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Abstract—Wireless communication technology has become im-
portant in modern life. Real-world radio environments present
significant challenges, particularly concerning latency and multi-
path fading. A promising solution is represented by reconfigurable
intelligent surfaces (RIS), which can manipulate electromagnetic
waves to enhance transmission quality. In this study, we introduce a
novel approach that employs the quantum approximate optimiza-
tion algorithm (QAOA) to efficiently configure RIS in multipath
environments. Applying the spin glass (SG) theoretical framework
to describe chaotic systems, along with a variable noise model, we
propose a quantum-based minimization algorithm to optimize RIS
in various electromagnetic scenarios affected by multipath fading.
The method involves training a parameterized quantum circuit
using a mathematical model that scales with the size of the RIS.
When applied to different EM scenarios, it directly identifies the
optimal RIS configuration. This approach eliminates the need for
large datasets for training, validation, and testing, streamlines, and
accelerates the training process. Furthermore, the algorithm will
not need to be rerun for each individual scenario. In particular, our
analysis considers a system with one transmitting antenna, multiple
receiving antennas, and varying noise levels. The results show
that QAOA enhances the performance of RIS in both noise-free
and noisy environments, highlighting the potential of quantum
computing to address the complexities of RIS optimization and
improve the performance of the wireless network.
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I. INTRODUCTION

I
N TODAY’S technological landscape, wireless communica-
tion technology plays a central role in every aspect of our

daily lives [1], [2]. From mobile devices to Wi-Fi networks,
from satellite communications to IoT devices, wireless connec-
tivity has changed the way of communicating [3], [4]. These
technologies face significant challenges, including latency, reli-
ability and multipath fading causing unpredictable variation in
received signal intensity and data loss during transmission [5],
[6], [7]. To address the problem of multipath fading and im-
prove the performance of wireless networks, several innovative
solutions have been proposed, including RISs [8], [9]. RIS are
configurable EM surfaces consisting of controllable elements,
which can be reconfigured to manipulate the behavior of the EM
waves, reducing the effect of multipath fading and increasing the
intensity of the received signal [10], [11], [12], [13], [14]. One
of the main challenges facing RIS lies above the optimization.
Currently, several classical solutions are proposed to find the
optimal cell configuration that maximize the intensity of the
received signal [15]. Some common approaches include convex
optimization algorithms, genetic algorithms and artificial intel-
ligence algorithms to improve the reception performances [16],
[17]. A mathematical model describing the behavior of disor-
dered magnetic systems has been proposed by Giorgio Parisi in
1980 to study the behavior of spin glasses (SGs) [18], [19]. This
model is a Hamiltonian widely used to optimize magnetic dis-
ordered systems in which particles interact to produce magnetic
configuration that minimize the energy of the system [20], [21],
[22]. This model can be used to describe the behavior of a RIS of
N transmitting antennas in the presence of multipath fading and
P receiving antennas. The solution of this model allows to find
the configuration of the RIS that maximizes the intensity of the
received signal in presence of noise [23]. Nowadays, the advent
of quantum computers is receiving more and more attention from
the scientific community, marking a revolution in the computer
science field [24], [25]. This interest has led to the development
of quantum algorithms that allow the principles of quantum
mechanics to be exploited to reach performances that cannot
be obtained by classical computers [26], [27]. Among the broad
spectrum of quantum algorithms, a class of variational quantum
algorithms (VQAs) have received significant attention due to
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Fig. 1. RIS within a smart radio environments. The system consists of a single transmitting RIS and P receiving antenna. The RIS reconfigures itself to maximize
the overall intensity of the received signal.

their ability to overcome quantum hardware limitations such as
circuit depth, number of qubits, and noise of near intermediate
scale quantum (NISQ) computers [28], [29]. The VQAs are
a class of hybrid classical-quantum algorithms that combine
elements of quantum computing with classical optimization
techniques to solve optimization problems [30], [31]. One of
the most promising VQA to address optimization problems is
the quantum approximate optimization algorithm (QAOA) [32].
The QAOA aims to find approximate solutions to combinatorial
optimization problems by minimizing an objective function to
approximate optimal solution of physical system. As shown
by [33], QAOA does not require any training, validation and test
data to be trained, it just employs a mathematical model that is
scalable with the RIS dimension. Therefore, the objective of this
paper, is to apply the QAOA for RIS optimization in order to find
optimal RIS configuration in any possible disordered scenarios
governed by the SG Hamiltonian in presence of multipath fading
as N and P vary as an extension of [34]. Unlike classical
optimization algorithms, QAOA leverages the power of quantum
mechanical principles to handle the exponential growth of the
RIS configurations. This enables QAOA to identify the best
RIS configuration much more quickly, without the need to run
optimization routines for every single scenario, so significantly
reducing the computational times. The results of this study open
up possibilities for future innovations in large-dimensional RIS
optimization that can be solved using the power of quantum
computing in smart radio environments.

