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Abstract

1.	 Changes in land use and climate change threaten global biodiversity and eco-

systems, calling for the urgent development of effective conservation strategies. 
Recognizing landscape heterogeneity, which refers to the variation in natural fea-

tures within an area, is crucial for these strategies. While remote sensing images 
quantify landscape heterogeneity, they might fail to detect ecological patterns in 
moderately disturbed areas, particularly at minor spatial scales. This is partly be-

cause satellite imagery may not effectively capture undergrowth conditions due 
to its resolution constraints. In contrast, soundscape analysis, which studies en-

vironmental acoustic signals, emerges as a novel tool for understanding ecologi-
cal patterns, providing reliable information on habitat conditions and landscape 
heterogeneity in complex environments across diverse scales and serving as a 
complement to remote sensing methods.

2.	 We propose an unsupervised approach using passive acoustic monitoring data 
and network inference methods to analyse acoustic heterogeneity patterns 
based on biophony composition. This method uses sonotypes, unique acoustic 
entities characterized by their specific time-frequency spaces, to establish the 
acoustic structure of a site through sonotype occurrences, focusing on general 
biophony rather than specific species and providing information on the acoustic 
footprint of a site. From a sonotype composition matrix, we use the Graphical 
Lasso method, a sparse Gaussian graphical model, to identify acoustic similarities 
across sites, map ecological complexity relationships through the nodes (sites) and 
edges (similarities), and transform acoustic data into a graphical representation of 
ecological interactions and landscape acoustic diversity.

3.	 We implemented the proposed method across 17 sites within an oil palm plantation 
in Santander, Colombia. The resulting inferred graphs visualize the acoustic 
similarities among sites, reflecting the biophony achieved by characterizing 
the landscape through its acoustic structures. Correlating our findings with 
ecological metrics like the Bray–Curtis dissimilarity index and satellite imagery 
indices reveals significant insights into landscape heterogeneity.
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1  |  INTRODUC TION

Understanding landscape heterogeneity, which refers to the un-

even distribution of elements across landscapes (Farina,  2022), is 
crucial when designing and evaluating the impact of conservation 
policies, particularly considering the increasing pressure these sys-

tems face from land use changes and global warming (Lambin & 
Meyfroidt, 2011; Powers & Jetz, 2019; Walther et al., 2002). This 
pressure has precipitated a global decline in biodiversity as essential 
natural habitats necessary for the survival of different species are 
diminished or outright eradicated (Newbold et al., 2015). Collecting 
biodiversity data on various regions enables an understanding 
of how landscape structure influences species, their behaviours, 
and the dynamics within heterogeneous landscapes (Tscharntke 
et al., 2012; Worboys et al., 2010). However, the inherent complexity 
of biological systems makes monitoring natural ecosystems costly 
and challenging, especially when the studies are conducted manu-

ally and in tropical ecosystems characterized by high biodiversity 
(Kallimanis et al., 2012). Therefore, a key enabling task in support-
ing conservation efforts is the automatic identification of the intri-
cate interactions within landscapes to estimate their heterogeneity, 
thereby supporting conservation efforts.

Landscape heterogeneity identification has been approached 
from a spatial perspective using coverage and spectral indices ob-

tained from satellite imagery (Ndao et al., 2021; Radocaj et al., 2020). 
These spectral indices enable monitoring vegetation properties by 
identifying specific land cover types or their distinct properties, 
as reflected in unique spectral values compared to the surround-

ing area (Radocaj et  al., 2020). However, the scale at which these 
indices operate is unsuitable when the required analysis goes be-

yond vegetation and coverage types. Moreover, pixel-based analysis 
from satellite imagery might lead to misclassifying vegetation cover, 
especially considering its conservation status, and is ineffective at 
characterizing undergrowth conditions due to inherent scale limita-

tions (Al-Wassai & Kalyankar, 2013; Berra & Gaulton, 2021; Montero 
et al., 2023).

Using a different modality, soundscape analysis has become 
one of the more common alternatives to measuring ecological pro-

cesses. This approach is based on studying how sounds from vari-
ous sources, such as biological organisms, geophysical phenomena 
and human activities, can be used to understand these processes at 

different temporal and spatial scales (Fuller et al., 2015; Pijanowski 
et al., 2011). In this context, passive acoustic monitoring (PAM) has 
become popular in land environments, employing sound to monitor 
wildlife and enabling an understanding of their dynamics (Dumyahn 
& Pijanowski, 2011; Gibb et al., 2018; Stowell & Sueur, 2020; Sueur 
& Farina, 2015; Sugai et al., 2019). This type of monitoring has been 
made possible through advancements in digital recording technol-
ogy, enabling the remote, autonomous and effective collection of 
acoustic activity in studied ecosystems (Acevedo & Villanueva-
Rivera, 2006; Sousa-Lima et al., 2013). Additionally, massive data-

sets are generated due to their capacity for deployment in extensive 
areas over prolonged periods, offering a broad and detailed perspec-

tive on changes and patterns in the soundscape.
PAM data have generally been used to monitor sound-emitting 

species through automatic detection methodologies using ma-

chine learning and deep learning techniques (Bedoya et  al.,  2014; 

Dufourq et al., 2020; LeBien et al., 2020; Nolasco et al., 2023; Zhao 

et al., 2017). Regarding the analysis of the soundscape and its re-

lationship with ecological processes, different methodologies have 
been proposed to discriminate soundscape components (Bellisario 
et al., 2019), identify various types of habitats or coverages (Apoux 
et  al.,  2023; Castro-Ospina et  al.,  2024; Gómez et  al.,  2018), and 
differentiate between the transitional states of ecosystems (Castro-
Ospina et al., 2023; Rendon et al., 2022). These proposals have in 
common the use of supervised learning methods, requiring labels 
of the habitat type or the state of transformation for the learning 
process. Relying on labels for the learning process in biological and 
ecological applications represents a problem because there is a 
high degree of uncertainty in the phenomena, and the states of the 
ecosystems are not necessarily known a priori. Limiting the analy-

sis to identifying specific habitat types or discrete changes in eco-

systems restricts the understanding of the phenomenon (Rendon 
et al., 2022).

