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ABSTRACT: The state dependence of cloud feedback—its variation with the mean state climate—has been found in
many paleoclimate and contemporary climate simulations. Previous results have shown inconsistencies in the sign, magni-
tude, and underlying mechanisms of state dependence. To address this, we utilize a perturbed parameter ensemble (PPE)
approach with fixed sea surface temperature (SST) in the Community Atmosphere Model, version 6. Our suites of PPEs
span a wide range of global mean surface temperatures (GMSTs), with spatially uniform SST perturbations of —4, 0, 4, 8,
12, and 16 K from the preindustrial. The results reveal a nonmonotonic variation with GMSTs: Cloud feedback increases
under both cooler and warmer-than-preindustrial conditions, with a rise of ~0.1 W m 2 K™ ! under a 4-K colder climate
and ~04 W m ™2 K™! under a 12-K warmer climate. This complexity arises from differing cloud feedback responses in
high and low latitudes. In high latitudes, cloud feedback consistently rises with warming, likely driven by a moist adiabatic
mechanism that influences cloud liquid water. The low-latitude feedback increases under both cooler and warmer condi-
tions, likely influenced by changes in the lower-tropospheric stability. This stability shift is tied to nonlinearity in thermo-
dynamic responses, particularly in the tropical latent heating, alongside potential state-dependent changes in tropical
circulations. Under warmer-than-preindustrial conditions, the increase in cloud feedback with warming is negatively corre-
lated with its preindustrial value. Our PPE approach takes the model parameter uncertainty into account and emphasizes
the critical role of state dependence in understanding past and predicting future climates.

SIGNIFICANCE STATEMENT: This study focuses on how cloud feedback—one of the most uncertain aspects of
climate change—varies as global temperatures rise. We found that the cloud feedback decreases at first with warming
and then increases, showing significant variation. This complexity stems from nonlinear thermodynamics, such as the
Clapeyron-Clausius relationship, which describes how temperature affects moisture in the atmosphere. Our results in-
dicate that the cloud feedback depends on the level of global warming, which is a significant factor rooted in fundamen-
tal physics. Recognizing this dependence is important for studies that aim to interpret past climates and predict future
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climate changes.
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1. Introduction

The cloud feedback describes the radiative effects of cloud
changes induced by surface warming (or cooling) that in turn can
either amplify or damp the initial surface temperature change.
Strength of the cloud feedback is quantified using the cloud feed-
back parameter Ayq, as a function of changes in the cloud-
induced top-of-atmosphere (TOA) radiation effects (ACRE)
and surface temperature (AT):

Ayq = ACRE/AT. (1)

The Aqq depends on the changes in cloud macrophysical (such
as coverage, height, and location) and microphysical (such as wa-
ter content, phase partition, and particle number concentration
and size) characteristics, as well as their interactions with thermo-
dynamical, radiative, and dynamical processes across a range of
spatial and temporal scales (e.g., Gettelman and Sherwood 2016).
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The cloud feedback is responsible for the spread of equilibrium
climate sensitivity (ECS) in multiple generations of climate mod-
els (Caldwell et al. 2016; Vial et al. 2013; Zelinka et al. 2020). An
improved understanding and modeling of the complicated physi-
cal processes that drive the cloud feedback is crucial for reducing
uncertainties in climate sensitivity and future climate projection
(Zelinka et al. 2017; Ceppi et al. 2017).

The cloud feedback varies in space and time and depends on
the background climate state and details of surface temperature
change. A useful way to investigate the variability is to approxi-
mately separate it into 1) the state dependence that is directly
linked to mean state climate [such as the global mean surface
temperature (GMST)] and 2) the pattern dependence that is
related to the geographic pattern of the surface temperature
change (Bloch-Johnson et al. 2021; Sherwood et al. 2020). The
pattern dependence, in particular the sea surface tempera-
ture (SST) pattern effect, has been intensively investigated
in the context of historical warming (Armour et al. 2013; Dong
et al. 2019; Andrews and Webb 2018; Zhou et al. 2016). The
west Pacific has warmed more than the east Pacific and the
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Southern Ocean during the historical period, where the Earth
system features more negative feedbacks than that from the
future projection with greater warming in the east Pacific and
high latitudes. As a result of the different SST patterns, obser-
vations of the historical forcing and temperature responses
can lead to the underestimation of ECS. A proper accounting
for the SST pattern effect in the historical constraint has
contributed to the increase in the low-end estimation of ECS in
the Intergovernmental Panel on Climate Change Assessment
Report (IPCC 2023; Armour et al. 2024).

Different from the pattern dependence, state dependence
of the cloud feedback relies only on the GMST and is more
naturally studied in a paleoclimate context, given the much
greater temperature variation in Earth’s past. For example,
GMST during the Cenozoic (the last 65 million years) varies
by more than 20°C, which is approximately 20 times the his-
torical warming since 1850 (Tierney et al. 2020; Hansen et al.
2013). State dependence of the cloud feedback has been sug-
gested to be an essential element for the simulation of past
hothouse climates (Caballero and Huber 2013; Zhu et al. 2019;
Schneider et al. 2019; Abbot and Tziperman 2008) and has been
found in high-CO, simulations based on the present-day climate
(e.g., Meraner et al. 2013; Zhu and Poulsen 2020).

State dependence of the cloud feedback can be mathemati-
cally viewed as a derivative of the cloud feedback with respect
to GMST, which indicates potentially greater uncertainty in
our quantification and understanding than that of the cloud
feedback itself. Previous modeling studies do not agree on the
rate of change, e.g., abrupt nonlinear increase (Caballero and
Huber 2013; Schneider et al. 2019) versus gradual linear in-
crease with temperature (Zhu et al. 2019). In addition, mecha-
nisms responsible for the state dependence remain elusive. In
principle, state dependence in any cloud-feedback-related pro-
cess may give rise to the state dependence of the cloud feedback.
The near-exponential increase of atmospheric water vapor with
temperature represents such a nonlinear mechanism. Water va-
por can potentially produce the state dependence of the cloud
feedback through changing 1) surface latent heat flux and mix-
ing in the atmospheric boundary layer (BL), 2) the specific hu-
midity gradient and entrainment between the free troposphere
and BL, and 3) free-tropospheric downwelling longwave radia-
tion and the impact on cloud-top cooling and BL stability
(Bretherton 2015). In addition to water vapor, the changes
in cloud-phase partitioning (the decrease of cloud ice content in
mixed-phase clouds with warming) can lead to an increase of
cloud feedback through weakening the negative cloud-phase
feedback (Tan et al. 2016; Zhu and Poulsen 2020). Other poten-
tial mechanisms may involve radiation and large-scale dynamics
(Caballero and Huber 2013; Henry and Vallis 2022) but, along
with the mechanisms mentioned above, are in general much
less studied. Moreover, quantification and mechanistic under-
standing of the state dependence have been confounded with
changes in forcing and the geographical pattern of temperatures
in previous studies owing to the substantial difference in model
complexity and experimental design. Due partly to the large
uncertainty in the state dependence of the cloud feedback,
Sherwood et al. (2020) excluded the past hothouse climates such
as the Paleocene-Eocene thermal maximum in the paleoclimate
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constraints on ECS but suggested that “Differentiating between
state dependence in the radiative forcing, and in the feedbacks,
could be an area of future progress.”

Here, we investigate the state dependence of the cloud
feedback using a perturbed parameter ensemble (PPE) with
the Community Atmosphere Model, version 6 (CAM6). We
focus on two questions: 1) How does the cloud feedback depend
on the wide range of GMSTs that Earth has gone through during
the Cenozoic? and 2) What can we learn about the mechanisms
of state dependence? We use preindustrial-based atmosphere/
land-only simulations with prescribed uniform warming/cooling
in SST, which helps us to focus on the state dependence without
complications from forcing and the pattern dependence. We
use the PPE approach, which has been proven to be a useful
approach to explore uncertainties in model physical parame-
terizations and gain deeper mechanistic understanding (e.g.,
Gettelman et al. 2024).

This study focuses on the state dependence of cloud feedback,
whereas analysis and parametric sensitivity on the present-day
cloud feedback can be found in previous studies with a similar
model and approach (Duffy et al. 2024; Eidhammer et al. 2024;
Gettelman et al. 2024). The PPE approach and the experimental
setup, along with the calculation of the cloud feedback, are
described in section 2. The results of the state dependence are
presented in section 3. Mechanistic understanding is presented
in section 4. We discuss and conclude in section 5.

