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A computational method to solve various types of optimization problems.

t is well known that electromagnetic computations are com-

putationally demanding. Interestingly, many such problems

can be recast to be solved by quantum annealing, Quantum

annealing, a kind of quantum computer, utilizes quantum
tunneling for state transitions, which enables one to find the
global minimum in a complex energy landscape. Part T of this
article explains quantum annealing for the classical electromag-
netic community, assuming little knowledge of quantum theory.
It reviews the basic principle and recent advances in quantum
annealing to extend its applications, such as a hybrid quantum-
classical annealing algorithm. Part IT presents various examples
of electromagnetic problems that can be solved by quantum
annealing. These are 1) optimization of a reconfigurable direc-
tional metasurface, 2) finding current distribution in an arbi-
trary wire antenna, 3) finding charge and field distributions in a
static condition, and 4) optimization of source excitation to focus
fields in hyperthermia. Lastly, the performance of the quantum
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annealer is compared with classical solvers to deduce the type of
applications in which a quantum annealer of current technolo-
gies can be preferred in practice.

INTRODUCTION

Quantum computing is one of the most rapidly advancing
research fields, aspiring to conquer intractable computational
problems that have long perplexed classical computers, exempli-
fied by the prime factorization of significantly large numbers
[1], unstructured search problems [2], and the simulation of
quantum mechanical phenomena [3]. Technically, any such
quantum algorithm can run on gate-based universal quantum
computers, which are founded on a set of quantum logical gates.
Depending on how the quantum bits (or qubits), the fundamen-
tal information carrier in a quantum computer, are realized,
there are three leading technologies of a gate-based quantum
computer: trapped-ion qubits, semiconductor-spin qubits, and
superconducting-circuit qubits. Despite its versatility in com-
putation, however, the gate-based quantum computer requires
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critical innovations before it can achieve quantum supremacy.
For example, while it is estimated to require a million-qubit-
scale system to realize a practical universal system, the largest
gate-based quantum computer so far has only 127 qubits [4].

On the other hand, quantum annealing is an adiabatic
quantum computer that finds the global minimum of a given
objective function over a set of candidate states by the process
of quantum fluctuations. In contrast to the gate-based quantum
computer, quantum annealing is specialized to handle certain
types of optimization, such as combinatorial optimization prob-
lems. Regardless of its relatively limited applications, quantum
annealing remains an enticing solution due to its intrinsic fault
tolerance [5], which provides a competitive edge in developing
a large-scale quantum computer. The potential of large-scale
quantum computers becomes apparent when comparing the
number of qubits for state-of-the-art quantum computers using
the two methods. Currently, D-Wave’s annealing solver, one of
the most widely adopted quantum annealers, has 5,640 qubits
[6], much larger than the gate-based counterpart.

Harnessing its relatively large scale for reflecting a practical
system, quantum annealing has been successfully applied to
various fields, including finance [7], machine learning [8], and
cryptography [9] as well as optical [10] and microwave [11], [12]
system designs. Noting its significant impact across a wide range
of fields, including electromagnetism, Part I of this article intro-
duces the fundamentals of quantum annealing to the electro-
magnetic community, assuming little knowledge of readers on
quantum physics. The quantum annealing process is illustrated
through numerical examples, facilitating the readers” compre-
hension of it. This allows one to discern the types of problems to
which quantum annealing is applicable. At the end of Part I, we
introduce recent advancements in quantum annealing methods
for handling complex and large-scale problems.

PRINCIPLES OF QUANTUM ANNEALING
This section explains the basic principles of quantum anneal-
ing. To understand quantum annealing, it is necessary to review
some properties of quantum mechanics. This section briefly
explains these essential properties of quantum mechanics along
with the principles of quantum annealing.

QUBIT

In quantum annealing (or quantum computers in general), the
qubit acts as an information carrier, as the logical bit does in
classical computers. Unlike the logical bit with a state of either
zero or one, the qubit can be in a superposition of its zero or
one state. The zero and one states are called the energy states
because they have distinct energy values, say E, and E}, and are
denoted as kets |0) and |1) in the bra-ket notation, respectively.
The instantaneous state, |y ), of a qubit in a linear superposition
of two energy states is described as

)=l ainy =[] W)

Since any qubit state can be expressed as a linear summa-
tion of [0) and |1), {|0),|1)} is a basis of the vector space

of the qubit state. When measuring the state of qubits, they
collapse to one of their energy states. This collapse is a proba-
bilistic process, where the probability of collapsing to |0) and
[1), denoted as Pjoy and Pp1), can be obtained from the inner
product with a corresponding bras, (0| and (1|—for example,
Poy=1{0]w )|> =|ao|? where the orthonormality of the basis is
used in the second equality. Likewise, Py1) is given by |o1|*. This is
why the complex coefficients, a0 and o1, are often called probabil-
ity amplitudes. Since the state should always be measured as either
zero or one, the complex coefficients satisfy |ao|* + | o1 |* = 1.