Several acoustic indices have been developed to represent 
the complexity of the landscapes based on their features, such as 
species richness, sound dissimilarities between remote areas, and 
anthropogenic activity, among others (Gasc et  al.,  2015). These 
indices have been used to identify dissimilarity among types of 
coverages (Barbaro et al., 2022; Hayashi et al., 2020), provide in-

formation about habitat changes (Sánchez-Giraldo et  al.,  2021), 
and analyse the behaviours of acoustic communities (Pijanowski 

4.	 This unsupervised approach offers a new perspective on understanding ecological 
and biological interactions and advances soundscape analysis. The soundscape 
decomposition into sonotypes underscores the method's advantage, offering the 
possibility to associate sonotypes with species and identify their contribution to 
the similarity proposed by the graph.

K E Y W O R D S
Ecoacoustics, graphical lasso, landscape heterogeneity, network inference, passive acoustic 
monitoring, soundscape, unsupervised learning
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et al., 2011), by analysing the relations between acoustic diversity 
generated by the indices and the heterogeneity in composition 
and configuration of the landscape in different habitats. However, 
despite their utility in evaluating the acoustic properties of the 
landscape without requiring labels, their applicability as a proxy 
for acoustic biodiversity has been recently questioned, as contra-

dictory patterns have been observed in different geographical re-

gions and environments (Alcocer et al., 2022; Bicudo et al., 2023; 

Llusia, 2024).
Previous studies (Burivalova et  al.,  2019) explore how indus-

trial logging affects animal vocalization diversity in tropical forests 
using soundscape recordings to assess alpha and beta diversity 
through soundscape saturation and dissimilarity measures based 
on acoustic indices. They note the lack of a standardized sound 
similarity measure, as discussed in (Bormpoudakis et  al.,  2013), 
and suggest that higher similarity in recordings from areas of low 
diversity implies subtractive homogenization. Conversely, lower 
similarity paired with high diversity indicates additive heteroge-

nization. On the other hand, (Bormpoudakis et al., 2013) demon-

strated that ambient sound is not only spatially heterogeneous but 
also directly related to habitat-type structure. They provided ev-

idence of habitat-specific acoustic signatures using unsupervised 
learning techniques, showing that each habitat type has a unique 
soundscape that can be used to identify and monitor ecologi-
cal processes. This approach underscores the potential of using 
acoustic properties to define and differentiate habitat types be-

yond traditional species-specific concepts. Based on these find-

ings, no previous research has identified landscape heterogeneity 
by analysing biophony by decomposing the landscape into acous-

tic entities without relying on species-specific approaches, acous-

tic indices or general landscape measures.
In this work, we aim to address the challenge of estimating het-

erogeneity among different geographical locations using unlabeled 
data from PAM. By building on the structural properties of the data, 
we leverage network science techniques, which have been employed 
to understand complex systems such as the human brain, where 
some analysis identifies similarities between different brain regions 
(as in The Human Connectome Project, http://​www.​human​conne​
ctome​proje​ct.​org/​), genomic analysis, disease evolution, ecological 
networks and social networks (Fu et al., 2021; Gao et al., 2021; Li 

et al., 2021; Zhou et al., 2022). Our approach uses a sparse Gaussian 
graphical model, Graphical Lasso (GLasso) (Friedman et  al.,  2008), 
which generates a sparse precision matrix containing similarity in-

formation. GLasso has been effectively applied in various fields, 
including psychology, gene analysis, and neuroscience (Bhushan 
et al., 2019; Huang et al., 2020; Ranciati et al., 2021), where it han-

dles different types of input data. This method is advantageous be-

cause it forces small partial correlation coefficients to zero, inducing 
sparsity in the graph and making it easier to interpret by reducing the 
number of links (Friedman et al., 2008). This method allows for the 
establishment of similarity between variables and, through a graph 
representation, illustrates the heterogeneity or similarity between 
different geographical locations, where nodes represent a distinct 

geographical location and links indicate the presence of a relation-

ship between sites.
The key novelty of our analysis lies in decomposing the sound-

scape into acoustic entities called sonotypes, which are sound pat-
terns occupying the same time-frequency acoustic space, using the 
unsupervised methodology by (Guerrero et  al.,  2023). It showed 
that identifying sonotypes at a location corresponds to their bio-

phony and changes according to the time of day. By counting the 
occurrences of each sonotype at different sites, we can determine 
the acoustic structure of each location. This structure is a unique 
acoustic fingerprint, encompassing all frequency bands and enabling 
a comprehensive soundscape analysis to describe the landscape's 
sound. Each site is characterized by the variety of sonotypes pres-

ent and their proportion throughout the day relative to others. This 
pattern creates a unique signature for each location, allowing com-

parisons between different sites. Using these acoustic structures as 
input features, we leverage network science techniques to identify 
and visualize the relationships between geographical sites. We anal-
yse the relationships based on the sonotypes and their temporal and 
frequency distribution.

We validate the proposed approach in two case studies. In 
the first case, we apply the graph model to acoustic structures 
extracted from an acoustic dataset acquired through PAM in an 
agricultural region in Colombia. The second case study involves 
analysing the same acoustic dataset but at different times of the 
day to identify changes in the graph according to soundscape 
changes during the day. Correlating our findings with ecologi-
cal metrics such as Bray–Curtis dissimilarity estimation (Bray & 
Curtis,  1957; Deichmann et  al.,  2017) and spectral indices ob-

tained from satellite imagery (Radocaj et al., 2020) at the studied 
site reveals significant insights into landscape heterogeneity. Our 
approach illustrates the contribution of sonotypes to the similarity 
patterns identified by the graph. It shows that acoustic monitor-
ing, enhanced by network science techniques, complements tra-

ditional ecological methods, offering a nuanced understanding of 
biodiversity and ecosystem dynamics.

2  |  MATERIAL S AND METHODS

2.1  |  Unsupervised acoustic heterogeneity 
identification and graphic representation

The analysis presented in this study encompasses a series of steps 
(Figure 1) aimed at identifying heterogeneity among geographical 
sites using PAM data. First, a signal analysis was carried out to 
identify and remove sound files predominantly associated with 
geophony, specifically intense rain events, using the rain detection 
algorithm proposed by (Bedoya et  al.,  2017). Subsequently, we 
applied the unsupervised methodology proposed by (Guerrero 
et  al.,  2023), a comprehensive acoustic analysis framework 
involving an initial preprocessing step designed to reduce 
background noise, followed by the automatic decomposition of 
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recordings into sonotypes, acoustic entities composed of unique 
frequencies and time frames. Using these identified sonotypes, 
we constructed an acoustic structure for each site, represented 
as an m × n matrix indicating the number of occurrences of each 
sonotype (n) at each site (m). Afterward, acoustic similarities 
among geographical locations were identified using a graph 
inference technique (Graphical Lasso—GLasso) based on the 
acoustic structure. Finally, we performed an analysis seeking to 
interpret the links created by the model from sonotypes and from 
an ecology perspective.

