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Abstract—This study presents a novel data preprocessing

framework to enhance pig behavior analysis using machine

learning techniques. We address the critical issue of data leakage

in time series data, which can lead to overfitting and poor gen-

eralization in real-world applications. Our approach introduces

two key innovations: a non-class-based windowing method and

a chronological time sampling technique for train/test splitting.

To evaluate these methods, we collected a comprehensive dataset

spanning 100 hours of pig behavior over 24 days, using ear-tag

sensors and video recordings to capture 12 distinct activities.

We evaluate the effectiveness of our preprocessing methods

using various machine learning and deep learning models on

both time-domain and feature-domain datasets derived from this

unique collection. Results demonstrate significant improvements

in classification accuracy across all tested models, with increases

of up to 15% compared to commonly used data preparation

methods. The 2D Residual CNN achieved the highest accuracy

of 95.6% in the time domain, while Random Forest performed

best in the feature domain with 94.1% accuracy.

Index Terms—Activity Recognition, Behavior Analysis, Pigs,

Smart Farm, Machine Learning, Deep Learning, Data Prepro-

cessing, Windowing

I. INTRODUCTION

Activity recognition in pigs is a vital research area within
animal behavior and welfare studies [1], [2]. Pigs, like many
other animals, exhibit a wide range of behaviors that serve as
indicators of their comfort levels and overall well-being [3],
[4]. Traditionally, manual, labor-intensive monitoring methods
were employed. However, these methods have proven to be in-
efficient due to challenges in providing continuous monitoring
and the potential for human error. To address these limita-
tions, recent advancements have introduced sensor and video
camera-based animal monitoring systems in combination with
machine learning and deep learning techniques [27], [28].

In sensor-based monitoring systems, mechanical sensors,
such as gyroscopes and accelerometers, facilitate the moni-
toring of these movements and activities, providing a compre-
hensive understanding of an animal’s movements and activities
[5], [6]. Gyroscopes, which measure an object’s angular veloc-
ity, and accelerometers, which measure linear acceleration, are
commonly employed in activity recognition systems [7], [8].
In the case of pigs, these systems typically monitor various
behaviors, such as lying down, standing, walking, eating,

drinking, and interacting with one another [9], [10]. Observing
these behaviors helps assess the pig’s well-being, identify
potential health issues and provide a non-invasive monitor-
ing method compared to traditional manual observation [11],
[12]. Previous studies have used traditional machine learning
algorithms with varying success, often relying on hand-crafted
features extracted from raw sensor data [19]–[22]. This pro-
cess can be time-consuming and may not effectively capture
complex patterns in the data. Furthermore, the potential for
leveraging deep learning algorithms for this task on motion
sensor data remains largely unexplored [23], [24], [29].

Notably, several studies have overlooked the data leakage
problem – that refers to the use of leaked information during
model training and validation which would not be available
in the prediction stage. This issue mostly occurs when the
test data spills over to the training/validation data, thereby
making the results invalid. Oftentimes, this can lead to overly
optimistic modeling performance (overfitting) on the test data,
since the patterns of the data were already revealed to the
model during training. Consequently, the same model can
show poor performance when it is applied to a new, unlabeled
data.

In this paper, we present two different approaches that
we use strategically to address the data leakage problem in
data preprocessing phase [25]. Firstly, we use non-class-based
data segmentation method, to maintain the temporal order of
data. Typically, the accelerometer data readings exhibit strong
periodic patterns, which are used to segment the data into
time windows [26]. For instance, in supervised learning, the
data points labeled as the same activity classes (such as lying,
eating, or standing, etc.) are grouped together into one data
segment. However, such a class-based data segmentation can
open a room for data leakage. For instance, data points labelled
as a specific activity are grouped together even if they are
in the different time segments. This breaks the natural time
order in the timeline of the data and assumes that model is
aware of the labels in advance, resulting in data leakage. To
avoid such an issue, in non-class-based data segmentation, we
segmentize the data into fixed size time windows. The size
of each time window in this time-based data segmentation
approach is heuristically decided, ensuring the temporal order
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of all data points is intact along the original time line.
Secondly, we use a strategic train/test split method that can

prevent the data leakage problem. Often, many pig behavior
analysis studies employ random or non-chronological data
split, a method where data points are arbitrarily selected and
assigned to train or test data. For instance, in random split
method, future data segments can become a part training set
that influences the model’s decisions during testing, resulting
in overly positive results. However, in real-time data analysis,
the model would not have access to the future data since it
is yet to occur, leading to a drop in model performance. The
strategic split method used in this study addresses this issue
by splitting the data time-wisely, which aids to maintain the
temporal order of window segments. This approach ensures
that future data points are kept exclusively in the test set,
reflecting real-world scenarios.