2. Model, simulation, and method
a. Model

We employ the CAM6 coupled with the Community Land
Model, version 5, the model configuration that has been used
for the PPE application to present-day and future climate
(Duffy et al. 2024; Eidhammer et al. 2024; Gettelman et al.
2024). This version of CAMG6 shares the same physical pa-
rameterizations and major tunings as the released version
within the Community Earth System Model (CESM),
version 2 (Danabasoglu et al. 2020; Gettelman et al. 2019),
but has modifications in code and scripts to support PPE simula-
tions. CAMBS6 uses a unified moist turbulence scheme, the Cloud
Layers Unified By Binormals (CLUBB), for its atmospheric
boundary layer, shallow convection, and cloud macrophysics
schemes (Bogenschutz et al. 2013; Larson and Golaz 2005). The
microphysical scheme is the Morrison and Gettelman, version 2
(MG?2), which is a two-moment scheme that predicts the mass
and number concentration of cloud and precipitation particles
(Gettelman et al. 2015). CAM6 addresses the indirect aerosol ef-
fects and cloud-aerosol interactions through a coupling of MG2
with the four-mode modal aerosol model and the classical-
theory-based heterogeneous ice nucleation scheme in mixed-
phase clouds (Liu et al. 2016; Hoose et al. 2010; Wang et al.
2014). CAM6 uses the deep convection (ZM) by Zhang and
McFarlane (1995). CAMBS has the capability to use online satel-
lite simulators (COSP) to emulate satellite products to facilitate
direct comparison and assessment with observations (Bodas-
Salcedo et al. 2011).
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We implement published fixes in the cloud microphysics and
ice nucleation in CAMBS6 to address its high ECS and strong cloud
feedback (Zhu et al. 2022). The standard CESM2 with CAM6
produces a high ECS (e.g., 6.1°C from a doubling CO, experi-
ment with a ~2°resolution atmosphere coupled with a slab
ocean) and unrealistically cold simulation of the Last Glacial
Maximum (LGM) and excessively warm early Eocene (Zhu et al.
2021, 2020, 2022, 2024). The high ECS has been attributed to the
cloud parameterization and feedback (Gettelman et al. 2019;
Zhu et al. 2021). Zhu et al. (2022) developed fixes in the cloud
microphysics and ice nucleation, which led to much reduced
ECS (4.0°C) and a more realistic simulation of the LGM without
compromising the present-day climate. The fixes include the
removal of an inappropriate limiter on the cloud ice number
concentration and the increase of microphysical substepping
(shortening time step). The fixes represent a means to im-
prove the physical and numerical aspects of the model (Shaw
et al. 2022). Alternative fixes by Gettelman et al. (2023) with-
out directly changing substepping are planned to be used in
CESM3.

We run the land model, CLMS, in a simplified mode with
prescribed satellite phenology (SP), in which the vegetation
type, leaf area index, and canopy height are prescribed accord-
ing to satellite observations. The SP mode excludes vegetation
phenological feedback and helps us focus on the classical atmo-
spheric feedbacks.

b. Perturbed parameter ensemble

We set up the paleoclimate PPE (paleoPPE) simulations fol-
lowing the methodology of CAM6 PPE (cam6PPE) (Eidhammer
et al. 2024). We perturb 45 parameters in cloud microphysics
(MG2), convection (CLUBB and ZM), and aerosol schemes.
We use Latin hypercube sampling to create 250 sets of per-
turbed parameters that cover the entire range for each parame-
ter and are uniformly distributed in the parameter space. Table 1
lists the parameter name, default value in the model, range in
the PPE, and short description. For a detailed explanation of
these parameters and the justification of their range, readers are
referred to published work (Eidhammer et al. 2024).

The paleoPPE differs from cam6PPE in the following as-
pects. First, we implement the fixes in cloud microphysics and
ice nucleation to have overall more realistic cloud feedback
(assessed according to paleoclimate data; see section 2a). Sec-
ond, we use a lower horizontal resolution (~2° vs ~1°), which
reduces the computing and storage demand and allows longer
simulations (5 vs 3 yr). Third, as a result of the lower horizontal
resolution, the default parameter values in the unperturbed
model were tuned differently, including a smaller MG2_DCS,
dust emission factor, and CLUBB_gamma and a larger sea
salt emission scaling (Table 1). Fourth, paleoPPE uses C11b
and a wider parameter range in CLUBB_CS, which are found
to impact the cloud feedback in our exploratory simulations
(not shown). A wider range of CLUBB_CS has also been used
in the calibration of Energy Exascale Earth System Model
(E3SM), which shares many atmospheric parameterizations
with CESM2 (Ma et al. 2022). Fifth, paleoPPE uses the prein-
dustrial boundary condition, different from the present-day
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condition in cam6PPE (2000 AD). All parameter-related dif-
ferences from cam6PPE are highlighted in Table 1 with bold
and italic fonts. Note that parameters in paleoPPE are regen-
erated using Latin hypercube sampling and different from
those in cam6PPE.

Multiple suites of PPE simulations are performed with dif-
ferent SST and sea ice conditions, including the preindustrial
and those with uniform SST change of —4, +4, +8, +12, and
+16 K, as well as an additional set with a warming magnitude
of +4 K in global mean with spatial pattern derived from the
abrupt 4xCO, simulation between years 131 and 150 (Zhu
et al. 2022). The preindustrial SST and sea ice coverage are
from Hurrell et al. (2008). For the PPE suites with relatively
small SST change (—4 to +8 K), sea ice coverage is fixed at
the preindustrial values. To increase the realism and numeri-
cal stability of the simulations with a large magnitude of
warming (+8 to +16 K), we remove sea ice and prescribe the
same uniform SST change as the nonsea ice region (Table 2).
As a result, we have two suites of PPEs with 8-K warming
that differ in the sea ice—covered regions and can be used to
separate the impacts from the replacement of sea ice with a
regional warming of 8 K. In the analysis presented here, we
use the pair of simulations with the same sea ice conditions to
compute the cloud feedback due to a 4-K warming (e.g.,
P04K versus PO8K, and POSK_NOICE versus P12K_NOICE).
We note that the nonlocal impact of sea ice treatment on
clouds is relatively small (POSK vs POSK_NOICE; not shown).
For simplicity, land ice sheets are not changed, as they cover a
smaller area and have less impact on the overall model stability.
In sum, a total of eight suites of PPE simulations (8 X 250 =
2000 ensembles and a total of 10000 model years) are per-
formed (data of a ninth suite with only 4xCO, forcing is also
published but not discussed in this paper; Table 2). Simulations
with the default parameter values are also carried out as a ref-
erence (referred to as the default model hereafter). The final
4 years of the simulation are analyzed to minimize the impact
of potential drift during spinning up the atmosphere.

c¢. Calculation of the cloud feedback parameter

In this study, we define the cloud feedback A of a certain cli-
mate state as the cloud radiative contribution R¢y p scaled by
the global mean warming in a pair of simulations with 4-K
warming. Take the PO4K state as an example,

A R R

PO4K ( CLD_POSK ™ CLD_PO4K)/(TP08K_TPO4K)' (2)

We calculate R¢y p and therefore A using multiple methods
including the simple calculation with model output of cloud
radiative effects (CREs; Acrg), the approximated partial radi-
ative perturbation (APRP; Aaprp), and the radiative kernels
Akernels- Each method is known to have strengths and weak-
nesses. The Acgg is simple to compute but can be biased by
the masking effects from other radiative processes (Soden
et al. 2008). The Agermers can depend on the choices of the ker-
nels and relies on assumptions of small perturbations and linear-
ity, which may not hold in our simulations with large magnitude
of temperature changes. The Aapgrp is accurate (error < 10%)
and simpler than the sophisticated PRP method but only
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TABLE 1. List of parameters, description, default values, and the perturbed range (group by schemes, moist turbulence, microphysics,
aerosol, and deep convection, respectively). Bold and italic font means the parameter differs from Eidhammer et al. (2024). Notation: u, v, and
w denote east-west, north-south, and vertical velocity, respectively; 6, liquid water potential temperature; and r,, total water mixing ratio.