We developed an evaluation case by simulating a soundscape to 
analyse the generality of the graph model and establish a ground 
truth. In this case, we generated various acoustic structures by cre-

ating sonotypes and their occurrences in hypothetical locations, ex-

amining scenarios where sites were either expected or not expected 
to be connected in the model (e.g. similar acoustic structures be-

tween sites, different acoustic structures, the same sonotypes but 
with varying numbers of occurrences, etc.). The design and evalua-

tion of this evaluation case are presented in Appendix S1, demon-

strating the correct functionality of the graph model used in this 
study.

Additionally, we tested the performance of the graph methodol-
ogy in two case studies. The first case study applied the proposed 
framework to the acoustic data described in Section 2.2.1 (Puerto 
Wilches dataset). Then, to analyse the temporal influence of the 
Puerto Wilches soundscape, we examined it by time slots, forming 
case study 2 (Section 2.2.2). Finally, to validate the performance of 
our proposed methodology, we conducted a heterogeneity analysis 

by comparing our graph inference results with other commonly used 
methods. This comparison involved aligning our findings with spec-

tral indices derived from satellite imagery, performing a Bray–Curtis 
dissimilarity analysis, and calculating the Spearman correlation 
coefficient.

2.1.1  |  Automatic sonotypes identification

The input features for the network inference model are the 
acoustic structures of each sampled site. This acoustic structure is 
determined by the sonotypes found at each site and their number 
of occurrences.

To estimate the sonotypes present in the soundscape (acous-

tic data), we use (Guerrero et  al.,  2023) proposal. This unsuper-
vised methodology automatically segments the acoustic activity 
present in the audio recordings and clusters them based on their 
acoustic features (frequency information and cepstral coefficients) 
similarities. The resulting clusters exhibit distinct acoustic patterns 
that can be associated with species calls, referred to as sonotypes. 
Additionally, in (Guerrero et al., 2023), it was demonstrated that it 
is possible to characterize biophony through sonotypes similarly to 
how acoustic indices such as ACI, BI, NP, and SO indices do.

In this approach, sonotypes are not directly linked to specific spe-

cies calls. Instead, we focus on working with sonotypes as descrip-

tors of the soundscape and utilizing their occurrence frequencies to 
generate the acoustic structure of each site. This methodology does 
not require any parameterization.

F I G U R E  1  Unsupervised acoustic heterogeneity identification framework. It begins with the input data, composed of acoustic data from 
different geographical sites. This is followed by segregating this data into unique acoustic entities, or sonotypes. These sonotypes are then 
used to map the acoustic structure of each location, forming a matrix that quantifies the presence of each sonotype per site. The process 
continues with a Gaussian graphical model to discern acoustic similarities between the sites, culminating in an analysis that interprets these 
relationships from an ecological perspective.
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2.1.2  |  Acoustic structures of the sites

Once sonotypes were obtained, we generated the acoustic structures 
of each study site by compiling the number of occurrences of each 
sonotype (n) in each sampled site (m), thus resulting in a matrix m × n . 
Each row of the matrix corresponds to a unique site (Figure 2). This 
graphical representation illustrates the occurrence of identified 
sonotypes at a particular site. Each bar corresponds to a unique 
sonotype (S1, S2, … , Sn) obtained automatically from (Guerrero 
et al., 2023) proposal. The length of each bar is proportional to the 
number of occurrences of sonotypes, providing a rapid view of the 
predominant acoustic patterns at the site.

These acoustic structures facilitate both quantitative compar-
isons of sonotypes within the same site and across different sites. 
By examining these structures, experts can identify the richness 
of sonotypes, acoustic diversity, and potential differences in bio-

phony composition among various geographical sites. This method 
offers comprehensive insights into the acoustic behaviour of 
sonotypes at each site. It provides a nuanced understanding of the 
soundscape, enhancing our ability to interpret and compare the 
complex acoustic environments of natural habitats. This approach 
does not require either training or prior knowledge of the number 
of species and allows the estimation of the acoustic structure of 
the site.

2.1.3  |  Gaussian graphical model for acoustic 
heterogeneity identification

Gaussian graphical models (GGM) comprise several features or 
variables represented by nodes and links showing relationships 
among those features or variables. Thus, the absence of a link shows 
a nonexistent relationship between variables.

Graphical Lasso estimates a precision matrix by applying L1 

(Lasso) regularization to the elements. To estimate the precision ma-

trix �, GLasso assumes multivariate Gaussian distribution with mean 
� and covariance matrix � (Friedman et al., 2008).

Consider a scaled and centered data matrix X ∈ ℝ
m×n where n 

measures the occurrence of the sonotypes in each sampled site m, 

and � ∈ ℝ
m×m its covariance matrix. The algorithm aims to estimate 

a sparse precision matrix � = �
−1 where � ∈ ℝ

m×m is the inverse co-

variance matrix and correspond to pairs of variables that are condi-
tionally independent. The conditional dependence relationships can 
be represented by a graph where nodes represent the sites (in the 
case of our study), and edges connect a pair of nodes based on their 
relationship (Mazumder & Hastie, 2011). To calculate the precision 
matrix, GLasso problem minimizes a L1-regularized negative log-
likelihood as is showing in Equation (1):

(1)argmin
�≻ 0

= − log det (�) + tr(S�) + � ∥ �∥1,

F I G U R E  2  Example of the acoustic structures. Figure (a) illustrates the acoustic structure of site one, while figure (b) displays a 
similar structure from site m. Each radial bar, denoted as S1 to Sn, corresponds to a unique sonotype detected in the soundscape, and 
it is represented in different colours, with its length indicating the number of occurrences. The chart serves as an acoustic fingerprint, 
highlighting the diversity of sonotypes and providing a visual review of the biophony of the site. The variation in sonotype occurrences 
across the two sites enables comparative analysis, showcasing that even sites with similar acoustic entities may exhibit different sonotype 
occurrence patterns.

Acoustic structre site 1 

Sn

30

Acoustic structre site m 

30

(a) (b)
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where S is the sample covariance matrix calculated from sonotypes 
matrix X, ∥ �∥1 represents the sum of the absolute values of �, � is a 

tuning parameter which control the sparsity of �.

