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Abstract—Accurate weight forecasting is essential for optimiz-
ing swine farming operations and enhancing animal welfare. This
paper introduces a novel approach for pig weight forecasting,
employing multi-input deep learning models that harness both
depth images and statistical descriptors. The study conducts a
comprehensive comparison of traditional machine learning (ML)
models, deep learning (DL) models, hybrid ML and DL models,
and multi-input models integrating both time-series data and
image features. A meticulously curated dataset comprising time-
series weight measurements and corresponding depth images
of pigs forms the foundation of the study. Image descriptors
such as length, width, depth, and volume were extracted from
the depth images. The proposed multi-input models, employing
architectures based on ResNet, XCeption, LSTM, and GRU
layers, are meticulously trained and evaluated using this dataset.
The performance evaluation is conducted using mean absolute
error (MAE) and mean absolute percentage error (MAPE)
metrics. The results underscore the superiority of the multi-input
models over traditional ML, DL, and hybrid models. Notably,
the best-performing model achieves a test MAE of 1.81 kg and
a test MAPE of 5.56%. This exceptional performance highlights
the importance of leveraging both time-series data and image
features for precise weight forecasting in pigs. These findings
can hold significant implications for improving the efficiency and
sustainability of swine farming practices, offering a pathway
towards improved decision-making and animal management
protocols.

Index Terms—weight forecasting, deep learning, machine
learning, image processing, multi-input models, depth images

I. INTRODUCTION

The global demand for pork continues to rise steadily,
fueled by population growth, urbanization, and evolving di-
etary preferences [1]. To meet this escalating demand, the
swine farming industry is intensifying efforts to optimize
production efficiency and enhance animal welfare [2]. An
essential aspect of efficient swine farming is accurate weight
forecasting, pivotal in decision making processes such as feed
allocation, health monitoring, and marketing strategies [3].
Precise weight forecasting empowers farmers to maximize
resource utilization, minimize waste, and ensure sustainable
and healthy pig rearing practices [4].

Traditionally, pig weight forecasting relies on manual meth-
ods like visual assessment and physical weighing [5]. How-
ever, these approaches are time-consuming, labor-intensive,
and prone to human error, rendering them impractical for

large-scale swine farming operations [6]. Moreover, manual
weighing can stress animals, potentially impact their growth
and well-being [7]. To overcome these limitations, researchers
have explored machine learning (ML) and deep learning (DL)
techniques for automated and non-invasive weight forecasting
in pigs [8].

Early studies on automated pig weight forecasting focused
on image analysis techniques. Schofield [9] developed a sys-
tem that uses top-view images and image processing algo-
rithms to forecast the weights of individual pigs, achieving an
average error of 5.1%. Brandl and Jgrgensen [10] proposed
a method that combines image analysis and multiple linear
regression for pig weight forecasting, reporting an average
error of 4.3%. These studies laid the groundwork for image-
based weight forecasting in pigs.

With the advent of ML techniques, Zhu et al. [11] applied
support vector regression (SVR) and artificial neural networks
(ANN) to forecast pig weights, showing promise with mean
absolute percentage errors (MAPE) ranging from 6.9% to
7.8%. Alsahaf et al. [12] compared the performance of random
forest, gradient boosting, and ANN models for forecasting
pig weights based on feed intake and environmental data,
with the best model achieving a MAPE of 5.2%. These
studies demonstrate the potential of ML techniques for weight
forecasting in pigs.

Recent advancements in DL techniques have led to the
development of more sophisticated models for pig weight
forecasting. Wongsriworaphon et al. [13] proposed a method
that combines image processing and ANN for pig weight
forecasting, reporting an average error of 3.8%. Wang et al.
[14] developed a deep learning-based approach that utilizes
side-view images and a modified ResNet architecture for pig
weight forecasting, achieving a MAPE of 4.7%. Fang et al.
[15] proposed a computer vision-based system that uses top-
view depth images and a convolutional neural network (CNN)
for pig weight forecasting, reporting a MAPE of 3.6%. These
studies showcase the effectiveness of deep learning models for
image-based weight forecasting in pigs.