Parameter name Description (units when applicable) Default Min Max
clubb_cl Dissipation of variance of w 1.0 0.4 3
clubb_c2rt Dissipation of variance of r, 1.0 0.2 2
clubb_cbért Newtonian damping of r, flux at low skewness 4.0 2.0 6
clubb_c6rtb Newtonian damping of r, flux at high skewness 6.0 2.0 8
clubb_c6thl Newtonian damping of 6, flux at low skewness 4.0 2.0 6
clubb_c6thlb Newtonian damping of 6, flux at high skewness 6.0 2.0 8
clubb_c8 Newtonian damping of skewness of w 42 1.0 7
clubb_c11b Buoyancy damping of skewness of w 0.7 0.2 0.8
clubb_cl4 Newtonian damping of variance of u and v 22 0.4 3
clubb_beta Coefficient controlling skewness of 6; and r, 2.4 1.6 2.5
clubb_gamma_coef Constant of the width of PDF in w coordinate 0.275 0.25 0.35
clubb_c_k10 Momentum diffusion factor 0.5 0.2 0.6
clubb_wpxp_l_thresh Length scale threshold below which extra damping is 60 20 200

applied to C6 and C7 (m)
micro_mg_accre_enhan_fact  Accretion enhancement factor 1.0 0.1 10.0
micro_mg_autocon_fact Autoconversion factor 0.01 0.005 0.2
micro_mg_autocon_Ilwp_exp  Liquid water exponent coefficient for autoconversion 2.47 2.10 3.30
micro_mg_autocon_nd_exp  Droplet number exponent coefficient for autoconversion -1.1 —0.8 -2
micro_mg_berg_eff factor Bergeron efficiency factor 1.0 0.1 1.0
micro_mg_dcs Size threshold for ice-snow autoconversion (m) 2x 107 5% 1073 1x1073
micro_mg_effi_factor Scaling factor for effective radius for optics calculation 1.0 0.1 2.0
micro_mg_homog_size Homogeneous freezing ice particle size (m) 25x 1077 1x107° 2x107*
micro_mg_iaccr_factor Scaling factor for ice-snow accretion 1.0 0.2 1.0
micro_mg_max_nicons Maximum allowed ice number concentration (kg™ ') 1 x 108 1% 10° 1 x 10'°
micro_mg_vtrmi_factor Scaling factor for cloud ice fall speed 1.0 0.2 5.0
microp_aero_npccn_scale Scaling factor for activated liquid number 1 0.33 3
microp_aero_wsub_min Minimum subgrid velocity for liquid activation (m s~ ') 0.2 0 0.5
microp_aero_wsub_scale Scaling factor for subgrid velocity for liquid activation 1 0.1 5
microp_aero_wsubi_min Minimum subgrid velocity for ice activation (m s ') 0.001 0 0.2
microp_aero_wsubi_scale Scaling factor for subgrid velocity for ice activation 1 0.1 5
dust_emis_fact Tuning parameter for dust emission 0.55 0.1 1.0
seasalt_emis_scale Tuning parameter for sea-salt emission 1.1 0.5 2.5
sol_factb_interstitial Tuning parameter for below-cloud aerosol scavenging 0.1 0.1 1
sol_factic_interstitial Tuning parameter for in-cloud aerosol scavenging 0.4 0.1 1
cldfrc_dpl Deep convection cloud fraction parameter 0.1 0.05 0.25
cldfrc_dp2 Deep convection cloud fraction parameter 500 100 1000
zmconv_c0_Ind Convective precipitation efficiency over land (m 1) 0.0075 0.002 0.1
zmconv_c(0_ocn Convective precipitation efficiency over ocean (m ') 0.03 0.02 0.1
zmconv_capelmt Triggering threshold for deep convection (J kg™!) 70 35 350
zmconv_dmpdz Convective parcel fractional mass entrainment rate (m ') -1 X 107> -2x 1072 -2x107*
zmconv_ke Convective evaporation efficiency (kg”> m~' s~ '~ 5x10°¢ 1x10°° 1x107°
zmconv_ke_Ind Convective evaporation efficiency land (kg®> m™" s71) 1x10°° 1x10°° 1x10°°
zmconv_momcd Convective momentum transport parameter (downward) 0.7 0 1
mconv_momcu Convective momentum transport parameter (upward) 0.7 0 1
zmconv_num_cin Allowed number of negative buoyancy crossings 1 1 5
zmconv_tiedke_add Initial convective parcel temperature perturbation (K) 0.5 0 2

quantifies the shortwave component (Taylor et al. 2007). The
Aaprp could be superior to Agemers for shortwave due to the sen-
sitivity of Agemers to choices of kernels.

Our analysis focuses on the state dependence (A between
two climate states) and is found to be insensitive to choices of
the method (Fig. 1). For example, shortwave Acgrg correlates
strongly with Aaprp (r = 1.00) but is on average biased by
—0.15 W m2 K~! under the preindustrial background state
(Fig. 1a), while AAcrg between the preindustrial and a 4-K
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warmer or colder state is the same as AApprp Within the un-
certainty (Figs. le,i). Similarly, longwave Acrg correlates
strongly with Agermers (r = 0.95) but is systematically lower by
0.64Wm 2K™! (Fig. 1c), while AAcgg is the same as Agerners
within uncertainty (Figs. 1g,k). A small difference exists be-
tween shortwave AAcgrg and Adgeers (Figs. 1£j), which could
be due to the partial neglect of state dependence of the ker-
nels method. In the remainder of the paper, we use AAcgrg to
study the state dependence with AAsprp used for the cross
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TABLE 2. A list of PPE simulations performed in this study.
Information includes the experiment name, global mean SST
change (ASST) based on PREI, whether the SST change has a
spatial pattern, sea ice conditions, as well as the mean and
standard deviation of the GMST in each ensemble. Each
ensemble has 250 PPE simulations and one simulation with the
default parameter setting. Each simulation is run for five model
years.

Experiment Mean  Uniform GMST and
name ASST (K) ASST Sea ice AGMST (°C)
PREI 0 Yes  Preindustrial 14.6
MO04K —4 Yes  Preindustrial —4.1
PO4K +4 Yes  Preindustrial +4.2
POSK +8 Yes  Preindustrial +8.5
POSK_NOICE +8 Yes Removed +9.7
P12K_NOICE +12 Yes Removed +14.2
P16K_NOICE +16 Yes Removed +18.8
PO4K_PAT +4 No Preindustrial +4.1
PREI_4xCO, 0 — Preindustrial +0.5

examination of the shortwave component. We use Aygerpes t0
compare the preindustrial values against the other models
from phases 5 and 6 of the Coupled Model Intercomparison
Project (CMIP), as well as the expert assessment (Sherwood
et al. 2020; Zelinka et al. 2022).

d. Assessment of cloud fields and feedback

To ensure the overall realistic results on the state depen-
dence, we focus the analysis on more plausible PPE members
based on their simulation of the preindustrial cloud fields and
feedback in observations and expert assessments. PPE mem-
bers could be implausible because preindustrial (PREI) simu-
lations have not been retuned. Furthermore, although PPE
uses parameter ranges according to expert judgment regard-
ing their physical limits, the combinations of different param-
eters are not necessarily realistic. State dependence from
these implausible members could be much less relevant to the
real world. We use gridded satellite observations to assess the
representation of clouds in PREI, including the cloud fraction
from the International Satellite Cloud Climatology Project
(ISCCP; 60°S-60°N) H-Series (Rossow et al. 2022) and the
cloud radiative effects from the Clouds and the Earth’s Radi-
ant Energy System (CERES) Energy Balanced and Filled
(EBAF), edition 4.2 (Loeb et al. 2018). Data temporal coverages
are from January 1999 to December 2016 and from March 2000
to February 2024, respectively. Additionally, we use the expert
assessments of the total cloud feedback to evaluate the cloud
feedback in PREI (Sherwood et al. 2020; Zelinka et al. 2022).
We note that using modern observations to evaluate the prein-
dustrial simulations is not ideal, but this should have limited im-
pact on our results, as the differences between PPE simulations
(e.g., shown in Fig. 2) are in general much larger than the poten-
tial preindustrial-modern differences.

