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ABSTRACT: The state dependence of cloud feedback}its variation with the mean state climate}has been found in

many paleoclimate and contemporary climate simulations. Previous results have shown inconsistencies in the sign, magni-

tude, and underlying mechanisms of state dependence. To address this, we utilize a perturbed parameter ensemble (PPE)

approach with fixed sea surface temperature (SST) in the Community Atmosphere Model, version 6. Our suites of PPEs

span a wide range of global mean surface temperatures (GMSTs), with spatially uniform SST perturbations of 24, 0, 4, 8,

12, and 16 K from the preindustrial. The results reveal a nonmonotonic variation with GMSTs: Cloud feedback increases

under both cooler and warmer-than-preindustrial conditions, with a rise of ;0.1 W m22 K21 under a 4-K colder climate

and ;0.4 W m22 K21 under a 12-K warmer climate. This complexity arises from differing cloud feedback responses in

high and low latitudes. In high latitudes, cloud feedback consistently rises with warming, likely driven by a moist adiabatic

mechanism that influences cloud liquid water. The low-latitude feedback increases under both cooler and warmer condi-

tions, likely influenced by changes in the lower-tropospheric stability. This stability shift is tied to nonlinearity in thermo-

dynamic responses, particularly in the tropical latent heating, alongside potential state-dependent changes in tropical

circulations. Under warmer-than-preindustrial conditions, the increase in cloud feedback with warming is negatively corre-

lated with its preindustrial value. Our PPE approach takes the model parameter uncertainty into account and emphasizes

the critical role of state dependence in understanding past and predicting future climates.

SIGNIFICANCE STATEMENT: This study focuses on how cloud feedback}one of the most uncertain aspects of

climate change}varies as global temperatures rise. We found that the cloud feedback decreases at first with warming

and then increases, showing significant variation. This complexity stems from nonlinear thermodynamics, such as the

Clapeyron–Clausius relationship, which describes how temperature affects moisture in the atmosphere. Our results in-

dicate that the cloud feedback depends on the level of global warming, which is a significant factor rooted in fundamen-

tal physics. Recognizing this dependence is important for studies that aim to interpret past climates and predict future

climate changes.
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1. Introduction

The cloud feedback describes the radiative effects of cloud

changes induced by surface warming (or cooling) that in turn can

either amplify or damp the initial surface temperature change.

Strength of the cloud feedback is quantified using the cloud feed-

back parameter lcld, as a function of changes in the cloud-

induced top-of-atmosphere (TOA) radiation effects (DCRE)

and surface temperature (DT):

lcld 5 DCRE/DT: (1)

The lcld depends on the changes in cloud macrophysical (such

as coverage, height, and location) and microphysical (such as wa-

ter content, phase partition, and particle number concentration

and size) characteristics, as well as their interactions with thermo-

dynamical, radiative, and dynamical processes across a range of

spatial and temporal scales (e.g., Gettelman and Sherwood 2016).

The cloud feedback is responsible for the spread of equilibrium

climate sensitivity (ECS) in multiple generations of climate mod-

els (Caldwell et al. 2016; Vial et al. 2013; Zelinka et al. 2020). An

improved understanding and modeling of the complicated physi-

cal processes that drive the cloud feedback is crucial for reducing

uncertainties in climate sensitivity and future climate projection

(Zelinka et al. 2017; Ceppi et al. 2017).

The cloud feedback varies in space and time and depends on

the background climate state and details of surface temperature

change. A useful way to investigate the variability is to approxi-

mately separate it into 1) the state dependence that is directly

linked to mean state climate [such as the global mean surface

temperature (GMST)] and 2) the pattern dependence that is

related to the geographic pattern of the surface temperature

change (Bloch-Johnson et al. 2021; Sherwood et al. 2020). The

pattern dependence, in particular the sea surface tempera-

ture (SST) pattern effect, has been intensively investigated

in the context of historical warming (Armour et al. 2013; Dong

et al. 2019; Andrews and Webb 2018; Zhou et al. 2016). The

west Pacific has warmed more than the east Pacific and theCorresponding author: Jiang Zhu, jiangzhu@ucar.edu
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Southern Ocean during the historical period, where the Earth

system features more negative feedbacks than that from the

future projection with greater warming in the east Pacific and

high latitudes. As a result of the different SST patterns, obser-

vations of the historical forcing and temperature responses

can lead to the underestimation of ECS. A proper accounting

for the SST pattern effect in the historical constraint has

contributed to the increase in the low-end estimation of ECS in

the Intergovernmental Panel on Climate Change Assessment

Report (IPCC 2023; Armour et al. 2024).

Different from the pattern dependence, state dependence

of the cloud feedback relies only on the GMST and is more

naturally studied in a paleoclimate context, given the much

greater temperature variation in Earth’s past. For example,

GMST during the Cenozoic (the last 65 million years) varies

by more than 208C, which is approximately 20 times the his-

torical warming since 1850 (Tierney et al. 2020; Hansen et al.

2013). State dependence of the cloud feedback has been sug-

gested to be an essential element for the simulation of past

hothouse climates (Caballero and Huber 2013; Zhu et al. 2019;

Schneider et al. 2019; Abbot and Tziperman 2008) and has been

found in high-CO2 simulations based on the present-day climate

(e.g., Meraner et al. 2013; Zhu and Poulsen 2020).

State dependence of the cloud feedback can be mathemati-

cally viewed as a derivative of the cloud feedback with respect

to GMST, which indicates potentially greater uncertainty in

our quantification and understanding than that of the cloud

feedback itself. Previous modeling studies do not agree on the

rate of change, e.g., abrupt nonlinear increase (Caballero and

Huber 2013; Schneider et al. 2019) versus gradual linear in-

crease with temperature (Zhu et al. 2019). In addition, mecha-

nisms responsible for the state dependence remain elusive. In

principle, state dependence in any cloud-feedback-related pro-

cess may give rise to the state dependence of the cloud feedback.

The near-exponential increase of atmospheric water vapor with

temperature represents such a nonlinear mechanism. Water va-

por can potentially produce the state dependence of the cloud

feedback through changing 1) surface latent heat flux and mix-

ing in the atmospheric boundary layer (BL), 2) the specific hu-

midity gradient and entrainment between the free troposphere

and BL, and 3) free-tropospheric downwelling longwave radia-

tion and the impact on cloud-top cooling and BL stability

(Bretherton 2015). In addition to water vapor, the changes

in cloud-phase partitioning (the decrease of cloud ice content in

mixed-phase clouds with warming) can lead to an increase of

cloud feedback through weakening the negative cloud-phase

feedback (Tan et al. 2016; Zhu and Poulsen 2020). Other poten-

tial mechanisms may involve radiation and large-scale dynamics

(Caballero and Huber 2013; Henry and Vallis 2022) but, along

with the mechanisms mentioned above, are in general much

less studied. Moreover, quantification and mechanistic under-

standing of the state dependence have been confounded with

changes in forcing and the geographical pattern of temperatures

in previous studies owing to the substantial difference in model

complexity and experimental design. Due partly to the large

uncertainty in the state dependence of the cloud feedback,

Sherwood et al. (2020) excluded the past hothouse climates such

as the Paleocene–Eocene thermal maximum in the paleoclimate

constraints on ECS but suggested that “Differentiating between

state dependence in the radiative forcing, and in the feedbacks,

could be an area of future progress.”

Here, we investigate the state dependence of the cloud

feedback using a perturbed parameter ensemble (PPE) with

the Community Atmosphere Model, version 6 (CAM6). We

focus on two questions: 1) How does the cloud feedback depend

on the wide range of GMSTs that Earth has gone through during

the Cenozoic? and 2) What can we learn about the mechanisms

of state dependence? We use preindustrial-based atmosphere/

land-only simulations with prescribed uniform warming/cooling

in SST, which helps us to focus on the state dependence without

complications from forcing and the pattern dependence. We

use the PPE approach, which has been proven to be a useful

approach to explore uncertainties in model physical parame-

terizations and gain deeper mechanistic understanding (e.g.,

Gettelman et al. 2024).