Despite these promising results of image-based weight fore-
casting, most studies have focused on a single input modality,
such as RGB or depth images. However, the integration of
multiple data sources has the potential to enhance accuracy



and robustness [16], [33]. The multi-modal deep learning
has been successfully applied in various domains, such as
human activity recognition [17], crop yield prediction [18],
and disease diagnosis [19]. These studies have demonstrated
the benefits of leveraging complementary information from
different modalities.

The application of multi-modal deep learning for pig weight
forecasting remains largely unexplored. This study aims to
address this gap by developing and comparing multi-input
deep learning models that leverage both depth images and
time-series data for weight forecasting in pigs. The objectives
of this study include:

1. Curating a comprehensive dataset consisting of weight
measurements and corresponding depth images of pigs.

2. Novel model architecture design and implementation
that effectively combine statistical descriptor data and depth
images for weight forecasting in pigs.

3. Performance evaluation against traditional ML and DL
methods using mean absolute error (MAE) and mean absolute
percentage error (MAPE).

By accomplishing these objectives, this study seeks to
advance the field of precision livestock farming by refin-
ing efficient and dependable weight forecasting techniques
for pigs. The envisioned multi-input deep learning models
hold potential to enhance the accuracy of weight forecasting,
thereby enabling more informed decision-making in swine
farming operations. Furthermore, the insights gained from
this research endeavor can serve as a cornerstone for future
investigations into multi-modal deep learning applications in
livestock management.

II. DATASET
A. Data Collection

The dataset utilized in this study was meticulously collected
from a swine facility located within Virginia Tech’s premises.
Employing an advanced Intel RealSense D435 camera system
(Intel, Santa Clara, CA, USA), strategically positioned above
the ceiling pipe at the heart of an indoor testing pen measuring
5 x 7 ft, ensured comprehensive data acquisition. The camera
was securely mounted using a clamp, with its lense-to-floor
distance meticulously set at 3.4 meters. The camera’s oper-
ations were seamlessly managed through a laptop interface,
utilizing the Intel RealSense Viewer software.

Spanning over a meticulous 27-day period from September
to November 2021, depth video data was captured focusing
on four pigs, a unique crossbreed of Yorkshire and Large
White, entering the trial phase at 5 weeks post-weaning. The
resulting depth video data, boasting a resolution of 848 x 480,
was meticulously measured in the afternoons using a precise
digital scale (Arlyn Scales, New York, NY, USA), conveniently
positioned adjacent to the image-recording pen.

The dataset, spanning three months, contains a rich array
of information, comprising ninety weight samples recorded
from four pigs. To streamline the training process, each image
was labeled with its corresponding weight sample, facilitated
by a tailored Python script that linked image file paths to

weight samples. This tabular organization ensures effortless
data retrieval and analysis. The resulting mappings were
consolidated into a comprehensive master data file, ensuring
efficient access for through analysis.

Table I concisely outlines the distribution of ground truth
data derived from the scale-based body weight measurements.
It provides essential insights into weight distribution and
central tendencies, providing a comprehensive understanding
of the pig population under examination. The dataset reveals a
considerable variance in weight, spanning an impressive range
from 15.5 kgs to 56.6 kgs, showcasing its comprehensive rep-
resentation of the diverse growth stages commonly observed
in pig farming operations.

TABLE I
STATISTICAL MEASURES OF GROUND TRUTH WEIGHT VALUES IN
KILOGRAMS
Pig ID | Min | Max | Median | Mean
Pl 16.5 | 55.5 29.4 30.38
P2 16.5 | 56.6 32.9 35.13
P3 19.3 | 31.8 25 25.27
P4 17.4 | 30.9 22.4 23.14

B. Preprocessing

Data preprocessing is a crucial step in developing a robust
and accurate deep learning model for forecasting pig weight
using depth images. In this study, we executed an extensive
preprocessing pipeline (refer to Fig. 1) to transform raw depth
images into a clean and cropped dataset suitable for model
training.

The preprocessing pipeline began with the manual annota-
tion of a subset of 500 pig contour images using the lblImg
tool, where bounding boxes were delineated around the pigs.
These annotated images were utilized to train the YOLO
v7 object detection model, renowned for its proficiency in
real-time object detection and localization. Subsequently, the
trained YOLO v7 model was applied to the entire dataset of
pig depth image dataset, yeilding bounding box coordinates for
each pig instance within the frames. This automated process
efficiently identified the regions of interest (ROIs) containing
the pigs.