The cloud feedback derived from Atmospheric Model In-
tercomparison Project (AMIP) and amip-p4K simulations
from available CMIP5 and CMIP6 models are used as a refer-
ence to compare with our PPE results from a single model
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(Zelinka et al. 2022). This comparison can also contextualize
the parametric uncertainty in CAM6 within the structural un-
certainty described by other CMIP models.

3. State dependence of the cloud feedback in paleoPPE

a. Assessment of the preindustrial cloud and
cloud feedback

PaleoPPE generates a wide range of cloud and cloud feed-
back under the preindustrial condition (Fig. 2). Compared to
satellite observations, RMSEs in the shortwave and longwave
CRE:s and cloud fraction range from 8.3 to 44.9 W m ™2, from
3.4t026.6 W m 2, and from 9.1% to 32.1%, respectively. Val-
ues in the default model ranked in the top five (8.7 W m™2,
6.0 W m™~2, and 15.2%, respectively), highlighting the overall
success of the expert tuning of the model during the develop-
ment process. The cloud feedback Ayerners ranges from 0.0 to
1.5 W m * K™ with the default value of 0.36 W m™> K.
The cloud feedback has a negligible correlation with the
RMSEs in CREs (0.12 and 0.24; Figs. 2a,b) and weak negative
correlation with RMSE in the cloud fraction (—0.39). These
results suggest that efforts that aim to reduce error in the present-
day clouds may not necessarily lead to reduced uncertainty in the
cloud feedback. Many PPE members have RMSEs of cloud
fields and the cloud feedback outside the range from the
CMIPS5 and CMIP6 models and WCRP assessments (Zelinka
et al. 2020, 2022; Bock and Lauer 2024), illustrating that not
all parameter combinations have good skill at simulating
present-day clouds and the cloud feedback.

To remove the less plausible PPE members that may con-
taminate our results, we rank the PPE members using a com-
bined metric that averages the standardized RMSE:s of global
mean cloud CREs and fraction and mean bias of the cloud
feedback from the expert assessment. Based on this ranking,
the top 50 members have RMSEs in cloud shortwave CREs
of 8.3-203 W m ™2, longwave CREs of 3.7-8.5 W m 2, and
fraction of 9.2%-20.8%, respectively (Fig. 2; markers with
darker color and white edge), which is comparable to values
from the CMIP5 and CMIP6 models and other multiple
model assessments (Bock and Lauer 2024; Medeiros et al.
2023). The persistent large bias across the PPE and CMIP
models indicates a structural deficiency in the current genera-
tion of models. The total cloud feedback in the top 50 mem-
bers ranges from 0.2 to 1.0 W m~? K™! with an ensemble
mean of 0.6 W m 2 K™! (calculated using PREI and P04K),
which is also comparable to the range in the CMIP models
and agrees better with the WCRP assessment (Fig. 3). We
note that our choices of the metric to rank the PPE members
aim to remove the implausible members and retain sufficient
members for exploring the parameter uncertainty and provid-
ing good statistics. In addition, the top 50 members broadly
exhibit a similar degree of biases in the cloud fields and range
of the cloud feedback as the other CMIP5 and CMIP6 mod-
els. Our following analysis emphasizes the top 50 members,
and any statistics are calculated from these members. The
results on the state dependence of the cloud feedback do not
depend much on details of the choice of the metrics (e.g.,
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FIG. 1. Comparison of the cloud feedback calculated using the CRE (Acrg; x axis), the APRP (Aaprp; ¥ axis of first row; shortwave
only), and the radiative kernels method (Axemels; ¥ axis of second row—fourth row for shortwave, longwave, and net, respectively). (left)
The cloud feedback for the PREI climate. (middle) (right) The state dependence of cloud feedback at the 4-K colder and warmer climate
states (M04K and P04K), respectively. Circle markers indicate the 250 PPE members, and the star denotes the simulation with the default
parameters. Numbers in the subplot title are the ensemble mean difference and the standard deviation (in parentheses) between two cal-
culations (Wm 2K 1).
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FIG. 2. Assessment of the simulation of cloud and cloud feedback under the PREI condition. Shown is the cloud feedback calculated us-
ing the kernels method (Axemeis With PREI and PO4K; y axis) against the RMSEs (x axis) in (a) the SWCRE, (b) LWCRE, and (c) cloud
fraction. RMSEs in CREs and fraction are calculated by comparing them in PREI against the satellite observations. The dashed horizontal
line indicates the central estimation of the cloud feedback from the WCRP expert assessment with the gray patch indicating the 90% inter-
val (Sherwood et al. 2020; Zelinka et al. 2022). The PPE members are ranked according to the mean of standardized RMSEs and depar-
ture from the WCRP central estimation of the cloud feedback, as reflected by the face color of the markers in the plot. Circle markers in-
dicate the 250 PPE members, and the star denotes the simulation with the default parameters. The correlation coefficient between the

cloud feedback and RMSE:s in the PPEs is also listed.

mean bias versus RMSE), as long as the analysis is focused
on top-performed members.

For different cloud feedback components, paleoPPE in
general matches the spread in CMIP and WCRP assessment
well, especially the top 50 members (Fig. 3). The land cloud
amount and midlatitude marine low-cloud amount feedbacks
overlap with the WCRP assessment quite well. The high-cloud
altitude feedback is stronger than that of the WCRP assessment
(mean values of 0.4 W m™2 K™! in the top 50 members vs
0.2 W m~2 K~ ! in the WCRP assessment), which likely reflects

Total Cloud Feedback -

Implied Unassessed Feedbacks -

oo

@
w0 & g
X S L

High-lat. Low-Cloud Optical Depth -

WCRP Assessment

Mid-lat. Marine Low-Cloud Amount -

Land Cloud Amount

Tropical Anvil Cloud Area -

Tropical Marine Low-Cloud -

« cmip5&6 |
% default model

High-Cloud Altitude -

-0.5 0.0 0.5 1.0 1.5
Preindustrial Ajepmers (W m=2 K1)

FIG. 3. Assessment of the simulation of cloud feedback compo-
nents under the PREI condition. The cloud feedback and decom-
position from the WCRP expert assessment are shown as the black
horizontal lines with error bars indicating the one standard devia-
tion and 90% confidence intervals (Sherwood et al. 2020; Zelinka
et al. 2022). Circles are the cloud feedback from the 250 PPE mem-
bers with the face color indicating their performance ranking by
their agreement with the satellite observations of CREs and fraction,
as well as the WCRP central estimation of the total cloud feedback.
The star denotes the simulation with the default parameters. Blue
circles are the results from the CMIP5 and CMIP6 models.
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a deficiency in the simulation of tropical deep convection and/
or ice clouds (Duffy et al. 2024). In addition, the tropical anvil
cloud area feedback is higher than the WCRP assessment
(mean values of —0.1 W m~2 K™ ! in the top 50 members versus
—02Wm 2K !'in WCRP assessment), which seems to agree
with recent studies indicating a potential low bias in the WCRP
assessment (McKim et al. 2024; Sokol et al. 2024). The tropical
marine low-cloud feedback is at the lower end of the WCRP as-
sessment (mean of 0.1 vs 0.25 W m~2 K1), The high-latitude
optical depth feedback is somewhat lower than the WCRP as-
sessment (mean of —0.1 vs 0.0 W m ™2 K™ !). The top 50 mem-
bers are overall comparable to that of CMIP5 and CMIP6
models, suggesting that PPE is an effective way to study the
cloud feedback by accounting for uncertainties in model physics
within a single climate model.

b. State dependence of the cloud feedback in paleoPPE

The global mean cloud feedback varies nonmonotonically
with the background temperature with higher ensemble means
under both colder and warmer than preindustrial conditions
(Fig. 4a; top 50 members are shown). Under colder conditions
(MO4K), 44 of the top 50 members exhibit stronger cloud feed-
back than the corresponding members in PREIL. On average,
the cloud feedback in MO4K is larger by 012 + 012 W m 2K ™!
(AAcrg). Under warmer states, the cloud feedback increases by
0.10 W m~2 K~ in PO4K and then further rises by 0.22 and
0.07 W m™2 K™! in POSK and P12K, respectively. Compared
with PREI, 46 of the top 50 members exhibit stronger
cloud feedback in P12K, with an average increase of 0.38 +
0.32 W m~2 K~!. This nonmonotonic state dependence is
also clear in individual members (thin gray lines in Fig. 4a).