This study focuses on the state dependence of cloud feedback,

whereas analysis and parametric sensitivity on the present-day

cloud feedback can be found in previous studies with a similar

model and approach (Duffy et al. 2024; Eidhammer et al. 2024;

Gettelman et al. 2024). The PPE approach and the experimental

setup, along with the calculation of the cloud feedback, are

described in section 2. The results of the state dependence are

presented in section 3. Mechanistic understanding is presented

in section 4. We discuss and conclude in section 5.

2. Model, simulation, and method

a. Model

We employ the CAM6 coupled with the Community Land

Model, version 5, the model configuration that has been used

for the PPE application to present-day and future climate

(Duffy et al. 2024; Eidhammer et al. 2024; Gettelman et al.

2024). This version of CAM6 shares the same physical pa-

rameterizations and major tunings as the released version

within the Community Earth System Model (CESM),

version 2 (Danabasoglu et al. 2020; Gettelman et al. 2019),

but has modifications in code and scripts to support PPE simula-

tions. CAM6 uses a unified moist turbulence scheme, the Cloud

Layers Unified By Binormals (CLUBB), for its atmospheric

boundary layer, shallow convection, and cloud macrophysics

schemes (Bogenschutz et al. 2013; Larson and Golaz 2005). The

microphysical scheme is the Morrison and Gettelman, version 2

(MG2), which is a two-moment scheme that predicts the mass

and number concentration of cloud and precipitation particles

(Gettelman et al. 2015). CAM6 addresses the indirect aerosol ef-

fects and cloud–aerosol interactions through a coupling of MG2

with the four-mode modal aerosol model and the classical-

theory-based heterogeneous ice nucleation scheme in mixed-

phase clouds (Liu et al. 2016; Hoose et al. 2010; Wang et al.

2014). CAM6 uses the deep convection (ZM) by Zhang and

McFarlane (1995). CAM6 has the capability to use online satel-

lite simulators (COSP) to emulate satellite products to facilitate

direct comparison and assessment with observations (Bodas-

Salcedo et al. 2011).
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We implement published fixes in the cloud microphysics and

ice nucleation in CAM6 to address its high ECS and strong cloud

feedback (Zhu et al. 2022). The standard CESM2 with CAM6

produces a high ECS (e.g., 6.18C from a doubling CO2 experi-

ment with a ;28-resolution atmosphere coupled with a slab

ocean) and unrealistically cold simulation of the Last Glacial

Maximum (LGM) and excessively warm early Eocene (Zhu et al.

2021, 2020, 2022, 2024). The high ECS has been attributed to the

cloud parameterization and feedback (Gettelman et al. 2019;

Zhu et al. 2021). Zhu et al. (2022) developed fixes in the cloud

microphysics and ice nucleation, which led to much reduced

ECS (4.08C) and a more realistic simulation of the LGMwithout

compromising the present-day climate. The fixes include the

removal of an inappropriate limiter on the cloud ice number

concentration and the increase of microphysical substepping

(shortening time step). The fixes represent a means to im-

prove the physical and numerical aspects of the model (Shaw

et al. 2022). Alternative fixes by Gettelman et al. (2023) with-

out directly changing substepping are planned to be used in

CESM3.

We run the land model, CLM5, in a simplified mode with

prescribed satellite phenology (SP), in which the vegetation

type, leaf area index, and canopy height are prescribed accord-

ing to satellite observations. The SP mode excludes vegetation

phenological feedback and helps us focus on the classical atmo-

spheric feedbacks.

b. Perturbed parameter ensemble

We set up the paleoclimate PPE (paleoPPE) simulations fol-

lowing the methodology of CAM6 PPE (cam6PPE) (Eidhammer

et al. 2024). We perturb 45 parameters in cloud microphysics

(MG2), convection (CLUBB and ZM), and aerosol schemes.

We use Latin hypercube sampling to create 250 sets of per-

turbed parameters that cover the entire range for each parame-

ter and are uniformly distributed in the parameter space. Table 1

lists the parameter name, default value in the model, range in

the PPE, and short description. For a detailed explanation of

these parameters and the justification of their range, readers are

referred to published work (Eidhammer et al. 2024).

The paleoPPE differs from cam6PPE in the following as-

pects. First, we implement the fixes in cloud microphysics and

ice nucleation to have overall more realistic cloud feedback

(assessed according to paleoclimate data; see section 2a). Sec-

ond, we use a lower horizontal resolution (;28 vs ;18), which

reduces the computing and storage demand and allows longer

simulations (5 vs 3 yr). Third, as a result of the lower horizontal

resolution, the default parameter values in the unperturbed

model were tuned differently, including a smaller MG2_DCS,

dust emission factor, and CLUBB_gamma and a larger sea

salt emission scaling (Table 1). Fourth, paleoPPE uses C11b

and a wider parameter range in CLUBB_C8, which are found

to impact the cloud feedback in our exploratory simulations

(not shown). A wider range of CLUBB_C8 has also been used

in the calibration of Energy Exascale Earth System Model

(E3SM), which shares many atmospheric parameterizations

with CESM2 (Ma et al. 2022). Fifth, paleoPPE uses the prein-

dustrial boundary condition, different from the present-day

condition in cam6PPE (2000 AD). All parameter-related dif-

ferences from cam6PPE are highlighted in Table 1 with bold

and italic fonts. Note that parameters in paleoPPE are regen-

erated using Latin hypercube sampling and different from

those in cam6PPE.

Multiple suites of PPE simulations are performed with dif-

ferent SST and sea ice conditions, including the preindustrial

and those with uniform SST change of 24, 14, 18, 112, and

116 K, as well as an additional set with a warming magnitude

of 14 K in global mean with spatial pattern derived from the

abrupt 4xCO2 simulation between years 131 and 150 (Zhu

et al. 2022). The preindustrial SST and sea ice coverage are

from Hurrell et al. (2008). For the PPE suites with relatively

small SST change (24 to 18 K), sea ice coverage is fixed at

the preindustrial values. To increase the realism and numeri-

cal stability of the simulations with a large magnitude of

warming (18 to 116 K), we remove sea ice and prescribe the

same uniform SST change as the nonsea ice region (Table 2).

As a result, we have two suites of PPEs with 8-K warming

that differ in the sea ice–covered regions and can be used to

separate the impacts from the replacement of sea ice with a

regional warming of 8 K. In the analysis presented here, we

use the pair of simulations with the same sea ice conditions to

compute the cloud feedback due to a 4-K warming (e.g.,

P04K versus P08K, and P08K_NOICE versus P12K_NOICE).

We note that the nonlocal impact of sea ice treatment on

clouds is relatively small (P08K vs P08K_NOICE; not shown).

For simplicity, land ice sheets are not changed, as they cover a

smaller area and have less impact on the overall model stability.

In sum, a total of eight suites of PPE simulations (8 3 250 5

2000 ensembles and a total of 10 000 model years) are per-

formed (data of a ninth suite with only 4xCO2 forcing is also

published but not discussed in this paper; Table 2). Simulations

with the default parameter values are also carried out as a ref-

erence (referred to as the default model hereafter). The final

4 years of the simulation are analyzed to minimize the impact

of potential drift during spinning up the atmosphere.

c. Calculation of the cloud feedback parameter

In this study, we define the cloud feedback l of a certain cli-

mate state as the cloud radiative contribution RCLD scaled by

the global mean warming in a pair of simulations with 4-K

warming. Take the P04K state as an example,

lP04K 5 (RCLD_P08K–RCLD_P04K)/(TP08K–TP04K): (2)

We calculate RCLD and therefore l using multiple methods

including the simple calculation with model output of cloud

radiative effects (CREs; lCRE), the approximated partial radi-

ative perturbation (APRP; lAPRP), and the radiative kernels

lkernels. Each method is known to have strengths and weak-

nesses. The lCRE is simple to compute but can be biased by

the masking effects from other radiative processes (Soden

et al. 2008). The lkernels can depend on the choices of the ker-

nels and relies on assumptions of small perturbations and linear-

ity, which may not hold in our simulations with large magnitude

of temperature changes. The lAPRP is accurate (error , 10%)

and simpler than the sophisticated PRP method but only
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quantifies the shortwave component (Taylor et al. 2007). The

lAPRP could be superior to lkernels for shortwave due to the sen-

sitivity of lkernels to choices of kernels.