To illustrate the benefits of using the proposed methods,
we compare the classification performance of various machine
learning and deep learning models using:

1) The proposed train/test split vs non-chronological
train/test split (using proposed non-class-based data seg-
mentation)

2) The proposed data segmentation method vs class-based
data segmentation method (using proposed train/test
split)

3) The proposed data segmentation and train/test split
vs class-based data segmentation and chronological
train/test split.

Our results showed a marked improvement of 15% on using
the methods over the common approaches. 1

II. DATA ACQUISITION

A. Sensors
The sensor used in this study to record the linear accel-

eration and angular velocity across three dimensions was the
MetaMotionC (MMC) sensor produced by MBIENTAB, as
seen in Figure 1. MMC is a wearable device that offers real-
time and continuous monitoring of motion and environmental
sensor data, with a sampling rate of 50 Hz. The inertial
measurement unit of MMC measures 3-axis acceleration and
angular velocity.

The incorporation of ultra-low-power features, high-value
sensors, and a coin cell battery architecture into a compact de-
vice renders MMC ideal for deployment in pig ear tag sensors.
Additionally, MMC houses an ARM Cortex M4F processor,
along with an onboard 9-DoF IMU (Inertial Measurement
Unit), a high-precision altimeter, and wireless communication
capabilities at 33 kb/s on the 2.4GHz frequency, making it
suitable for activity classification applications.

The sensor measurement is 7/8 inch in diameter and 1/4 inch
in thickness, while the pink case is 1.12 inch in the length as
seen in Figure 2. Each data point contained acceleration and
angular velocity in three axes, a timestamp, and a counter

1Common approaches here refers to class-based data segmentation and
chronological train/test split methods

value. The timestamp and the counter value are used to check
the validity of the data.

B. Sensor Placement and Camera Setup

To complement the sensor data, we strategically placed a
camera on the barn’s roof. This camera provided a visual
record of the pigs’ activities and was instrumental in our
process of manually annotating the motion data captured by
the ear-tag sensor. The camera used, is an RGB sensor camera
to capture videos, at a speed of thirty frames per second. The
video recordings provided ground truth for data annotations.

C. Data Collection

One of the highlights of our study is the dataset which we
collected and annotated. Our data collection efforts involved
observation of two pigs over a period of twenty four days
during the fall of 2022, accumulating a comprehensive dataset
spanning a total of one hundred hours. We used both the
MetaMotionC sensor and the RGB camera to collect the data.
The pigs were of different sizes and were kept together in
a pigpen. The pigpen was large enough for the pigs to move
around freely during the data collection. Meanwhile, sufficient
food and water were provided in the pigpen so that they could
eat and drink at any time. A few toys were provided for the
pigs as well.

Fig. 1. The MMC circuit board (left and center), a hand holding a coin
next to a cell phone (right). The pictures are courtesy of MBIENTAB
(https://mbientlab.com)

One evaluator monitored the pigs’ behaviors using a closed-
circuit television in a nearby room and checked in the event a
pig attempted to damage the sensor node. The data were col-
lected at two different periods for a day, which helped diversify
the collected data. Each period was adjusted accordingly to the
availability of the farm manager.

D. Data Labeling

After the phase of raw data collection, using the sensor
and the camera, we reviewed one hundred hours of data
to manually annotate the acquired data using SensiML Data
Capture Lab. This tool proved invaluable for labeling various
events within the sensor data, offering user-friendly graphing
tools and a media player for synchronizing video and audio
files with the sensor data. Our annotated dataset spanned
a time duration of forty hours and encompassed data from
twelve distinct pig activities. Table I provides the distribution
of different activities observed in the collected data.
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However, it is important to note that this meticulously
curated dataset, while rich in information, was not without
its challenges. Noise and outliers were present in the data due
to a variety of factors, including sensor failures, transmission
errors, and intermittent battery issues. The need for data
preprocessing became evident to address these issues and
enhance prediction performance, a topic we delve into in the
following section.