To obtain a fine-grained representation of the pig’s body, the
bounding box coordinates generated by the YOLO v7 model,
coupled with the corresponding depth images, were fed into
the Segment Anything Model (SAM). SAM, a cutting-edge
image segmentation model, precisely delineated the object
boundaries, generating accurate segmentation masks for each
pig instance. These segmentation masks captured the intricate
contours and shapes of the pig’s body, laying the groundwork
for subsequent data cleaning and cropping procedures.

Data cleaning was conducted utilizing the generated seg-
mentation masks to preserve the integrity and quality of the
dataset. Instances where the pig’s body intersected with the
segmentation image border, signifying partial or complete
occlusion, were identified, and the corresponding depth images
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Fig. 1. The flow diagram of the image preprocessing pipeline

were eliminated. This cleaning process aimed to uphold the
consistency and dependency of the training data by prioritizing
images where the pig’s body was fully visible and unob-
structed.

To refine the dataset and minimize background noise, we
applied a cropping process to the depth images utilizing the
segmentation masks. Bounding boxes were generated around
the pig’s body contour in the segmentation masks, defining
the region of interest. Utilizing these bounding boxes we
cropped the corresponding depth images, extracting a square
area centered around the pig’s body. This process resulted
in cropped depth images that provided a refined and focused
portrayal of the pigs, ready for subsequent preprocessing and
model training.

The fusion of manual annotation, automated bounding box
generation via YOLO v7, fine-grained segmentation using
SAM, data cleaning guided by segmentation masks, and pre-
cise cropping around the pig’s body resulted in a high-quality
dataset meticulously crafted for training a deep learning model
for pig weight forecasting. This meticulous preprocessing
methodology was meticulously crafted to reduce noise, empha-
size pertinent information, and enhance the model’s capacity to
discern significant patterns and correlations between the pig’s
depth characteristics and their corresponding weights.

III. METHODOLOGY

In this study, we introduce and assess a range of multi-
input deep learning models designed for pig weight forecasting
using depth images and time-series data. To ensure a com-
prehensive comparison, we incorporate traditional machine
learning (ML) models, deep learning (DL) models, hybrid
models that combine ML and DL methodologies, and multi-
input models that utilize two different DL models processing
different modalities of input data. This section outlines the
architectures and underlying principles of each model utilized
in our investigation.

A. Traditional Machine Learning Models

We begin our investigation by evaluating the performance
of three commonly used traditional ML models for pig weight
forecasting:

1) Random Forest Regressor: Random Forest is an ensem-
ble learning method that constructs multiple decision trees
during training and aggregates the mean prediction of the trees
[22]. We employ a Random Forest Regressor consisting of
100 trees and a maximum depth of 10 to capture non-linear
relationships within the data. The selection of the number
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Fig. 2. Segment Anything Model automatic mask generation. The model takes
as input both image and box prompts for generating segmentation masks.

of trees and maximum depth was guided by a grid search
accross various hyperparameters, aiming to achieve optimal
performance on a validation set.

2) XGBoost Regressor: XGBoost is a gradient boosting
framework that aggregates weak learners to form a robust
learner [23]. We employ an XGBoost Regressor with 100
estimators, a learning rate of 0.1, and a maximum depth of
5 to capture intricate feature interactions. The choice of these
hyperparameters was determined through a blend of manual
tuning and a grid search, with the goal of striking a balance
between model complexity and generalization ability.

3) Support Vector Machine (SVM) Regressor: SVM is a
widely used ML algorithm that constructs a hyperplane in
a high-dimensional space to minimize the distance between
the hyperplane and the closest training data points [24]. We



utilize an SVM Regressor with a radial basis function (RBF)
kernel and a regularization parameter (C) of 1.0 to capture
non-linear patterns within the data. The selection of the RBF
kernel and the C value was guided by empirical findings from
prior research and further refined through a grid search.