To estimate the precision matrix using Graphical Lasso, we used 
the ‘GraphicalLassoCV’ function from the ‘scikit-learn’ library ver-
sion 1.5.1 in Python (Pedregosa et al., 2011). This function performs 
tuning parameter selection for � through cross-validation. Once the 
precision matrix has been obtained, we used ‘NetworkX’ library ver-
sion 3.2.1 in Python (Hagberg et al., 2008) to create the graph that 
shows the relationship between geographical locations based on � 

results.
Due to the sparsity induced by GLasso, many values in the pre-

cision matrix are zero. However, a threshold is defined to determine 
the links that remain. Only the values that exceed this threshold are 
considered, ensuring that statistically significant correlations are re-

tained, reducing the likelihood of spurious connections. Empirically, 
we validated the threshold by comparing the resulting network 
structures against known ecological relationships, ensuring that the 
selected threshold provides a meaningful and interpretable repre-

sentation of the data.

2.1.4  |  Acoustic heterogeneity identification 
analysis

Once we identify the similarities among sites due to the links 
created by the Graph Lasso model, we interpret the model using the 
sonotypes that constitute the acoustic structure and its information. 
Given the significant number of sonotypes, we analysed matrix X 

to estimate the Total Variation Distance (TVD) to identify the most 
relevant sonotypes in each pair of connected sites. TVD measures 
the difference between two probability distributions and is 
presented as follows:

where Pi and Qj represent the relative frequencies of sonotype k at sites 
i  and j, respectively. Here, n denotes the total number of sonotypes 
considered in the analysis, consistent with the value obtained from 
Section 2.1.2. For each pair of sites i  and j, the counts of detected 
sonotypes are extracted, and their relative frequencies are calculated 
by dividing each sonotype counting by the total count of all sonotypes 
at that site. A TVD value of 0 indicates that the two distributions are 
identical (i.e. the relative frequency or proportion of each sonotype is 
the same in both sites). In contrast, 1 indicates the maximum possible 
difference between them. The result is a new matrix D ∈ ℝ

p×n with the 
TVD values of each sonotype n at each relevant site pair p.

To identify the most representative sonotypes from matrix D, 

we first calculate the median and standard deviation of the TVD for 
each sonotype across each pair of sites. We then define a thresh-

old for selecting relevant sonotypes by adjusting the median down-

ward by 0.02 times the standard deviation. This specific threshold 
was chosen based on both theoretical considerations and empirical 

validation. Theoretically, it ensures that sonotypes with low variabil-
ity are prioritized, which are likely to be more representative of the 
acoustic structure of the sites. Sonotypes with TVD values below 
this threshold are considered significant.

Having identified the most representative sonotypes for each 
pair of sites, we utilize their frequency-time information (from 
Section 2.1.1) to create a visual representation that will help to un-

derstand the link between a pair of sites. This was achieved in two 
complementary ways: We plotted individual sonotypes as coloured 
dots and crosses on a scatter plot, with the position of each dot cor-
responding to the hour of detection and its peak frequency. Dots 
represent sonotypes significantly related to similarity, while crosses 
denote sonotypes associated considerably with differences among 
pairs of sites. Alongside this, by aggregating the count of sonotypes 
detected at each hour throughout the day, we produced a line graph 
that depicts the temporal acoustic pattern for each site. This rep-

resentation allows an understanding of the GLasso links by identi-
fying common sonotypes at the sites and their distribution in the 
soundscape.

The algorithms implemented for this proposal are available at 
Approach algorithms here.

2.2  |  Case studies

We tested the capabilities of the Graphical Lasso model to estimate 
similarities from acoustic structures among different geographical 
locations using two case studies. In case study 1, we analysed data 
from PAM related to an oil palm plantation site. In contrast, in case 
study 2, we examined the same acoustic data but in different time 
slots to assess their temporal influence.

2.2.1  |  Case 1: Puerto Wilches acoustic dataset

In this case study, we used a real acoustic database derived from 
PAM conducted in a rural area of the municipality of Puerto Wilches, 
Santander, Colombia (7°21′52.5″ N, 73°51′33.0″ W). The landscape of 
this area is predominantly covered by oil palm plantations of different 
ages (75%). It also features a mix of secondary vegetation (7.6%), 
patches of forest (6.13%), grasslands (5.5%), and areas of aquatic 
vegetation (3.2%). Although the region includes several buildings 
and a network of secondary roads serving oil palm plantations and 
livestock farming, anthropogenic components are notably low due to 
minimal human activity. These roads are private, with infrequent use 
primarily limited to plantation personnel. Residential buildings are 
sparse and distant from recording locations, reducing the likelihood 
of significant anthropogenic sound disturbances.

The dataset consists of 19,598 audio recordings collected over 
10 days in March 2021 (dry season) from 17 sites within the selected 
area (see Figure 3). A Song Meter Mini device (Wildlife Acoustics, 
Inc.) was used for data collection at each sampling site, programmed 
to record 1 min every 10 min with a sampling rate of 48 kHz. Each 
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recorder was placed at a minimum distance of 300 m from the other. 
Considering the 9 km2 extent of the study area, this spacing aimed 
to ensure spatial independence among recordings by minimizing the 
influence of shared sound sources and obtaining a representative 
sample of the acoustic variability across the landscape. In Figure 3a, 

the general location and the different types of cover of the sites are 
shown, and in Figure 3b, the arrangement and geographical location 
of the recorders used are displayed.

In this case study, we address the problem of identifying simi-
larities among sites using acoustic data in an unsupervised way. In 
this context, we do not have a ground truth graph that represents 
expert-defined connections. Instead, we have the acoustic dataset 
and the classification of coverages where the data were collected.

This dataset was previously analysed in Guerrero et al.  (2023), 
where the identified sonotypes exhibited trends similar to acoustic 
indices commonly associated with biophony. These findings support 
the assumption that, given the characteristics of the study area, the 
acoustic patterns extracted through sonotypes predominantly re-

flect biophonic activity.

