monotonically decreases 

the contribution of the initial Hamiltonian, A(t), and increas-

es the contribution of the final Hamiltonian, B(t). As B(t) 

increases, the probabilities of the superposed states start to 

differ [20]. Again, as explained in the “The Simplest Quantum 

Annealer: A Single-Qubit Quantum Annealer” section, such 

a transition should occur slowly so that the adiabatic theorem 

can ensure that the system retains the lowest energy [21]. By 

the end of the annealing schedule ( ),t t f=  ( ) ( ),A t B t%  and 

the system would reach the state with the lowest energy of the 

Ising Hamiltonian.

NUMERICAL EXAMPLE OF QUANTUM ANNEALING
In this section, we show a numerical example to demonstrate 

how a multiqubit quantum annealer operates. Consider the fol-

lowing minimization problem:

 ( ) , , , .F x y x y2 1 1Minimize where2 != + - -" ,  (16)

It is not as trivial as the optimization problem in (6), but it is 

still simple to find that the minimum solution Fmin  is 0 when 

x y 1= =  at a glance. Since it has two binary variables, we 

need a two-qubit quantum annealer. Let’s see how the two-

qubit quantum annealer can handle this problem. First, we 

should prepare a superposed ground state with the initial 

Hamiltonian .H0
t  For two-qubit states, the initial Hamilto-

nian in the matrix representation with the basis of energy 

states is
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The initial Hamiltonian H0  has the lowest eigenvalue of ,2-  

and the corresponding eigenstate . [ , , , ]0 5 1 1 1 1 t  is the superpo-

sition of all the eigenstates of zvt  with the equal weights. That is 

the initial state for the quantum annealing. To deduce the Ising 

Hamiltonian, one may ignore the constant terms ( ),4+  includ-

ing the square terms of the variable )(x y 22 2
+ =+  The cost 

function F reduces to .x y xy4 4 2- - +  Accordingly, the Ising 

Hamiltonian is
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(18)

During the quantum annealing process, the Hamiltonian 

evolves from H0 to .Hising  Let’s assume that A(t) decreases 

from one to zero and B(t) increases from zero to one in a linear 

manner from t 0=  to .t f  When ( ( ), ( )) ( . , . ),A t B t 0 7 0 3=  for 

example, H(t) is

 ( ) . .
.
.

.

.

.
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.
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 (19)

The lowest eigenvalue E0 is .2 404-  with the state | H} = 

. | . | . | . | .0 095 00 0 367 01 0 367 10 0 850 11H H H H+ + +  O t h e r 

higher eigenvalues ,E1  ,E2  E3  are . ,0 6-  . ,0 26-  and 3.27, 

respectively. Likewise, as the Hamiltonian changes from H0 

to Hising  during the time ,t f  the eigenspectrum evolves as 

shown in Figure 1. Since there is no crossing point between 

E0 and other eigenvalues, it satisfies the condition of the 

adiabatic process and is proper to be solved by the quantum 

annealer.
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At last, when ,t t f=  the Hamiltonian entirely changes to 

the Ising Hamiltonian, of which the lowest eigenvalue is 6-  

when the eigenstate is [ , , , ] | .0 0 0 1 11t H=  Considering the 

omitted constant terms in the middle ( ),4 2 6= + =  this is 

the correct minimal solution: .F 0min =

ADVANCES IN QUANTUM ANNEALING

In this section, we delve into several advanced topics concerning 

the utilization of quantum annealing methods for addressing 

complex large-scale optimization problems.

EXTENSION TO DISCRETE QUADRATIC MODELS
Although the spin states of variables on a quantum anneal-

ing device are binary, many tasks require optimizing 

variables over a discrete set of possible states that inter-

act pairwise. These are called discrete quadratic models 

(DQMs) and are suitable optimization tasks for quantum 

annealing. Consider a DQM with N variables where the ith 

variable has mi  possible values. Its Hamiltonian is defined 

as follows:

 .H Q x Q x x( , ) ( , ) ( , )
iu

u

m

i

N

z
i u

ijuv

v

m

u

m

j i

N

i

N

z
i u

z
j v

11 1111

DQM

i ji

=- +

== === +=

t t t t// ////  (20)

One method for encoding a DQM onto quantum anneal-

ing devices is via one-hot encoding [25]. In this approach, 

each discrete ith variable with mi  possible values is repre-

sented using mi  binary variables, all of which will be zero 

except for one, corresponding to the ideal discrete value. 

