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1 | INTRODUCTION

Understanding landscape heterogeneity, which refers to the un-
even distribution of elements across landscapes (Farina, 2022), is
crucial when designing and evaluating the impact of conservation
policies, particularly considering the increasing pressure these sys-
tems face from land use changes and global warming (Lambin &
Meyfroidt, 2011; Powers & Jetz, 2019; Walther et al., 2002). This
pressure has precipitated a global decline in biodiversity as essential
natural habitats necessary for the survival of different species are
diminished or outright eradicated (Newbold et al., 2015). Collecting
biodiversity data on various regions enables an understanding
of how landscape structure influences species, their behaviours,
and the dynamics within heterogeneous landscapes (Tscharntke
etal., 2012; Worboys et al., 2010). However, the inherent complexity
of biological systems makes monitoring natural ecosystems costly
and challenging, especially when the studies are conducted manu-
ally and in tropical ecosystems characterized by high biodiversity
(Kallimanis et al., 2012). Therefore, a key enabling task in support-
ing conservation efforts is the automatic identification of the intri-
cate interactions within landscapes to estimate their heterogeneity,
thereby supporting conservation efforts.

Landscape heterogeneity identification has been approached
from a spatial perspective using coverage and spectral indices ob-
tained from satellite imagery (Ndao et al., 2021; Radocaj et al., 2020).
These spectral indices enable monitoring vegetation properties by
identifying specific land cover types or their distinct properties,
as reflected in unique spectral values compared to the surround-
ing area (Radocaj et al., 2020). However, the scale at which these
indices operate is unsuitable when the required analysis goes be-
yond vegetation and coverage types. Moreover, pixel-based analysis
from satellite imagery might lead to misclassifying vegetation cover,
especially considering its conservation status, and is ineffective at
characterizing undergrowth conditions due to inherent scale limita-
tions (Al-Wassai & Kalyankar, 2013; Berra & Gaulton, 2021; Montero
etal., 2023).

Using a different modality, soundscape analysis has become
one of the more common alternatives to measuring ecological pro-
cesses. This approach is based on studying how sounds from vari-
ous sources, such as biological organisms, geophysical phenomena
and human activities, can be used to understand these processes at

4. This unsupervised approach offers a new perspective on understanding ecological
and biological interactions and advances soundscape analysis. The soundscape
decomposition into sonotypes underscores the method's advantage, offering the
possibility to associate sonotypes with species and identify their contribution to

the similarity proposed by the graph.

Ecoacoustics, graphical lasso, landscape heterogeneity, network inference, passive acoustic
monitoring, soundscape, unsupervised learning

different temporal and spatial scales (Fuller et al., 2015; Pijanowski
et al., 2011). In this context, passive acoustic monitoring (PAM) has
become popular in land environments, employing sound to monitor
wildlife and enabling an understanding of their dynamics (Dumyahn
& Pijanowski, 2011; Gibb et al., 2018; Stowell & Sueur, 2020; Sueur
& Farina, 2015; Sugai et al., 2019). This type of monitoring has been
made possible through advancements in digital recording technol-
ogy, enabling the remote, autonomous and effective collection of
acoustic activity in studied ecosystems (Acevedo & Villanueva-
Rivera, 2006; Sousa-Lima et al., 2013). Additionally, massive data-
sets are generated due to their capacity for deployment in extensive
areas over prolonged periods, offering a broad and detailed perspec-
tive on changes and patterns in the soundscape.

PAM data have generally been used to monitor sound-emitting
species through automatic detection methodologies using ma-
chine learning and deep learning techniques (Bedoya et al., 2014;
Dufourq et al., 2020; LeBien et al., 2020; Nolasco et al., 2023; Zhao
et al.,, 2017). Regarding the analysis of the soundscape and its re-
lationship with ecological processes, different methodologies have
been proposed to discriminate soundscape components (Bellisario
et al., 2019), identify various types of habitats or coverages (Apoux
et al.,, 2023; Castro-Ospina et al., 2024; Gémez et al., 2018), and
differentiate between the transitional states of ecosystems (Castro-
Ospina et al., 2023; Rendon et al., 2022). These proposals have in
common the use of supervised learning methods, requiring labels
of the habitat type or the state of transformation for the learning
process. Relying on labels for the learning process in biological and
ecological applications represents a problem because there is a
high degree of uncertainty in the phenomena, and the states of the
ecosystems are not necessarily known a priori. Limiting the analy-
sis to identifying specific habitat types or discrete changes in eco-
systems restricts the understanding of the phenomenon (Rendon
et al.,, 2022).

Several acoustic indices have been developed to represent
the complexity of the landscapes based on their features, such as
species richness, sound dissimilarities between remote areas, and
anthropogenic activity, among others (Gasc et al., 2015). These
indices have been used to identify dissimilarity among types of
coverages (Barbaro et al., 2022; Hayashi et al., 2020), provide in-
formation about habitat changes (Sanchez-Giraldo et al., 2021),
and analyse the behaviours of acoustic communities (Pijanowski
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et al., 2011), by analysing the relations between acoustic diversity
generated by the indices and the heterogeneity in composition
and configuration of the landscape in different habitats. However,
despite their utility in evaluating the acoustic properties of the
landscape without requiring labels, their applicability as a proxy
for acoustic biodiversity has been recently questioned, as contra-
dictory patterns have been observed in different geographical re-
gions and environments (Alcocer et al., 2022; Bicudo et al., 2023;
Llusia, 2024).