HAMILTONIAN OPERATOR A

In quantum physics, every physical observation is associated with
a Hermitian operator. In other words, the measurement result of
a physical observation must be an eigenvalue of the correspond-
ing Hermitian operator. For instance, one can find an operator
associated with the position, another operator with the momen-
tum, and yet another operator with the energy, and so on.

In particular, the operator associated with the energy, called
Hamiltonian H, is of greatest interest in quantum annealing.
Following the physicists” convention, the hat symbol (*) above
the character represents it as an operator in this article. The
reason why the Hamiltonian is essential in quantum anneal-
ing is because quantum annealing exploits quantum physics to
find the lowest-energy state of qubits. It recasts an optimiza-
tion problem of interest to the energy minimization problem of
which the minimum solution can be naturally obtained from
quantum physics. Since the Hamiltonian is used to obtain the
energy of a state, it is the most important operator in quantum
annealing. The Hamiltonian H is also important because it
describes how the state should change with time

ingylw) =), ©

Alternatively, using the right-hand side of (1), the previous equa-
tion may be rephrased as

2l
ih of Lo H o (3)

where H without the hat symbol (*) is the matrix representation
of the H operator in the basis of {|0),[1)}. To help readers get
familiar with the Hamiltonian, let’s consider the Hamiltonian
of a single qubit of which the energy is definite; i.e., the energy
level does not change with time. Since the energy level does not
change with time, one may attempt to regard the lefthand side
of (3) as zero, leading to the Hamiltonian matrix being the zero
matrix. Instead, in quantum mechanics, while the magnitude of
the probability amplitude of a particle in a state of definite ener-
gy E, is static, its phase changes with time as ¢ 1B/ [13] For

o and a1 with the time dependency of ¢ /P and ¢~ E1/M
to satisfy (3), the Hamiltonian for a single qubit with a definite

energy has the matrix expression of

_[Eo 0

H_0E1'
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IEEE ANTHONAS RRROEA G I M MABALHWFersity of lllinois. Downloaded on October 19,2025 at 02:00:12 UTC from IEEE Xplore. Restrictions apply. 3



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Indeed, note that the eigenvalues of the Hamiltonian operator,
which are independent of the choice of the basis, correspond
to the energy. In general, the Hamiltonian, which is a 2 X2
Hermitian matrix, is spanned by four bases {I, 0., 0y, 0:},
where I is the identity matrix and the other three matrices are
the Pauli matrices

R T R

For example, the Hamiltonian H of (4) can be expressed as
H=1/2[(Eo+ E1)I — (E1 — Eo)o-].

THE SIMPLEST QUANTUM ANNEALER:

ASINGLE-QUBIT QUANTUM ANNEALER

Equipped with the knowledge of the qubit and the Hamil-
tonian, we can now understand the operation of the simplest
quantum annealer, which consists of a single qubit. Assume that
we want to solve the following optimization problem:

Find x €{—1,1} that minimizes F=Qx (0<Q€R). (6)

This is a toy problem of which the solution is trivial; x =—1
to minimize the cost function to Fum = —Q. Nevertheless, we
want to use this simple problem to illustrate how the quantum
annealer operates to find the optimal solution. First of all, the
cost function F is equivalent to the energy eigenvalue of the
Hamiltonian H1 =[—=Q, 0;0, Q]. In other words, the state’s
energy is —Q when the qubit is in |0) state and Q when the
qubit is in |1) state. The objective is equivalent to minimizing
the energy of the state with the Hamiltonian H = —Q0-.

To avoid being trapped in a local minimum, quantum
annealing starts from a superposition of all possible states with
equal weights. For a single qubit, for instance, we want to set the
initial state to be |wo)=1/v2(]0)+|1)). For this purpose,
the initial Hamiltonian is set to be Ho=—3%. Physically, this
can be set by applying an external magnetic field to the qubit
[14], [15]. Interested readers may refer to “Hardware Imple-
mentation of Quantum Annealer” for details. The initial Ham-
iltonian Ho has two distinct energies (eigenvalues) -1 and 1,
with the corresponding eigenstates of [wo)=1/y2(]0)+|1))
and |y1)=1/y/2(]0)—|1)). Since the quantum annealer
sets the temperature of the system sufficiently low (a few tens
of milli-Kelvin), the qubit is in the lowest-energy (ground) state:
lw)=[wo).