The overall Hamiltonian is

 H H x 1( , )
z
i u

u

m

i

N

1

2

1

one-hot DQM

i

m= + -

==

t t te o//  (21)

where m  is a suitably large penalty weight to impose the con-

straint that only a single binary variable may be equal to one 

for each discrete variable. The number of possible discrete 

states may vary with each variable. From this expression, it is 

evident that all binary variables that encode a discrete vari-

able must interact with one another. This can make one-hot 

encoding inefficient when programming onto real quantum 

annealing devices.

As an alternative approach, the domain-wall encoding 

requires one fewer qubit per discrete variable and does not 

require that all binary variables that comprise a single discrete 

variable interact. In this method, the location of the domain 

wall (transition from 1-  to )1+  along a frustrated ferromagnetic 

spin chain encodes the value of the discrete variable. For a dis-

crete variable with m possible values, the Hamiltonian of the 

Ising chain is given by

 H , ,( ) ( )
z
i u

u

m

i

N

z
i u

0

1

1

1
chain

i

m v v=-

=

-

=

+t t t//  (22)

where m  enforces a single domain wall along the chain, 

,1( , )
z
i 0v =-  and .1( , )

z
i miv =  Each binary variable is related to the 

spin variables on the chain, / .x 1 2( , ) ( , ) ( , )
z
i u

z
i u

z
i u 1v v= -
-^ h  The 

overall Hamiltonian is written as

 .H H Hdomain-wall DQM chain= +
t t t  (23)

For example, encoding a discrete variable with four qubits 

using both one-hot and domain-wall encoding is shown in 

Table 1. The lower number of qubits and lack of complete cou-

pling between constituent binary variables for each discrete 

variable allows domain-wall encoding to achieve superior theo-

retical and numerical performance.

HYBRID QUANTUM-CLASSICAL ANNEALING
Quantum annealing is a quantum computing paradigm 

designed to efficiently solve NP-hard optimization problems. 

It leverages quantum mechanics principles to explore the solu-

tion space and identify the optimal configuration for a given 

problem. In this approach, a quantum system is manipulated 

to evolve toward the solution of an optimization problem repre-

sented as the ground state of a Hamiltonian.

The state of the art in quantum computing is represented 

by noisy intermediate-scale quantum devices [26]. These 

devices have opened new avenues for tackling NP-hard prob-

lems, promising efficient solutions. For example, D-Wave 

stands out as a prominent participant in the quantum com-

puting field, renowned for its pioneering quantum anneal-

ing technology. The company has achieved notable progress 

in advancing quantum computing technologies. As of the 

time of the crafting of this article, the D-Wave Advantage 

4.1 quantum processing unit (QPU) [6] hardware show-

cases 5,640 functional qubits intricately connected through 
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FIGURE 1. The evolution of the eigenspectrum during the 
annealing schedule. The eigenvalue E0 of the smallest-energy 
state is denoted by the blue curve. It is lower than the other 
eigenvalues with the margin of the minimum gap shown in 
the figure. Such a gap is necessary for the quantum annealer 
to give a correct minimum solution. a.u.: arbitrary units. 
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a sparsely connected Pegasus topology and a technique 

called minor embedding [27]. However, despite these strides, 

D-Wave and comparable quantum machines continue to 

face challenges, including limitations in qubit quantity and 

connectivity. These challenges hinder their practicality in 

solving real-life problems [28] that demand a large number of 

densely connected qubits.

As a result, recent approaches for short- and medium-term 

solutions center on utilizing the combined advantages of classi-

cal and quantum computers. This blend of classical and quan-

tum resources is a practical method to tackle the constraints 

posed by current quantum hardware and algorithms, particu-

larly in handling large-scale optimization problems. To address 

this challenge, researchers employ hybrid quantum-classical 

algorithms [29], [30], [31], [32]. In this approach, classical com-

puting power is employed for problem decomposition and inte-

grating subsolutions. Quantum capabilities are then utilized to 

solve subproblems rapidly, optimizing overall computational 

efficiency.

One of the recent hybrid quantum-classical annealing algo-

rithms is to utilize quantum annealing as a subsolver [33], 

inspired by the large neighborhood search heuristic algorithm 

[22], [23]. It concentrates on seeking local solutions within spe-

cific neighborhoods. These are essentially subsets or clusters 

of variables within the larger, more complex problem. In the 

proposed hybrid quantum-classical algorithm, this heuristic 

approach plays a crucial role in efficiently addressing the chal-

lenges posed by the intricate connectivity of qubits and the lim-

ited hardware resources.