II. RIS MODEL BASED ON THE SPIN GLASSES HAMILTONIAN

RISs are intelligent devices that control the propagation of
EM waves in wireless communication systems. Considering

the system of a RIS of N cells (transmitting elements) and P
receiving antennas (see Fig. 1), the objective of the RIS is to
maximize the overall intensity I of the signal received to P
antennas:

I =

P
∑

τ=1

I(τ) (1)

The single target contribution I(τ) reads as follows:
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where ξ(τ)i = |ξτi |e
ıarg ξ

(τ)
i are the complex transmission matrix

elements [35] from the i-th incoming beam to the target τ [23].
Each RIS cell can be programmed into a state si characterized
by a phase factor φi = ±π of the transmitted wave, equivalent
to an amplitude factor of si ∈ {−1, 1}, so that the intensity of a
single target (2) can be expressed as

I(τ) =

1,N
∑

ij

κ
(τ)
ij sisj (3)

where the transmission matrix elements ξ and the field ampli-
tudes A are considered in the following coefficient

κ
(τ)
ij ≡ AiAjξ

(τ)
i ξ̄

(τ)
j , (4)

where A are the amplitudes of the beams [23]. Considering a
Gaussian beam and expanding it to retrieve a homogeneous
distribution of the intensity on the RIS cells, it is possible to
approximate all of the amplitudes to a unitary constant. Hence,
maximizing the overall intensityI in theP antennas with respect
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to the RIS configuration s, means minimizing the following
Hamiltonian:

H(s) = −

1,N
∑

ij

Jijsisj (5)

where Jij is the interaction matrix defined as follows

Jij =
1

N

P
∑

τ=1

ξ
(τ)
i ξ̄j

(τ)
(6)

with ξ a complex transmission matrix element [23]. Note that
s refers to the RIS configuration, while si refers to the single
RIS cell state. Moreover, the matrix J is a Hermitian matrix,
Jij = J †. This theoretical model was developed by Giorgio
Parisi to analyze the behavior of a spin system as a function of the
external temperature. This model represents the mathematical
framework in the spin glass (SG) theory that describes highly
disordered systems such as highly resonant environments. In par-
ticular, the (5) is a generalization to complex continuous valued
patterns of the Hopfield model [36], for which the study of Amit
et al. [37] predicts the existence of a low-temperature/large-
P SG phase. This external temperature represents the envi-
ronmental disturbance that randomly causes the spins to flip.
In our case we will be using this parameter to describe the
environmental disturbance due to multipath fading in a wireless
communication system. This parameter is not to be confused
with the temperature due to the RIS circuits but rather the
environment noise due to multipath fading that influences the
RIS optimal configuration. It will be implemented in the QAOA
representing the error eg in the noise model.

III. THE QUANTUM APPROXIMATION OPTIMIZATION

ALGORITHM

The QAOA is a hybrid quantum-classical optimization al-
gorithm that harnesses the power of quantum computing to
solve complex combinatorial optimization problems. Introduced
by Farhi, Goldstone, and Gutmann in 2014, it has attracted
significant attention in the quantum research for its potential to
solve optimization problems. Some examples are the traveling
salesman problem, the graph cutting problem, and other NP-hard
problems [33]. In particular, it involves training a parameterized
quantum circuit, also called ansatz, by minimizing a given ob-
jective function. Unlike classical machine learning approaches
that rely on extensive training, validation, and testing data sets
to train the model, the QAOA method employs a mathematical
function that simplifies and speeds up the training process. In the
QAOA, an optimization problem is formulated using a diagonal
operator Ĉ acting on a quantum state |s〉:

Ĉ |s〉 = C(s) |s〉 (7)

where Ĉ maps a given classical cost function C(s), defined onN -
variables s = (s1, . . . , sn), with si ∈ {−1,+1}. After mapping
the cost function into an operator, the QAOA varies the state |s〉
until the cost function is close to its absolute minimum. The
operator Ĉ is a measurable physical quantity acting on the state
|s〉. By applying Ĉ to |s〉, the result of the measurement are the

eigenvaluesC(s) and eigenvectors |s〉of Ĉ operator. Considering
the measured quantity to be the energy of the system, Ĉ is the
Hamiltonian operator Ĥ. Applying the Hamiltonian operator to
a general state |ψ〉, the eigenvalues and eigenvectors of Ĥ are
found associated to the energies E and the configurations |ψ〉 of
the system, respectively:

Ĥ |ψ〉 = E |ψ〉 . (8)

This eigenvalue equation is known as the time-independent
Schrödinger equation that describes stationary quantum sys-
tems. Considering the energy to be measured in (7), the diagonal
operator Ĉ → Ĥwhile the cost functionC(s) ⇀ H(s). The most
widely used Hamiltonian operator for the QAOA is the Ising
Hamiltonian operator, due to its universality, easy physical in-
terpretation and simple computational implementation [38]. The
Ising Hamiltonian operator is given by the linear combination
of the Kronecker products of the Z and I unit operators. The
Z operator, also known as Pauli z-operator provides the infor-
mation of the state along z axis of the Bloch sphere [39]. The I
operator is the identity matrix that leaves the system unchanged.
These operators have the following matrix representation:

Z =

(

1 0

0 −1

)

, I =

(

1 0

0 1

)

. (9)

The values on the diagonal are the eigenvalues of the operators
that are associated to the possible outcomes of a measurement.
For the Z operator the outcomes of a measurement are 1, −1. In
quantum computing, these eigenvalues 1, −1 are associated to
the qubit state |0〉, |1〉, respectively. This connection between the
eigenvalues of Z, indicated with zi ∈ {−1, 1} and the values of
the variable si ∈ {−1, 1} allow to map si into qubit eigenvalue
zi and the cost function H(s) to H(z). Therefore, considering
the cost function to be associated with energy C(s) → H(s)
and the cost function variables to be associated with qubit
eigenvalues s → z, the (7) becomes:

Ĥ |z〉 = H(z) |z〉 , (10)

where Ĥ maps a given classical cost function C(s), defined on
n-dimensional bitstring with zi ∈ {−1,+1}. The operator Ĥ is
obtained by replacing the variable si with the Z operator and
applying the I operator for other qubits:

Ĥ =

m
∑

i=1

cij

n
∏

j=1

Pij , (11)

where cij are the coefficients of the cost function variables,
Pij ∈ {Z, I} is the Kronecker product of the Z and I operators
and m is the total number of combinations. To minimize the
H(z), a variational state |z〉 has to be defined. This state will
vary until the minimum of the cost function H(z) is reached.
This variational state is called Ansatz. A variational state is
represented by a parameterized quantum circuit consisting of
a sequence of gates with tunable parameters applied to specific
qubits. In the QAOA, the Ansatz has a well-defined circuit model
consisting of two Hamiltonian operators, the Ising Hamiltonian
operator ĤC that maps the cost function, and a mixing Hamil-
tonian operator ĤM . The subscript C is used to distinguish it
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Fig. 2. QAOA Ansatz. It consists of applying theUC andUM unitary operators
to the initial state of n-qubits.

from the mixing Hamiltonian. Note that ĤC ≡ Ĥ. Once the
qubits have been initialized in the state |0〉, the Hadamard gates
have been applied. These Hamiltonian operators are applied in
succession in the circuit in terms of variational gates as a function
of parameters γ = {γ1, γ2, . . . , γp} and β = {β1, β2, . . . , βp}.
The p is the circuit depth and represents the number of times
such operators ĤC and ĤM are applied in succession on the
qubits. Introducing the unitary gates UC and UM that depend on
(ĤC , γi), and (ĤM , βi), represented as:

UC(ĤC , γi) =

p
∏

i

e−iγiĤC (12)

UM (ĤM , βi) =

p
∏

i

e−iβiĤM (13)

where ĤM is defined as

ĤM =

n
∑

j=1

Xj . (14)

with Xj the Pauli X operator acting on qubit j for a total of n
qubits, the quantum state generated by the Ansatz reads as

|Λ(γ,β)〉 = e−iβpHM e−iγpHC · · · e−iβ1HM e−iγ1HCH|0〉⊗n.
(15)