III. EXPERIMENTAL SETUP

A. Dataset Preprocessing
To ensure the quality and integrity of the collected sen-

sor data, we performed several essential preprocessing steps:
outlier detection, data cleaning, and standardization. This
comprehensive approach formed a solid foundation for the
reliable and accurate classification of pig behaviors in our
study.

We initiated the data preprocessing by detecting and ad-
dressing erroneous data points through a robust outlier detec-
tion process. This step is essential as outliers can introduce
noise and inaccuracies into the dataset, potentially leading
to skewed model performance and unreliable predictions. To
identify these outliers, we employed the robust statistical
interquartile range (IQR) method, chosen for its effectiveness
in handling non-normally distributed data and its robustness
against extreme values. The IQR method works by calculating
the difference between the first quartile (Q1) and third quartile
(Q3) of the data. Any data point falling below Q1 - 1.5 *
IQR or above Q3 + 1.5 * IQR is considered an outlier. This
method allows for the detection of outliers while taking into
account the spread of the middle 50% of the data, making it
less sensitive to extreme values compared to methods based
on standard deviation.

Once the outliers were detected, we employed a data
cleaning process to address these anomalous points. Instead
of simply removing the outliers, which could lead to loss of
potentially important information, we used linear interpolation
to replace them with estimated values. This approach was
chosen to maintain the continuity and temporal structure of
the time series data. Mathematically, for an outlier point at
time t between two known points (t0, y0) and (t1, y1), the
interpolated value y is calculated as:

y = y0 + (y1 � y0)
t� t0
t1 � t0

(1)

This method preserves the overall trend of the data while
removing potentially erroneous extreme values, ensuring that
the temporal consistency of the dataset is maintained.

Following outlier detection and data cleaning, we per-
formed standardization on the values for each dimension of
the accelerometer and gyroscope sensors. The standardization
process involves scaling the data to have a mean of zero and
a standard deviation of one. Mathematically, for each feature
x, we applied the following transformation:

xstandardized =
x� µ

�
(2)

Where µ is the mean of the feature and � is its standard
deviation. This standardization ensures that each feature con-
tributes equally to the model, improves the numerical stability
of many machine learning algorithms, and helps in faster
convergence during the training of neural networks.

Fig. 2. The coin sensor and the sensor case used in the study

B. Proposed Time Window Segmentation Method
Windowing is a crucial preprocessing step in sensor-based

activity recognition, involving the division of continuous sen-
sor data into smaller time intervals, or windows, for classifica-
tion purposes. Each window typically represents a few seconds
of data, labeled with the activity performed during that period
[16]. The choice of windowing method significantly impacts
the performance and real-world applicability of the resulting
classification model.

The traditional approach, known as ”class-based window-
ing,” involves sorting data by activity labels before creating
windows. This method follows these steps:

1) Sort all data points by their associated activity labels.
2) Create fixed-size windows from this sorted data.
3) Assign each window the label of the majority activity

within that window.
While intuitive, this approach assumes prior knowledge of

activity labels and system access to this information during
both training and testing. This assumption introduces sig-
nificant bias, as the system gains access to activity labels
during training that would be unavailable during real-world
testing. Consequently, models trained on data windowed in
this manner may show satisfactory performance on training
data but exhibit poor generalization to new, out-of-distribution
data.

To mitigate this bias, we propose a novel ”non-class-based
windowing” technique. Our approach involves:

1) Maintaining the chronological order of the recorded
dataset.

2) Creating fixed-size windows from this temporally or-
dered data, without reference to activity labels.

3) Assigning each window the label of the majority activity
within that window, but only for model training and
evaluation purposes.

This non-class-based windowing approach offers several
significant advantages that enhance the robustness and real-
world applicability of our pig behavior classification system.
By preserving the temporal structure of the data, it allows our

986

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 19,2025 at 15:59:46 UTC from IEEE Xplore.  Restrictions apply. 



models to learn from realistic patterns and sequences of pig
behaviors, capturing the natural flow and transitions between
activities. The approach effectively eliminates label leakage,
accurately reflecting real-world scenarios where activity labels
are unavailable during testing, thus preventing the model from
relying on information it wouldn’t have access to in practice.
This leads to improved generalization to new, unseen data, par-
ticularly in out-of-distribution scenarios where the distribution
of activities may differ from the training set. Furthermore,
it provides a more realistic evaluation framework, closely
mimicking real-world application conditions and giving a truer
picture of how the model would perform when deployed
in actual farm environments. Collectively, these advantages
contribute to a more robust, reliable, and practically applicable
pig behavior classification system.