Previous studies (Burivalova et al., 2019) explore how indus-
trial logging affects animal vocalization diversity in tropical forests
using soundscape recordings to assess alpha and beta diversity
through soundscape saturation and dissimilarity measures based
on acoustic indices. They note the lack of a standardized sound
similarity measure, as discussed in (Bormpoudakis et al., 2013),
and suggest that higher similarity in recordings from areas of low
diversity implies subtractive homogenization. Conversely, lower
similarity paired with high diversity indicates additive heteroge-
nization. On the other hand, (Bormpoudakis et al., 2013) demon-
strated that ambient sound is not only spatially heterogeneous but
also directly related to habitat-type structure. They provided ev-
idence of habitat-specific acoustic signatures using unsupervised
learning techniques, showing that each habitat type has a unique
soundscape that can be used to identify and monitor ecologi-
cal processes. This approach underscores the potential of using
acoustic properties to define and differentiate habitat types be-
yond traditional species-specific concepts. Based on these find-
ings, no previous research has identified landscape heterogeneity
by analysing biophony by decomposing the landscape into acous-
tic entities without relying on species-specific approaches, acous-
tic indices or general landscape measures.

In this work, we aim to address the challenge of estimating het-
erogeneity among different geographical locations using unlabeled
data from PAM. By building on the structural properties of the data,
we leverage network science techniques, which have been employed
to understand complex systems such as the human brain, where
some analysis identifies similarities between different brain regions
(as in The Human Connectome Project, http://www.humanconne
ctomeproject.org/), genomic analysis, disease evolution, ecological
networks and social networks (Fu et al., 2021; Gao et al., 2021; Li
et al., 2021; Zhou et al., 2022). Our approach uses a sparse Gaussian
graphical model, Graphical Lasso (GLasso) (Friedman et al., 2008),
which generates a sparse precision matrix containing similarity in-
formation. GLasso has been effectively applied in various fields,
including psychology, gene analysis, and neuroscience (Bhushan
et al., 2019; Huang et al., 2020; Ranciati et al., 2021), where it han-
dles different types of input data. This method is advantageous be-
cause it forces small partial correlation coefficients to zero, inducing
sparsity in the graph and making it easier to interpret by reducing the
number of links (Friedman et al., 2008). This method allows for the
establishment of similarity between variables and, through a graph
representation, illustrates the heterogeneity or similarity between
different geographical locations, where nodes represent a distinct
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geographical location and links indicate the presence of a relation-
ship between sites.

The key novelty of our analysis lies in decomposing the sound-
scape into acoustic entities called sonotypes, which are sound pat-
terns occupying the same time-frequency acoustic space, using the
unsupervised methodology by (Guerrero et al., 2023). It showed
that identifying sonotypes at a location corresponds to their bio-
phony and changes according to the time of day. By counting the
occurrences of each sonotype at different sites, we can determine
the acoustic structure of each location. This structure is a unique
acoustic fingerprint, encompassing all frequency bands and enabling
a comprehensive soundscape analysis to describe the landscape's
sound. Each site is characterized by the variety of sonotypes pres-
ent and their proportion throughout the day relative to others. This
pattern creates a unique signature for each location, allowing com-
parisons between different sites. Using these acoustic structures as
input features, we leverage network science techniques to identify
and visualize the relationships between geographical sites. We anal-
yse the relationships based on the sonotypes and their temporal and
frequency distribution.

We validate the proposed approach in two case studies. In
the first case, we apply the graph model to acoustic structures
extracted from an acoustic dataset acquired through PAM in an
agricultural region in Colombia. The second case study involves
analysing the same acoustic dataset but at different times of the
day to identify changes in the graph according to soundscape
changes during the day. Correlating our findings with ecologi-
cal metrics such as Bray-Curtis dissimilarity estimation (Bray &
Curtis, 1957; Deichmann et al.,, 2017) and spectral indices ob-
tained from satellite imagery (Radocaj et al., 2020) at the studied
site reveals significant insights into landscape heterogeneity. Our
approachillustrates the contribution of sonotypes to the similarity
patterns identified by the graph. It shows that acoustic monitor-
ing, enhanced by network science techniques, complements tra-
ditional ecological methods, offering a nuanced understanding of
biodiversity and ecosystem dynamics.

2 | MATERIALS AND METHODS

2.1 | Unsupervised acoustic heterogeneity
identification and graphic representation

The analysis presented in this study encompasses a series of steps
(Figure 1) aimed at identifying heterogeneity among geographical
sites using PAM data. First, a signal analysis was carried out to
identify and remove sound files predominantly associated with
geophony, specifically intense rain events, using the rain detection
algorithm proposed by (Bedoya et al., 2017). Subsequently, we
applied the unsupervised methodology proposed by (Guerrero
et al, 2023), a comprehensive acoustic analysis framework
involving an initial preprocessing step designed to reduce
background noise, followed by the automatic decomposition of
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FIGURE 1 Unsupervised acoustic heterogeneity identification framework. It begins with the input data, composed of acoustic data from
different geographical sites. This is followed by segregating this data into unique acoustic entities, or sonotypes. These sonotypes are then
used to map the acoustic structure of each location, forming a matrix that quantifies the presence of each sonotype per site. The process
continues with a Gaussian graphical model to discern acoustic similarities between the sites, culminating in an analysis that interprets these

relationships from an ecological perspective.

recordings into sonotypes, acoustic entities composed of unique
frequencies and time frames. Using these identified sonotypes,
we constructed an acoustic structure for each site, represented
as an m x n matrix indicating the number of occurrences of each
sonotype (n) at each site (m). Afterward, acoustic similarities
among geographical locations were identified using a graph
inference technique (Graphical Lasso—GLlasso) based on the
acoustic structure. Finally, we performed an analysis seeking to
interpret the links created by the model from sonotypes and from
an ecology perspective.

We developed an evaluation case by simulating a soundscape to
analyse the generality of the graph model and establish a ground
truth. In this case, we generated various acoustic structures by cre-
ating sonotypes and their occurrences in hypothetical locations, ex-
amining scenarios where sites were either expected or not expected
to be connected in the model (e.g. similar acoustic structures be-
tween sites, different acoustic structures, the same sonotypes but
with varying numbers of occurrences, etc.). The design and evalua-
tion of this evaluation case are presented in Appendix S1, demon-
strating the correct functionality of the graph model used in this
study.