Our analysis focuses on the state dependence (Dl between

two climate states) and is found to be insensitive to choices of

the method (Fig. 1). For example, shortwave lCRE correlates

strongly with lAPRP (r 5 1.00) but is on average biased by

20.15 W m22 K21 under the preindustrial background state

(Fig. 1a), while DlCRE between the preindustrial and a 4-K

warmer or colder state is the same as DlAPRP within the un-

certainty (Figs. 1e,i). Similarly, longwave lCRE correlates

strongly with lkernels (r 5 0.95) but is systematically lower by

0.64 Wm22 K21 (Fig. 1c), while DlCRE is the same as Dlkernels
within uncertainty (Figs. 1g,k). A small difference exists be-

tween shortwave DlCRE and Dlkernels (Figs. 1f,j), which could

be due to the partial neglect of state dependence of the ker-

nels method. In the remainder of the paper, we use DlCRE to

study the state dependence with DlAPRP used for the cross

TABLE 1. List of parameters, description, default values, and the perturbed range (group by schemes, moist turbulence, microphysics,

aerosol, and deep convection, respectively). Bold and italic font means the parameter differs from Eidhammer et al. (2024). Notation: u, y , and

w denote east–west, north–south, and vertical velocity, respectively; ul, liquid water potential temperature; and rt, total water mixing ratio.

Parameter name Description (units when applicable) Default Min Max

clubb_c1 Dissipation of variance of w 1.0 0.4 3

clubb_c2rt Dissipation of variance of rt 1.0 0.2 2

clubb_c6rt Newtonian damping of rt flux at low skewness 4.0 2.0 6

clubb_c6rtb Newtonian damping of rt flux at high skewness 6.0 2.0 8

clubb_c6thl Newtonian damping of ul flux at low skewness 4.0 2.0 6

clubb_c6thlb Newtonian damping of ul flux at high skewness 6.0 2.0 8

clubb_c8 Newtonian damping of skewness of w 4.2 1.0 7

clubb_c11b Buoyancy damping of skewness of w 0.7 0.2 0.8

clubb_c14 Newtonian damping of variance of u and y 2.2 0.4 3

clubb_beta Coefficient controlling skewness of ul and rt 2.4 1.6 2.5

clubb_gamma_coef Constant of the width of PDF in w coordinate 0.275 0.25 0.35

clubb_c_k10 Momentum diffusion factor 0.5 0.2 0.6

clubb_wpxp_l_thresh Length scale threshold below which extra damping is

applied to C6 and C7 (m)

60 20 200

micro_mg_accre_enhan_fact Accretion enhancement factor 1.0 0.1 10.0

micro_mg_autocon_fact Autoconversion factor 0.01 0.005 0.2

micro_mg_autocon_lwp_exp Liquid water exponent coefficient for autoconversion 2.47 2.10 3.30

micro_mg_autocon_nd_exp Droplet number exponent coefficient for autoconversion 21.1 20.8 22

micro_mg_berg_eff_factor Bergeron efficiency factor 1.0 0.1 1.0

micro_mg_dcs Size threshold for ice–snow autoconversion (m) 2 3 1024 5 3 1025 1 3 1023

micro_mg_effi_factor Scaling factor for effective radius for optics calculation 1.0 0.1 2.0

micro_mg_homog_size Homogeneous freezing ice particle size (m) 2.5 3 1025 1 3 1025 2 3 1024

micro_mg_iaccr_factor Scaling factor for ice–snow accretion 1.0 0.2 1.0

micro_mg_max_nicons Maximum allowed ice number concentration (kg21) 1 3 108 1 3 105 1 3 1010

micro_mg_vtrmi_factor Scaling factor for cloud ice fall speed 1.0 0.2 5.0

microp_aero_npccn_scale Scaling factor for activated liquid number 1 0.33 3

microp_aero_wsub_min Minimum subgrid velocity for liquid activation (m s21) 0.2 0 0.5

microp_aero_wsub_scale Scaling factor for subgrid velocity for liquid activation 1 0.1 5

microp_aero_wsubi_min Minimum subgrid velocity for ice activation (m s21) 0.001 0 0.2

microp_aero_wsubi_scale Scaling factor for subgrid velocity for ice activation 1 0.1 5

dust_emis_fact Tuning parameter for dust emission 0.55 0.1 1.0

seasalt_emis_scale Tuning parameter for sea-salt emission 1.1 0.5 2.5

sol_factb_interstitial Tuning parameter for below-cloud aerosol scavenging 0.1 0.1 1

sol_factic_interstitial Tuning parameter for in-cloud aerosol scavenging 0.4 0.1 1

cldfrc_dp1 Deep convection cloud fraction parameter 0.1 0.05 0.25

cldfrc_dp2 Deep convection cloud fraction parameter 500 100 1000

zmconv_c0_lnd Convective precipitation efficiency over land (m21) 0.0075 0.002 0.1

zmconv_c0_ocn Convective precipitation efficiency over ocean (m21) 0.03 0.02 0.1

zmconv_capelmt Triggering threshold for deep convection (J kg21) 70 35 350

zmconv_dmpdz Convective parcel fractional mass entrainment rate (m21) 21 3 1023
22 3 1023

22 3 1024

zmconv_ke Convective evaporation efficiency (kg0.5 m21 s21.5) 5 3 1026 1 3 1026 1 3 1025

zmconv_ke_lnd Convective evaporation efficiency land (kg0.5 m21 s21.5) 1 3 1025 1 3 1026 1 3 1025

zmconv_momcd Convective momentum transport parameter (downward) 0.7 0 1

mconv_momcu Convective momentum transport parameter (upward) 0.7 0 1

zmconv_num_cin Allowed number of negative buoyancy crossings 1 1 5

zmconv_tiedke_add Initial convective parcel temperature perturbation (K) 0.5 0 2
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examination of the shortwave component. We use lkernels to

compare the preindustrial values against the other models

from phases 5 and 6 of the Coupled Model Intercomparison

Project (CMIP), as well as the expert assessment (Sherwood

et al. 2020; Zelinka et al. 2022).

d. Assessment of cloud fields and feedback

To ensure the overall realistic results on the state depen-

dence, we focus the analysis on more plausible PPE members

based on their simulation of the preindustrial cloud fields and

feedback in observations and expert assessments. PPE mem-

bers could be implausible because preindustrial (PREI) simu-

lations have not been retuned. Furthermore, although PPE

uses parameter ranges according to expert judgment regard-

ing their physical limits, the combinations of different param-

eters are not necessarily realistic. State dependence from

these implausible members could be much less relevant to the

real world. We use gridded satellite observations to assess the

representation of clouds in PREI, including the cloud fraction

from the International Satellite Cloud Climatology Project

(ISCCP; 608S–608N) H-Series (Rossow et al. 2022) and the

cloud radiative effects from the Clouds and the Earth’s Radi-

ant Energy System (CERES) Energy Balanced and Filled

(EBAF), edition 4.2 (Loeb et al. 2018). Data temporal coverages

are from January 1999 to December 2016 and from March 2000

to February 2024, respectively. Additionally, we use the expert

assessments of the total cloud feedback to evaluate the cloud

feedback in PREI (Sherwood et al. 2020; Zelinka et al. 2022).

We note that using modern observations to evaluate the prein-

dustrial simulations is not ideal, but this should have limited im-

pact on our results, as the differences between PPE simulations

(e.g., shown in Fig. 2) are in general much larger than the poten-

tial preindustrial–modern differences.

The cloud feedback derived from Atmospheric Model In-

tercomparison Project (AMIP) and amip-p4K simulations

from available CMIP5 and CMIP6 models are used as a refer-

ence to compare with our PPE results from a single model

(Zelinka et al. 2022). This comparison can also contextualize

the parametric uncertainty in CAM6 within the structural un-

certainty described by other CMIP models.