After the initial setup, the external magnetic field slowly
changes to convert the Hamiltonian from Ho to Hi. For exam-
ple, the Hamiltonian of the system at time ¢(0 <¢ <ty), H(t)
changes with time as

A A -
H(t)= i Ho-i-tle (7)

where ¢ is the time duration during which the conversion
occurs. If the Hamiltonian is converted slowly enough, the
system’s state can retain the lowest energy state throughout
the annealing process. How slowly should it be converted?

According to the adiabatic theorem in quantum mechanics, the
rate of change of the Hamiltonian must be sufficiently lower
than the gap between the lowest and the second-lowest energy
spectrum [16]. If this adiabatic condition is met, the qubit will
still be in the lowest energy state of 1 when the annealing
is finished at ¢ =ty, which is |0) corresponding to the mini-
mum energy of —Q. This is the correct result of minimization:

Foin = _Q
MULTIPLE QUBITS

In practice, a quantum computer comprises multiple qubits.
The states of multiple qubits form a new vector space and
can be constructed from the vector spaces of individual qubit
states using the tensor product, denoted by ®. For instance,
an instantaneous state |y ) of two qubits can be expressed as
[p)1 ®|E)s, where [¢ )1 and | )2 refers to the state of the first
and second qubits, respectively.

To understand the vector space of multiple qubit states,
it is essential to figure out the basis of the vector space.
The basis of, say, a two-qubit vector space can be con-
structed as follows. When the states of two qubits are mea-
sured, each should collapse to one of their energy states:
either |0) or |1). Explicitly, labeling the basis of qubit
I's state as {|0)1,|1)1} and qubit 2s state as {|0)s,|1)2},
the basis of two-qubit states consists of{|0)1 ®]0)s,
[0 @]1)2, 111 ®]0)2, |11 ®@|1)2}, often labeled as
{100),]01),]10),|11)} for brevity. This implies, in gen-
eral, that an instantaneous state |y) of two qubits can be
expressed as |y)=0a0]00)+ai|01)+a2|10)+as|11),
where the complex coefficients are the probabil-
ity amplitudes, representing the probability that the
qubits are measured to be the corresponding state; e.g.,
Ppoy =10y )[* = ez

Likewise, in a quantum computer with N qubits, the state
of the whole qubits is the superposition of 2 energy states.
The 2V energy states forming the basis of N-qubit states
are {[0...00),10...01),...,|1...11)}. Mathematically, the
instantaneous state of N multiple qubits is the superposition
of the basis as

|w)=0a0[0...00) + a1]0...01) +... + or2v1|1...11)
Qo
ai
_| @ ®

QN1

where Z}ZQEIW,' =1

Operators acting in the vector space of multiple qubits
can also be constructed by the tensor product with the same
symbol ®. For a two-qubit system, for example, let A be an
operator acting on the state |¢ )1 of the first qubit and B be an
operator acting on the state |£ )2 of the second qubit. We can
construct the operator A®B for a two-qubit state defined to
act as follows [17]:

A®B(|ph ®[£)2)=(A|¢)) ® (B|E)2). C)
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HARDWARE IMPLEMENTATION OF QUANTUM ANNEALER

This tutorial article mainly discusses the mathematical modeling
of quantum annealing to understand how it works. Although
the hardware implementation of the quantum annealer is out of
the scope of this tutorial article, we briefly cover it in this sidebar.
In short, it is about how the qubit is implemented and how the
coefficients Q; for individual qubits and Q; for the interaction
between qubits in (14) are physically manipulated.

How is the Qubit Implemented in Quantum Annealer?
As stated in the “Introduction” section, qubits are being
implemented in various ways for the gate-based quantum
computer. For quantum annealing, on the other hand, there
is a prominent method to implement it, which is to use a
superconducting loop, as shown in Figure S1(a).

Why do we need a superconductor for quantum annealing in the
first place? That is because we want to invoke quantum mechanical
behavior on a macroscopic scale. In general, we can measure
the phenomena on the macroscopic scale very well, such as the
current or charge amount, in which billions of electrons are typically
engaged. The critical problem is that the electron is a fermi particle,
which means that there can be at most one electron for each state,
making the observation of its quantum behavior extremely difficult.