Additionally, we tested the performance of the graph methodol-
ogy in two case studies. The first case study applied the proposed
framework to the acoustic data described in Section 2.2.1 (Puerto
Wilches dataset). Then, to analyse the temporal influence of the
Puerto Wilches soundscape, we examined it by time slots, forming
case study 2 (Section 2.2.2). Finally, to validate the performance of
our proposed methodology, we conducted a heterogeneity analysis

by comparing our graph inference results with other commonly used
methods. This comparison involved aligning our findings with spec-
tral indices derived from satellite imagery, performing a Bray-Curtis
dissimilarity analysis, and calculating the Spearman correlation
coefficient.

2.1.1 | Automatic sonotypes identification

The input features for the network inference model are the
acoustic structures of each sampled site. This acoustic structure is
determined by the sonotypes found at each site and their number
of occurrences.

To estimate the sonotypes present in the soundscape (acous-
tic data), we use (Guerrero et al., 2023) proposal. This unsuper-
vised methodology automatically segments the acoustic activity
present in the audio recordings and clusters them based on their
acoustic features (frequency information and cepstral coefficients)
similarities. The resulting clusters exhibit distinct acoustic patterns
that can be associated with species calls, referred to as sonotypes.
Additionally, in (Guerrero et al., 2023), it was demonstrated that it
is possible to characterize biophony through sonotypes similarly to
how acoustic indices such as ACI, Bl, NP, and SO indices do.

In this approach, sonotypes are not directly linked to specific spe-
cies calls. Instead, we focus on working with sonotypes as descrip-
tors of the soundscape and utilizing their occurrence frequencies to
generate the acoustic structure of each site. This methodology does
not require any parameterization.
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2.1.2 | Acoustic structures of the sites

Once sonotypes were obtained, we generated the acoustic structures
of each study site by compiling the number of occurrences of each
sonotype (n)in each sampled site (m), thus resulting in a matrix m x n.
Each row of the matrix corresponds to a unique site (Figure 2). This
graphical representation illustrates the occurrence of identified
sonotypes at a particular site. Each bar corresponds to a unique
sonotype (51,52, ...,Sn) obtained automatically from (Guerrero
et al., 2023) proposal. The length of each bar is proportional to the
number of occurrences of sonotypes, providing a rapid view of the
predominant acoustic patterns at the site.

These acoustic structures facilitate both quantitative compar-
isons of sonotypes within the same site and across different sites.
By examining these structures, experts can identify the richness
of sonotypes, acoustic diversity, and potential differences in bio-
phony composition among various geographical sites. This method
offers comprehensive insights into the acoustic behaviour of
sonotypes at each site. It provides a nuanced understanding of the
soundscape, enhancing our ability to interpret and compare the
complex acoustic environments of natural habitats. This approach
does not require either training or prior knowledge of the number
of species and allows the estimation of the acoustic structure of
the site.

(a) Acoustic structre site 1
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2.1.3 | Gaussian graphical model for acoustic
heterogeneity identification

Gaussian graphical models (GGM) comprise several features or
variables represented by nodes and links showing relationships
among those features or variables. Thus, the absence of a link shows
a nonexistent relationship between variables.

Graphical Lasso estimates a precision matrix by applying L1
(Lasso) regularization to the elements. To estimate the precision ma-
trix ®, GLasso assumes multivariate Gaussian distribution with mean
u and covariance matrix X (Friedman et al., 2008).

Consider a scaled and centered data matrix X € R™" where n
measures the occurrence of the sonotypes in each sampled site m,
and X € R™" its covariance matrix. The algorithm aims to estimate
a sparse precision matrix ® = £~! where ® € R™"™ is the inverse co-
variance matrix and correspond to pairs of variables that are condi-
tionally independent. The conditional dependence relationships can
be represented by a graph where nodes represent the sites (in the
case of our study), and edges connect a pair of nodes based on their
relationship (Mazumder & Hastie, 2011). To calculate the precision
matrix, GLasso problem minimizes a L1-regularized negative log-
likelihood as is showing in Equation (1):

arg gurg) = — log det (@) + tr(SO®) + 4 || O||4, 1)

(b) Acoustic structre site m

FIGURE 2 Example of the acoustic structures. Figure (a) illustrates the acoustic structure of site one, while figure (b) displays a

similar structure from site m. Each radial bar, denoted as S1 to Sn, corresponds to a unique sonotype detected in the soundscape, and

it is represented in different colours, with its length indicating the number of occurrences. The chart serves as an acoustic fingerprint,
highlighting the diversity of sonotypes and providing a visual review of the biophony of the site. The variation in sonotype occurrences
across the two sites enables comparative analysis, showcasing that even sites with similar acoustic entities may exhibit different sonotype

occurrence patterns.
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where S is the sample covariance matrix calculated from sonotypes
matrix X, || ®||4 represents the sum of the absolute values of ©, 4 is a
tuning parameter which control the sparsity of ©.

To estimate the precision matrix using Graphical Lasso, we used
the ‘GraphicalLassoCV' function from the ‘scikit-learn’ library ver-
sion 1.5.1 in Python (Pedregosa et al., 2011). This function performs
tuning parameter selection for A through cross-validation. Once the
precision matrix has been obtained, we used ‘NetworkX’ library ver-
sion 3.2.1 in Python (Hagberg et al., 2008) to create the graph that
shows the relationship between geographical locations based on ©
results.

Due to the sparsity induced by GLasso, many values in the pre-
cision matrix are zero. However, a threshold is defined to determine
the links that remain. Only the values that exceed this threshold are
considered, ensuring that statistically significant correlations are re-
tained, reducing the likelihood of spurious connections. Empirically,
we validated the threshold by comparing the resulting network
structures against known ecological relationships, ensuring that the
selected threshold provides a meaningful and interpretable repre-

sentation of the data.