A graphical representation of the Ansatz |Λ(γ,β)〉 is shown
in Fig. 2 and in blue in the Fig. 3. Once the Ansatz has been
defined, the objective function is used to guide the optimization
process to find the minimum of the cost function. The objective
function �, instead, is defined as the expectation value of ĤC

with respect to the parameterized quantum state

�(γ,β) = 〉Λ(γ,β)〉 ĤC |Λ(γ,β)〉 . (16)

The expectation value is the average value of all possible out-
comes of the measured system. After formulating the problem
into a cost Hamiltonian operator ĤC and Ansatz |Λ(γ,β)〉,
the classical minimization process takes place. This procedure
consists of varying the circuit parameters until the optimal set
γ� and β� is found:

(γ�,β�) = arg min
(γ,β)

�(γ,β). (17)

The number of measurements needed to estimate the expec-
tation value of a quantum state scales with the variance of the

Fig. 3. Block diagram of QAOA algorithm. 1st block shows the initialization
of the states of qubit, 2nd block shows the Ansatz definition, 3rd block represents
the expectation value computation, 4th block shows the classical optimization
of the objective function, 5th shows the update of the circuit parameters after
one cycle of optimization process, 6th shows the parameter assignment. These
steps repeats until the algorithm converges.

observable being measured and the desired precision. In QAOA,
since the cost Hamiltonian typically consists of a sum of Pauli
operators, the complexity of measuring each term grows as more
qubits and deeper circuits are involved. Given that multiple Pauli
terms are involved and each needs to be measured separately, the
total number of measurements depends on the number of Pauli
operators, the depth of the circuit, and the number of qubits.
For n qubits and p layers, the number of Pauli terms typically
scales as polynomial in the number of qubits, so the overall
measurement complexity can be approximated as:

M ∼ O
(pn

ε2

)

(18)

This shows that the number of measurements grows polynomi-
ally with the number of qubits and circuit depth p. A graphical
representation of the QAOA is shows in Fig. 3.

IV. QAOA-BASED RIS OPTIMIZATION AND NOISE MODEL

QAOA is an optimization algorithm that takes advantage of
the principles of quantum mechanics to explore all possible solu-
tions in a combinatorial optimization problem. The behavior of a
RIS can be described by the mathematical model reported in (5)
which brings the RIS optimization a combinatorial optimization
problem. This Hamiltonian is expressed directly as the sum of
Pauli terms requiring no additional computational cost to decom-
pose a matrix into Pauli summations. The number of Pauli terms,
moreover, increases squared with the number of qubits according
to the formula N(N − 1)/2 that speed up the computational
time. In this regard, the goal of this article is to apply QAOA in
the RIS optimization to explore all the solution space to find the
optimal RIS configuration that maximizes the signal reception.
This approach is particularly advantageous for RIS with a high
number of cells where classical optimization algorithms cannot
be applied. In particular, the proposed method can be broken
down into main phases, a training phase, and a testing phase.
During the training phase, the quantum computational model
for RIS optimization is found while the testing phase applies
the trained quantum computational model to different scenarios
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with different noise levelsL andP different number of receiving
antennas.

Phase 1: Training Phase

1) Define the Cost Hamiltonian Operator.

The behavior of the RIS in the optimization process is de-
scribed by the SG Hamiltonian, defined in (5) considering
(6) for the interactions between the cells. Considering N
RIS cells,P receiving antennas andJij being an Hermitian

matrix because ξ(τ)i ξ̄
(τ)
j = ξ

(τ)
j ξ̄

(τ)
i , the cost Hamiltonian

HC can be expressed as follows:

HC(s)=−
N
∑

i,j

Jijsisj=−
N
∑

i,j

(Jij+Jji) sisj +
N
∑

i

Jii.

(19)
Note that even if Jij , i �= j, is in general complex val-
ued, each term of the sum Jij + Jji = 2JR

ij is real and
symmetric in i ↔ j because it results form ξiξ̄j + ξj ξ̄i.
ThereforeJij element is the sum of many random numbers
(each one the product of two Gaussian random numbers
xi and xj) and, for the central limit theorem, will be
Gaussian distributed. Substituting (6) to (5), and mapping
the variable s with the operator Z, the cost Hamiltonian
reads as

ĤC = −
1

N

1,N
∑

i<j

P
∑

τ=1

x
(τ)
i x

(τ)
j ZiZj (20)

wherex represents a variable from a Gaussian distribution.
This Hamiltonian will be denoted as training Hamiltonian
(TrH), used for the training process.