3. State dependence of the cloud feedback in paleoPPE

a. Assessment of the preindustrial cloud and

cloud feedback

PaleoPPE generates a wide range of cloud and cloud feed-

back under the preindustrial condition (Fig. 2). Compared to

satellite observations, RMSEs in the shortwave and longwave

CREs and cloud fraction range from 8.3 to 44.9 W m22, from

3.4 to 26.6 W m22, and from 9.1% to 32.1%, respectively. Val-

ues in the default model ranked in the top five (8.7 W m22,

6.0 W m22, and 15.2%, respectively), highlighting the overall

success of the expert tuning of the model during the develop-

ment process. The cloud feedback lkernels ranges from 0.0 to

1.5 W m22 K21 with the default value of 0.36 W m22 K21.

The cloud feedback has a negligible correlation with the

RMSEs in CREs (0.12 and 0.24; Figs. 2a,b) and weak negative

correlation with RMSE in the cloud fraction (20.39). These

results suggest that efforts that aim to reduce error in the present-

day clouds may not necessarily lead to reduced uncertainty in the

cloud feedback. Many PPE members have RMSEs of cloud

fields and the cloud feedback outside the range from the

CMIP5 and CMIP6 models and WCRP assessments (Zelinka

et al. 2020, 2022; Bock and Lauer 2024), illustrating that not

all parameter combinations have good skill at simulating

present-day clouds and the cloud feedback.

To remove the less plausible PPE members that may con-

taminate our results, we rank the PPE members using a com-

bined metric that averages the standardized RMSEs of global

mean cloud CREs and fraction and mean bias of the cloud

feedback from the expert assessment. Based on this ranking,

the top 50 members have RMSEs in cloud shortwave CREs

of 8.3–20.3 W m22, longwave CREs of 3.7–8.5 W m22, and

fraction of 9.2%–20.8%, respectively (Fig. 2; markers with

darker color and white edge), which is comparable to values

from the CMIP5 and CMIP6 models and other multiple

model assessments (Bock and Lauer 2024; Medeiros et al.

2023). The persistent large bias across the PPE and CMIP

models indicates a structural deficiency in the current genera-

tion of models. The total cloud feedback in the top 50 mem-

bers ranges from 0.2 to 1.0 W m22 K21 with an ensemble

mean of 0.6 W m22 K21 (calculated using PREI and P04K),

which is also comparable to the range in the CMIP models

and agrees better with the WCRP assessment (Fig. 3). We

note that our choices of the metric to rank the PPE members

aim to remove the implausible members and retain sufficient

members for exploring the parameter uncertainty and provid-

ing good statistics. In addition, the top 50 members broadly

exhibit a similar degree of biases in the cloud fields and range

of the cloud feedback as the other CMIP5 and CMIP6 mod-

els. Our following analysis emphasizes the top 50 members,

and any statistics are calculated from these members. The

results on the state dependence of the cloud feedback do not

depend much on details of the choice of the metrics (e.g.,

TABLE 2. A list of PPE simulations performed in this study.

Information includes the experiment name, global mean SST

change (DSST) based on PREI, whether the SST change has a

spatial pattern, sea ice conditions, as well as the mean and

standard deviation of the GMST in each ensemble. Each

ensemble has 250 PPE simulations and one simulation with the

default parameter setting. Each simulation is run for five model

years.

Experiment

name

Mean

DSST (K)

Uniform

DSST Sea ice

GMST and

DGMST (8C)

PREI 0 Yes Preindustrial 14.6

M04K 24 Yes Preindustrial 24.1

P04K 14 Yes Preindustrial 14.2

P08K 18 Yes Preindustrial 18.5

P08K_NOICE 18 Yes Removed 19.7

P12K_NOICE 112 Yes Removed 114.2

P16K_NOICE 116 Yes Removed 118.8

P04K_PAT 14 No Preindustrial 14.1

PREI_4xCO2 0 } Preindustrial 10.5
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FIG. 1. Comparison of the cloud feedback calculated using the CRE (lCRE; x axis), the APRP (lAPRP; y axis of first row; shortwave

only), and the radiative kernels method (lkernels; y axis of second row–fourth row for shortwave, longwave, and net, respectively). (left)

The cloud feedback for the PREI climate. (middle) (right) The state dependence of cloud feedback at the 4-K colder and warmer climate

states (M04K and P04K), respectively. Circle markers indicate the 250 PPE members, and the star denotes the simulation with the default

parameters. Numbers in the subplot title are the ensemble mean difference and the standard deviation (in parentheses) between two cal-

culations (Wm22 K21).
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mean bias versus RMSE), as long as the analysis is focused

on top-performed members.

For different cloud feedback components, paleoPPE in

general matches the spread in CMIP and WCRP assessment

well, especially the top 50 members (Fig. 3). The land cloud

amount and midlatitude marine low-cloud amount feedbacks

overlap with the WCRP assessment quite well. The high-cloud

altitude feedback is stronger than that of the WCRP assessment

(mean values of 0.4 W m22 K21 in the top 50 members vs

0.2 W m22 K21 in the WCRP assessment), which likely reflects

a deficiency in the simulation of tropical deep convection and/

or ice clouds (Duffy et al. 2024). In addition, the tropical anvil

cloud area feedback is higher than the WCRP assessment

(mean values of20.1 Wm22 K21 in the top 50 members versus

20.2 W m22 K21 in WCRP assessment), which seems to agree

with recent studies indicating a potential low bias in the WCRP

assessment (McKim et al. 2024; Sokol et al. 2024). The tropical

marine low-cloud feedback is at the lower end of the WCRP as-

sessment (mean of 0.1 vs 0.25 W m22 K21). The high-latitude

optical depth feedback is somewhat lower than the WCRP as-

sessment (mean of 20.1 vs 0.0 W m22 K21). The top 50 mem-

bers are overall comparable to that of CMIP5 and CMIP6

models, suggesting that PPE is an effective way to study the

cloud feedback by accounting for uncertainties in model physics

within a single climate model.

b. State dependence of the cloud feedback in paleoPPE

The global mean cloud feedback varies nonmonotonically

with the background temperature with higher ensemble means

under both colder and warmer than preindustrial conditions

(Fig. 4a; top 50 members are shown). Under colder conditions

(M04K), 44 of the top 50 members exhibit stronger cloud feed-

back than the corresponding members in PREI. On average,

the cloud feedback in M04K is larger by 0.126 0.12 W m22 K21

(DlCRE). Under warmer states, the cloud feedback increases by

0.10 W m22 K21 in P04K and then further rises by 0.22 and

0.07 W m22 K21 in P08K and P12K, respectively. Compared

with PREI, 46 of the top 50 members exhibit stronger

cloud feedback in P12K, with an average increase of 0.38 6

0.32 W m22 K21. This nonmonotonic state dependence is

also clear in individual members (thin gray lines in Fig. 4a).

The nonmonotonic state dependence in the cloud feedback

results from distinct behaviors over different cloud regimes.

Based on the zonal mean in Fig. 4b, 408N/S seems to be a

good threshold across the cold and very warm climates to

FIG. 2. Assessment of the simulation of cloud and cloud feedback under the PREI condition. Shown is the cloud feedback calculated us-

ing the kernels method (lkernels with PREI and P04K; y axis) against the RMSEs (x axis) in (a) the SWCRE, (b) LWCRE, and (c) cloud

fraction. RMSEs in CREs and fraction are calculated by comparing them in PREI against the satellite observations. The dashed horizontal

line indicates the central estimation of the cloud feedback from theWCRP expert assessment with the gray patch indicating the 90% inter-

val (Sherwood et al. 2020; Zelinka et al. 2022). The PPE members are ranked according to the mean of standardized RMSEs and depar-

ture from the WCRP central estimation of the cloud feedback, as reflected by the face color of the markers in the plot. Circle markers in-

dicate the 250 PPE members, and the star denotes the simulation with the default parameters. The correlation coefficient between the

cloud feedback and RMSEs in the PPEs is also listed.

FIG. 3. Assessment of the simulation of cloud feedback compo-

nents under the PREI condition. The cloud feedback and decom-

position from the WCRP expert assessment are shown as the black

horizontal lines with error bars indicating the one standard devia-

tion and 90% confidence intervals (Sherwood et al. 2020; Zelinka

et al. 2022). Circles are the cloud feedback from the 250 PPE mem-

bers with the face color indicating their performance ranking by

their agreement with the satellite observations of CREs and fraction,

as well as the WCRP central estimation of the total cloud feedback.