2.1.4 | Acoustic heterogeneity identification
analysis

Once we identify the similarities among sites due to the links
created by the Graph Lasso model, we interpret the model using the
sonotypes that constitute the acoustic structure and its information.
Given the significant number of sonotypes, we analysed matrix X
to estimate the Total Variation Distance (TVD) to identify the most
relevant sonotypes in each pair of connected sites. TVD measures
the difference between two probability distributions and is
presented as follows:

TVD(P,Q) =5 Y | Pk) - Qk) |, 2)
k=1

NI~

where P;and Q;represent the relative frequencies of sonotype k at sites
i and j, respectively. Here, n denotes the total number of sonotypes
considered in the analysis, consistent with the value obtained from
Section 2.1.2. For each pair of sites i and j, the counts of detected
sonotypes are extracted, and their relative frequencies are calculated
by dividing each sonotype counting by the total count of all sonotypes
at that site. A TVD value of O indicates that the two distributions are
identical (i.e. the relative frequency or proportion of each sonotype is
the same in both sites). In contrast, 1 indicates the maximum possible
difference between them. The result is a new matrix D € RP" with the
TVD values of each sonotype n at each relevant site pair p.

To identify the most representative sonotypes from matrix D,
we first calculate the median and standard deviation of the TVD for
each sonotype across each pair of sites. We then define a thresh-
old for selecting relevant sonotypes by adjusting the median down-
ward by 0.02 times the standard deviation. This specific threshold
was chosen based on both theoretical considerations and empirical

validation. Theoretically, it ensures that sonotypes with low variabil-
ity are prioritized, which are likely to be more representative of the
acoustic structure of the sites. Sonotypes with TVD values below
this threshold are considered significant.

Having identified the most representative sonotypes for each
pair of sites, we utilize their frequency-time information (from
Section 2.1.1) to create a visual representation that will help to un-
derstand the link between a pair of sites. This was achieved in two
complementary ways: We plotted individual sonotypes as coloured
dots and crosses on a scatter plot, with the position of each dot cor-
responding to the hour of detection and its peak frequency. Dots
represent sonotypes significantly related to similarity, while crosses
denote sonotypes associated considerably with differences among
pairs of sites. Alongside this, by aggregating the count of sonotypes
detected at each hour throughout the day, we produced a line graph
that depicts the temporal acoustic pattern for each site. This rep-
resentation allows an understanding of the GLasso links by identi-
fying common sonotypes at the sites and their distribution in the
soundscape.

The algorithms implemented for this proposal are available at

Approach algorithms here.

2.2 | Case studies

We tested the capabilities of the Graphical Lasso model to estimate
similarities from acoustic structures among different geographical
locations using two case studies. In case study 1, we analysed data
from PAM related to an oil palm plantation site. In contrast, in case
study 2, we examined the same acoustic data but in different time

slots to assess their temporal influence.

2.21 | Case 1: Puerto Wilches acoustic dataset

In this case study, we used a real acoustic database derived from
PAM conducted in a rural area of the municipality of Puerto Wilches,
Santander, Colombia(7°21'52.5” N, 73°51'33.0” W). The landscape of
this areais predominantly covered by oil palm plantations of different
ages (75%). It also features a mix of secondary vegetation (7.6%),
patches of forest (6.13%), grasslands (5.5%), and areas of aquatic
vegetation (3.2%). Although the region includes several buildings
and a network of secondary roads serving oil palm plantations and
livestock farming, anthropogenic components are notably low due to
minimal human activity. These roads are private, with infrequent use
primarily limited to plantation personnel. Residential buildings are
sparse and distant from recording locations, reducing the likelihood
of significant anthropogenic sound disturbances.

The dataset consists of 19,598 audio recordings collected over
10days in March 2021 (dry season) from 17 sites within the selected
area (see Figure 3). A Song Meter Mini device (Wildlife Acoustics,
Inc.) was used for data collection at each sampling site, programmed
to record 1min every 10min with a sampling rate of 48kHz. Each
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FIGURE 3 Study site in Puerto Wilches, Santander, Colombia. (a) Spatial distribution of the recorders and landscape cover type. (b)
Zoomed-in view showing the exact location of each recorder, labeled with its corresponding ID.

recorder was placed at a minimum distance of 300 m from the other.
Considering the 9km? extent of the study area, this spacing aimed
to ensure spatial independence among recordings by minimizing the
influence of shared sound sources and obtaining a representative
sample of the acoustic variability across the landscape. In Figure 3a,
the general location and the different types of cover of the sites are
shown, and in Figure 3b, the arrangement and geographical location
of the recorders used are displayed.

In this case study, we address the problem of identifying simi-
larities among sites using acoustic data in an unsupervised way. In
this context, we do not have a ground truth graph that represents
expert-defined connections. Instead, we have the acoustic dataset
and the classification of coverages where the data were collected.

This dataset was previously analysed in Guerrero et al. (2023),
where the identified sonotypes exhibited trends similar to acoustic
indices commonly associated with biophony. These findings support
the assumption that, given the characteristics of the study area, the
acoustic patterns extracted through sonotypes predominantly re-
flect biophonic activity.

2.2.2 | Case 2: Puerto Wilches temporal analysis

From an acoustic perspective, landscapes include diverse sounds
arising from biophonic (sounds produced by animals), geophonic
(environmental sounds such as rain or wind) and anthropophonic
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(human-related) sources. Although all these components can coexist,
biophony clearly dominates the acoustic environment in our specific
study area (see Section 2.2.1). Given this biophonic predominance,
the acoustic landscape exhibits inherent daily dynamics, reflecting
variations in species activity and vocalization patterns throughout
the day.