Our approach ensures robustness and accurate recognition
of activities, even in scenarios with differently interleaved
activities compared to the training data. This is crucial for
the practical application of our pig behavior classification
system, where activity sequences may vary significantly across
different environments or time periods.

Following the application of our non-class-based windowing
technique, we refined our dataset by eliminating low-frequency
classes. We then obtained a dataset with six primary classes
of pig behaviors, each containing a comparable number of
samples. This balanced dataset, which we refer to as the
’time domain dataset’, forms the foundation of our subsequent
analysis and modeling efforts.

TABLE I
PERCENTAGE OF SIX MAJOR BEHAVIORS

Class Proportion (%)
Drinking 3.53
Eating 44.6

Interacting With Each Other 3.73
Laying 24.85

Standing 8.68
Walking 14.58

C. Feature Extraction
In machine learning, feature extraction transforms raw data

into numerical features that can be effectively processed by
algorithms while preserving the underlying data distribution
[13], [14]. For our pig behavior analysis, we employed a
comprehensive approach, deriving features from both time and
frequency domains to capture a wide range of characteristics
in the pig movement data.

We began by extracting statistical features from the time
domain representations of our sensor data. These features were
computed for each axis (x, y, and z) of both the accelerometer
and gyroscope readings, resulting in 36 time domain features.
The features include mean, standard deviation, minimum,
maximum, median, and interquartile range (IQR) of the sensor
readings. The mean provides a measure of central tendency,
standard deviation captures data variability, minimum and
maximum define the range of motion, median offers a robust

measure of central tendency, and IQR provides a measure of
statistical dispersion robust to outliers.

These time domain features are commonly chosen in activity
recognition studies due to their low complexity and low com-
putational power consumption. They provide valuable insights
into the pigs’ movements, such as range of motion, speed, and
stability [15]. Their clear physical interpretations also facilitate
understanding their relationship to pig movements.

To complement the time domain features and capture peri-
odic patterns, we also extracted features from the frequency
domain. We converted the time domain dataset into a fre-
quency domain representation using the Fast Fourier Trans-
form (FFT) method. From this, we extracted several features:
sample frequencies, phase, maximum amplitude frequency,
power spectral density (PSD), power spectral entropy, and
weighted frequencies.

These frequency domain features were chosen for their
ability to detect and quantify patterns that may not be apparent
in the time domain. They are particularly useful for capturing
repetitive movements or cyclic patterns in pig behavior. For
example, the maximum amplitude frequency can help identify
the primary rhythm of an activity, such as the step frequency
during walking. The PSD can distinguish between activities
with similar time domain characteristics but different fre-
quency profiles. Power spectral entropy can help differentiate
between more regular activities and more chaotic ones.

After extracting both time and frequency domain features,
we concatenated all features to create a comprehensive ’feature
domain dataset’. This dataset combines the strengths of both
domains: time domain features capture instantaneous charac-
teristics and overall statistical properties of the movements,
while frequency domain features capture rhythmic and peri-
odic aspects. By utilizing both time and frequency domain
features, we ensure a comprehensive representation of the
pigs’ movement patterns. This multi-domain approach allows
our models to leverage a rich set of information, capturing
both the immediate physical characteristics of the movements
and the underlying rhythmic patterns.

D. Proposed Train/Test Split Method
The process of dividing a dataset into training and testing

subsets is a critical step in the development and evaluation
of machine learning models. Traditionally, random sampling
has been a commonly employed technique for creating these
subsets, as it aims to provide an unbiased representation of
the population. This method involves randomly selecting data
points from the entire dataset to form the training and testing
sets, operating under the assumption that each data point is
independent and identically distributed. While this approach
is effective for many types of data, it presents significant
challenges when applied to time series data, such as the pig
behavior data in our study. The fundamental issue lies in the
inherent temporal structure and dependencies present in time
series data, which random sampling fails to preserve.