If a conductor turns into a superconductor, things change in
a very intriguing way other than that its resistivity goes to zero.
When it becomes a superconductor, two electrons form a bound
pair called the Cooper pair. Interestingly, this pair does not act like
a fermi particle but does act like a boson particle, meaning that
they like to be in the same state.

Returning to our story of the quantum annealer, we need
many particles, whether they are electrons or Cooper pairs, to
be in the lowest energy state to enable the measurement on a
macroscopic scale. In a superconductor at a very low temperature,
all the electrons turn into the Cooper pairs, and all the Cooper
pairs are technically occupied in the lowest state, enabling the
measurement. This is why we want to use a superconductor
despite the pain of lowering the operation temperature.

How Do We Control the Q; for an Individual Qubit,
A(T), and B(T)?

A superconducting flux qubit consists of a main loop and a
small loop interrupting in the middle of the main one, as seen in
Figure S1(a). Notice that there are two thin insulators on the small
loop, called the Josephson junction, which is another key element

in the superconducting flux qubit. The main loop can support
two current flows [15], clockwise and anticlockwise circulating
currents, effectively representing quantum binary states |0) and
|1), respectively. The Josephson junction allows a small chance of
flip-flopping the current direction and of changing a superposition
state between |0) and |1).

The probability amplitudes of the states can be effectively
controlled by changing the external magnetic flux to the main
loop, denoted as ®i. In quantum mechanics, the flux entering
into a superconducting coil is quantized in units of the flux
quantum ®o. When the external flux @iy is given as half of the
flux quantum ®o/2, the flux through the main loop may or may
not exist with a 50/50 chance, implying that the qubit state is
[wo)=1/42(]0)+]1)). From the perspective of the Hamiltonian,
it means that Ho=—35 and from the perspective of the energy
landscape, it means that the energy levels of [0) and |1) are
equally low, as shown in Figure S1(b) (left). This is the initial state
of the qubit in the quantum annealing, in which A(t)> B(t) and
A = FAo(t).

When the external magnetic flux @« changes, it changes
the energy landscape. One of the current directions may have
a lower potential energy due to the nonzero (®ix—®o/2),
tilting the landscape as in Figure S1(b) (center) and Figure S1(b)
(right) by time. This shows that the external magnetic flux @i
determines the energy difference 2 h between two minima
[Figure S1(b) (center)]. The qubit is more likely to be measured at
a lower energy state than the other state, which is equivalent to
introducing the term —QGd; in the Hamiltonian. In other words, by
controlling the @1, one can manipulate B(t) /A(t) as well as Q; for
individual qubits.

Next, we want to discuss the role of the small loop and the
magnetic flux @, into it. During the transition from the initial to the
final Hamiltonian, the energy barrier §U between the two states
may appear high. If this barrier height appears too high before
the energy difference is given, the state may be trapped in a local
minimum, failing to reach the global minimum at the end of the
annealing process. We want to suppress the rise of the barrier U
until the energy difference is sufficiently applied. The two Josephson
junctions and the magnetic flux @, can handle this. One can show
that the barrier height U depends on @, as [S1]

(Continued)
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FIGURE §1. (a) A schematic of a superconducting flux qubit. (b) The evolution of the qubit energy diagram along the

annealing schedule.
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HARDWARE IMPLEMENTATION OF QUANTUM ANNEALER (Continued)

5Uoccos%qzz. 51)

Therefore, by controlling the magnetic flux @, from the external
flux @, one can manipulate the barrier height SU as necessary
and avoid falling in a local minimum.

How to Control the Q;?

The programmable Q; in (14) is physically synthesized by a block
named the coupler. The coupler is based on the superconducting
loop with the Josephson junctions [14], similar to the qubit
design. Figure S2 shows an example of the coupler, in which the
main loop is mutually coupled to two qubits. In the discussion of
barrier height control in a single qubit, we have seen that a pair
of Josephson junctions on a small loop plays the role of a switch,
in the sense that it controls the isolation (the barrier height),
depending on the magnetic flux into the loop. Similarly, the
magnetic flux @« into the small loop of the coupler can control
the net current and affect the coupling between the qubits. In
addition, the magnetic flux ®@.cx into the main loop of the coupler
tunes the spin-spin coupling energy between ferromagnetic and
antiferromagnetic coupling, which is equivalent to deciding the
sign and the amplitude of Q.