B. Deep Learning Models

We now shift our focus to the performance evaluation of
three cutting-edge DL architectures for pig weight forecasting
utilizing depth images:

1) VGGNet: VGGNet is a convolutional neural network
(CNN) architecture renowned for its depth, comprising mul-
tiple convolutional pooling layers alongside fully connected
layers [25]. In our approach, we customize the VGG-16
architecture by substituting the final layer with a regression
output and fine-tuning the pre-trained weights on the depth
image dataset. Leveraging pre-trained weights empowers the
model to capitalize on features learned from a vast image
dataset, thereby mitigating the necessity for abundant training
data and enhancing generalization.

2) ResNet: ResNet, a deep CNN architecture, pioneers
residual connections to alleviate the vanishing gradient prob-
lem and facilitate training of deeper networks [26]. Our ap-
proach involves utilizing a ResNet-50 model with a regression
output, refining the pre-trained weights on the depth image
dataset. The inclusion of residual connections in ResNet fa-
cilitates seamless information flow across layers, empowering
the model to capture intricate representations of the input data.

3) Xception: Xception, a CNN architecture, innovatively
substitutes standard convolution with depthwise separable con-
volutions, yielding a more efficient and effective model [27].
Our methodology involves employing an Xception model with
a regression output and refining pre-trained weights on the
depth image dataset. The integration of depthwise separable
convolutions in Xception effectively reduce the number of
parameters and computational cost, all the while maintaining
high performance.

C. Hybrid Models

To capitalize the advantages of both ML and DL method-
ologies, we introduce three hybrid models that integrate the
statistical descriptors with ML models and depth images with
DL models:

1) VGGNet + Random Forest: This hybrid model integrates
depth images for feature extraction with statistical descriptors
for input to a Random Forest Regressor. The VGGNet pro-
cesses the depth images to extract visual features, while the
Random Forest Regressor learns the correlation between the
statistical descriptors and the target weight values. The outputs
from both models are merged to generate the final weight
forecast. By leveraging the image processing capabilities of
deep methods with statistical data, this hybrid model endeavors
to enhance accuracy.

2) ResNet + XGBoost: Similar to the previous hybrid
model, this approach integrates depth images processed by the
ResNet with statistical descriptors handled by an XGBoost

Regressor. The ResNet serves as a feature extractor for the
depth images, acquiring deep representations of the visual
data, while the XGBoost Regressor learns the connection
between the statistical descriptors and the target weight values.
The final weight forecast is made by combining outputs from
model models. Leveraging ResNet’s deep representations for
image data and XGBoost’s adaptness in managing intricate
statistical interations, this hybrid model emerges as a robust
candidate for precise weight forecasting.

3) Xception + XGBoost: This hybrid model integrates
depth images processed by the Xception model and statisti-
cal descriptors handled by an XGBoost Regressor. Xception
serves as a feature extractor for the depth images, employing
depthwise separable convolutions to learn efficient represen-
tations, while the XGBoost Regressor learns the mapping
between the statistical descriptors and the target weight values.
The final weight forecast is derived from the combined outputs
to both models. By leveraging the efficiency of Xception’s
architecture for image processing and the predictive power of
XGBoost for handling statistical data, this hybrid model aims
to achieve high performance while ensuring computational
efficiency.

D. Multi-Input Models

Finally, we introduce three multi-input deep learning models
that utilize both depth images and statistical descriptors for pig
weight forecasting:

1) ResNet + Dense Layers: This multi-input model consists
of a ResNet-50 backbone for processing depth images and
additional dense layers for incorporating statistical descriptors.
The depth images are passed through the ResNet to learn
visual features, while the statistical descriptors are processed
by the dense layers. The outputs from the ResNet and the
dense layers are then concatenated and passed through ad-
ditional fully connected layers to forecast the pig weights.
The model is trained end-to-end using both depth images
and statistical descriptors, allowing it to learn the complex
interactions between visual and temporal features.

2) Xception + GRU Layers: In this multi-input model, an
Xception backbone handles depth image processing, while
Gated Recurrent Unit (GRU) layers model temporal dependen-
cies in the statistical descriptors [28]. Xception processes depth
images to learn visual features, while GRU layers capture
temporal patterns in statistical descriptors. The outputs from
Xception and GRU layers are concatenated and fed through
fully connected layers for weight forecasting. The combination
of Xception’s image processing and GRU’s proficiency in
capturing temporal patterns makes it ideal for managing multi-
modal data.