The star denotes the simulation with the default parameters. Blue

circles are the results from the CMIP5 and CMIP6 models.
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generally separate the high and low latitudes that feature dif-

ferent behaviors. Over high latitudes (408N/S poleward), all

the members show a strengthening of the cloud feedback with

warming that saturates at a GMST of ;248C (see also Fig. 6a).

The ensemble mean increases by 0.39 6 0.16 W m22 K21 from

M04K to P08K and stays largely unchanged in P12K (this value

has been scaled by fraction area coverage such that it measures

the net contribution to the global mean). Over low latitudes

(408S–408N), cold climate (M04K; blue in Fig. 4b) has mean

cloud feedback that is higher by 0.27 6 0.12 W m22 K21 than

the preindustrial, while warm climate (P12K; red in Fig. 4b) is

also higher by 0.21 6 0.26 W m22 K21 (see also Fig. 9a). All

top 50 members show an increase in the low-latitude cloud

feedback from PREI to M04K, whereas 40 of the 50 members

show increases from PREI to P12K.

The overall coherence among individual members is quantita-

tively supported by the strong correlation with correlation coeffi-

cients of 0.86 and 0.74 between the preindustrial cloud feedback

and that in M04K and P04K, respectively (Figs. 5a,b). The cloud

feedback in P12K, however, exhibits minimal correlation

FIG. 4. (a) Global mean cloud feedback for the background states with uniform DSST of24 K (M04K in blue), 0 K

(PREI in black), 4 K (P04K in yellow), 8 K (P08K in orange), and 12 K (P12K in red) added to PREI. The cloud feed-

back parameter for a certain background state is calculated using the CRE method lCRE with the background state

and the corresponding state with a uniform SST warming of 4 K. The same PPE members are connected using thin

gray lines. (b) Zonal mean cloud feedback for various background states. The results are from the top 50 ensemble

members (Wm22 K21).

FIG. 5. Comparison of the global mean cloud feedback in PREI (x axis) and that in (a) M04K, (b) P04K, (c) P08K, and (d) P12K (y axis),

as well as the state dependence defined as the cloud feedback change in (e) M04K, (f) P04K, (g) P08K, and (h) P12K from that in PREI

(y axis). The correlation coefficient and mean difference are listed in each figure. The results are from the top 50 ensemble members.

The star denotes the simulation with the default parameters (W m22 K21).
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with the preindustrial value (0.05; Fig. 5d), potentially indi-

cating larger uncertainty in modeling the cloud processes un-

der extreme conditions. In general, the state dependence of

the cloud feedback is smaller than the range of the cloud feed-

back across PPEs.

A clear negative relationship (r 5 20.6) between preindus-

trial cloud feedback and its state dependence is identified in

the PPEs}i.e., members with stronger preindustrial cloud

feedback are associated with smaller increases with warming

(Figs. 5e–h). This relationship holds for both high and low lat-

itudes but is more pronounced at high latitudes, with correla-

tion coefficients of 20.9 and 20.5, respectively (figures not

shown). As discussed in section 4, this correlation arises

likely from processes related to thermodynamic and lower-

tropospheric stability. The negative relationship suggests that

reducing biases in preindustrial cloud feedback could help con-

strain uncertainties in its state dependence. Additionally, it may

mitigate some risks associated with positive feedback tempera-

ture dependence (Bloch-Johnson et al. 2021).

4. Further decomposition and mechanisms for the

state dependence

We next investigate mechanisms for the state dependence

through the decomposition of the cloud feedback into differ-

ent components, correlation with large-scale and cloud state

variables using the cloud-controlling factor (CCF) framework,

and through examining the sensitivity to model parameters.

In the CCF framework, lCRE can be written as

lCRE 5
­CRE

­T
5

­CRE

­CCF

­CCF

­T
: (3)

Note that the CCF framework emphasizes the large-scale

environmental changes and the associated impact on CCFs

(­CCF/­T) and assumes that clouds responding to the local

values of the cloud-controlling factors (­CRE/­CCF) remain

largely unchanged (Klein et al. 2017).

a. High latitudes

In the PPE simulations, the high-latitude (poleward of

408N/S) cloud feedback and its state dependence are primarily

produced by the shortwave component through processes

that impact the cloud optical depth. Figures 6a–c show lCRE

decomposed into shortwave and longwave components. The

longwave component is several times smaller in magnitude

and plays a secondary role to oppose the shortwave. The en-

semble mean of the shortwave increases by 0.50 W m22 K21

from M04K to P08K, with a smaller cancelation of 20.16 in

the longwave (scaled values showing the net contribution to

the global mean). Interestingly, the increase of cloud feed-

back with warming saturates in P08K and does not further in-

crease in M12K. The APRP calculation (lAPRP) reproduces

the shortwave lCRE from the CRE method and further de-

composes it into contributions from changes in cloud amount

and scattering (absorption contribution is small and not

shown; Figs. 6d–f). The APRP decomposition suggests that

the shortwave cloud feedback and its state dependence are

determined by the cloud scattering components (the cloud

FIG. 6. (a) High-latitude net cloud feedback for the background states with a uniform DSST of 24 K (M04K in blue), 0 K (PREI in

black), 4 K (P04K in yellow), 8 K (P08K in orange), and 12 K (P12K in red) added to the PREI. Values are weighted by the area coverage

and measure their direct contribution to the global mean in Fig. 4a. (b),(c) As in (a), but for the shortwave and longwave components, re-

spectively. (a)–(c) The CRE method lCRE. (d) As in (b), but with the APRP method lAPRP. (e),(f) As in (d), but for the cloud scattering

and amount components, respectively. The results are from the top 50 ensemble members (W m22 K21).
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optical depth feedback). The contribution from the cloud

amount change is approximately 0.14 W m22 K21 and largely

invariant with climate change.

Several physical mechanisms could explain the increase and

eventual saturation of the cloud optical-depth feedback with

warming (Fig. 6e). The cloud optical depth can increase be-

cause of the increase of the water path or the decrease in the

particle size (Stephens 1978). Accordingly, a warming-induced

melt of cloud ice into liquid water increases the cloud optical

depth due to the smaller particle size of liquid droplets than ice

particles, which forms the cloud-phase feedback to dampen the

initial surface warming (Mitchell et al. 1989; Tan et al. 2016).

Moreover, the reduction of cloud ice can increase cloud water

due to the higher precipitation efficiency (bigger sizes) of ice

clouds, forming the cloud-lifetime feedback (Mülmenstädt et al.

2021; Frazer and Ming 2022). Both the cloud-phase and lifetime

feedbacks are negative and depend on the cloud ice content in

the background climate, which follows simple thermodynamics

and can give rise to a weakening and eventual saturation of the

feedback as ice in mixed-phase clouds melts and disappears

with warming. Nevertheless, the details of the responses of

mixed-phase clouds are subject to both parametric and struc-

tural uncertainties (Gettelman et al. 2023; Zhao et al. 2023).

In addition to the thermodynamic cloud ice mechanism, surface

warming can increase the cloud liquid water through a moist

adiabatic process, in which cloud condensation along moist

adiabats increases with temperature due to the exponential Cla-

peyron–Clausius relationship (Betts and Harshvardhan 1987).

Importantly, a thermodynamic decrease in the moist adiabatic

lapse rate with warming means that the warming-induced in-

crease in the cloud water is relatively stronger at lower tempera-

tures, which leads to a state dependence and a potential

saturation (Betts and Harshvardhan 1987).