Previous analyses conducted in other ecosystems have shown
that dividing acoustic communities into distinct temporal segments
provides a better approximation for understanding their intrin-
sic variability and daily community dynamics (Barbaro et al., 2022;
Deichmann et al., 2017; Rendon et al., 2022; Sanchez-Giraldo
et al., 2021). Considering these precedents, our second case study
aims to dissect the acoustic structure of the sites across four distinct
time frames: dawn (5-8), day (8-16), dusk (16-20) and night (20-5).
The sonotypes found in case 1 (Section 2.2.1) were used in this case.
Here, the counting of occurrences at each site is carried out, taking
into account each time slot previously established.

To analyse this scenario alongside case study 1, we calculate the
graph density, defined as the proportion of existing links relative to
the total number of possible links. This metric provides insights into
how connectivity patterns among sites change throughout the day
compared to the overall connectivity patterns obtained when ana-
lysing data across all daily periods.

The acoustic dataset used for case studies 1 and 2 is available

here.

2.3 | Acoustic heterogeneity comparison with
other methods

To perform a comparison with the Graphical Lasso method (applied
to acoustic structures), we generated a graph representation from
two different methods commonly used in ecology to measure
similarities and estimate the heterogeneity of the landscape
(Legendre & Legendre, 1998). The first method used is called
Bray-Curtis dissimilarity (Bray & Curtis, 1957) using acoustic
structures derived from the evaluation case presented in the
Appendix S1 and case study 1, and the second method is the
remotely sensed indicators or spectral indices (Jinru & Su, 2017;
Radocaj et al., 2020) associated with the site evaluated in case
study 1.

2.3.1 | Comparison method using acoustic
structures and Bray-Curtis dissimilarity

This method is considered reliable for quantifying differences be-
tween ecological abundance data collected from multiple sampling
locations. The computation of this Bray-Curtis dissimilarity method
involves summing the absolute differences between the counts and
dividing this by the sum of the abundances in two sites. The for-
mula for calculating Bray-Curtis dissimilarity d between site i and i’
is presented in Equation (3) where the counts are denoted by n; and

their sample totals are n;, In this case, we used the acoustic structure

matrix described in Section 2.1.2,

J
| n: —nN,: |
El b (3)

i+~ My

When sites are identical: n; = ny;, the dissimilarity value will be
0, and 1 otherwise.

To estimate the dissimilarity matrix for all sites, the normalized
acoustic structures matrix will be used as input data, and it will be
computed using the pdist function from the SciPy library version
1.13.1 in Python (Virtanen et al., 2020).

2.3.2 | Comparison method using remotely sensed
indicators or spectral indices

These indices are obtained from remote sensing as satellites by cap-
turing electromagnetic wave reflectance information from canopies.
They are used to perform evaluations of vegetation cover, growth dy-
namics, conservation and monitoring ecosystem health, among oth-
ers (Xue & Su, 2017). Table 1 presents the vegetation indices used to
estimate similarities between the different geographical sites.

These indices were calculated on the Google Earth engine

platform using Sentinel 2 satellite with a 10 x 10 pixel resolution.

TABLE 1 Spectralindices generated by satellite imagery used to
identify similarities between geographical locations.

Index Definition Reference
AD Canopy height Potapov et al. (2021)
NDRE Normalized Difference Red Gitelson and

Edge Merzlyak (1997)

EVI Enhanced Vegetation Index Huete et al. (2002)
cOB Coverage Fitzgerald
et al. (2010)
SLAVI Specific Leaf Area Ali et al. (2017)
Vegetation Index
NDMI Normalized Difference Gao (1996)
Moisture Index
SL Slope Equator
Studios (2023)
BR (MSBI) Misra Soil Brightness Index Xue and Su (2017)
NDBI Normalized Difference Zha et al. (2003)
Built-up Index
NDVI Normalized Difference Kriegler et al. (1969)
Vegetation Index
DI More distance grass area Gao (1996)
greater connectivity
DN Distance forest patches Gao (1996)
using COB
ICHN Human Footprint Index Correa Ayram et al.
(2017)
FM Fragmentation Jaeger (2000)
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Subsequently, in QGIS software, a 100 m buffer was applied to each
sampled site, and the median value of each index was computed for
all locations. This process resulted in a 17 x 14 matrix (17 locations
and 14 indices). The normalized version of this matrix will be the
input data for Graphical Lasso analysis to estimate the comparisons.

3 | RESULTS
3.1 | Case 1: Puerto Wilches dataset

Once the performance of the method was proven using simulated
data with ground truth (see Appendix S1), we evaluated Graphical
Lasso performance on a real ecoacoustic dataset. Here, we analyse
the connections between the sites based on the sonotypes present

at each connected site (or unconnected). As an unsupervised case,

Site 1 Site 2
S4 S3 S4 S3 sS4

S8 S9

Site 11 Site 12
S4 S3

S8 S9 S8 S9

Site 16 Site 17
S4 S3
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we do not know the expected connections a priori; for this reason,
we interpreted the connected sites through their sonotypes and
sonotypes time-frequency information, and then we compared the
results with the other two methods commonly used in ecology to
identify similarities among geographical zones.

3.1.1 | Acoustic structures

The acoustic dataset was analysed following the descriptions pre-
sentedin Sections 2.1.1and 2.1.2. As aresult, we obtained a17 x 292
matrix that describes the number of occurrences of the 292 sono-
types present in each of the 17 sites during the 10days of recording.
Thus, each place will be described by its acoustic structure, as in the
example presented in Figure 4, where only the first 10 sonotypes

(the same 10 for each place) were taken to a better representation.

Site 3 Site 4 Site 5

S3 S4 S3

S1S6

S1S6

S8

Site 13 Site 14 Site 15

S4 S3

S1S6

FIGURE 4 Foreach sampled site in Puerto Wilches, Santander, Colombia, acoustic structures were created, each consisting of the same
sonotypes. As determined by expert documentation, colours across these structures represent the land cover type, where yellow represents
oil palm plantations, light green represents secondary vegetation and dark green represents forests. The coverage type information was not

used to estimate the acoustic heterogeneity or connections among sites.
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The sonotype occurrence matrix was normalized and used as input

data for Graphical Lasso and Bray-Curtis comparison analyses.