Time series data, by its very nature, exhibits strong sequen-
tial dependence. This means that the value of a data point
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Fig. 3. This ACF diagram provides insights into the dependency among
different activities of pigs along the time lags. The higher autocorrelation
values corresponding to the time samples between 0 and 200 demonstrate that
pig activities during those time lags are highly correlated and those between
600 and 1000 are not correlated.

at a specific time is often heavily influenced by the values of
preceding data points. In the context of our pig behavior study,
the activity a pig is engaged in at any given moment is not
independent of its recent past activities. For instance, if a pig
is currently eating, it’s more likely that it was approaching
the feeding area in the immediate past, and less likely that
it was sleeping. This sequential nature leads to significant
correlations between adjacent data points in the time series,
a characteristic that violates the fundamental assumption of
independence in random sampling.

To illustrate the highly correlated nature of our time se-
ries dataset, we employed an autocorrelation function (ACF)
analysis. The ACF measures the correlation between a time
series and a lagged version of itself, providing insights into
the temporal dependencies within the data. Mathematically,
the ACF is defined as:

⇢k =

Pn�k
t=1 (xt � x̄)(xt+k � x̄)Pn

t=1(xt � x̄)2
(3)

Where ⇢k is the autocorrelation at lag k, xt is the value
at time t, x̄ is the mean of the series, and n is the total
number of observations. The resulting ACF plot (Figure 3)
for our collected dataset clearly highlights the strong temporal
correlations present in the data. The plot shows high autocor-
relation values for small lag values, indicating strong short-
term dependencies, with the correlation gradually decreasing
for larger lags. This pattern is typical of time series data where
recent past values have a strong influence on current values.

Given these temporal dependencies, applying random sam-
pling to our time series data would likely result in a phe-
nomenon known as data leakage between the training and val-
idation sets. Data leakage occurs when the model gains access
during training to information that would not be available in
a real-world prediction scenario. In the context of time series
data, this often manifests as the model having access to future
data points during training, which would not be possible in a
real-time prediction task. This leakage can lead to overfitting,

where the model performs exceptionally well on the training
data but fails to generalize to new, unseen data.

The consequences of overfitting in pig behavior analysis
can be severe. It can result in unreliable predictions when
the model is applied to new data, significantly impacting the
performance and practical utility of the system. For instance,
a model that has overfit to the training data might fail to accu-
rately classify pig behaviors in slightly different environmental
conditions or with pigs that exhibit subtly different behavior
patterns.

To address these challenges and mitigate the risk of data
leakage, we propose and implement a method we term
”chronological time sampling” for dividing our dataset into
training and test sets. This approach respects and preserves
the temporal order of the recorded data, thereby preventing
data leakage between these sets. The process of chronological
time sampling involves partitioning the dataset sequentially
according to the recording time, maintaining the natural order
of events.

In our analysis, we implemented this method by designating
the last quarter (25%) of the chronologically ordered dataset
as the test set, while the first three-quarters (75%) were used
as the training set. This division strategy ensures that the
model is always trained on past data and tested on future
data, mimicking real-world scenarios where predictions must
be made based solely on historical information.

This chronological splitting approach offers several key
advantages that enhance the robustness and real-world applica-
bility of our pig behavior classification model. It preserves the
natural temporal structure and transitions between behaviors,
allows the model to learn from realistic activity sequences,
and prevents future data leakage during training. This method
provides a more accurate representation of real-world perfor-
mance, captures temporal dynamics and evolving patterns in
pig behavior, and encourages the model to learn generaliz-
able patterns rather than overfitting to specific instances. By
addressing the unique challenges of time series data in pig
behavior analysis, our approach establishes a solid foundation
for developing reliable and practically applicable classification
models.

IV. CLASSIFICATION MODELS

The primary objective of this study was to conduct a
comparative analysis between commonly used data preparation
strategies with the one proposed in this work. To evaluate the
performance of these strategies, we employed the widely rec-
ognized metric of classification accuracy (%). The selection of
machine learning and deep learning models for benchmarking
was made with careful consideration of their suitability for the
task.

For traditional machine learning, we used decision trees,
random forest, and K-Nearest Neighbors for benchmarking.
Among deep learning methods, variants of convolutional neu-
ral networks and recurrent neural networks were utilized.

The Decision Trees (DT) model is an algorithm that recur-
sively partitions input data into subsets. The algorithm selects
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a feature at each node that optimally separates the data into
different classes and continues until reaching a leaf node,
where it outputs the class label. We chose the Gini Impurity
(2) to measure the quality of a split in Decision Trees.