Analysis of the PPEs indicates that the moist adiabatic

mechanism, rather than the cloud ice mechanism, is responsi-

ble for the high-latitude cloud optical-depth feedback and its

state dependence. To demonstrate this, we use the CCF frame-

work to examine the role of cloud liquid water path (LWP) and

ice water path (IWP). We focus on the shortwave lCRE in

PREI and the increases from M04K to P08K to maximize the

signal in state dependence (Fig. 6b). In response to warming,

both magnitudes of ­LWP/­T and ­IWP/­T decrease and reach

a saturation under high temperatures (Figs. 7a,b), which are

quantitatively consistent with both thermodynamical moist adi-

abatic and cloud ice mechanisms. However, lCRE in PREI

correlates much stronger with ­LWP/­T (r 5 20.8) than

with ­IWP/­T (r 5 20.3) among the top 50 PPE members

(Figs. 7c,d). Similarly, DlCRE (calculated as the difference

between P08K and M04K) correlates much stronger with

D(­LWP/­T) than with D(­IWP/­T), with correlation coeffi-

cients of 20.8 and 0.0, respectively (Figs. 7e,f). The correla-

tion analysis suggests a predominant role of the moist adiabatic

mechanisms in determining the high-latitude cloud optical

depth feedback and its state dependence. Additionally, no

correlation is found between the background IWP and the

warming-induced DLWP in PREI, indicating that the increase

in LWP is not due to the melt of cloud ice. The correlation does

not depend on whether we rank the PPEs or not (not shown),

consistent with the simple and robust thermodynamic mecha-

nism that are insensitive to model parameters.

Our mechanistic explanation is supported by the parameter

sensitivity in the PPE simulations. Figure 8 shows the linear

regression coefficients of the shortwave cloud feedback and

its state dependence against model parameters. Model param-

eters are normalized (scaled to be between 0 and 1 by the

minimum and maximum parameter values), and cloud feed-

backs are standardized (scaled to have a mean of 0 and a stan-

dard deviation of 1) before the regression analysis. In general,

the high-latitude lCRE is mostly sensitive to the microphysical

parameters related to liquid water (left column of Fig. 8), e.g.,

the liquid water content exponential coefficient (micro_mg_

autocon_lwp_exp) in the autoconversion formula and the ac-

cretion enhancement factor (micro_mg_accre_enhanc_factor).

Similarly, the increase of lCRE with warming (DlP08K2M04K) is

also mostly influenced by the two microphysical parameters. A

higher micro_mg_autocon_lwp_exp decreases the cloud liquid-

to-rain autoconversion rate (note that the in-cloud liquid water

content is smaller than 1 Kg Kg21) and increases the LWP in

the model. As a result, this configuration will allow more in-

crease of the LWP with warming, leading to more negative

cloud feedback. The state dependence (DlCRE) becomes greater

due to the greater potential to reach cloud feedback saturation.

We note that these cloud microphysical parameters control the

sink of cloud water and could increase as a nonlinear function of

the cloud liquid water content. For example, in the commonly

used scheme (Khairoutdinov and Kogan 2000), both the auto-

conversion and accretion rates increase exponentially with cloud

water content. Therefore, the saturation of lCRE with warm-

ing potentially represents a combination of the thermodynamic

weakening of LWP increase and a microphysical increase of

sinks of cloud water.

In sum, model configurations that allow more LWP in the

background climate show more LWP increase due to warming

(see also Gettelman et al. 2024), thus more negative cloud

feedback (the so-called liquid water lapse-rate feedback). Due

to nonlinearities rooted in relatively simple thermodynamics

(and potentially microphysics), the cloud feedback could satu-

rate with warming, which means that a model configuration

with more negative cloud feedback in the present climate will

feature more increases with warming in the future. Other

mechanisms, such as the changes in cloud phase, particle size,

entrainment drying, and moisture convergence from lower

latitudes, could be secondary (McCoy et al. 2023, 2022). Nota-

bly, we found no correlation between moisture convergence

and the high-latitude cloud feedback across PPE members (not

shown). We suggest that the potential state dependence from

the autoconversion and accretion formula should be further

studied. Our findings also indicate that targeted improvements

or emergent constraints on present-day LWP could help refine

and better constrain high-latitude cloud feedback and its state

dependence.

b. Low latitudes

The state dependence of the low-latitude cloud feedback is

nonmonotonic and more complicated than that in high latitudes.
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The ensemble mean lCRE decreases by 0.27 W m22 K21 from

M04K to PREI and then increases gradually by 0.21 W m22 K21

in P12K (Fig. 9a; scaled values showing the net contribution to

the global mean). The lCRE over the ocean plays a dominant

role while the feedback over land has a smaller positive con-

tribution that weakens gradually with warming (Figs. 9b,c).

We focus on the marine low-latitude feedback and further de-

compose it into that from the subsidence and ascent regimes us-

ing 500-hPa vertical pressure velocity as a criterion (v500; Bony

et al. 2004). Over both the ascent and subsidence regions, the

shortwave lCRE first decreases from M04K to P04K and then in-

creases slightly afterward with an overall larger contribution from

FIG. 7. Rate of cloud (a) LWP and (b) IWP changes with warming (g kg21 K21) over the high latitude for the back-

ground states with uniform DSST of 24 K (M04K in blue), 0 K (PREI in black), 4 K (P04K in yellow), 8 K (P08K in

orange), and 12 K (P12K in red) added to PREI. Scatterplot of the shortwave cloud feedback (lCRE; W m22 K21)

against the rate of cloud (c) LWP and (d) IWP changes with warming under the PREI condition. The scatterplot of

the changes in the shortwave cloud feedback between P08K and M04K (DlCRE) against the corresponding variation

in the rate of cloud (e) LWP and (f) IWP changes with warming. Correlation coefficients are listed in (c)–(f). The re-

sults are from the top 50 ensemble members.
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the subsidence region. APRP analysis suggests that both the

cloud amount and scattering components contribute to the total

shortwave feedback (not shown). The longwave lCRE over both

regions increases with warming from M04K to P04K, partly

canceling the decreases in the shortwave. We note that these

cloud feedback changes are not attributable to the relatively small

area changes (,3%) in the ascent and subsidence regions; they

are consistent across low latitudes (see also Fig. 4b).

FIG. 8. Slopes of the linear regression of the shortwave cloud feedback and state dependence (x axis) against model parameters (y axis)

over the (left) high-latitude, (middle) low-latitude subsidence, and (right) ascent regions. Regression is performed for the PREI cloud

feedback (lPREI) and the changes between P08K and M04K (DlP08K2M04K) over the high latitude, and between PREI and M04K

(DlPREI2M04K) and between P12K and P04K (DlP12K2P04K) over the low latitude. Model parameters are normalized, and cloud feedbacks

are standardized before the regression analysis. Model parameters are grouped into turbulence and shallow convection, microphysics,

aerosol, and deep convection. For more robust statistics, all ensemble members are used in the analysis.
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We use the CCF framework to examine the potential con-

tribution of multiple processes on the cloud feedback and its

state dependence over both the ascent and subsidence regions

(Qu et al. 2015b; Klein et al. 2017; Scott et al. 2020). For low

latitudes, we investigate CCFs including the estimated inver-

sion strength (EIS) as an indicator for the lower-tropospheric

stability (Wood and Bretherton 2006), v500 for the large-

scale circulation (Myers and Norris 2013), the specific humid-

ity difference between 700 hPa and surface dQ as an indicator

for the inversion specific humidity gradient (Brient and Bony

2013), and the surface latent heat flux (LHF) for vertical mix-

ing by boundary layer turbulence or convection (Rieck et al.

2012). Our choice of CCFs differs from previous studies

mainly in that we do not use SST or SST advection because it

is prescribed and invariant among our ensemble members.

Briefly, a larger dEIS/dT [see Eq. (3)] strengthens more the

lower-tropospheric stability and promotes more increase in low

clouds with warming. A larger dv500/dT means less weakening

of large-scale subsidence and produces less increase in low

clouds. A larger dLHF/dTmeans more energy to increase verti-

cal mixing by turbulence or convection, which desiccates more

low clouds. A larger dQ/dT leads to more entrainment drying

on low clouds. We refer readers to published work (Klein et al.

2017; Bretherton 2015; Scott et al. 2020; Webb et al. 2024) for

further discussion on relevant physical processes.

Consistent with previous work (Qu et al. 2015b; Klein et al.

2017; Scott et al. 2020), the preindustrial lCRE in our PPEs

can be well explained using these CCFs. Over the subsidence re-

gions, EIS, v500, and LHF are found to be the most influential

CCFs, while EIS and LHF are dominant over the ascent regions.