2.2.2  |  Case 2: Puerto Wilches temporal analysis

From an acoustic perspective, landscapes include diverse sounds 
arising from biophonic (sounds produced by animals), geophonic 
(environmental sounds such as rain or wind) and anthropophonic 

F I G U R E  3  Study site in Puerto Wilches, Santander, Colombia. (a) Spatial distribution of the recorders and landscape cover type. (b) 
Zoomed-in view showing the exact location of each recorder, labeled with its corresponding ID.
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(human-related) sources. Although all these components can coexist, 
biophony clearly dominates the acoustic environment in our specific 
study area (see Section 2.2.1). Given this biophonic predominance, 
the acoustic landscape exhibits inherent daily dynamics, reflecting 
variations in species activity and vocalization patterns throughout 
the day.

Previous analyses conducted in other ecosystems have shown 
that dividing acoustic communities into distinct temporal segments 
provides a better approximation for understanding their intrin-

sic variability and daily community dynamics (Barbaro et al., 2022; 

Deichmann et  al.,  2017; Rendon et  al.,  2022; Sánchez-Giraldo 
et al., 2021). Considering these precedents, our second case study 
aims to dissect the acoustic structure of the sites across four distinct 
time frames: dawn (5–8), day (8–16), dusk (16–20) and night (20–5). 
The sonotypes found in case 1 (Section 2.2.1) were used in this case. 
Here, the counting of occurrences at each site is carried out, taking 
into account each time slot previously established.

To analyse this scenario alongside case study 1, we calculate the 
graph density, defined as the proportion of existing links relative to 
the total number of possible links. This metric provides insights into 
how connectivity patterns among sites change throughout the day 
compared to the overall connectivity patterns obtained when ana-

lysing data across all daily periods.
The acoustic dataset used for case studies 1 and 2 is available 

here.

2.3  |  Acoustic heterogeneity comparison with 
other methods

To perform a comparison with the Graphical Lasso method (applied 
to acoustic structures), we generated a graph representation from 
two different methods commonly used in ecology to measure 
similarities and estimate the heterogeneity of the landscape 
(Legendre & Legendre,  1998). The first method used is called 
Bray–Curtis dissimilarity (Bray & Curtis,  1957) using acoustic 
structures derived from the evaluation case presented in the 
Appendix  S1 and case study 1, and the second method is the 
remotely sensed indicators or spectral indices (Jinru & Su, 2017; 

Radocaj et  al.,  2020) associated with the site evaluated in case 
study 1.

2.3.1  |  Comparison method using acoustic 
structures and Bray–Curtis dissimilarity

This method is considered reliable for quantifying differences be-

tween ecological abundance data collected from multiple sampling 
locations. The computation of this Bray–Curtis dissimilarity method 
involves summing the absolute differences between the counts and 
dividing this by the sum of the abundances in two sites. The for-
mula for calculating Bray–Curtis dissimilarity d between site i and i′ 

is presented in Equation (3) where the counts are denoted by nij and 

their sample totals are ni+ In this case, we used the acoustic structure 
matrix described in Section 2.1.2,

When sites are identical: nij = ni� j, the dissimilarity value will be 
0, and 1 otherwise.

To estimate the dissimilarity matrix for all sites, the normalized 
acoustic structures matrix will be used as input data, and it will be 
computed using the pdist function from the SciPy library version 
1.13.1 in Python (Virtanen et al., 2020).

2.3.2  |  Comparison method using remotely sensed 
indicators or spectral indices

These indices are obtained from remote sensing as satellites by cap-

turing electromagnetic wave reflectance information from canopies. 
They are used to perform evaluations of vegetation cover, growth dy-

namics, conservation and monitoring ecosystem health, among oth-

ers (Xue & Su, 2017). Table 1 presents the vegetation indices used to 
estimate similarities between the different geographical sites.

These indices were calculated on the Google Earth engine 
platform using Sentinel 2 satellite with a 10 × 10 pixel resolution. 

(3)
di,i� =

J
∑

j= 1

∣ nij − ni� j ∣

ni+ − ni�+

.

TA B L E  1  Spectral indices generated by satellite imagery used to 
identify similarities between geographical locations.

Index Definition Reference

AD Canopy height Potapov et al. (2021)

NDRE Normalized Difference Red 
Edge

Gitelson and 
Merzlyak (1997)

EVI Enhanced Vegetation Index Huete et al. (2002)

COB Coverage Fitzgerald 
et al. (2010)

SLAVI Specific Leaf Area 
Vegetation Index

Ali et al. (2017)

NDMI Normalized Difference 
Moisture Index

Gao (1996)

SL Slope Equator 
Studios (2023)

BR (MSBI) Misra Soil Brightness Index Xue and Su (2017)

NDBI Normalized Difference 
Built-up Index

Zha et al. (2003)

NDVI Normalized Difference 
Vegetation Index

Kriegler et al. (1969)

DI More distance grass area 
greater connectivity

Gao (1996)

DN Distance forest patches 
using COB

Gao (1996)

ICHN Human Footprint Index Correa Ayram et al.
(2017)

FM Fragmentation Jaeger (2000)
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Subsequently, in QGIS software, a 100 m buffer was applied to each 
sampled site, and the median value of each index was computed for 
all locations. This process resulted in a 17 × 14 matrix (17 locations 
and 14 indices). The normalized version of this matrix will be the 
input data for Graphical Lasso analysis to estimate the comparisons.

3  |  RESULTS

3.1  |  Case 1: Puerto Wilches dataset

Once the performance of the method was proven using simulated 
data with ground truth (see Appendix S1), we evaluated Graphical 
Lasso performance on a real ecoacoustic dataset. Here, we analyse 
the connections between the sites based on the sonotypes present 
at each connected site (or unconnected). As an unsupervised case, 

we do not know the expected connections a priori; for this reason, 
we interpreted the connected sites through their sonotypes and 
sonotypes time-frequency information, and then we compared the 
results with the other two methods commonly used in ecology to 
identify similarities among geographical zones.

3.1.1  |  Acoustic structures

The acoustic dataset was analysed following the descriptions pre-

sented in Sections 2.1.1 and 2.1.2. As a result, we obtained a 17 × 292 

matrix that describes the number of occurrences of the 292 sono-

types present in each of the 17 sites during the 10 days of recording. 
Thus, each place will be described by its acoustic structure, as in the 
example presented in Figure 4, where only the first 10 sonotypes 
(the same 10 for each place) were taken to a better representation. 

F I G U R E  4  For each sampled site in Puerto Wilches, Santander, Colombia, acoustic structures were created, each consisting of the same 
sonotypes. As determined by expert documentation, colours across these structures represent the land cover type, where yellow represents 
oil palm plantations, light green represents secondary vegetation and dark green represents forests. The coverage type information was not 
used to estimate the acoustic heterogeneity or connections among sites.
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The sonotype occurrence matrix was normalized and used as input 
data for Graphical Lasso and Bray-Curtis comparison analyses.