3.1.2 | Graphical lasso model

Utilizing this network inference method, we generate a 17 x 17
precision matrix that provides information about the similarities
among the analysed locations. The Graphical Lasso model
optimizes the estimation of the precision matrix by penalizing the
¢1-norm of its elements, controlled by a regularization parameter
A. In our implementation using scikit-learn's GraphicalLassoCV,
this regularization parameter is named alpha. The optimal alpha
found through cross-validation was 0.025, corresponding to
4 =0.025 in the mathematical formulation. We considered only
absolute precision matrix values above 0.3 to construct the final
network graph. Values above this threshold indicate strong partial
correlations, highlighting the most robust connections among
sites and ensuring a sparse, interpretable representation of the
landscape structure.

In this case, considering that we have information regarding
each place's geographical coordinates and land cover classification,
we use this data to represent the nodes in the network. Each node
is positioned according to its corresponding geographical location
(see Figure 3), where each colour indicates its land cover type.
Specifically, yellow represents oil palm plantations, light green rep-
resents secondary vegetation, and dark green represents forests.
The width of the edges in the network corresponds to the higher
values of the precision matrix, denoting strong connections between
the two sites.

Figure 5 depicts the Graphical Lasso model using acoustic struc-

ture information, illustrating acoustic similarities across different

(a) Graphical Lasso
Acoustic structures

(b) Bray-Curtis
Acoustic structures

geographical sites. This model highlights the uniformity within the
oil palm plantation sites (dark grey sites in the Figure) and reveals a
link between two of the four forest areas (black sites in the Figure).
Notably, the distinct nodes 4 and 6 are associated with a smaller for-
est segment, potentially affected by the edge effect and the nearby
presence of oil palm plantations or other land cover types. On the
other side, nodes 2 and 8 are strongly connected, showing sono-
types in common and similar acoustic activity despite the land cover
difference and geographical distance at which they are located (see
Section 3.1.5).

3.1.3 | Bray-Curtis dissimilarity graph

Using the normalized sonotype occurrence matrix, we calculated the
Bray-Curtis dissimilarity to estimate the similarities and relationships
among geographical locations. The resultis a17 x 17 distance matrix
with values ranging from O to 1, where values closer to O indicate
higher similarity.

To visualize this distance matrix, we represented it as a graph.
Each node in the graph corresponds to a sampled site, placed ac-
cording to its geographic location. The colour of each node rep-
resents the type of coverage for that site. The colour significance
is the same as in the Graphical Lasso network, and the links in
the graph were determined based on the values in the dissimi-
larity matrix, where values below 0.4 were used for establishing
connections.

The Bray-Curtis dissimilarity graph (see Figure 5b) displays
a generally homogeneous pattern. This can be attributed to the
similarity-based connections between the various forest areas, sec-
ondary vegetation zones, and oil palm plantations. It shares some

strong connections with the Graphical Lasso graph, particularly

(c) Graphical Lasso
Remotely sensed indicators

l Urban factories Grassland . 0il palm

FIGURE 5 Comparative analysis of ecological heterogeneity identification models. Each node represents a distinct geographical site,
with the colour of the node indicating the type of land cover: Yellow for oil palm plantations, light green for secondary vegetation, and dark
green for forest. Edges represent the inferred similarities among sites. (a) Graphical Lasso model using acoustic structures. (b) Bray-Curtis
model using acoustic structures. (c) Graphical Lasso model with satellite indices. Coverage-type information was not utilized in computing

the models.
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to nodes representing oil palm plantations ((0-1), (0-10), (10-14),
(13-16)). Moreover, this result shows similar patterns to the Glasso
graph representation, where forest sites 11-12 are connected but
not connected with other forest places, sites 2-8 and 2-3 are also
connected, and site 9 has no connections as in Glasso.

The Spearman correlation coefficient between the Graphical
Lasso and the Bray-Curtis graphs is 0.55, indicating a moderately
positive correlation. These two graphs share 12 common edges. The
Graphical Lasso graph can be seen as a sub-graph of the Bray-Curtis
graph, as it contains 78% of the links present in the Glasso model.
However, its sparsity is the key advantage of the Graphical Lasso
model over the Bray-Curtis dissimilarity approach. The Graphical
Lasso tends to assign zero weights to dissimilar connections, result-
ing in a graph with more distinct patterns that are easier to analyse

and are closer to what is expected by the experts.

3.1.4 | Remotely sensed indicators

On the other hand, we estimated a Graphical Lasso model using
non-acoustic input features, specifically, a matrix of median values
of coverage indices generated from satellite images (see Table 1).
We obtained a 17 x 17 precision matrix describing similarities
among the 17 locations. For this model, the optimal alpha parameter
(corresponding to regularization 1) found through cross-validation
was 0.18. To obtain a sparse graph representation, we retained
precision matrix values above 0.7, following the same construction
process described previously for the acoustic Graphical Lasso model.

It is possible to see in Figure 5c that the resulting graph con-
tains several links among the geographical sites, suggesting a pre-
dominantly homogeneous landscape. The primary connections
observed are between the oil palm plantations and the other two
land cover types. The Spearman correlation coefficient between
acoustic Glasso and spectral indices Glasso is 0.11, indicating a non-
correlation, evident in Figure 5 where only 3 links are shared: (1-10),
(10-14), and (11-12).