2) Prepare the Ansatz.

Initialize the parameterized quantum circuit |Λ(γ,β)〉,
which defines the variational quantum state depending on
γ and β. This Ansatz is generated by applying a series of
unitary operations (gates) to an initial quantum state |0⊗N 〉
(all qubits in state |0〉) according to (15). The depth p of
the circuit defines the number of layers of gates applied to
the qubits.

3) Evaluate the Energy of the System.

The parameterized quantum circuit is assigned random
values to the parameters, and then the state is measured.
This process, denoted as quantum measurements, is re-
peated multiple times, in order to get an accurate expec-
tation value of the TrH with respect to the Ansatz. This
value represents the energy of the RIS configuration and
represents an eigenvalue of the TrH. The related eigevector
(qubit states) identifies the RIS configuration.

4) Minimize the Energy (Classical Optimization).

The previous step is repeated to update the values of the pa-
rameters γ and β until the minimum of the objective func-
tion in (16) is found. The classical optimization algorithm
used in this study was the Broyden-Fletcher-Goldfarb-
Shanno (BFGS). This algorithm is used to find the optimal
values of γ and β. The algorithm runs until the minimal
energy H(s) and related eigenvector are found. Once the
optimization converges to the minimum of the objective
function, the best set of parameters γ∗ and β∗ are found,

and saved for the test phase. This nonlinear optimization
method has been selected for its effectiveness in tackling
unconstrained combinatorial problems, avoiding the direct
computation of the Hessian, which can be computationally
intensive.

Phase 2: Test Phase

1) Assign the Optimal Parameters to the Quantum Cir-

cuit.

Once the optimal parameters are found in the training
phase, the optimal parameters γ∗ andβ∗ are now assigned
to the circuit. This circuit will be called trained circuic
(TrC), that represents our trained model.

2) Generate Test Hamiltonians.

To test the accuracy of the TrC in finding the optimal
configuration of the RIS in different electromagnetic sce-
narios, new cost Hamiltonians – denoted test Hamiltonians
(TeHs) – are generated.

3) Measure the State of the System.

In order to find the optimal RIS configuration in different
scenarios, the TrC is applied to all the TeHs. At this point,
the minimal energies and the related RIS configurations
are found, respectively. As a result of the measurements,
each qubit can be in two classical states, 0 or 1, associated
with the phase factor φi = −π and φi = π.

4) Apply Noise Model. To simulate real-world EM condi-
tions, a bit-flip noise model is implemented. This noise
model adds error gates to the qubits, randomly flipping
their state with a probability eg , to account for external
disturbances such as multipath fading. Different levels of
noise can be tested by varying the bit-flip probability eg ,
allowing an analysis of how external disturbances affect
the RIS configurations.

5) Analyze the Impact of Noise on RIS Performance.

The effect of noise is evaluated by observing how the final
RIS configurations change under varying levels of envi-
ronmental noise. This step helps understand how robust
the QAOA-optimized RIS is in real-world scenarios with
multipath fading and other disturbances.

V. RESULTS

A. Simulation Setup

Let’s consider a wireless communication system consisting
of a 3× 3 matrix of 9-unit cell RIS, operating within a smart
radio environment characterized by a noise level L and em-
ploying P receiving antennas. The circuit depth was p = 18
for a precise convergence. The behavior of the RIS has been
analyzed across various EM scenarios, accounting for multipath
fading, with different noise levels L = 0, 1, 2, 3, 4, and vary-
ing the number of receiving antennas, namely P = 2, 4, 6, 8.
The noise levels L = 1, . . . , 4 correspond to error probabili-
ties eg = 0.001, 0.002, 0.003, 0.004 of the onise model, respec-
tively. Specifically, we investigated optimal RIS configurations
in different scenarios, with and without noise, employing SG
mathematical model optimized by the QAOA combinatorial
optimization algorithm [23]. The QAOA has been implemented
using the quantum statevector simulator provided by Qiskit [30],
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Fig. 4. Eigenvalues obtained by applying the optimizing circuit |Λ(γ∗,β∗)〉 at 50 TeH for different values of P. (a) P = 2, (b) P = 4, (c) P = 6 and (d) P = 8.
The continuous line shows the eigenvalues obtained by applying the optimizing circuit and dotted line the exact ones, computed analytically.