Together, a multiple linear regression model has a good skill re-

producing the preindustrial lCRE in both the subsidence and

ascent regions and can explain more than 70% of the total var-

iance with a mean absolute error less than 0.1 W m22 K21

FIG. 9. (a) Low-latitude total cloud feedback (W m22 K21) for the background states with uniform DSST of 24 K (M04K in blue), 0 K

(PREI in black), 4 K (P04K in yellow), 8 K (P08K in orange), and 12 K (P12K in red) added to PREI. (b),(c) As in (a), but for the decom-

position into values over ocean and land, respectively. (d) The net cloud feedback over the low-latitude subsidence region according to

the vertical velocity at 500 hPa and its (e) shortwave and (f) longwave components. (g)–(i) As in (d)–(f), but for the cloud feedback over

the low-latitude ascent region. The CRE method (lCRE) is used in the calculation. The lCRE values are weighted by the area coverage

and measure their direct contribution to the global mean in Fig. 4a. The results are from the top 50 ensemble members.
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(not shown; similar results from Ridge and Lasso regression

models).

State dependence of EIS resembles most closely the state

dependence of low-latitude cloud feedback. Figure 10 shows

the variations in the mean CCFs with GMST over the subsi-

dence and ascent regions, which are plotted such that upward

means CCFs contribute to stronger cloud feedbacks. In re-

sponse to a uniform 4-K warming in PREI, EIS increases at a

rate of ;0.1 K K21 over low latitudes (Figs. 10a,e), which is

comparable to values in CMIP models (Qu et al. 2015a). The

dEIS/dT is not constant and increases with warming from

M04K to P04K and then decreases to values less than 0.1 K K21

in P12K (note the reversed y axis). All else being equal, the

evolution of dEIS/dT would produce cloud feedback that first

decreases and then increases with warming, which is what we

observe in Figs. 9d and 9g. The importance of dEIS/dT is con-

firmed by its relatively high correlation with lCRE in PREI and

its state dependence including the decrease from P04K to

M04K and the increase from P04K to P12K (r 5 20.6, 20.3,

and20.4, respectively).

We suggest that the variation of dEIS/dT with GMST could

be due to the competing effects from the nonlinearity in ther-

modynamics and changes in the large-scale circulation. We

note that an overall positive dEIS/dT has been attributed to a

known thermodynamic mechanism. In this mechanism, the

enhanced warming with height due to tropical moist convec-

tion and latent heating is propagated into the subtropics via

tropical waves and the mean overturning circulation, increas-

ing the lower-tropospheric stability (dEIS/dT . 0) (Qu et al.

2015a; Webb et al. 2018). Our focus here is on the state de-

pendence of dEIS/dT. In our PPEs, the ensemble mean of

dLHF/dT over the ascent region increases with the warming

fromM04K to P04K and flattens with further warming (Fig. 10h),

which contributes to an increase of dEIS/dT that saturates at

P04K. At the same time, a continued weakening of the tropical

subsidence (dv500/dT in Fig. 10b) is a robust response to warm-

ing according to theory and modeling (Vecchi and Soden 2007;

Held and Soden 2006) and could contribute to a weaker in-

version change (dEIS/dT) following the relationship seen in

observations (Myers and Norris 2013). We hypothesize that

the thermodynamics-driven increasing (dLHF/dT) and the

dynamics-driven decreasing (dv500/dT) effects compete and

produce a U-shaped dEIS/dT. We further suggest that the in-

crease of dLHF/dT over the ascent region is due to the expo-

nential Clapeyron–Clausius relationship, while the flattening

after P04K could be due to the weakening of surface winds

and a thermodynamics-induced increase of the near-surface

relative humidity with warming [e.g., Richter and Xie 2008;

Eq. (3) of Schneider et al. (2010)].

In contrast to EIS, the other CCFs (v500, dQ, and LHF) do

not resemble as well the overall evolution of the cloud feed-

back with warming. However, the tropical LHF and v500

may indirectly influence the cloud feedback through changing

EIS (see the discussion above). In addition, the rate of circula-

tion weakening (dv500/dT) becomes smaller in magnitude for

very warm climates (Fig. 10b), which could directly strengthen

the cloud feedback with warming from P04K to P12K. Over

the subsidence region, dQ/dT in general first increases and

then decreases with warming, which is opposite to the state

dependence of the cloud feedback. However, dQ/dT over the

ascent region increases with warming consistently, which may

contribute to the increase of the cloud feedback from P04K

to P12K through enhancing the entrainment drying of low

clouds.

We next explore the sensitivity of the low-latitude cloud

feedback to model parameters. The low-latitude cloud feed-

back in PREI is primarily influenced by the microphysical

ice–snow autoconversion parameter (micro_mg_dcs; first

FIG. 10. (a) Rate of changes in the mean EIS with warming (K K21) over the low-latitude subsidence region for the background states

with a uniform DSST of 24 K (M04K in blue), 0 K (PREI in black), 4 K (P04K in yellow), 8 K (P08K in orange), and 12 K (P12K in red)

added to PREI. (b)–(d) As in (a), but for the vertical velocity at 500 hPa v500 (hPa day21 K21), the specific humidity contrast between

surface and 700 hPa dQ (g kg21 K21), and the LHF (W m22 K21), respectively. (e)–(h) As in (a)–(d), but for these CCFs over the low-

latitude ascent region. The results are from the top 50 ensemble members.
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column of the middle and right panels of Fig. 8). A higher

micro_mg_dcs reduces ice–snow autoconversion (microphysical

snow formation) and increases cloud IWP, LWP, and cloud

cover in the background climate, likely due to an overall

lower precipitation efficiency. In response to warming, PPEs

with higher micro_mg_dcs simulate a greater reduction in

cloud condensates and cover, and thus a stronger cloud feed-

back [see also Fig. 10 of Gettelman et al. (2024)]. This rela-

tionship between the cloud feedback and the background

clouds can be explained by the so-called “beta feedback”

(Brient and Bony 2012): A low-cloud reduction decreases the

cloud-top radiative cooling and relative humidity in the BL,

which amplifies the low-cloud reduction, forming a feedback

loop with its strength depending on the background clouds.

Additionally, micro_mg_dcs also acts in the tropics, suggest-

ing an additional role of the tropical cirrus clouds [Figs. 9 and

11 of Gettelman et al. (2024)]. More discussion on the sensi-

tivity to model parameters can be found in Gettelman et al.

(2024). In contrast to the mean state cloud feedback, the state

dependence (e.g., Dl between P04K and M04K, and between

P12K and P04K; Fig. 8) appears to rely less on individual cloud

parameters, which is consistent with our explanations (see

above) related to large-scale stability, circulation, and their con-

nections to simple nonlinear thermodynamics.

In summary, the state dependence of low-latitude cloud feed-

back primarily arises from the shortwave component over the

ocean. This feedback shows a strong correlation with the state de-

pendence of the estimated inversion strength, which we hypothe-

size is due to nonlinearity in thermodynamics and large-scale

circulation. To further investigate this relationship, mechanism-

denial experiments are needed, such as simulations with fixed

circulation. This will be the focus of our future research.

5. Discussion and conclusions

a. Discussion

Our investigation of the cloud feedback with a variety of pa-

rameter configurations over a wide range of global temperatures

represents an effective way to identify robust cloud feedback

processes. Specifically, the important role of the cloud liquid

water on the high-latitude cloud feedback emphasizes the

moist adiabatic mechanism (Betts and Harshvardhan 1987;

Mülmenstädt et al. 2021; Frazer and Ming 2022) over the de-

bated cloud ice mechanisms in mixed-phase clouds (e.g., Tan

et al. 2016). The significant influence of cloud microphysical

parameters, particularly those regarding liquid water auto-

conversion and accretion, points to the necessity for further

research to reduce uncertainties in these areas. Additionally,

the good match of the lower-tropospheric stability change

with the low-latitude cloud feedback across different climate

states emphasizes the vital connection between the atmospheric

stability and cloud processes. Future studies should aim to deepen

our understanding of stability changes and their interactions with

dynamical, thermodynamical, and radiative processes, ultimately

enhancing our comprehension of cloud feedback mechanisms

and refining climate model predictions. Future work with

different models/parameterizations is needed to test the

sensitivity to model structural uncertainties, which are challeng-

ing to explore in a single model with known structural biases in

mixed-phase clouds and warm rain processes (Gettelman et al.