3.1.2  |  Graphical lasso model

Utilizing this network inference method, we generate a 17 × 17 

precision matrix that provides information about the similarities 
among the analysed locations. The Graphical Lasso model 
optimizes the estimation of the precision matrix by penalizing the 
�1-norm of its elements, controlled by a regularization parameter 
� . In our implementation using scikit-learn's GraphicalLassoCV, 
this regularization parameter is named alpha. The optimal alpha 
found through cross-validation was 0.025, corresponding to 
� = 0.025 in the mathematical formulation. We considered only 
absolute precision matrix values above 0.3 to construct the final 
network graph. Values above this threshold indicate strong partial 
correlations, highlighting the most robust connections among 
sites and ensuring a sparse, interpretable representation of the 
landscape structure.

In this case, considering that we have information regarding 
each place's geographical coordinates and land cover classification, 
we use this data to represent the nodes in the network. Each node 
is positioned according to its corresponding geographical location 
(see Figure  3), where each colour indicates its land cover type. 
Specifically, yellow represents oil palm plantations, light green rep-

resents secondary vegetation, and dark green represents forests. 
The width of the edges in the network corresponds to the higher 
values of the precision matrix, denoting strong connections between 
the two sites.

Figure 5 depicts the Graphical Lasso model using acoustic struc-

ture information, illustrating acoustic similarities across different 

geographical sites. This model highlights the uniformity within the 
oil palm plantation sites (dark grey sites in the Figure) and reveals a 
link between two of the four forest areas (black sites in the Figure). 
Notably, the distinct nodes 4 and 6 are associated with a smaller for-
est segment, potentially affected by the edge effect and the nearby 
presence of oil palm plantations or other land cover types. On the 
other side, nodes 2 and 8 are strongly connected, showing sono-

types in common and similar acoustic activity despite the land cover 
difference and geographical distance at which they are located (see 
Section 3.1.5).

3.1.3  |  Bray–Curtis dissimilarity graph

Using the normalized sonotype occurrence matrix, we calculated the 
Bray–Curtis dissimilarity to estimate the similarities and relationships 
among geographical locations. The result is a 17 × 17 distance matrix 
with values ranging from 0 to 1, where values closer to 0 indicate 
higher similarity.

To visualize this distance matrix, we represented it as a graph. 
Each node in the graph corresponds to a sampled site, placed ac-

cording to its geographic location. The colour of each node rep-

resents the type of coverage for that site. The colour significance 
is the same as in the Graphical Lasso network, and the links in 
the graph were determined based on the values in the dissimi-
larity matrix, where values below 0.4 were used for establishing 
connections.

The Bray–Curtis dissimilarity graph (see Figure  5b) displays 
a generally homogeneous pattern. This can be attributed to the 
similarity-based connections between the various forest areas, sec-

ondary vegetation zones, and oil palm plantations. It shares some 
strong connections with the Graphical Lasso graph, particularly 

F I G U R E  5  Comparative analysis of ecological heterogeneity identification models. Each node represents a distinct geographical site, 
with the colour of the node indicating the type of land cover: Yellow for oil palm plantations, light green for secondary vegetation, and dark 
green for forest. Edges represent the inferred similarities among sites. (a) Graphical Lasso model using acoustic structures. (b) Bray-Curtis 
model using acoustic structures. (c) Graphical Lasso model with satellite indices. Coverage-type information was not utilized in computing 
the models.

 2
0

4
1

2
1

0
x

, 2
0

2
5

, 6
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
esjo

u
rn

als.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

1
/2

0
4

1
-2

1
0

X
.7

0
0

4
1

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

9
/1

0
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



    |  1265GUERRERO et al.

to nodes representing oil palm plantations ((0–1), (0–10), (10–14), 
(13–16)). Moreover, this result shows similar patterns to the Glasso 
graph representation, where forest sites 11–12 are connected but 
not connected with other forest places, sites 2–8 and 2–3 are also 
connected, and site 9 has no connections as in Glasso.

The Spearman correlation coefficient between the Graphical 
Lasso and the Bray–Curtis graphs is 0.55, indicating a moderately 
positive correlation. These two graphs share 12 common edges. The 
Graphical Lasso graph can be seen as a sub-graph of the Bray–Curtis 
graph, as it contains 78% of the links present in the Glasso model. 
However, its sparsity is the key advantage of the Graphical Lasso 
model over the Bray–Curtis dissimilarity approach. The Graphical 
Lasso tends to assign zero weights to dissimilar connections, result-
ing in a graph with more distinct patterns that are easier to analyse 
and are closer to what is expected by the experts.

3.1.4  |  Remotely sensed indicators

On the other hand, we estimated a Graphical Lasso model using 
non-acoustic input features, specifically, a matrix of median values 
of coverage indices generated from satellite images (see Table  1). 
We obtained a 17 × 17 precision matrix describing similarities 
among the 17 locations. For this model, the optimal alpha parameter 
(corresponding to regularization �) found through cross-validation 
was 0.18. To obtain a sparse graph representation, we retained 
precision matrix values above 0.7, following the same construction 
process described previously for the acoustic Graphical Lasso model.

It is possible to see in Figure  5c that the resulting graph con-

tains several links among the geographical sites, suggesting a pre-

dominantly homogeneous landscape. The primary connections 
observed are between the oil palm plantations and the other two 
land cover types. The Spearman correlation coefficient between 
acoustic Glasso and spectral indices Glasso is 0.11, indicating a non-
correlation, evident in Figure 5 where only 3 links are shared: (1–10), 
(10–14), and (11–12).

In this satellite data analysis, interconnected forest regions reveal 
analogous patterns within the imagery as in the case of nodes (11–12) 
(11–6), a trend also observed among the oil palm plantations. Here, the 
Graphical Lasso highlights the uniformity of their spectral signatures. 
The connections between sites, including (4–8), (6–10), and (1–6), un-

cover a pattern of uniformity in the satellite imagery that bridges the 
oil palm plantations with the small forest fragments. These linkages 
highlight that the captured features for these land covers are simi-
lar, exhibiting poor variation in the spectral data. Similarly, the links 
involving node 9 with additional oil palm locales imply a shared spec-

tral characteristic. In contrast, node 2 is different, exhibiting unique 
patterns that diverge from other land covers, suggesting variations 
in vegetation values taken by the satellite. This starkly contrasts the 
acoustic Graphical Lasso model, where node 2 aligns with other nodes 
in acoustic patterns, while node 9 appears isolated.