The nonmonotonic state dependence in the cloud feedback
results from distinct behaviors over different cloud regimes.
Based on the zonal mean in Fig. 4b, 40°N/S seems to be a
good threshold across the cold and very warm climates to
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FIG. 4. (a) Global mean cloud feedback for the background states with uniform ASST of —4 K (M04K in blue), 0 K
(PREI in black), 4 K (P04K in yellow), 8 K (PO8K in orange), and 12 K (P12K in red) added to PREI. The cloud feed-
back parameter for a certain background state is calculated using the CRE method Acrg with the background state
and the corresponding state with a uniform SST warming of 4 K. The same PPE members are connected using thin
gray lines. (b) Zonal mean cloud feedback for various background states. The results are from the top 50 ensemble
members (Wm 2K ™).

generally separate the high and low latitudes that feature dif- the preindustrial, while warm climate (P12K; red in Fig. 4b) is
ferent behaviors. Over high latitudes (40°N/S poleward), all  also higher by 0.21 = 026 W m ™2 K™ ! (see also Fig. 9a). All
the members show a strengthening of the cloud feedback with  top 50 members show an increase in the low-latitude cloud
warming that saturates at a GMST of ~24°C (see also Fig. 6a).  feedback from PREI to M04K, whereas 40 of the 50 members
The ensemble mean increases by 0.39 = 0.16 Wm > K™! from  show increases from PREI to P12K.

MO4K to PO8SK and stays largely unchanged in P12K (this value The overall coherence among individual members is quantita-
has been scaled by fraction area coverage such that it measures tively supported by the strong correlation with correlation coeffi-
the net contribution to the global mean). Over low latitudes  cients of 0.86 and 0.74 between the preindustrial cloud feedback
(40°S—40°N), cold climate (MO04K; blue in Fig. 4b) has mean and that in MO4K and PO4K, respectively (Figs. 5a,b). The cloud
cloud feedback that is higher by 027 = 012 W m 2 K ! than  feedback in P12K, however, exhibits minimal correlation
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FIG. 5. Comparison of the global mean cloud feedback in PREI (x axis) and that in (a) M04K, (b) P04K, (c) POSK, and (d) P12K (y axis),
as well as the state dependence defined as the cloud feedback change in (e) M04K, (f) PO4K, (g) POSK, and (h) P12K from that in PREI
(y axis). The correlation coefficient and mean difference are listed in each figure. The results are from the top 50 ensemble members.
The star denotes the simulation with the default parameters (W m 2 K1),
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FIG. 6. (a) High-latitude net cloud feedback for the background states with a uniform ASST of —4 K (M04K in blue), 0 K (PREI in
black), 4 K (P04K in yellow), 8 K (PO8K in orange), and 12 K (P12K in red) added to the PREIL Values are weighted by the area coverage
and measure their direct contribution to the global mean in Fig. 4a. (b),(c) As in (a), but for the shortwave and longwave components, re-
spectively. (a)—(c) The CRE method Acgrg. (d) As in (b), but with the APRP method Aspgrp. (€),(f) As in (d), but for the cloud scattering

and amount components, respectively. The results are from the top 50 ensemble members (W m™ 2 K™ 1).

with the preindustrial value (0.05; Fig. 5d), potentially indi-
cating larger uncertainty in modeling the cloud processes un-
der extreme conditions. In general, the state dependence of
the cloud feedback is smaller than the range of the cloud feed-
back across PPEs.

A clear negative relationship (r = —0.6) between preindus-
trial cloud feedback and its state dependence is identified in
the PPEs—i.e., members with stronger preindustrial cloud
feedback are associated with smaller increases with warming
(Figs. Se-h). This relationship holds for both high and low lat-
itudes but is more pronounced at high latitudes, with correla-
tion coefficients of —0.9 and —0.5, respectively (figures not
shown). As discussed in section 4, this correlation arises
likely from processes related to thermodynamic and lower-
tropospheric stability. The negative relationship suggests that
reducing biases in preindustrial cloud feedback could help con-
strain uncertainties in its state dependence. Additionally, it may
mitigate some risks associated with positive feedback tempera-
ture dependence (Bloch-Johnson et al. 2021).

4. Further decomposition and mechanisms for the
state dependence

We next investigate mechanisms for the state dependence
through the decomposition of the cloud feedback into differ-
ent components, correlation with large-scale and cloud state
variables using the cloud-controlling factor (CCF) framework,
and through examining the sensitivity to model parameters.
In the CCF framework, Acgrg can be written as
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_9CRE _ 9CREJCCF

CRE = 37 ~ 9CCF oT 3)

Note that the CCF framework emphasizes the large-scale
environmental changes and the associated impact on CCFs
(0CCF/oT) and assumes that clouds responding to the local
values of the cloud-controlling factors (}CRE/CCF) remain
largely unchanged (Klein et al. 2017).

a. High latitudes

In the PPE simulations, the high-latitude (poleward of
40°N/S) cloud feedback and its state dependence are primarily
produced by the shortwave component through processes
that impact the cloud optical depth. Figures 6a—c show Acrg
decomposed into shortwave and longwave components. The
longwave component is several times smaller in magnitude
and plays a secondary role to oppose the shortwave. The en-
semble mean of the shortwave increases by 0.50 W m ™2 K™
from M04K to POSK, with a smaller cancelation of —0.16 in
the longwave (scaled values showing the net contribution to
the global mean). Interestingly, the increase of cloud feed-
back with warming saturates in POSK and does not further in-
crease in M12K. The APRP calculation (Aaprp) reproduces
the shortwave Acrg from the CRE method and further de-
composes it into contributions from changes in cloud amount
and scattering (absorption contribution is small and not
shown; Figs. 6d-f). The APRP decomposition suggests that
the shortwave cloud feedback and its state dependence are
determined by the cloud scattering components (the cloud
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optical depth feedback). The contribution from the cloud
amount change is approximately 0.14 W m ™2 K~! and largely
invariant with climate change.

Several physical mechanisms could explain the increase and
eventual saturation of the cloud optical-depth feedback with
warming (Fig. 6¢). The cloud optical depth can increase be-
cause of the increase of the water path or the decrease in the
particle size (Stephens 1978). Accordingly, a warming-induced
melt of cloud ice into liquid water increases the cloud optical
depth due to the smaller particle size of liquid droplets than ice
particles, which forms the cloud-phase feedback to dampen the
initial surface warming (Mitchell et al. 1989; Tan et al. 2016).
Moreover, the reduction of cloud ice can increase cloud water
due to the higher precipitation efficiency (bigger sizes) of ice
clouds, forming the cloud-lifetime feedback (Miilmenstadt et al.
2021; Frazer and Ming 2022). Both the cloud-phase and lifetime
feedbacks are negative and depend on the cloud ice content in
the background climate, which follows simple thermodynamics
and can give rise to a weakening and eventual saturation of the
feedback as ice in mixed-phase clouds melts and disappears
with warming. Nevertheless, the details of the responses of
mixed-phase clouds are subject to both parametric and struc-
tural uncertainties (Gettelman et al. 2023; Zhao et al. 2023).
In addition to the thermodynamic cloud ice mechanism, surface
warming can increase the cloud liquid water through a moist
adiabatic process, in which cloud condensation along moist
adiabats increases with temperature due to the exponential Cla-
peyron—Clausius relationship (Betts and Harshvardhan 1987).
Importantly, a thermodynamic decrease in the moist adiabatic
lapse rate with warming means that the warming-induced in-
crease in the cloud water is relatively stronger at lower tempera-
tures, which leads to a state dependence and a potential
saturation (Betts and Harshvardhan 1987).