The algorithm begins with classical resources iden-

tifying subproblems by defining neighborhoods within 

the overall problem space. These subproblems are then 

passed to the QPU for resolution using quantum anneal-

ing. Quantum annealing leverages quantum superposition 

and tunneling to rapidly explore and find optimal solutions 

for the local subproblems represented by the qubits. Once 

the quantum annealer completes its computations, the 

solutions for the subproblems are passed back to the clas-

sical machine. The classical component is responsible for 

merging these local solutions, thereby constructing a global 

solution for the entire problem. This iterative process of 

classical identification of subproblems, quantum resolution, 

and classical solution merging continues until the conver-

gence criteria are met.

A compelling application of this algorithm is found in the 

domain of reconfigurable intelligent surface (RIS) beamform-

ing optimization. In the specific context of RIS beamforming, 

the algorithm employs a fixed square frame that traverses the 

RIS surface (Figure 2). The algorithm optimizes the RIS ele-

ments within each frame using quantum annealing, rapidly 

seeking local solutions for that particular subregion. These 

locally optimized solutions are then amalgamated using classi-

cal computational resources to obtain the comprehensive and 

globally optimized solution for the entire RIS beamforming 

configuration. The combination of classical and quantum pro-

cessing harnesses the strengths of both paradigms, enabling 

more efficient and effective optimization for large and intri-

cate problem instances.

UNCONSTRAINED AND CONSTRAINED QUADRATIC 
OPTIMIZATION PROBLEM
So far, we have seen that quantum annealing can solve QUBO 

problems. Since there is no other constraint that the variable 

should obey than that the variables have binary values, they 

are unconstrained problems. As long as the number of qubits 

permits, the quantum annealing can be further applied to solve 

an unconstrained quadratic optimization problem, also known 

as an unconstrained quadratic programming (QP) problem, in 

which variables can be real or even complex valued.

Because any real variable can be expressed as a string of 

binary variables with arbitrary precision, the unconstrained 

QP problem can ultimately boil down to the QUBO. There is 

a tradeoff between the truncation error and the length of the 

binary string to represent real variables. The latter is directly 

related to the number of qubits required. Complex variables in 

the unconstrained QP problem can also be handled by defining 

the real and the imaginary parts of each variable as two separate 

real variables. It effectively doubles the number of variables and, 

hence, the number of required qubits.

Lastly, the scope of optimization problems that quantum 

annealing can handle can be further extended to include con-

strained QP problems. The constraints in the problem can be 

accommodated by treating them as the penalty of the cost func-

tion [24]. As an instructive example, let’s consider a constrained 

optimization problem of

 
, , , .

x xy y x y

x y

4 1

0 1 2

Maximize subject to

for

2 2 #

!

+ + +

" ,  
(24)

Once the range of the variable is specified, so is the variable 

space that satisfies the inequality. Consequently, inequality 

can be expressed with a set of equality values at the expense 

of defining additional variables. Namely, the constraint 

x y 1#+  can be reformulated into the following equality:

 , .forx y x y c c1 0 1+# !+ + = " ,  (25)

TABLE 1. COMPARISON OF ENCODING 

METHODS FOR A DISCRETEVALUED

VARIABLE BETWEEN 0 AND 4. 

Value One-Hot Encoding Domain-Wall Encoding

0 N/A 0000

1 1000 1000

2 0100 1100

3 0010 1110

4 0001 1111

N/A: Not applicable
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Applying the penalty method, the constrained optimization 

problem (24) is transformed into an unconstrained problem as

 
( )

, , , , , , .

x xy y w x y c

x y c w

4

0 1 2 0 1

Maximize

for R

2 2 2

! ! !

+ + - + -

" ", ,  
(26)

The penalty weight w is often decided in a heuristic man-

ner [24]. By applying these tricks, quantum annealing can 

solve not only the QUBO but also the unconstrained and 

constrained QP problems. Since those tricks are prepared 

in classical computers, this can also be regarded as a hybrid 

quantum-classical algorithm.

CONCLUSIONS

This work introduces quantum annealing as a computational 

method to solve various types of optimization problems. In 

Part I of this work, the key concepts for quantum anneal-

ing are introduced. While the nature of quantum annealing 

imposes a limitation on its applicability to binary and uncon-

strained problems, recent advances in conjunction with 

classical computers are expanding the area of applications 

to include discrete and constrained problems. Once discrete 

variables can be accommodated, continuous variables can 

also be treated within the precision level that is affordable 

with a given resource of qubit. Such an expansion of appli-

cations enables quantum annealing to address numerous 

electromagnetic problems. Accordingly, Part II presents the 

applications of quantum annealing in various electromag-

netic problems as well as the performance study of quantum 

annealing compared to its classical counterpart.
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