Potential Error Sources in Quantum Annealer

Controlling individual qubits and their interactions accurately
is quite challenging due to the numerous potential errors that
can affect the quantum annealer. To list a few error sources,
the qubit state may be excited unexpectedly by violating the
quantum adiabatic condition or absorbing the thermal energy
from the environment. Moreover, the biasing circuit of the qubit
is susceptible to an error from 1/f noise that can propagate to the
qubit [S1], [S2]. Some errors may originate from the physical device

Note that the first @ symbol in (9) represents the tensor
product between two operators, while the others represent the
tensor products between the qubit states.

To grasp the tensor product between the opera-
tors better, let’s consider the matrix representation of
the operators A® B constructed from A and B. We
further assume that their matrix representations are
A= [(111, ai2; asi, azz] and B= [[’)11, 1712; bzl, bzg], both on
the basis of energy states of each. The matrix element of
the operator A® B can be found by mapping between
bases via the operator. For example, one can check that
(00|A ® B|00) = a11b11, which will be the matrix element
at the first row and the first column. By repeating this
process for every pair of bases, one can show that A ® B
has the representation of

(lllbll dnbm alell

anba anbs asbs
A®B= .
aaibn aabiz assbii anbis

(121h21 aZthZ aZZhZI leZhZZ
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FIGURE S2. A schematic of a coupler between two qubits.

itself. For instance, some physical qubits may have a coupling-like
effect that is not accounted for in the Hamiltonian formulation
[14], [S1]. A truncation error may arise due to the finite resolution
of the digital-to-analog converter that provides external flux to
manipulate qubits. Aside from those, the result can be influenced
by /0 systems and small variations in the physical properties of
individual qubits [S3].
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This 4 X 4 matrix represents the expanded operator A® B and
acts on a 4 X 1 column vector representing the two-qubit state
W) =191 ®|&)e.

For a concrete example, we can consider the Hamilto-
nian operator Hi =[a11, a12; az1, as] that acts on qubit 1 and
Hy =[b11, big; ba1, baz] that acts on qubit 2. They can be
upgraded to act on the two-qubit state as

an 0 a2 O
0 arl 0 a
(1) _ —
Hi'=HiQI= w0 am 0 (11)
0 az 0 a2
b bis 0 0
: bai bss 0 0O
(2) _ —
Hs'=1Q Hs= 0 0 by b (12)
0 0 ba b

These are some essential algebras to describe the operation of
quantum annealing. Based on these, we shall see how the multi-
qubit quantum annealing works in the next section.
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QUANTUM ANNEALING OF MULTIPLE QUBITS

Quantum annealing utilizes the natural evolution of a multi-
ple-qubit quantum system to find the lowest energy solutions
to a given Hamiltonian [18]. Generalizing the optimization
problem that quantum annealing with a single qubit could
solve in the “The Simplest Quantum Annealer: A Single-
Qubit Quantum Annealer” section, quantum annealing with
multiple qubits can solve the quadratic unconstrained binary
optimization (QUBO) problems that are in the form of the
following [19]:

Find x1, x2, ..., xx (where x; € {—1,1}) that
N

N N
minimizes F =Y, Qixi + >y Qyxix; (13)
i=1

i=1 j=i+1

where Q; (1<i< j<N) are real numbers. As we have done
for the single qubit, one can show that the following Hamilto-
nian, called the Ising model, has the same energy spectrum as
the cost function of the QUBO problem:

N

N N .
I:Iising = _z Qié-gi) + Z Z Ql]OA-E'l)(S-i]> (14)
i=1

i=1j=i+1

where the subscript and the superscript (i and j) denote the
index of qubits. Note that each x; is translated to —6 in the
Ising model, which makes x;x; translated to +696Y. The
coefficients Q; are set in a physical annealer by applying the
external magnetic field and Q; by creating the interaction
between the ith and jth qubit [14]. Then, the lowest energy of
the Ising Hamiltonian (14) matches with the minimum value of
the QUBO problem in (13).