Gini(p) = 1�
CX

i=1

p2i (4)

Random Forest is an ensemble learning method that creates
multiple decision trees and combines their results. It employs
bootstrapping to sample the training data randomly and trains
a decision tree on each subset [18]. The final output is
determined by averaging the predictions of each decision tree.

The K-Nearest Neighbors model compares the distance
between samples and selects the K-nearest samples to the test
sample. The test sample’s class is determined by the majority
class of the K-nearest neighbors.

In the realm of deep learning models, we leveraged the 1-
D convolutional neural network (CNN) is designed to process
one-dimensional data, such as time series data. The model
comprises of convolutional layers (3) that learn features from
the input data and pooling layers that reduce output dimension-
ality [17]. The 1-D Residual CNN model is a 1-D CNN vari-
ant that utilizes residual connections to enhance information
flow through the network, allowing the model to learn more
complex features by reusing earlier features. The 2-D CNN
model is a convolutional neural network designed to process
two-dimensional data, such as images. The 2-D Residual CNN
model is based on the popular ResNet-34 architecture, known
for its superior performance in classification tasks, because of
the use of skip connections.

Yi =
1X

k=�1
XkWi�k (5)

The long short-term model (LSTM) model is a type of
recurrent neural network (RNN) designed to process sequential
data, such as time series data. The model consists of a chain
of LSTM units that learn long-term dependencies in the input
data. The hypothesis behind using LSTM is that these models
are capable of learning temporal dependency patterns which
is useful when dealing with time-series data such as ours.
Moreover, LSTM can be integrated with other models such as
CNN, to capture both long temporal dependencies and local
trend features. To examine this feature, we also implement a
hybrid CNN+LSTM model. The model first extracts features
from the input data using a convolutional neural network and
then passes the features through an LSTM layer to learn long-
term dependencies.

V. EXPERIMENTAL RESULTS

In this section, we present the evaluation results of various
machine learning and deep learning models using different
data preparation methods. The analysis is divided into three
parts, each corresponding to a specific comparison. It is
important to note here that ’Others’ essentially refers to class-
based segmentation and random train/test split.

The first part of the analysis compares the proposed chrono-
logical time split method against the random train/test split
method (referred as ’Others’ in the table), while using the
common class-based windowing approach (Table II). The
results show that the proposed splitting method significantly
improves the performance of all models in both time and
feature domains. For example, the 1-D CNN model accuracy
increased from 77.5% with the common method to 89.2%
using the proposed method in the time domain. Similarly,
in the feature domain, the accuracy increased from 78.8% to
86.7%. This trend is consistent across all the models tested,
indicating the advantages of the proposed splitting method.

In the second part of the analysis, we evaluate the impact
of the proposed non-class-based windowing method compared
to the class-based windowing method (referred as ’Others’ in
the table), using the common random splitting method (Table
III). The results demonstrate that the proposed windowing
method leads to better performance in both the time and
feature domains for most of the models. For example, the 2-D
Residual CNN model achieved 88.1% accuracy in the time
domain with the proposed method, compared to 80.0% using
class-based windowing. Similar improvements were observed
for other models as well, highlighting the benefits of the non-
class-based windowing method.

TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCES ON DATASETS WITH

PROPOSED TRAIN/TEST SPLIT VS OTHER TRAIN/TEST SPLIT

Time Domain Feature Domain
Model

Others Proposed Others Proposed

1-D CNN 77.5 89.2 78.8 86.7
1-D Res-CNN 79.2 90.1 79.5 87.5
2-D CNN 78.6 88.4 79.1 87.1
2-D Res-CNN 81.2 90.5 80.0 88.5
LSTM 78.5 87.4 78.2 88.1
CNN+LSTM 77.6 88.1 78 86.9
Random Forest 70.1 82.1 80.5 91.1

Decision Tree 56.2 70.8 64.5 87.2
KNN 52.1 61.2 60.3 82.2

Average 72.3 83.1 75.4 87.3

TABLE III
COMPARISON OF CLASSIFICATION PERFORMANCES ON DATASETS

SEGMENTED WITH PROPOSED WINDOWING METHOD VS SEGMENTED
WITH OTHER WINDOWING METHOD

Time Domain Feature Domain
Model

Others Proposed Others Proposed

1-D CNN 77.5 87.1 78.8 86.2
1-D Res-CNN 79.2 87.5 79.5 87.1
2-D CNN 78.6 86.8 79.1 86.4
2-D Res-CNN 80.0 88.1 80.0 87.5
LSTM 78.5 86.8 78.2 85.7
CNN+LSTM 77.6 87.1 78.0 85.9
Random Forest 63.2 80.4 81.1 90.2