Fig. 5. Optimal bitstrings obtained by applying the optimizing circuit |Λ(γ∗,β∗)〉 at 50 TeH for P = 2 compared to the ones computed mathematically.

an open-source framework developed by IBM Quantum for
programming quantum computers. This framework facilitates
the exploration, development, and testing of quantum algorithms
and applications through the IBM Quantum Cloud Platform.
This allows us to emulate the behavior of NISQ systems using
quantum simulators. To model quantum circuits and manage
classical-quantum communication, we employed the estimator
and sampler primitives available in Qiskit Runtime, ensuring
seamless portability of code to IBM quantum computers without
modification. Furthermore, a statevector simulator with noise
has been implemented to assess the effectiveness of QAOA in
optimizing RIS under various EM scenarios.

The testing phase (ThP) involves analysing the EM response
of the RIS across various electromagnetic scenarios, applying
the TrC obtained at the end of the training phase (TrP).

B. RIS Response in Noiseless Environments

The primary objective of this analysis is to investigate the
response of a RIS in a noiseless environment without multipath

fading. This involves evaluating the energies and the optimal
bitstrings for different P . In this experiment, 50 instances of
TeHs were generated, corresponding to 50 distinct EM scenar-
ios. These scenarios involved varying the number of receiving
antennas (P = 2, 4, 6, 8) while maintaining a noise level L = 0.
The eigenvalues were obtained by applying |Λ(γ,β)〉 to these
50 TeHs instances. The results were then compared to the exact
analytical eigenvalues. The comparison is shown in Fig. 4, where
the eigenvalues are plotted on the y-axis and the instances on the
x-axis. Additionally, the bitstrings that maximize the intensity of
the received signal were analyzed. ForP = 2, thex-axis in Fig. 5
represents 9-bit sequences in decimal notation, ranging from 0
to 511, identifying the states of the RIS cells that optimize the
received signal. The y-axis shows the probability at which each
bitstring optimizes the scenarios. Analytical bitstrings are also
included for comparison. The application of the TrC to the 50
TeHs reveals that the RIS configurations are optimal in scenarios
without multipath fading. The closer the computed eigenvalues
are to the analytical ones, the higher the likelihood of achieving
an optimal RIS configuration. The plot in Fig. 5 reports the
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Fig. 6. Eigenvalues obtained by applying the optimizing circuit |Λ(γ∗,β∗)〉 at 50 TeH for different values of P and L = 1, 2, 3, 4. (a) P = 2, (b) P = 4,
(c) P = 6 and (d) P = 8. The purple dots shows the bitstrings obtained by applying the optimizing circuit and pink dots the exact ones, computed mathematically.

optimal RIS configurations at 50 differenct scenarios compared
to the exact one computed analytically. Overall, the analysis
confirms that in the absence of noise and multipath effects,
the RIS can be configured optimally by minimizing the error
between computed and analytical eigenvalues and by identifying
the appropriate bitstrings that maximize signal intensity.

C. RIS Response in Noisy Environments

The objective of this analysis is to study the electromagnetic
response of a RIS under varying noise levels and different num-
bers of receiving antennas. This involves evaluating the impact
of multipath fading on the RIS configuration by introducing
quantum noise using a bit-flip noise model. To simulate multi-
path fading in a smart radio environment, quantum noise was
added to the TrC. This noise was modeled using a bit-flip noise
model, which introduces the PauliX quantum gate with a certain
probability eg after the application of any gate to any qubit,
simulating readout errors. The bit-flip errors considered were
eg = 0.001, 0.002, 0.003, 0.004, corresponding to noise levels
L = 1, 2, 3, 4 respectively. For each noise level, 10 instances
of TeHs were examined across various EM scenarios catego-
rized by the number of receiving antennas (P = 2, 4, 6, 8). The
optimal RIS configurations were computed and compared to
analytical ones. These configurations were reported in decimal
notation, representing a total of 512 potential configurations,
as shown in Fig. 6. Additionally, the EM response of the RIS
was analyzed for 50 TeHs at varying noise levels with a fixed
number of receiving antennas (P = 2). The match between the
computed state of the RIS cell and the ideal state was expressed