3) ResNet + LSTM Layers: This multi-input model com-
bines a ResNet-50 backbone for depth processing images
with Long Short-Term Memory (LSTM) layers for capturing
temporal patterns in the statistical descriptors [29]. ResNet
processes depth images to extract visual features, while LSTM
layers model temporal dependencies in statistical descriptors.
Concatenating the outputs from ResNet and LSTM layers, the



model passes them through fully connected layers to forecast
pig weights. Leveraging LSTM layers allows the model to
capture long-term dependencies in the statistical descriptors,
complementing the spatial features extracted by the ResNet.
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Fig. 5. Extracting biometric features such as length (L), width (W), and height
(H) of the pig contour in pixel space. The point denoting the height is the
center of the pig’s body. These features are estimated using depth images.

IV. EXPERIMENTAL SETUP

In this section, we outline the experimental setup employed
to evaluate the effectiveness of our approach compared to
traditional ML models, DL models, and hybrid models for
pig weight forecasting.

A. Statistical Descriptor Extraction

Before training models, we extracted statistical descriptors
from the depth images to capture the physical attributes of

the pigs. This process initiates with precise segmentation
the Segment Anything Model (SAM) [30]. Subsequently, we
employed thresholding, contour detection, and bounding box
drawing to isolate the pigs in the images, a crucial step for
precise measurement of physical dimensions such as width,
length, and height (refer to Figure 3).

Additionally, we computed the volume of each pig by
summing the pixel heights within the pig’s contour in the
three dimension shape. These features were selected for their
significance in representing the overall size and shape of the
pigs, attributes closely linked with their weight. Subsequently,
the extracted statistical descriptors served as input features for
both the ML models and the multi-input DL models.

B. Train/Test Split

To enhance the robustness and generalization capacity of
the models, we employed a leave-one-pig-out cross-validation
(LOPOCYV) strategy to partition the dataset into training and
testing subsets. In this strategy, data from three out of the four
pigs were utilized for training the models, while the data from
the remaining pig were reserved for testing. This process was
iterated four times, with each pig serving as the test subset
once. The final evaluation of model performance was derived
by averaging the results across all four iterations.

The LOPOCV strategy emulates a real-world scenario
where models are trained on a subset of pigs and subsequently
employed to forecast the weights of unseen pigs. This method-
ology helps in evaluating the models’ capacity to generalize to
new individuals, offering a more dependable estimate of their
performance in practical applications.

C. Data Normalization

Before training the models, the depth images and statistical
descriptors were normalized to ensure data consistency and
optimize model performance. The depth images were nor-
malized by dividing each pixel value by the maximum depth
value, thereby scaling the pixel intensities to the range [0,
1]. Likewise, the statistical descriptors were normalized using
min-max scaling, wherein each feature value was subtracted by
the minimum value and then divided by the range (maximum
value - minimum value), thereby scaling the features to the
range [0, 1].

D. Training Process

All models were trained using the Adam optimizer [31]
with a learning rate at 0.001 and a batch size of 32. The deep
learning models (VGGNet, ResNet, and Xception) were fine-
tuned using pre-trained weights from the ImageNet dataset
[32], while the multi-input models (ResNet + Dense Layers,
Xception + GRU Layers, and ResNet + LSTM Layers) were
trained end-to-end.

The models were trained for a maximum of 100 epochs,
implementing with early stopping to prevent over-fitting. The
early stopping mechanism monitored the validation loss with
a patience of 10 epochs, halting training if the validation loss
failed to improve for 10 consecutive epochs, while training the
best model weights.



Hybrid models (VGGNet + Random Forest, ResNet + XG-
Boost, and Xception + XGBoost) were trained in two stages.
Initially, depth images were passed through the respective
DL models to extract features. Subsequently, these features
were combined with statistical descriptors and fed into the
corresponding ML models. The ML models in the hybrid
approach were trained using the same hyper-parameters as
mentioned above.

E. Evaluation Metrics

To assess the models’ performance, we employed two com-
monly used evaluation metrics: Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE).

MAE measures the average absolute difference between the
forecasted and actual weight values, providing an intuitive
grasp of the model’s error in the original unit of measurement
(kilograms). It is calculated as:

1 & .
MAE—E;wz‘—yJ (D

where n is the number of samples, y; is the actual weight
value, and gj; is the forecasted weight value.