Decision Tree 56.1 67.2 64.5 86.8
KNN 52.1 59.2 60.3 78.0

Average 71.4 81.1 75.5 85.9

The third part of the analysis focused on the combined
efficiency, comparing the performance of the models using
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Fig. 4. ML-based pig activity classification results with different data preparation methods on (a) time domain data and (b) feature domain data

TABLE IV
COMPARISON OF CLASSIFICATION PERFORMANCES ON DATASET WITH
PROPOSED SPLIT AND WINDOWING VS OTHER SPLIT AND WINDOWING

Time Domain Feature Domain
Model

Others Proposed Others Proposed

1-D CNN 77.5 94.4 78.8 93.2
1-D Res-CNN 79.2 94.75 79.5 93.2
2-D CNN 78.6 90.5 79.1 91.8
2-D Res-CNN 80.0 95.6 80 93.3
LSTM 78.5 93.0 78.2 93.0
CNN+LSTM 77.6 93.2 78 91.5
Random Forest 63.2 85.0 81.2 94.1

Decision Tree 56.1 73.1 64.5 90.0
KNN 52.1 60 60.3 85.1

Average 71.4 86.6 75.4 91.7

both the commonly used class-based windowing and random
split methods (referred as ’Others’ in the table) against the
proposed windowing and splitting methods (Table IV). The
results reveal that the combination of the proposed methods
further enhances the model’s performance in both time and
feature domains. Figure 4 represents the obtained results. In
Figure 4a, the 2-D residual network stands out with the highest
classification accuracy among the presented methods in the
time domain. We conduct a comparative analysis, examining
the performance of both data preprocessing methods individ-
ually and when utilized in combination. Similarly, in Figure
4b, showcases results in the feature domain, with the random
forest method demonstrating the highest accuracy. Notably,
we observe an improvement in performance when applying
our proposed methods even in the feature domain.

For example, the 1-D Residual CNN model achieved an
accuracy of 79.2% using the commonly used methods in the
time domain, which increased to 94.75% with the proposed
methods. A similar trend was observed in the feature domain
as well, with accuracy increasing from 79.5% to 93.2%.

This improvement is consistent across all tested models, in-
dicating that the proposed methods are effective in improving
pig behavior analysis.

The results demonstrate the effectiveness of proposed meth-
ods in addressing the data leakage issue observed in other
commonly used methods. The non-class-based windowing
approach divides the sensor data into windows according to the
natural time order, without prior sorting by activity labels. This
ensures that the system does not utilize activity labels during
dataset creation, reflecting real-world scenarios where activity
labels are unavailable during testing. The chronological time
split method, on the other hand, preserves the temporal order
of the data, preventing the model from learning patterns that
are specific to the training set. The combination of these
methods offers a promising framework for improving the
accuracy and effectiveness of pig activity recognition, thereby
contributing to advancements in precision livestock farming
practices.

VI. CONCLUSION

In conclusion, this study presents a novel data preprocess-
ing framework that significantly enhances the accuracy and
reliability of pig behavior analysis using machine learning
techniques. Our approach, which introduces a non-class-based
windowing method and a chronological time sampling tech-
nique for train/test splitting, effectively addresses the critical
issue of data leakage in time series data. The experimental
results demonstrate substantial improvements in classification
accuracy across various machine learning and deep learning
models, with increases of up to 15% compared to com-
monly used data preparation methods. The 2D Residual CNN
achieved the highest accuracy of 95.6% in the time domain,
while Random Forest performed best in the feature domain
with 94.1% accuracy.

These findings underscore the critical importance of ap-
propriate data preparation in pig behavior analysis and offer
a robust framework for enhancing the reliability and real-
world applicability of activity recognition systems in precision
livestock farming. By preserving the temporal structure of the
data and preventing data leakage between training and testing
sets, our approach enables more accurate and generalizable
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models for pig behavior classification. Future work could
explore the application of these preprocessing techniques to
larger and more diverse datasets, as well as investigate their
effectiveness in real-time behavior monitoring systems for
practical implementation in farm settings.
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