in terms of qubit states and visualized in Fig. 7. If the qubit
state matched the ideal state, the value reported was 1 (yellow
dot); if different, the value was −1 (purple dot). The analysis
demonstrates that the RIS configurations achieve high precision
in noiseless scenarios and at lower noise levels (L = 1, 2). As
noise levels increase (L = 3, 4), the accuracy of the optimal
configurations decreases, as evidenced by a larger spread in the
optimal bitstrings and a reduced number of matching bitstrings
with the ideal state. Fig. 6 shows the computed optimal bitstrings
contrasted with analytical ones, indicating high precision for
lower noise levels and decreased accuracy as noise increases.
As noise levels increase, the number of optimal configurations
rises, reflecting the system’s reduced ability to maintain optimal
configurations under higher noise conditions. In conclusion,
the electromagnetic response of the RIS is highly accurate in
low-noise environments. However, as noise levels increase, the
accuracy of the optimal RIS configurations diminishes, under-
scoring the impact of quantum noise on the RIS performance in
multipath fading conditions.

D. Deep Analysis of RIS Response in a Noisy Environment

The objective of this analysis is to evaluate the effectiveness
of the QAOA in optimizing the configuration of a RIS in the
presence of multipath fading and varying noise levels. This is
done within a single electromagnetic scenario consisting of one
receiving antenna (P = 1). The experiment involves a single
realization of disorder generated by creating a Hamiltonian for
each noise level (L = 1, 2, 3, 4). To perform a statistical analysis
of this scenario, two sets of replicas of the original system were
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Fig. 7. Match matrices. These matrices show the match between the optimal bitstrings and the ideal ones for P = 2 and different levels of noise. The matrices
reports 1 in case the optimal qubit state matches the ideal one, −1 in case the optimal bitstring does not match the ideal state. The results are reported for (a) L = 1,
(b) L = 2, (c) L = 3 and (d) L = 4.

Fig. 8. Overlapping matrices for a single disorder realization at different level of noise. The overlap q(p1, p2)–defined in (8) –between the configurations S(p1)
and S(p2) of two replicated systems and sorted by a k-means algorithm in order to be organized in clusters. In (a) the appearance of only two different yellow
squares indicates that the only configurations that optimize the system are only two, perfectly anticorrelated, as a symptom of full tolerance to L = 1. From (b) to
(d) the optimal configurations belong to an increasingly large number of clusters.

created at different noise levels, labeled as p1 = 1, . . . , 10 and
p2 = 1, . . . , 10. These replicas help explore different configu-
rations of the system and study its statistical behaviors, as the
theory of SG. For a fixed noise level, the TrC was applied to thep1
replicas and then to the p2 replicas to determine the optimal RIS
configurations. The similarity between the RIS configurations
of the different replicas was measured using an overlap matrix,
calculated as the normalized scalar product:

q(p1, p2) =
1

N
S(p1) · S(p2) =

1

N

N
∑

k=1

S
(p1)
k S

(p2)
k (21)

This matrix, being symmetric and with ones on the diagonal,
was visualized by sorting p1 and p2 using a k-means algo-
rithm to cluster similar final S configurations. This clustering
allows the states to appear as yellow squares on the overlap

matrix diagonal. Fig. 8 shows the overlapping matrices for
noise levels L = 1, 2, 3, 4. Additionally, the probability density
function (PDF) of the overlap between pairs of replicas, P (q),
was analyzed to demonstrate the noisy behavior and degree
of complexity of the system across different noise levels, as
shown in Fig. 9. The analysis reveals that at a low noise level
(L = 1), the RIS configuration shows high tolerance to noise,
with only two anticorrelated optimal configurations visible in the
overlap matrix (Fig. 8(a). This is expected due to the symmetry
of the system, where any disordered scenario can be optimized
with two anticorrelated configurations. As noise levels increase,
the complexity of the system rises. For L = 2, more peaks
appear in the PDF of the overlap (Fig. 9(b)), indicating a higher
number of correlated optimal configurations due to the presence
of noise. At L = 3, the influence of noise further increases,
resulting in a higher number of non-optimal configurations, as
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Fig. 9. Probability distribution of the overlapping matrices for P = 1 and different levels of noise. In (a) only two anticorrelated strings appears, as a result of all
optimal configurations. In (b) only a small alteration to the optimization system stands out with just 4 optimal configurations. In (c) the noise affects the possible
optimizing configurations with lower percentage while in (d) the level of noise is more relevant.

shown in Fig. 9(c). This trend continues at L = 4, where the
probability of obtaining non-optimal configurations becomes
significant, leading to a non-optimal RIS behavior (Fig. 9(d)).
In summary, the effectiveness of QAOA in optimizing the RIS
configuration decreases with increasing noise levels. While the
RIS demonstrates high accuracy in low-noise conditions, the
presence of higher noise levels results in a more complex system
with a greater likelihood of non-optimal configurations. This
underscores the impact of quantum noise on the performance of
RIS in multipath fading conditions, highlighting the challenges
in maintaining optimal configurations as noise increases.