Analysis of the PPEs indicates that the moist adiabatic
mechanism, rather than the cloud ice mechanism, is responsi-
ble for the high-latitude cloud optical-depth feedback and its
state dependence. To demonstrate this, we use the CCF frame-
work to examine the role of cloud liquid water path (LWP) and
ice water path (IWP). We focus on the shortwave Acrg in
PREI and the increases from M04K to POSK to maximize the
signal in state dependence (Fig. 6b). In response to warming,
both magnitudes of ILWP/T and IIWP/T decrease and reach
a saturation under high temperatures (Figs. 7a,b), which are
quantitatively consistent with both thermodynamical moist adi-
abatic and cloud ice mechanisms. However, Acrg in PREI
correlates much stronger with JLWP/OT (r = —0.8) than
with JIWPHOT (r = —0.3) among the top 50 PPE members
(Figs. 7c,d). Similarly, AAcrg (calculated as the difference
between POSK and M04K) correlates much stronger with
AQ@LWP/OT) than with A@QIWP/OT), with correlation coeffi-
cients of —0.8 and 0.0, respectively (Figs. 7e.f). The correla-
tion analysis suggests a predominant role of the moist adiabatic
mechanisms in determining the high-latitude cloud optical
depth feedback and its state dependence. Additionally, no
correlation is found between the background IWP and the
warming-induced ALWP in PREI, indicating that the increase
in LWP is not due to the melt of cloud ice. The correlation does
not depend on whether we rank the PPEs or not (not shown),
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consistent with the simple and robust thermodynamic mecha-
nism that are insensitive to model parameters.

Our mechanistic explanation is supported by the parameter
sensitivity in the PPE simulations. Figure 8 shows the linear
regression coefficients of the shortwave cloud feedback and
its state dependence against model parameters. Model param-
eters are normalized (scaled to be between 0 and 1 by the
minimum and maximum parameter values), and cloud feed-
backs are standardized (scaled to have a mean of 0 and a stan-
dard deviation of 1) before the regression analysis. In general,
the high-latitude Acgg is mostly sensitive to the microphysical
parameters related to liquid water (left column of Fig. 8), e.g.,
the liquid water content exponential coefficient (micro_mg_
autocon_lwp_exp) in the autoconversion formula and the ac-
cretion enhancement factor (micro_mg_accre_enhanc_factor).
Similarly, the increase of Acgg With warming (AApgsk—mo4k) IS
also mostly influenced by the two microphysical parameters. A
higher micro_mg_autocon_lwp_exp decreases the cloud liquid-
to-rain autoconversion rate (note that the in-cloud liquid water
content is smaller than 1 Kg Kg~') and increases the LWP in
the model. As a result, this configuration will allow more in-
crease of the LWP with warming, leading to more negative
cloud feedback. The state dependence (AAcrg) becomes greater
due to the greater potential to reach cloud feedback saturation.
We note that these cloud microphysical parameters control the
sink of cloud water and could increase as a nonlinear function of
the cloud liquid water content. For example, in the commonly
used scheme (Khairoutdinov and Kogan 2000), both the auto-
conversion and accretion rates increase exponentially with cloud
water content. Therefore, the saturation of Acrg with warm-
ing potentially represents a combination of the thermodynamic
weakening of LWP increase and a microphysical increase of
sinks of cloud water.

In sum, model configurations that allow more LWP in the
background climate show more LWP increase due to warming
(see also Gettelman et al. 2024), thus more negative cloud
feedback (the so-called liquid water lapse-rate feedback). Due
to nonlinearities rooted in relatively simple thermodynamics
(and potentially microphysics), the cloud feedback could satu-
rate with warming, which means that a model configuration
with more negative cloud feedback in the present climate will
feature more increases with warming in the future. Other
mechanisms, such as the changes in cloud phase, particle size,
entrainment drying, and moisture convergence from lower
latitudes, could be secondary (McCoy et al. 2023, 2022). Nota-
bly, we found no correlation between moisture convergence
and the high-latitude cloud feedback across PPE members (not
shown). We suggest that the potential state dependence from
the autoconversion and accretion formula should be further
studied. Our findings also indicate that targeted improvements
or emergent constraints on present-day LWP could help refine
and better constrain high-latitude cloud feedback and its state
dependence.

b. Low latitudes

The state dependence of the low-latitude cloud feedback is
nonmonotonic and more complicated than that in high latitudes.
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FIG. 7. Rate of cloud (a) LWP and (b) IWP changes with warming (g kg~ ! K™!) over the high latitude for the back-
ground states with uniform ASST of —4 K (M04K in blue), 0 K (PREI in black), 4 K (P04K in yellow), 8 K (POSK in
orange), and 12 K (P12K in red) added to PREL Scatterplot of the shortwave cloud feedback (Acgg; W m 2 K1)
against the rate of cloud (¢) LWP and (d) IWP changes with warming under the PREI condition. The scatterplot of
the changes in the shortwave cloud feedback between POSK and M04K (AAcrg) against the corresponding variation
in the rate of cloud (e) LWP and (f) IWP changes with warming. Correlation coefficients are listed in (c)—(f). The re-

sults are from the top 50 ensemble members.

The ensemble mean Acgg decreases by 027 W m™2 K™! from
MO04K to PREI and then increases gradually by 021 W m™ 2 K™
in P12K (Fig. 9a; scaled values showing the net contribution to
the global mean). The Acgrg over the ocean plays a dominant
role while the feedback over land has a smaller positive con-
tribution that weakens gradually with warming (Figs. 9b,c).
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We focus on the marine low-latitude feedback and further de-
compose it into that from the subsidence and ascent regimes us-
ing 500-hPa vertical pressure velocity as a criterion (w500; Bony
et al. 2004). Over both the ascent and subsidence regions, the
shortwave Acgg first decreases from M04K to PO4K and then in-
creases slightly afterward with an overall larger contribution from
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FIG. 8. Slopes of the linear regression of the shortwave cloud feedback and state dependence (x axis) against model parameters (y axis)
over the (left) high-latitude, (middle) low-latitude subsidence, and (right) ascent regions. Regression is performed for the PREI cloud
feedback (Aprgr) and the changes between POSK and MO4K (AAppsk—mosx) over the high latitude, and between PREI and M04K
(AAprEI-Mmoax) and between P12K and PO4K (AApox—poax) over the low latitude. Model parameters are normalized, and cloud feedbacks
are standardized before the regression analysis. Model parameters are grouped into turbulence and shallow convection, microphysics,
aerosol, and deep convection. For more robust statistics, all ensemble members are used in the analysis.

2K 2K
K- PO K- PO

Turbulence

Microphysics
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Deep Convection

the subsidence region. APRP analysis suggests that both the canceling the decreases in the shortwave. We note that these
cloud amount and scattering components contribute to the total  cloud feedback changes are not attributable to the relatively small
shortwave feedback (not shown). The longwave Acgg over both  area changes (<3%) in the ascent and subsidence regions; they
regions increases with warming from MO4K to PO4K, partly are consistent across low latitudes (see also Fig. 4b).
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FIG. 9. (a) Low-latitude total cloud feedback (W m~> K ') for the background states with uniform ASST of —4 K (M04K in blue), 0 K
(PREI in black), 4 K (P04K in yellow), 8 K (PO8K in orange), and 12 K (P12K in red) added to PREI (b),(c) As in (a), but for the decom-
position into values over ocean and land, respectively. (d) The net cloud feedback over the low-latitude subsidence region according to
the vertical velocity at 500 hPa and its (e) shortwave and (f) longwave components. (g)—(i) As in (d)—(f), but for the cloud feedback over
the low-latitude ascent region. The CRE method (Acgrg) is used in the calculation. The Acgg values are weighted by the area coverage

and measure their direct contribution to the global mean in Fig. 4a. The results are from the top 50 ensemble members.

We use the CCF framework to examine the potential con-
tribution of multiple processes on the cloud feedback and its
state dependence over both the ascent and subsidence regions
(Qu et al. 2015b; Klein et al. 2017; Scott et al. 2020). For low
latitudes, we investigate CCFs including the estimated inver-
sion strength (EIS) as an indicator for the lower-tropospheric
stability (Wood and Bretherton 2006), »500 for the large-
scale circulation (Myers and Norris 2013), the specific humid-
ity difference between 700 hPa and surface dQ as an indicator
for the inversion specific humidity gradient (Brient and Bony
2013), and the surface latent heat flux (LHF) for vertical mix-
ing by boundary layer turbulence or convection (Rieck et al.
2012). Our choice of CCFs differs from previous studies
mainly in that we do not use SST or SST advection because it
is prescribed and invariant among our ensemble members.
Briefly, a larger dEIS/AT [see Eq. (3)] strengthens more the
lower-tropospheric stability and promotes more increase in low
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clouds with warming. A larger dw500/dT means less weakening
of large-scale subsidence and produces less increase in low
clouds. A larger dLHF/dT means more energy to increase verti-
cal mixing by turbulence or convection, which desiccates more
low clouds. A larger dQ/dT leads to more entrainment drying
on low clouds. We refer readers to published work (Klein et al.
2017; Bretherton 2015; Scott et al. 2020; Webb et al. 2024) for
further discussion on relevant physical processes.