To reach the state of the minimum energy without being
trapped in a local minimum, again the quantum annealer starts
from an initial condition: Ho =—X,6{". The annealing sched-
ule can be finely tuned to balance the simulation time and the
risk of being trapped in a local minimum. Therefore, the Hamil-
tonian of the system can be generally expressed as

H(t) :A<t)I:IO +B<t)gising (15)

where A(t) and B(t) are the anneal fraction (0=t =<ty),
abstract parameters to control the contribution of each Hamil-
tonian in time. When the quantum annealing schedule begins,
A(t) is set to be much greater than B(t). Waiting to be cooled
down, all the states are superposed with equal weights, which
is our initial state. Next, the system monotonically decreases
the contribution of the initial Hamiltonian, A(t), and increas-
es the contribution of the final Hamiltonian, B(t). As B(t)
increases, the probabilities of the superposed states start to
differ [20]. Again, as explained in the “The Simplest Quantum
Annealer: A Single-Qubit Quantum Annealer” section, such
a transition should occur slowly so that the adiabatic theorem
can ensure that the system retains the lowest energy [21]. By
the end of the annealing schedule (¢ =1ty), A(t) < B(t), and
the system would reach the state with the lowest energy of the
Ising Hamiltonian.

NUMERICAL EXAMPLE OF QUANTUM ANNEALING

In this section, we show a numerical example to demonstrate
how a multiqubit quantum annealer operates. Consider the fol-
lowing minimization problem:

Minimize F=(x+y— 2)%, where 1z, ye{-1,1}. (16)

It is not as trivial as the optimization problem in (6), but it is
still simple to find that the minimum solution Fuw is 0 when
x=y=1 at a glance. Since it has two binary variables, we
need a two-qubit quantum annealer. Let’s see how the two-
qubit quantum annealer can handle this problem. First, we
should prepare a superposed ground state with the initial
Hamiltonian Ho. For two-qubit states, the initial Hamilto-
nian in the matrix representation with the basis of energy
states is

2
Ho=-Y 0V=-0. Q1 -1Q 0
i=1

0 -1-10

-1 0 0 -1

-1 0 0 —1f a7)
0 -1-10

The initial Hamiltonian Ho has the lowest eigenvalue of —2,
and the corresponding eigenstate 0.5[1,1,1,1]" is the superpo-
sition of all the eigenstates of 6. with the equal weights. That is
the initial state for the quantum annealing. To deduce the Ising
Hamiltonian, one may ignore the constant terms (+4), includ-
ing the square terms of the variable 2+ yz =+2) The cost
function F reduces to —4x — 4y + 2xy. Accordingly, the Ising
Hamiltonian is

Higng=4(0:Q N +4(IR®0:)+2(0-Q ) (I ® 0-)

100 0 0
o 20 o
o0 =2 0] (18)
00 0 -6

During the quantum annealing process, the Hamiltonian
evolves from H, to Hisng. Let’s assume that A(t) decreases
from one to zero and B(t) increases from zero to one in a linear
manner from ¢ =0 to ¢y. When (A(t), B(t))=(0.7,0.3), for
example, H(t) is

3 =07 -07 0
-07 -06 0 -0.7
=07 0 -06 =07

0 —-07 -07 —-18

H(t)=0.7THo + 0.3Hising = (19)

The lowest eigenvalue E, is —2.404 with the state |y )=
0.095/00) + 0.367|01) + 0.367]10) + 0.850[11).  Other
higher eigenvalues Ei, Es, E; are —0.6, —0.26, and 3.27,
respectively. Likewise, as the Hamiltonian changes from H,
to Hing during the time ¢y, the eigenspectrum evolves as
shown in Figure 1. Since there is no crossing point between
E, and other eigenvalues, it satisfies the condition of the
adiabatic process and is proper to be solved by the quantum
annealer.
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At last, when ¢ = ¢7, the Hamiltonian entirely changes to
the Ising Hamiltonian, of which the lowest eigenvalue is —6
when the eigenstate is [0,0,0,1]'=|11). Considering the
omitted constant terms in the middle (=4 + 2=6), this is
the correct minimal solution: Fyin = 0.

ADVANCES IN QUANTUM ANNEALING

In this section, we delve into several advanced topics concerning
the utilization of quantum annealing methods for addressing
complex large-scale optimization problems.

EXTENSION TO DISCRETE QUADRATIC MODELS

Although the spin states of variables on a quantum anneal-
ing device are binary, many tasks require optimizing
variables over a discrete set of possible states that inter-
act pairwise. These are called discrete quadratic models
(DQMs) and are suitable optimization tasks for quantum
annealing. Consider a DQM with N variables where the ith
variable has m; possible values. Its Hamiltonian is defined
as follows:

i N N mi M

A N . . P
Hoou=—2 2 Quil™ +3 > > > Quuesl™z0. (20)

i=lu=1 i=1j=i+lu=1v=1

One method for encoding a DQM onto quantum anneal-
ing devices is via one-hot encoding [25]. In this approach,
each discrete ith variable with m; possible values is repre-
sented using m; binary variables, all of which will be zero
except for one, corresponding to the ideal discrete value.
The overall Hamiltonian is

10 ; , : ,
E;
—FE,
Ey
6r |
2 4

Eigenspectrum of Hamiltonian (a.u.)