MAPE, on the other hand, represents the forecast error as
a percentage, facilitating comparisons of the model’s perfor-
mance across various weight ranges. It is computed as:

1 n
MAPE = - Z

i=1

Yi — Ui
Yi

x 100% 2)

where n, y;, and y; have the same meanings as in the MAE
formula.

Utilizing both MAE and MAPE enables a comprehensive
assessment of the models’ performance, offering insights into
their accuracy in terms of both absolute error and percentage
error. These metrics were computed for each pig during the
LOPOCYV process, with the final results obtained by averaging
the metrics across all four iterations.

V. RESULTS AND DISCUSSION

This section details the performance evaluation of the pro-
posed multi-input DL models and the comparative models
for pig weight forecasting. The results, summarized in Table
II, underscore the superiority of the multi-input models over
traditional ML models, DL models, and hybrid models in
terms of both Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE).

A. Performance of Traditional ML Models

Among the traditional ML models trained solely on sta-
tistical descriptors, the Random Forest Regressor achieved
an MAE of 4.41 kg and MAPE of 14.21%, while XGBoost
Regressor obtained an MAE of 4.15 kg and MAPE of 13.74%.
Slightly outperforming other ML models, the SVM Regressor
received an MAE of 3.60 kg and MAPE of 12.12%. These
results suggest that while traditional ML models excel in
capturing non-linear relationships and complex interactions

in statistical data, they struggle to accurately forecast pig
weights when relying solely on these descriptors. The absence
of visual information from the depth images, which provides
crucial insights into the physical characteristics of the pigs,
may contribute to the limitations observed in these models.

TABLE II
PERFORMANCE OF VARIOUS MODELS

Model MAE (kg) | MAPE (%)
Random Forest Regressor 441 14.21
XGBoost Regressor 4.15 13.74
SVM Regressor 3.60 12.12
VGGNet 3.51 10.93
XCeption 343 9.61
ResNet 3.05 8.96
VGGNet + Random Forest 291 8.21
XCeption + XGBoost 2.54 7.55
ResNet + XGBoost 2.31 7.12
ResNet + Dense Layers 2.20 6.77
XCeption + GRU Layers 2.17 6.35
ResNet + LSTM Layers 1.81 5.56
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B. Performance of DL Models

The DL models (VGGNet, Xception, and ResNet) trained
on depth images demonstrated improved performance com-
pared to traditional ML models. VGGNet achieved an MAE
of 3.51 kg and MAPE of 10.93%, while Xception and ResNet
achieved MAE:s of 3.43 kg and 3.05 kg, and MAPEs of 9.61%
and 8.96%, respectively. The superior performance of DL
models can be attributed to their capability to learn hierarchical
features from the depth images, capturing more complex
patterns and representations of the pigs’ visual characteristics.
However, these models do not integrate the temporal informa-
tion provided by the statistical descriptors, potentially limiting
their capacity to model the growth dynamics of the pigs over
time.

C. Performance of Hybrid Models

The hybrid models (VGGNet + Random Forest, ResNet
+ XGBoost, and Xception + XGBoost) leverage DL models
for processing depth images and ML models for handling
statistical descriptors, combining their outputs for final weight
forecasting. These models exhibited improved performance
compared to the individual DL and ML models, with the
ResNet + XGBoost model achieving an MAE of 2.31 kg and
MAPE of 7.12%. The hybrid models benefit from the comple-
mentary strengths of DL and ML, with DL models extracting
informative visual features from depth images and ML models
capturing temporal patterns in statistical descriptors. However,
processing depth images and statistical descriptors separately
in the hybrid models may limit their ability to fully exploit
interactions between visual and temporal information.

D. Performance of Multi-Input Models

The proposed multi-input DL models (ResNet + Dense
Layers, Xception + GRU Layers, and ResNet + LSTM Layers)
consistently outperformed all other models in this study. These
models integrate both depth images and statistical descriptors
within a unified deep learning architecture, enabling end-to-
end learning of complex interactions between visual and tem-
poral features. The ResNet + LSTM Layers model achieved
the best performance, with an MAE of 1.81 kg and MAPE of
5.56

The superior performance of multi-input models can be
attributed to several key factors. Firstly, the unified processing
approach allows for simultaneous analysis of depth images
and statistical descriptors. This end-to-end learning enables
the models to capture intricate relationships between visual
and temporal features that might be missed when processing
these modalities separately. By learning more expressive and
informative representations, the multi-input models can make
more accurate weight forecasts compared to hybrid models
that rely on separate processing of the two data types.