Consistent with previous work (Qu et al. 2015b; Klein et al.
2017; Scott et al. 2020), the preindustrial Acgrg in our PPEs
can be well explained using these CCFs. Over the subsidence re-
gions, EIS, 0500, and LHF are found to be the most influential
CCEFs, while EIS and LHF are dominant over the ascent regions.
Together, a multiple linear regression model has a good skill re-
producing the preindustrial Acgrg in both the subsidence and
ascent regions and can explain more than 70% of the total var-
iance with a mean absolute error less than 0.1 W m™> K™
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FIG. 10. (a) Rate of changes in the mean EIS with warming (K K1) over the low-latitude subsidence region for the background states
with a uniform ASST of —4 K (M04K in blue), 0 K (PREI in black), 4 K (P04K in yellow), 8 K (PO8K in orange), and 12 K (P12K in red)
added to PREL (b)—(d) As in (a), but for the vertical velocity at 500 hPa »500 (hPa day ! K1), the specific humidity contrast between

surface and 700 hPa dQ (gkg ' K™'), and the LHF (Wm 2 K1),

respectively. (e)-(h) As in (a)-(d), but for these CCFs over the low-

latitude ascent region. The results are from the top 50 ensemble members.

(not shown; similar results from Ridge and Lasso regression
models).

State dependence of EIS resembles most closely the state
dependence of low-latitude cloud feedback. Figure 10 shows
the variations in the mean CCFs with GMST over the subsi-
dence and ascent regions, which are plotted such that upward
means CCFs contribute to stronger cloud feedbacks. In re-
sponse to a uniform 4-K warming in PREI, EIS increases at a
rate of ~0.1 K K™ over low latitudes (Figs. 10a,e), which is
comparable to values in CMIP models (Qu et al. 2015a). The
dEIS/dT is not constant and increases with warming from
MO4K to PO4K and then decreases to values less than 0.1 K K
in P12K (note the reversed y axis). All else being equal, the
evolution of dEIS/dT would produce cloud feedback that first
decreases and then increases with warming, which is what we
observe in Figs. 9d and 9g. The importance of dEIS/dT is con-
firmed by its relatively high correlation with Acgg in PREI and
its state dependence including the decrease from P04K to
MO04K and the increase from P04K to P12K (r = —0.6, —0.3
and —0.4, respectively).

We suggest that the variation of dEIS/dT with GMST could
be due to the competing effects from the nonlinearity in ther-
modynamics and changes in the large-scale circulation. We
note that an overall positive dEIS/dT has been attributed to a
known thermodynamic mechanism. In this mechanism, the
enhanced warming with height due to tropical moist convec-
tion and latent heating is propagated into the subtropics via
tropical waves and the mean overturning circulation, increas-
ing the lower-tropospheric stability (dEIS/dT > 0) (Qu et al.
2015a; Webb et al. 2018). Our focus here is on the state de-
pendence of dEIS/AT. In our PPEs, the ensemble mean of
dLHF/dT over the ascent region increases with the warming
from M04K to PO4K and flattens with further warming (Fig. 10h),
which contributes to an increase of dEIS/dT that saturates at
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P04K. At the same time, a continued weakening of the tropical
subsidence (dw500/dT in Fig. 10b) is a robust response to warm-
ing according to theory and modeling (Vecchi and Soden 2007,
Held and Soden 2006) and could contribute to a weaker in-
version change (dEIS/dT) following the relationship seen in
observations (Myers and Norris 2013). We hypothesize that
the thermodynamics-driven increasing (dLHF/dT) and the
dynamics-driven decreasing (dw500/dT) effects compete and
produce a U-shaped dEIS/dT. We further suggest that the in-
crease of dLHF/dT over the ascent region is due to the expo-
nential Clapeyron—Clausius relationship, while the flattening
after PO4K could be due to the weakening of surface winds
and a thermodynamics-induced increase of the near-surface
relative humidity with warming [e.g., Richter and Xie 2008;
Eq. (3) of Schneider et al. (2010)].

In contrast to EIS, the other CCFs (w500, dQ, and LHF) do
not resemble as well the overall evolution of the cloud feed-
back with warming. However, the tropical LHF and w500
may indirectly influence the cloud feedback through changing
EIS (see the discussion above). In addition, the rate of circula-
tion weakening (dw500/dT) becomes smaller in magnitude for
very warm climates (Fig. 10b), which could directly strengthen
the cloud feedback with warming from P04K to P12K. Over
the subsidence region, dQ/dT in general first increases and
then decreases with warming, which is opposite to the state
dependence of the cloud feedback. However, dQ/dT over the
ascent region increases with warming consistently, which may
contribute to the increase of the cloud feedback from P04K
to P12K through enhancing the entrainment drying of low
clouds.

We next explore the sensitivity of the low-latitude cloud
feedback to model parameters. The low-latitude cloud feed-
back in PREI is primarily influenced by the microphysical
ice—snow autoconversion parameter (micro_mg_dcs; first
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column of the middle and right panels of Fig. 8). A higher
micro_mg_dcs reduces ice—snow autoconversion (microphysical
snow formation) and increases cloud IWP, LWP, and cloud
cover in the background climate, likely due to an overall
lower precipitation efficiency. In response to warming, PPEs
with higher micro_mg_dcs simulate a greater reduction in
cloud condensates and cover, and thus a stronger cloud feed-
back [see also Fig. 10 of Gettelman et al. (2024)]. This rela-
tionship between the cloud feedback and the background
clouds can be explained by the so-called “beta feedback”
(Brient and Bony 2012): A low-cloud reduction decreases the
cloud-top radiative cooling and relative humidity in the BL,
which amplifies the low-cloud reduction, forming a feedback
loop with its strength depending on the background clouds.
Additionally, micro_mg_dcs also acts in the tropics, suggest-
ing an additional role of the tropical cirrus clouds [Figs. 9 and
11 of Gettelman et al. (2024)]. More discussion on the sensi-
tivity to model parameters can be found in Gettelman et al.
(2024). In contrast to the mean state cloud feedback, the state
dependence (e.g., AA between P04K and M04K, and between
P12K and P04K; Fig. 8) appears to rely less on individual cloud
parameters, which is consistent with our explanations (see
above) related to large-scale stability, circulation, and their con-
nections to simple nonlinear thermodynamics.

In summary, the state dependence of low-latitude cloud feed-
back primarily arises from the shortwave component over the
ocean. This feedback shows a strong correlation with the state de-
pendence of the estimated inversion strength, which we hypothe-
size is due to nonlinearity in thermodynamics and large-scale
circulation. To further investigate this relationship, mechanism-
denial experiments are needed, such as simulations with fixed
circulation. This will be the focus of our future research.

5. Discussion and conclusions
a. Discussion

Our investigation of the cloud feedback with a variety of pa-
rameter configurations over a wide range of global temperatures
represents an effective way to identify robust cloud feedback
processes. Specifically, the important role of the cloud liquid
water on the high-latitude cloud feedback emphasizes the
moist adiabatic mechanism (Betts and Harshvardhan 1987;
Miilmenstédt et al. 2021; Frazer and Ming 2022) over the de-
bated cloud ice mechanisms in mixed-phase clouds (e.g., Tan
et al. 2016). The significant influence of cloud microphysical
parameters, particularly those regarding liquid water auto-
conversion and accretion, points to the necessity for further
research to reduce uncertainties in these areas. Additionally,
the good match of the lower-tropospheric stability change
with the low-latitude cloud feedback across different climate
states emphasizes the vital connection between the atmospheric
stability and cloud processes. Future studies should aim to deepen
our understanding of stability changes and their interactions with
dynamical, thermodynamical, and radiative processes, ultimately
enhancing our comprehension of cloud feedback mechanisms
and refining climate model predictions. Future work with
different models/parameterizations is needed to test the
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FIG. 11. Comparison of the state dependence and the SST pat-
tern effect of the cloud feedback. State dependence is the cloud
feedback change from PREI for the background states with uni-
form 4-K SST cooling (Amosx—Aprer in blue) and warming
(Aposx—Aprgr in yellow). The pattern effect is the cloud feedback
change from PREI for the experiment with a patterned 4-K SST
warming from PREI (Aprg1 poux_paT—Aprer in brown). The results
are from the top 50 ensemble members (W m 2 K™ 1).

sensitivity to model structural uncertainties, which are challeng-
ing to explore in a single model with known structural biases in
mixed-phase clouds and warm rain processes (Gettelman et al.
2020; Medeiros et al. 2023; Gettelman et al. 2021).