-6 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
tit;

FIGURE 1. The evolution of the eigenspectrum during the
annealing schedule. The eigenvalue E; of the smallest-energy
state is denoted by the blue curve. It is lower than the other
eigenvalues with the margin of the minimum gap shown in
the figure. Such a gap is necessary for the quantum annealer
to give a correct minimum solution. a.u.: arbitrary units.

N [ mi 2
Honenot = HDQM + //l«z < Z C'Gg’u) - 1) (21)

i=1\u=1

where A is a suitably large penalty weight to impose the con-
straint that only a single binary variable may be equal to one
for each discrete variable. The number of possible discrete
states may vary with each variable. From this expression, it is
evident that all binary variables that encode a discrete vari-
able must interact with one another. This can make one-hot
encoding inefficient when programming onto real quantum
annealing devices.

As an alternative approach, the domain-wall encoding
requires one fewer qubit per discrete variable and does not
require that all binary variables that comprise a single discrete
variable interact. In this method, the location of the domain
wall (transition from —1 to +1) along a frustrated ferromagnetic
spin chain encodes the value of the discrete variable. For a dis-
crete variable with m possible values, the Hamiltonian of the
Ising chain is given by

N mi—1
Hchain:_az Z (5-2117”)0’:?’”*—1) (22)

i=1 u=0

where A enforces a single domain wall along the chain,
0=—1, and 6™ =1. Each binary variable is related to the
spin variables on the chain, i =1/2(c" — g% =V). The
overall Hamiltonian is written as

I:I domain-wall = I:I poM + I:I chain - (23)

For example, encoding a discrete variable with four qubits
using both one-hot and domain-wall encoding is shown in
Table 1. The lower number of qubits and lack of complete cou-
pling between constituent binary variables for each discrete
variable allows domain-wall encoding to achieve superior theo-
retical and numerical performance.

HYBRID QUANTUM-CLASSICAL ANNEALING

Quantum annealing is a quantum computing paradigm
designed to efficiently solve NP-hard optimization problems.
It leverages quantum mechanics principles to explore the solu-
tion space and identify the optimal configuration for a given
problem. In this approach, a quantum system is manipulated
to evolve toward the solution of an optimization problem repre-
sented as the ground state of a Hamiltonian.

The state of the art in quantum computing is represented
by noisy intermediate-scale quantum devices [26]. These
devices have opened new avenues for tackling NP-hard prob-
lems, promising efficient solutions. For example, D-Wave
stands out as a prominent participant in the quantum com-
puting field, renowned for its pioneering quantum anneal-
ing technology. The company has achieved notable progress
in advancing quantum computing technologies. As of the
time of the crafting of this article, the D-Wave Advantage
4.1 quantum processing unit (QPU) [6] hardware show-
cases 5,640 functional qubits intricately connected through
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a sparsely connected Pegasus topology and a technique
called minor embedding [27]. However, despite these strides,
D-Wave and comparable quantum machines continue to
face challenges, including limitations in qubit quantity and
connectivity. These challenges hinder their practicality in
solving real-life problems [28] that demand a large number of
densely connected qubits.

As a result, recent approaches for short- and medium-term
solutions center on utilizing the combined advantages of classi-
cal and quantum computers. This blend of classical and quan-
tum resources is a practical method to tackle the constraints
posed by current quantum hardware and algorithms, particu-
larly in handling large-scale optimization problems. To address
this challenge, researchers employ hybrid quantum-classical
algorithms [29], [30], [31], [32]. In this approach, classical com-
puting power is employed for problem decomposition and inte-
grating subsolutions. Quantum capabilities are then utilized to
solve subproblems rapidly, optimizing overall computational
efficiency.

One of the recent hybrid quantum-classical annealing algo-
rithms is to utilize quantum annealing as a subsolver [33],
inspired by the large neighborhood search heuristic algorithm
[22], [23]. Tt concentrates on seeking local solutions within spe-
cific neighborhoods. These are essentially subsets or clusters
of variables within the larger, more complex problem. In the
proposed hybrid quantum-classical algorithm, this heuristic
approach plays a crucial role in efficiently addressing the chal-
lenges posed by the intricate connectivity of qubits and the lim-
ited hardware resources.