Acoustic features provide an advantage when it is challeng-

ing to discern between land cover types and thus understand the 

heterogeneity among sites. It leverages the biophony patterns found 
at each location to identify similarities between sites, serving as a 
complementary tool to spectral indices analysis. Decomposing the 
landscape into acoustic entities allows for identifying the biophony 
patterns of each site, revealing similarities between the patterns 
across different locations.

3.1.5  |  Acoustic heterogeneity analysis and link 
interpretation

Building on the Graph Lasso model's identification of acoustic 
similarities among different geographical sites, we aimed to 
understand the nature of these connections by analysing the 
shared acoustic structures and sonotypes and their frequency-time 
information. This visualization depicts the frequency and timing 
of the most representative sonotypes for three site pairs: a pair 
whose connection is thicker (2–8), a connected pair (11–12), and a 
pair with no connection (4–9). Each dot, colour-coded for individual 
sonotypes, is plotted against the time of detection and its peak 
frequency in addition to each acoustic time pattern.

Figure 6 presents a ‘soundscape visualization’ where we can see 
the distribution of common sonotypes, their frequency information, 
and acoustic time patterns across pairs of sites. Figure 6a,b display 
sites connected by the acoustic Graph Lasso model. For instance, 
sites 2–8, representing different types of cover, exhibit similar 
acoustic patterns related to shared sonotypes in the soundscape. 
A similar trend in sonotype activity in the daytime is observable in 
the temporal acoustic pattern, with peaks during sunrise and dusk 
within the 2–7 kHz range. These peaks are potentially linked to an-

imal calls from those frequency bands, such as bird species, during 
those times.

Connections between sites 11 and 12, depicted in Figure  6b 

and associated with forested areas, exhibit a similar acoustic pat-
tern as observed in case a. There is a pronounced peak in activity at 
dusk, with frequencies ranging from 3 to 6 kHz. Additionally, high-
frequency detections (above 12 kHz) found at both locations suggest 
a comparable nocturnal pattern, possibly related to insect stridula-

tion or low-frequency bat calls.
Figure  6c illustrates the acoustic signatures of site pairs that 

Glasso did not connect, suggesting these are acoustically heteroge-

neous. These pairs of sites present particularities, such as the fact 
that they were isolated. It is possible to identify the difference in the 
distribution of the sonotypes and the acoustic time pattern, even 
showing the similar ones between both sites. In both cases, a low 
number of occurrences was present.

Interestingly, in the case of node 4, despite representing the 
same type of land cover as nodes 11–12, there is no acoustic con-

nection between them or with other forests (node 6). This indicates 
that, even though they share the same coverage type, a barrier, such 
as oil palm cultivation, produces remarkable differentiation in their 
acoustic structures. Therefore, they possibly do not share sonotypes 
or differ significantly in occurrences, which leads to the assumption 
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F I G U R E  6  Visualization of acoustic 
patterns of representative sonotypes 
in three different site pairs: (a) and (b) 
illustrate similarities among sites, while 
(c) highlights dissimilarity. The upper 
chart plot presents the temporal activity 
of sonotypes, with sonotype activity on 
the vertical axis and time of day on the 
horizontal axis. The lower scatter plots 
map sonotype frequencies, with each 
sonotype represented by either a dot or 
a cross, each colour-coded according to 
the specific sonotype indicated in the 
legend. The vertical axis represents peak 
frequency (Hz), and the horizontal axis 
represents time (h). This visualization 
captures the diversity and temporal 
distribution of sonotypes within the 
soundscape of each site pair.
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that there are animals that cannot move from one forest to another 
due to this physical barrier.

This type of representation, where the sonotype frequency 
bands are discernible, opens up the possibility of linking specific 
sonotypes to particular species, offering a valuable direction for fur-
ther ecological investigation.

3.2  |  Case 2: Puerto Wilches temporal analysis

By utilizing the results obtained from the acoustic tool for automatic 
sonotype identification in the Puerto Wilches dataset, we estimated 
the acoustic structures for each time frame, dawn (05–8), day (08–
16), dusk (16–20), and night (20–05), within each site to generate 
graphs that illustrate the inter-site connections. This process yielded 
four matrices with dimensions of 17 × 292. We used the normalized 
version of these matrices to generate the Graphical Lasso model 
for each time frame, following an identical procedure to the one 
presented in case study 1.

Figure 7 shows the four generated graphs, each representing a 
different time frame. These graphs illustrate the dynamic changes in 
acoustic patterns, resulting in variations in similarities and connec-

tions among the sites. Furthermore, they reveal significant patterns 
related to the same land cover types.

The graphical representation in Figure 6 sheds considerable light 
on these acoustic connections. Particularly for nodes 2 and 8, as de-

picted in Figure 6a, a pattern emerges where sonotypes are predom-

inantly active during the early morning and dusk. However, nodes 4 
and 9 are still not connected at different times of the day.

Figure 8 displays the network density across four distinct pe-

riods and the all-day graph generated in case study 2. Network 
density is a measure that indicates the proportion of actual con-

nections present in the graph compared to the maximum possible 
connections. In this case, the graph shows variability in network 
density, with the day period exhibiting the highest density among 
the individual periods. This could indicate a surge in acoustic ac-

tivity or events that facilitate or require increased communication 
or connectivity among the sites. Alternatively, this higher density 

F I G U R E  7  Graphical Lasso model for different time frames displaying similarities between sites using an edge. Nodes are located 
according to their geographical location, and their colour represents their cover land type: Yellow, oil palm plantation; light green, secondary 
vegetation; and dark green, forest. Land cover-type information was not utilized in computing the models.
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may reflect a generally greater acoustic similarity during the day-

time, potentially driven by a phenomenon of subtractive homog-

enization within acoustic communities active at this time. Given 
the direct relationship between sonotype composition and acous-

tic community structure and considering the historical landscape 
transformations in the region, marked by extensive deforestation 
and habitat fragmentation, this homogenization could result from 
a decline in the diversity of sound-emitting species, leading to the 
higher compositional similarity among sites. Furthermore, given 
our study scale, homogeneity in acoustic communities could be 
maintained as species active during the daytime could easily move 
or communicate between close sites, thus increasing the acoustic 
similarity.