Our results suggest that state dependence of the cloud feed-
back could be as important as the SST pattern effect within
a typical AGMST range of an abrupt 4XCO, simulation of
150 years. Figure 11 compares the zonal mean cloud feedback
changes resulting from the state dependence (blue for M04K
and yellow for PO4K) and the SST pattern effect (brown for
PREI_PAT). The pattern effect is calculated as the cloud
feedback difference between PO4K_PAT and P04K, both
with PREI as a reference. The SST pattern in PO4K_PAT is
derived from the fully coupled 4XCO, simulation (averaged
between years 131 and 150). The global mean AAcgrg associ-
ated with state dependence is slightly larger than that from
the pattern effect (0.10 and 0.12 vs 0.07 W m™2 K™ !). The
larger state dependence is more prominent at regional scales.
From these results, we suggest that the state dependence from
a 4-K warming or cooling could be as important as, if not
more important than, the SST pattern effect, although the re-
sults may depend on the details of the SST pattern. We further
suggest that mechanistic understanding and quantification of
the cloud feedback should be carefully performed with consid-
erations of both the state dependence and pattern effect.

Stronger low-latitude cloud feedback under conditions colder
than the preindustrial has been found in simulations of the Last
Glacial Maximum using multiple generations of CESM (Zhu
and Poulsen 2021; Zhu et al. 2021). Likewise, stronger global
cloud feedback is consistently observed in simulations of
warmer conditions (Caballero and Huber 2013; Zhu et al. 2019;
Zhu and Poulsen 2020). Here, we find that uniform cooling or
warming can lead to significantly enhanced cloud feedback.
This nonlinear state dependence is tied to fundamental
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thermodynamic mechanisms, specifically the moist adiabatic
processes involving cloud liquid water at high latitudes and the
tropical latent heating that influences the lower-tropospheric
stability at low latitudes. Changes in the tropical circulation may
also contribute additional mechanisms. However, we recognize
that using cloud-controlling factors may limit our ability to iden-
tify causality between cloud processes and their environments.
To address this, future studies should employ mechanism-denial
simulations—where circulation or clouds are fixed—to disen-
tangle the complex interactions among circulation, thermody-
namics, and lower-tropospheric stability. This will be a focus of
our future research.

Nevertheless, integrating state dependence and the pattern
effect into paleoclimate constraints on climate sensitivity is
crucial. The research by Cooper et al. (2024) is pivotal in this
regard, as it provides a comprehensive framework that incor-
porates both the pattern effect and state dependence in cloud
feedback, along with other climate feedbacks. Particularly
for distant periods in Earth’s history like the early Eocene
(~50 million years ago with a GMST of ~14°C warmer),
where conditions were markedly different from today’s cli-
mate, understanding state dependence becomes increasingly
important (Zhu et al. 2024, 2019).

b. Conclusions

In this study, we performed a suite of PPE simulations to
investigate the state dependence of the cloud feedback over a
wide range of global mean surface temperatures that covers
roughly the past 66 million years. Multiple sets of PPE simula-
tions were run employing an updated version of CAMS6 in the
preindustrial condition with prescribed uniform SST pertur-
bations of —4, 0, +4, +8, +12, and +16 K. Each PPE set uses
250 ensemble members to sample uncertainty of 45 parame-
ters in cloud microphysics, aerosol, convection and turbu-
lence. After removing configurations that are less realistic
according to satellite observations and expert assessments, the
top 50 PPE members still exhibit wide ranges in cloud proper-
ties and feedbacks comparable to those in CMIP5 and CMIP6
models, supporting PPE as an effective approach for exploring
model uncertainties within a single-model framework. We con-
tend that our PPE approach with a wide temperature range
could provide more robust results on the state dependence than
previous studies that rely on a single model or configuration
(Caballero and Huber 2013; Zhu et al. 2019; Zhu and Poulsen
2020).

Our results suggest a nonconstant cloud feedback parame-
ter that increases to higher values under both colder and
warmer GMSTs. Under a climate colder by ~4 K than the
preindustrial (M04K), the global mean cloud feedback in-
creases by 0.12 + 0.12 W m 2 K™! (one standard deviation
derived from the top 50 members) from the preindustrial with
44 of the top 50 members exhibiting an increase. Under condi-
tions warmer than the preindustrial, the cloud feedback
strengthens gradually with GMST with an increase of 0.38 +
0.32 W m™2 K™! in the warmest state (P12K), with 46 out of
the top 50 members showing an increasing trend. The state
dependence of cloud feedback results from distinct behaviors
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over the high and low latitudes (divided broadly by 40°N/S)
and are linked to the large-scale changes in thermodynamics
and circulation.

Over high latitudes, the cloud feedback increases monoton-
ically by 0.34 = 0.16 W m 2 K~ ! from M04K to POSK and ap-
pears to reach saturation in PO8K (scaled values showing the
net contribution to the global mean). This response correlates
strongly with changes in cloud liquid water, which suggests a
moist adiabatic mechanism, i.e., the cloud liquid water feed-
back (Betts and Harshvardhan 1987). In this thermodynamic
mechanism, the rate of warming-induced increase in cloud
water scales with the change in the moist adiabatic lapse rate
rather than the changes in the saturation mixing ratio. As a re-
sult, the rate of cloud water increase is relatively higher at
lower temperatures, giving rise to the temperature dependence
and eventual saturation of the cloud liquid water feedback. In
contrast, the feedbacks related to the cloud ice content, such as
cloud lifetime and phase changes in mixed-phase clouds, appear
to have a secondary influence. This is supported by the very
weak or negligible correlation between cloud feedback and var-
iations in the cloud ice water content. Moreover, the strong cor-
relation of high-latitude cloud feedback with microphysical
parameters related to cloud liquid water processes—such as au-
toconversion and accretion—further underscores the dominant
influence of the cloud liquid water feedback and the moist adia-
batic mechanism.

Over low latitudes, the cloud feedback increases under
both colder and warmer conditions compared to the preindus-
trial, showing an increase of 0.27 + 012 W m > K ! in a 4-K
colder climate (M04K) and a gradual increase of 021 =
0.26 W m~2 K !in a 12-K warmer climate. The state depen-
dence is primarily driven by the cloud feedback over the
ocean, with a greater contribution from subsidence than from
ascent regions. Using the framework of cloud-controlling
factor, the state dependence is found to follow most closely
the EIS variations, suggesting an important role of the lower-
tropospheric stability in regulating the cloud behavior. The
variations in EIS sensitivity, the initial increase in dEIS/dT from
MO4K to PREI and the subsequent decrease to P12K, are
hypothesized to result from competing effects from the nonli-
nearity in thermodynamics and changes in the large-scale
circulation. The rate of latent heat increase with warming
(dLHF/dT) over the tropical ascent region strengthens from
MO04K to P04K and becomes saturated afterward, which
could contribute to the initial increasing dEIS/dT through
affecting the free troposphere temperature via latent heating
(Webb et al. 2018). This nonlinearity in the latent heat sensitiv-
ity, in turn, could result from combined effects of the exponen-
tial Clapeyron—Clausius relationship (e.g., Schneider et al. 2010)
and the declining surface winds and increasing near-surface
relative humidity with warming (e.g., Richter and Xie 2008).
In addition, the weakening of tropical circulations emerges as a
consistent response to warming, which could impact the cloud
feedback either indirectly through regulating the EIS or directly
through impacting the cloud-top entrainment (Myers and Norris
2013), which, we suggest, may be important for the decrease
in dEIS/dT and the increase in cloud feedback after PO4K.
This intricate interplay between thermodynamics and circulation
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emphasizes the complex dynamics of cloud feedback processes
in low-latitude regions.
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