Secondly, the incorporation of recurrent layers (GRU and
LSTM) in the multi-input models enables effective modeling
of temporal dependencies in the statistical descriptors. These
sophisticated layers can capture sequential patterns and long-
term dependencies in time-series data, which is crucial for

Comparison of Hybrid and Multi-Input Models based on MAE

\‘\ g
\5;} & & 4© 4© o&e
o Qx XO e‘x ol\\x ‘(\‘(
% o < S
ef’\& o & &'7\; & &
< 4 E X‘%
X
@
&
K\
Models
Fig. 8. Comparison of Hybrid and Multi-Input models based on Mean

Absolute Error (MAE)

Comparison of Hybrid and Multi-Input Models based on MAPE

od
o

®
)

Mean Absolute Percentage Error (%)
[
5 & o u o5 &
‘R

2 5l &5
A & & 4© 40 0@’7
Y x XQ X x &
& S & &% Q-oo‘\ Qb"({\
& +§9 & ¥ @ XQ@
X
&
&
K\
Models
Fig. 9. Comparison of Hybrid and Multi-Input models based on Mean

Absolute Percentage Error (MAPE)

understanding the complex growth dynamics of pigs. By
integrating this temporal information with the visual features
extracted from depth images, the multi-input models offer
a more comprehensive representation of the pigs’ growth
processes.

Furthermore, the multi-input architecture allows for adaptive
feature importance. The models can learn to weigh the impor-
tance of visual features versus temporal features dynamically,
depending on their relevance to the weight forecasting task.
This flexibility enables the models to adapt to variations in pig
growth patterns and environmental factors that may influence
weight gain.

VI. CONCLUSION

In this study, we introduced and evaluated multi-input deep
learning models for accurate pig weight forecasting using both
depth images and statistical descriptors. Our goal was to over-
come the limitations of traditional weight forecasting methods
and harnes the potential of deep learning techniques to enhance
the accuracy and efficiency of pig weight forecasting.

We assembled a comprehensive dataset containing depth
images and corresponding statistical descriptors of pigs col-
lected over a three months period. Advanced preprocessing



techniques, including Segment Anything Model (SAM), were
applied to meticulously clean and crop the depth images,
thereby improving the quality and reliability of the input data.

Several models were developed and compared, including
traditional machine learning models (Random Forest, XG-
Boost, and SVM), deep learning models (VGGNet, Xception,
and ResNet), hybrid models combining DL and ML ap-
proaches (VGGNet + Random Forest, ResNet + XGBoost, and
Xception + XGBoost), and multi-input deep learning models
(ResNet + Dense Layers, Xception + GRU Layers, and ResNet
+ LSTM Layers). The multi-input models integrated both
depth images and statistical descriptors within a unified deep
learning framework, enabling end-to-end learning of complex
interactions between visual and temporal features.

Experimental results demonstrated the superiority of the
multi-input deep learning models over other approaches. The
ResNet + LSTM Layers model emerged as top performer,
with a Mean Absolute Error (MAE) of 1.81 kg and a Mean
Absolute Percentage Error (MAPE) of 5.56%. The exceptional
performance of these models stemmed from their ability to
capture intricate relationships between visual and temporal
features, leveraging both expressive and informative represen-
tations. Incorporating recurrent layers (GRU and LSTM) facili-
tated effective modeling of temporal dependencies in statistical
descriptors, further enhancing forecasting capabilities.

The findings hold significant implications for precision
livestock farming and the development of efficient weight
forecasting systems in the swine industry. Our proposed multi-
input deep learning models, combined with advanced prepro-
cessing techniques like SAM, present a promising avenue for
accurate and automated pig weight forecasting. By leveraging
complementary information from depth images and statistical
descriptors, these models can empower farmers and livestock
managers to make informed decisions regarding feed manage-
ment, health monitoring, and marketing strategies.
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