The density in the all-day graph is notably higher than in any in-

dividual period, highlighting the cumulative nature of connections 
throughout the day. This elevated density demonstrates that the 
all-day graph combines the patterns shown in the temporal graphs, 
reflecting an overall network structure that is highly interconnected 
when all connections are considered together. This suggests an 
ecologically integrated and dynamically adaptive network where 
different nodes may play crucial roles at different times, contrib-

uting to a diverse and interconnected landscape throughout the 
day. Moreover, the temporal graphs allow for identifying specific 
patterns and interactions, indicating that individual period analyses 
are crucial for understanding nuanced ecological and soundscape 
dynamics.

4  |  DISCUSSION

In this study, we presented a novel unsupervised framework to 
assess landscape heterogeneity using PAM with network inference 
analysis. Our approach does not require prior labels for animal 
calls or coverage types, making it versatile for various ecological 
applications. This method enables the differentiation of geographical 
sites and landscapes based on acoustic structures composed of 
sonotypes. These sonotypes are distinctive sound patterns that 
occupy specific frequency and time intervals and can be linked to 
species calls (Guerrero et al., 2023). Utilizing the network inference 
data and sonotype-derived time-frequency information, we 
performed two graphical representations to elucidate connections 
among site pairs, revealing the spectral–temporal characteristics 
driving these similarities.

Our findings highlight the performance of acoustic structures 
as input features for the Graphical Lasso (Glasso) model over 
traditional methods, such as Bray–Curtis dissimilarity, in identi-
fying similarity patterns. The Glasso model's sparse architecture 
succeeds at revealing the intricate relationships within complex 
acoustic landscapes. Moreover, because these acoustic struc-

tures are composed of sonotypes, they offer details of how the 
soundscape is conformed, thereby providing a more nuanced 
analysis. This advantage becomes particularly evident when com-

pared to satellite indices, which struggle with accurately distin-

guishing areas in transitional states or small geographic extents 

F I G U R E  8  Network density across different periods and the all-day graph. This chart illustrates the network density for four separate 
time periods and an all-day graph, presented in case study 2. Each bar represents the density value, indicating the proportion of actual 
connections relative to the total possible connections within the network.
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despite their widespread use for land cover identification. In these 
cases, our acoustic analysis presents a viable complement, offer-
ing insights with a different resolution than what spectral indi-
ces can achieve, potentiating the results for identifying landscape 
heterogeneity.

(Bormpoudakis et al., 2013) demonstrated that ambient sound is 
spatially heterogeneous and directly associated with habitat struc-

ture, indicating habitat-specific acoustic signatures and that each 
habitat type has a unique soundscape. This underscores the impor-
tance of using acoustic characteristics to understand and identify 
similarities between what constitutes a habitat for sonoriferous 
species. Our study extends this idea by decomposing the sound-

scape into sonotypes, which allows for a detailed analysis of acous-

tic habitats and their heterogeneity. The strategic decomposition 
of the soundscape into sonotypes illustrates the method's advan-

tage in understanding ecological interactions, not just through sim-

ilarity analysis but also by understanding the underlying patterns 
and information driving these similarities. This approach marks a 
significant departure from conventional methods reliant solely on 
correlation, distance analyses and dendrograms, offering a more 
nuanced interpretation of ecological dynamics and the possibility 
of associating the identified acoustic patterns with species calls.

Analysing the Puerto Wilches dataset across distinct daily pe-

riods revealed temporal dependencies, validating the method's re-

sponsiveness to biological rhythms, consistent with previous studies 
(Barbaro et al., 2022; Deichmann et al., 2017; Rendon et al., 2022; 

Sánchez-Giraldo et al., 2021). Acoustic profiles in oil palm plantations 
showed different variations in graph structure across time frames, 
potentially reflecting species dynamics and anthropogenic influ-

ences shaped by structured agricultural practices. Such insights into 
the temporal dynamics of sonotypes within these human-modified 
landscapes are critical for developing targeted conservation strat-
egies that consider the biological and anthropogenic factors shap-

ing these ecosystems. Future research should consider the analysis 
of the landscape at different stages of the day. This could support 
the interpretation of models, as in the case of identifying species in 
(Jeantet & Dufourq, 2023).

Despite these strengths, the method has certain limitations. 
The Glasso model requires threshold selection, potentially hiding 
the direct interpretation of significant acoustic features, a common 
issue with other graph inference methods (Brugere et  al.,  2018). 
Consequently, future research should focus on developing inference 
models that minimise or eliminate subjective thresholding, enhanc-

ing intuitive ecological interpretation without auxiliary analyses 
such as distance computations.

Moreover, accurate ecological interpretation from acoustic data 
strongly depends on dataset quality and preprocessing to ensure 
that analysed acoustic signals predominantly represent biophony. 
Our methodology can potentially capture non-biophonic compo-

nents depending on dataset conditions. Thus, careful initial data-

set curation is crucial. In our dataset, anthropogenic disturbances 

were minimal and unlikely to influence our conclusions significantly. 
Nevertheless, scenarios with higher human activity could generate 
sonotypes, and they will still be informative, as they would contrib-

ute meaningfully to the similarity patterns and network structure, 
capturing a broader view of the acoustic landscape. However, cau-

tious interpretation may be necessary to ensure accurate ecological 
insights.

It is also important to highlight that our sonotype-based ap-

proach does not directly imply taxonomic identification or ecological 
similarity traditionally obtained through species lists or taxonomic 
measures. Instead, this method offers a complementary, unsuper-
vised, cost-effective approach to assessing biological similarity using 
acoustic data. This analytical advantage not only provides an initial 
indication of acoustic similarity but also suggests biological similarity 
among sites. Based on the positive link between acoustic similar-
ity and landscape connectivity proxies (e.g. Burivalova et al., 2019; 

Hayashi et al., 2020), our approach could also serve as a potential 
complementary tool for early assessment and monitoring of con-

nectivity or fragmentation measures at diverse spatial scales, aiding 
management and conservation decisions, especially when traditional 
ecological surveys are logistically or financially challenging.

This work not only highlights the potential of acoustic monitor-
ing in ecological network inference but also points towards the need 
for more interpretable and direct analysis methods. Doing so will 
pave the way for future studies to further refine and expand upon 
acoustic data in ecological research, enhancing our understanding of 
biodiversity and ecosystem dynamics.
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