2020; Medeiros et al. 2023; Gettelman et al. 2021).

Our results suggest that state dependence of the cloud feed-

back could be as important as the SST pattern effect within

a typical DGMST range of an abrupt 43CO2 simulation of

150 years. Figure 11 compares the zonal mean cloud feedback

changes resulting from the state dependence (blue for M04K

and yellow for P04K) and the SST pattern effect (brown for

PREI_PAT). The pattern effect is calculated as the cloud

feedback difference between P04K_PAT and P04K, both

with PREI as a reference. The SST pattern in P04K_PAT is

derived from the fully coupled 43CO2 simulation (averaged

between years 131 and 150). The global mean DlCRE associ-

ated with state dependence is slightly larger than that from

the pattern effect (0.10 and 0.12 vs 0.07 W m22 K21). The

larger state dependence is more prominent at regional scales.

From these results, we suggest that the state dependence from

a 4-K warming or cooling could be as important as, if not

more important than, the SST pattern effect, although the re-

sults may depend on the details of the SST pattern. We further

suggest that mechanistic understanding and quantification of

the cloud feedback should be carefully performed with consid-

erations of both the state dependence and pattern effect.

Stronger low-latitude cloud feedback under conditions colder

than the preindustrial has been found in simulations of the Last

Glacial Maximum using multiple generations of CESM (Zhu

and Poulsen 2021; Zhu et al. 2021). Likewise, stronger global

cloud feedback is consistently observed in simulations of

warmer conditions (Caballero and Huber 2013; Zhu et al. 2019;

Zhu and Poulsen 2020). Here, we find that uniform cooling or

warming can lead to significantly enhanced cloud feedback.

This nonlinear state dependence is tied to fundamental

FIG. 11. Comparison of the state dependence and the SST pat-

tern effect of the cloud feedback. State dependence is the cloud

feedback change from PREI for the background states with uni-

form 4-K SST cooling (lM04K2lPREI in blue) and warming

(lP04K2lPREI in yellow). The pattern effect is the cloud feedback

change from PREI for the experiment with a patterned 4-K SST

warming from PREI (lPREI_P04K_PAT2lPREI in brown). The results

are from the top 50 ensemble members (W m22 K21).
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thermodynamic mechanisms, specifically the moist adiabatic

processes involving cloud liquid water at high latitudes and the

tropical latent heating that influences the lower-tropospheric

stability at low latitudes. Changes in the tropical circulation may

also contribute additional mechanisms. However, we recognize

that using cloud-controlling factors may limit our ability to iden-

tify causality between cloud processes and their environments.

To address this, future studies should employ mechanism-denial

simulations}where circulation or clouds are fixed}to disen-

tangle the complex interactions among circulation, thermody-

namics, and lower-tropospheric stability. This will be a focus of

our future research.

Nevertheless, integrating state dependence and the pattern

effect into paleoclimate constraints on climate sensitivity is

crucial. The research by Cooper et al. (2024) is pivotal in this

regard, as it provides a comprehensive framework that incor-

porates both the pattern effect and state dependence in cloud

feedback, along with other climate feedbacks. Particularly

for distant periods in Earth’s history like the early Eocene

(;50 million years ago with a GMST of ;148C warmer),

where conditions were markedly different from today’s cli-

mate, understanding state dependence becomes increasingly

important (Zhu et al. 2024, 2019).

b. Conclusions

In this study, we performed a suite of PPE simulations to

investigate the state dependence of the cloud feedback over a

wide range of global mean surface temperatures that covers

roughly the past 66 million years. Multiple sets of PPE simula-

tions were run employing an updated version of CAM6 in the

preindustrial condition with prescribed uniform SST pertur-

bations of 24, 0, 14, 18, 112, and 116 K. Each PPE set uses

250 ensemble members to sample uncertainty of 45 parame-

ters in cloud microphysics, aerosol, convection and turbu-

lence. After removing configurations that are less realistic

according to satellite observations and expert assessments, the

top 50 PPE members still exhibit wide ranges in cloud proper-

ties and feedbacks comparable to those in CMIP5 and CMIP6

models, supporting PPE as an effective approach for exploring

model uncertainties within a single-model framework. We con-

tend that our PPE approach with a wide temperature range

could provide more robust results on the state dependence than

previous studies that rely on a single model or configuration

(Caballero and Huber 2013; Zhu et al. 2019; Zhu and Poulsen

2020).

Our results suggest a nonconstant cloud feedback parame-

ter that increases to higher values under both colder and

warmer GMSTs. Under a climate colder by ;4 K than the

preindustrial (M04K), the global mean cloud feedback in-

creases by 0.12 6 0.12 W m22 K21 (one standard deviation

derived from the top 50 members) from the preindustrial with

44 of the top 50 members exhibiting an increase. Under condi-

tions warmer than the preindustrial, the cloud feedback

strengthens gradually with GMST with an increase of 0.38 6

0.32 W m22 K21 in the warmest state (P12K), with 46 out of

the top 50 members showing an increasing trend. The state

dependence of cloud feedback results from distinct behaviors

over the high and low latitudes (divided broadly by 408N/S)

and are linked to the large-scale changes in thermodynamics

and circulation.

Over high latitudes, the cloud feedback increases monoton-

ically by 0.346 0.16 W m22 K21 from M04K to P08K and ap-

pears to reach saturation in P08K (scaled values showing the

net contribution to the global mean). This response correlates

strongly with changes in cloud liquid water, which suggests a

moist adiabatic mechanism, i.e., the cloud liquid water feed-

back (Betts and Harshvardhan 1987). In this thermodynamic

mechanism, the rate of warming-induced increase in cloud

water scales with the change in the moist adiabatic lapse rate

rather than the changes in the saturation mixing ratio. As a re-

sult, the rate of cloud water increase is relatively higher at

lower temperatures, giving rise to the temperature dependence

and eventual saturation of the cloud liquid water feedback. In

contrast, the feedbacks related to the cloud ice content, such as

cloud lifetime and phase changes in mixed-phase clouds, appear

to have a secondary influence. This is supported by the very

weak or negligible correlation between cloud feedback and var-

iations in the cloud ice water content. Moreover, the strong cor-

relation of high-latitude cloud feedback with microphysical

parameters related to cloud liquid water processes}such as au-

toconversion and accretion}further underscores the dominant

influence of the cloud liquid water feedback and the moist adia-

batic mechanism.

Over low latitudes, the cloud feedback increases under

both colder and warmer conditions compared to the preindus-

trial, showing an increase of 0.27 6 0.12 W m22 K21 in a 4-K

colder climate (M04K) and a gradual increase of 0.21 6

0.26 W m22 K21 in a 12-K warmer climate. The state depen-

dence is primarily driven by the cloud feedback over the

ocean, with a greater contribution from subsidence than from

ascent regions. Using the framework of cloud-controlling

factor, the state dependence is found to follow most closely

the EIS variations, suggesting an important role of the lower-

tropospheric stability in regulating the cloud behavior. The

variations in EIS sensitivity, the initial increase in dEIS/dT from

M04K to PREI and the subsequent decrease to P12K, are

hypothesized to result from competing effects from the nonli-

nearity in thermodynamics and changes in the large-scale

circulation. The rate of latent heat increase with warming

(dLHF/dT) over the tropical ascent region strengthens from

M04K to P04K and becomes saturated afterward, which

could contribute to the initial increasing dEIS/dT through

affecting the free troposphere temperature via latent heating

(Webb et al. 2018). This nonlinearity in the latent heat sensitiv-

ity, in turn, could result from combined effects of the exponen-

tial Clapeyron–Clausius relationship (e.g., Schneider et al. 2010)

and the declining surface winds and increasing near-surface

relative humidity with warming (e.g., Richter and Xie 2008).

In addition, the weakening of tropical circulations emerges as a

consistent response to warming, which could impact the cloud

feedback either indirectly through regulating the EIS or directly

through impacting the cloud-top entrainment (Myers and Norris

2013), which, we suggest, may be important for the decrease

in dEIS/dT and the increase in cloud feedback after P04K.

This intricate interplay between thermodynamics and circulation
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emphasizes the complex dynamics of cloud feedback processes

in low-latitude regions.
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