In this satellite data analysis, interconnected forest regions reveal
analogous patterns within the imagery as in the case of nodes (11-12)
(11-6), a trend also observed among the oil palm plantations. Here, the
Graphical Lasso highlights the uniformity of their spectral signatures.
The connections between sites, including (4-8), (6-10), and (1-6), un-
cover a pattern of uniformity in the satellite imagery that bridges the
oil palm plantations with the small forest fragments. These linkages
highlight that the captured features for these land covers are simi-
lar, exhibiting poor variation in the spectral data. Similarly, the links
involving node 9 with additional oil palm locales imply a shared spec-
tral characteristic. In contrast, node 2 is different, exhibiting unique
patterns that diverge from other land covers, suggesting variations
in vegetation values taken by the satellite. This starkly contrasts the
acoustic Graphical Lasso model, where node 2 aligns with other nodes
in acoustic patterns, while node 9 appears isolated.

Acoustic features provide an advantage when it is challeng-
ing to discern between land cover types and thus understand the
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heterogeneity among sites. It leverages the biophony patterns found
at each location to identify similarities between sites, serving as a
complementary tool to spectral indices analysis. Decomposing the
landscape into acoustic entities allows for identifying the biophony
patterns of each site, revealing similarities between the patterns
across different locations.

3.1.5 | Acoustic heterogeneity analysis and link
interpretation

Building on the Graph Lasso model's identification of acoustic
similarities among different geographical sites, we aimed to
understand the nature of these connections by analysing the
shared acoustic structures and sonotypes and their frequency-time
information. This visualization depicts the frequency and timing
of the most representative sonotypes for three site pairs: a pair
whose connection is thicker (2-8), a connected pair (11-12), and a
pair with no connection (4-9). Each dot, colour-coded for individual
sonotypes, is plotted against the time of detection and its peak
frequency in addition to each acoustic time pattern.

Figure 6 presents a ‘soundscape visualization’ where we can see
the distribution of common sonotypes, their frequency information,
and acoustic time patterns across pairs of sites. Figure 6a,b display
sites connected by the acoustic Graph Lasso model. For instance,
sites 2-8, representing different types of cover, exhibit similar
acoustic patterns related to shared sonotypes in the soundscape.
A similar trend in sonotype activity in the daytime is observable in
the temporal acoustic pattern, with peaks during sunrise and dusk
within the 2-7kHz range. These peaks are potentially linked to an-
imal calls from those frequency bands, such as bird species, during
those times.

Connections between sites 11 and 12, depicted in Figure 6b
and associated with forested areas, exhibit a similar acoustic pat-
tern as observed in case a. There is a pronounced peak in activity at
dusk, with frequencies ranging from 3 to 6 kHz. Additionally, high-
frequency detections (above 12 kHz) found at both locations suggest
a comparable nocturnal pattern, possibly related to insect stridula-
tion or low-frequency bat calls.

Figure 6c illustrates the acoustic signatures of site pairs that
Glasso did not connect, suggesting these are acoustically heteroge-
neous. These pairs of sites present particularities, such as the fact
that they were isolated. It is possible to identify the difference in the
distribution of the sonotypes and the acoustic time pattern, even
showing the similar ones between both sites. In both cases, a low
number of occurrences was present.

Interestingly, in the case of node 4, despite representing the
same type of land cover as nodes 11-12, there is no acoustic con-
nection between them or with other forests (node 6). This indicates
that, even though they share the same coverage type, a barrier, such
as oil palm cultivation, produces remarkable differentiation in their
acoustic structures. Therefore, they possibly do not share sonotypes
or differ significantly in occurrences, which leads to the assumption
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that there are animals that cannot move from one forest to another
due to this physical barrier.

This type of representation, where the sonotype frequency
bands are discernible, opens up the possibility of linking specific
sonotypes to particular species, offering a valuable direction for fur-
ther ecological investigation.

3.2 | Case 2: Puerto Wilches temporal analysis

By utilizing the results obtained from the acoustic tool for automatic
sonotype identification in the Puerto Wilches dataset, we estimated
the acoustic structures for each time frame, dawn (05-8), day (08-
16), dusk (16-20), and night (20-05), within each site to generate
graphs that illustrate the inter-site connections. This process yielded
four matrices with dimensions of 17 x 292. We used the normalized
version of these matrices to generate the Graphical Lasso model
for each time frame, following an identical procedure to the one

presented in case study 1.
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Figure 7 shows the four generated graphs, each representing a
different time frame. These graphs illustrate the dynamic changes in
acoustic patterns, resulting in variations in similarities and connec-
tions among the sites. Furthermore, they reveal significant patterns
related to the same land cover types.

The graphical representation in Figure 6 sheds considerable light
on these acoustic connections. Particularly for nodes 2 and 8, as de-
picted in Figure 6a, a pattern emerges where sonotypes are predom-
inantly active during the early morning and dusk. However, nodes 4
and 9 are still not connected at different times of the day.

Figure 8 displays the network density across four distinct pe-
riods and the all-day graph generated in case study 2. Network
density is a measure that indicates the proportion of actual con-
nections present in the graph compared to the maximum possible
connections. In this case, the graph shows variability in network
density, with the day period exhibiting the highest density among
the individual periods. This could indicate a surge in acoustic ac-
tivity or events that facilitate or require increased communication

or connectivity among the sites. Alternatively, this higher density

@ 0816

[ Urban factories

Grassland . Oil palm

." dary veg .Forastl

FIGURE 7 Graphical Lasso model for different time frames displaying similarities between sites using an edge. Nodes are located
according to their geographical location, and their colour represents their cover land type: Yellow, oil palm plantation; light green, secondary
vegetation; and dark green, forest. Land cover-type information was not utilized in computing the models.

ASUDOIT SUOWIWO)) AANEaI) d[qeatjdde oYy £q PAUIAOS 2IB SA[ONIE YO (SN JO SA[NI 10§ AIRIqIT QUIUQ AJ[IA UO (SUONIPUOI-PUB-SULIDY/WOY" K1A KTRIqI[ouI[Uo//:Sd1Y) SUONIPUOY) PUB SWIAL, 9Y) S *[STOT/01/61] U0 ARIqIT UIUQ A[IM ‘TH00LXOT1Z-1+0/1111°01/10p/wod: K[im*Kreiquouriuorsfeunolsaqy/:sdny woiy papeojumod ‘9 ‘Sz0zT “X01Z1#0T



GUERRERO ET AL.