The algorithm begins with classical resources iden-
tifying subproblems by defining neighborhoods within
the overall problem space. These subproblems are then
passed to the QPU for resolution using quantum anneal-
ing. Quantum annealing leverages quantum superposition
and tunneling to rapidly explore and find optimal solutions
for the local subproblems represented by the qubits. Once
the quantum annealer completes its computations, the
solutions for the subproblems are passed back to the clas-
sical machine. The classical component is responsible for
merging these local solutions, thereby constructing a global
solution for the entire problem. This iterative process of
classical identification of subproblems, quantum resolution,
and classical solution merging continues until the conver-
gence criteria are met.

A compelling application of this algorithm is found in the
domain of reconfigurable intelligent surface (RIS) beamform-
ing optimization. In the specific context of RIS beamforming,
the algorithm employs a fixed square frame that traverses the
RIS surface (Figure 2). The algorithm optimizes the RIS ele-
ments within each frame using quantum annealing, rapidly
seeking local solutions for that particular subregion. These
locally optimized solutions are then amalgamated using classi-
cal computational resources to obtain the comprehensive and
globally optimized solution for the entire RIS beamforming
configuration. The combination of classical and quantum pro-
cessing harnesses the strengths of both paradigms, enabling

more efficient and effective optimization for large and intri-
cate problem instances.

UNCONSTRAINED AND CONSTRAINED QUADRATIC
OPTIMIZATION PROBLEM

So far, we have seen that quantum annealing can solve QUBO
problems. Since there is no other constraint that the variable
should obey than that the variables have binary values, they
are unconstrained problems. As long as the number of qubits
permits, the quantum annealing can be further applied to solve
an unconstrained quadratic optimization problem, also known
as an unconstrained quadratic programming (QP) problem, in
which variables can be real or even complex valued.

Because any real variable can be expressed as a string of
binary variables with arbitrary precision, the unconstrained
QP problem can ultimately boil down to the QUBO. There is
a tradeoff between the truncation error and the length of the
binary string to represent real variables. The latter is directly
related to the number of qubits required. Complex variables in
the unconstrained QP problem can also be handled by defining
the real and the imaginary parts of each variable as two separate
real variables. It effectively doubles the number of variables and,
hence, the number of required qubits.

Lastly, the scope of optimization problems that quantum
annealing can handle can be further extended to include con-
strained QP problems. The constraints in the problem can be
accommodated by treating them as the penalty of the cost func-
tion [24]. As an instructive example, let’s consider a constrained
optimization problem of

Maximize 22+ dxy + y2 subject to x+y=1
for x,ye{0,1,2}. (24)

Once the range of the variable is specified, so is the variable
space that satisfies the inequality. Consequently, inequality
can be expressed with a set of equality values at the expense
of defining additional variables. Namely, the constraint
x+y =1 can be reformulated into the following equality:

x+y<lex+ty=c for ce{0,1}. (25)

TABLE 1. COMPARISON OF ENCODING I
METHODS FOR A DISCRETEVALUED
VARIABLE BETWEEN 0 AND 4.

Value One-Hot Encoding Domain-Wall Encoding
0 N/A 0000

1 1000 1000

2 0100 1100

3 0010 1110

4 0001 1

N/A: Not applicable
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Applying the penalty method, the constrained optimization

problem (24) is transformed into an unconstrained problem as
Maximize x> +4ay + yz —w+y— c)?

for x,y €{0,1,2}, c€{0,1}, weR. (26)

The penalty weight w is often decided in a heuristic man-
ner [24]. By applying these tricks, quantum annealing can
solve not only the QUBO but also the unconstrained and
constrained QP problems. Since those tricks are prepared
in classical computers, this can also be regarded as a hybrid
quantum-classical algorithm.

CONCLUSIONS

This work introduces quantum annealing as a computational
method to solve various types of optimization problems. In
Part I of this work, the key concepts for quantum anneal-
ing are introduced. While the nature of quantum annealing
imposes a limitation on its applicability to binary and uncon-
strained problems, recent advances in conjunction with
classical computers are expanding the area of applications
to include discrete and constrained problems. Once discrete
variables can be accommodated, continuous variables can
also be treated within the precision level that is affordable
with a given resource of qubit. Such an expansion of appli-
cations enables quantum annealing to address numerous
electromagnetic problems. Accordingly, Part II presents the
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applications of quantum annealing in various electromag-
netic problems as well as the performance study of quantum
annealing compared to its classical counterpart.
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