VI. CONCLUSION

In conclusion, the study of the QAOA provides valuable in-
sights into optimizing RIS in wireless communication systems.
Current NISQ systems allow for an increased number of qubits
in the training process, enabling the testing and validating of the
algorithm in environments characterized by multipath fading,
a large number of receiving antennas, and higher noise levels.
Unlike classical training algorithms, QAOA does not rely on
large training datasets but uses a SG mathematical model, greatly
simplifying the training process. Additionally, while classical
combinatorial optimization algorithms face exponential growth
in RIS configurations as the number of cells increases, QAOA
only experiences a polynomial increase in complexity, making it
suitable for solving large-scale problems [40]. Our simulations
and analysis across various EM scenarios have demonstrated the
efficacy of QAOA in identifying optimal RIS configurations,
even in the presence of challenges like multipath fading and
noise. In noiseless scenarios, QAOA effectively identified op-
timal RIS configurations, maximizing received signal intensity

and minimizing data loss. The comparison between computed
and analytical eigenvalues highlights the accuracy and reliability
of QAOA-optimized configurations. Even as noise levels in-
crease, QAOA continues to perform commendably, showcasing
its adaptability and robustness. Furthermore, analysis of RIS
behavior in the presence of multipath fading reveals promising
results. Despite the added complexity introduced by multipath
fading, QAOA continues to exhibit effectiveness in optimizing
RIS configurations. While the accuracy may decrease slightly
with significant multipath fading, the overall performance re-
mains commendable across various scenarios. These findings
highlighted the potential of quantum computing, particularly
QAOA, in addressing the complexities associated with RIS opti-
mization in wireless communication systems. By leveraging the
computational power of quantum algorithms, we can overcome
traditional limitations and unlock new possibilities for enhanc-
ing the performance and reliability of wireless networks. For this
study, we chose to start with a simpler single input and multiple
output (SIMO) system to showcase the potential advantages of
QAOA-based optimization in smart radio environments. The
SIMO configuration allows for easier implementation and more
direct benchmarking, providing examples of how quantum tech-
niques could potentially improve RIS performance. In further
study, the extension of the QAOA approach to MIMO systems
can be performed by adapting the SG Hamiltonian for multiple
input scenarios, including contributions from all transmitting
and receiving antennas and resulting in a more sophisticated
model for quantum optimization. Moreover, as the system size
grows, simulating quantum algorithms like QAOA becomes
computationally infeasible due to this exponential scaling. In
fact, in quantum hardware the computational complexity grows
polynomially in the number of qubits n while in classical
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hardware exponentially. This scaling problem makes simulators
used for validating the algorithm impractical for large systems.
For this reason, further research and experimentation are essen-
tial to refine and validate the algorithm in real quantum comput-
ers, increasing significantly the system size. Despite the impor-
tant features brought by the quantum optimization, the QAOA
relies on current NISQ devices, prone to noise, qubit errors, and
limited coherence times, which can affect the accuracy of com-
putations. As the complexity of the problem increases, quantum
noise may degrade the performance of QAOA while the number
of quantum measurement increases polinomially. Large-scale
optimization problems require a high number of qubits, which
are currently limited in available quantum hardware. This re-
stricts the size of the RIS system that can be optimized. While the
quantum part of QAOA handles the combinatorial optimization
problems efficiently, the classical optimization of parameters γ
and β can become computationally expensive as the number
of qubits or circuit depth increases. In this regard, to overcome
such QAOA limitations in classical hardware, implementation
of QAOA on NISQ systems is essential. In order to reduce
the impact of noise, techniques like quantum error correction
or error mitigation strategies can be applied. Techniques such
as grouping Pauli operators and shot frugality can instead be
used to reduce the number of quantum measurements, while
more efficient gradient-based or quantum-inspired optimization
algorithms can be used to speed up the system training process.
In case of simulations of quantum simulators, other noise models
can be explored to see the difference of RIS responses and opti-
mize the model for real world implementation. Following these
improvements, quantum-based RIS optimization can become
significantly interesting by providing important improvements
to RIS performance, enhancing wireless communication sys-
tems.
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