0.14

0.12 1

0.10 1

Graph density
3
(=]

o

=)

=
L

0.04 -

0.02 A

0.00 -
Dawn Day

Dusk Night All day

. C

Graph model

FIGURE 8 Network density across different periods and the all-day graph. This chart illustrates the network density for four separate
time periods and an all-day graph, presented in case study 2. Each bar represents the density value, indicating the proportion of actual
connections relative to the total possible connections within the network.

may reflect a generally greater acoustic similarity during the day-
time, potentially driven by a phenomenon of subtractive homog-
enization within acoustic communities active at this time. Given
the direct relationship between sonotype composition and acous-
tic community structure and considering the historical landscape
transformations in the region, marked by extensive deforestation
and habitat fragmentation, this homogenization could result from
a decline in the diversity of sound-emitting species, leading to the
higher compositional similarity among sites. Furthermore, given
our study scale, homogeneity in acoustic communities could be
maintained as species active during the daytime could easily move
or communicate between close sites, thus increasing the acoustic
similarity.

The density in the all-day graph is notably higher than in any in-
dividual period, highlighting the cumulative nature of connections
throughout the day. This elevated density demonstrates that the
all-day graph combines the patterns shown in the temporal graphs,
reflecting an overall network structure that is highly interconnected
when all connections are considered together. This suggests an
ecologically integrated and dynamically adaptive network where
different nodes may play crucial roles at different times, contrib-
uting to a diverse and interconnected landscape throughout the
day. Moreover, the temporal graphs allow for identifying specific
patterns and interactions, indicating that individual period analyses
are crucial for understanding nuanced ecological and soundscape

dynamics.

4 | DISCUSSION

In this study, we presented a novel unsupervised framework to
assess landscape heterogeneity using PAM with network inference
analysis. Our approach does not require prior labels for animal
calls or coverage types, making it versatile for various ecological
applications. This method enables the differentiation of geographical
sites and landscapes based on acoustic structures composed of
sonotypes. These sonotypes are distinctive sound patterns that
occupy specific frequency and time intervals and can be linked to
species calls (Guerrero et al., 2023). Utilizing the network inference
data and sonotype-derived time-frequency information, we
performed two graphical representations to elucidate connections
among site pairs, revealing the spectral-temporal characteristics
driving these similarities.

Our findings highlight the performance of acoustic structures
as input features for the Graphical Lasso (Glasso) model over
traditional methods, such as Bray-Curtis dissimilarity, in identi-
fying similarity patterns. The Glasso model's sparse architecture
succeeds at revealing the intricate relationships within complex
acoustic landscapes. Moreover, because these acoustic struc-
tures are composed of sonotypes, they offer details of how the
soundscape is conformed, thereby providing a more nuanced
analysis. This advantage becomes particularly evident when com-
pared to satellite indices, which struggle with accurately distin-

guishing areas in transitional states or small geographic extents
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despite their widespread use for land cover identification. In these
cases, our acoustic analysis presents a viable complement, offer-
ing insights with a different resolution than what spectral indi-
ces can achieve, potentiating the results for identifying landscape
heterogeneity.

(Bormpoudakis et al., 2013) demonstrated that ambient sound is
spatially heterogeneous and directly associated with habitat struc-
ture, indicating habitat-specific acoustic signatures and that each
habitat type has a unique soundscape. This underscores the impor-
tance of using acoustic characteristics to understand and identify
similarities between what constitutes a habitat for sonoriferous
species. Our study extends this idea by decomposing the sound-
scape into sonotypes, which allows for a detailed analysis of acous-
tic habitats and their heterogeneity. The strategic decomposition
of the soundscape into sonotypes illustrates the method's advan-
tage in understanding ecological interactions, not just through sim-
ilarity analysis but also by understanding the underlying patterns
and information driving these similarities. This approach marks a
significant departure from conventional methods reliant solely on
correlation, distance analyses and dendrograms, offering a more
nuanced interpretation of ecological dynamics and the possibility
of associating the identified acoustic patterns with species calls.

Analysing the Puerto Wilches dataset across distinct daily pe-
riods revealed temporal dependencies, validating the method's re-
sponsiveness to biological rhythms, consistent with previous studies
(Barbaro et al., 2022; Deichmann et al., 2017; Rendon et al., 2022;
Sanchez-Giraldo et al., 2021). Acoustic profiles in oil palm plantations
showed different variations in graph structure across time frames,
potentially reflecting species dynamics and anthropogenic influ-
ences shaped by structured agricultural practices. Such insights into
the temporal dynamics of sonotypes within these human-modified
landscapes are critical for developing targeted conservation strat-
egies that consider the biological and anthropogenic factors shap-
ing these ecosystems. Future research should consider the analysis
of the landscape at different stages of the day. This could support
the interpretation of models, as in the case of identifying species in
(Jeantet & Dufourq, 2023).

Despite these strengths, the method has certain limitations.
The Glasso model requires threshold selection, potentially hiding
the direct interpretation of significant acoustic features, a common
issue with other graph inference methods (Brugere et al., 2018).
Consequently, future research should focus on developing inference
models that minimise or eliminate subjective thresholding, enhanc-
ing intuitive ecological interpretation without auxiliary analyses
such as distance computations.

Moreover, accurate ecological interpretation from acoustic data
strongly depends on dataset quality and preprocessing to ensure
that analysed acoustic signals predominantly represent biophony.
Our methodology can potentially capture non-biophonic compo-
nents depending on dataset conditions. Thus, careful initial data-

set curation is crucial. In our dataset, anthropogenic disturbances
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were minimal and unlikely to influence our conclusions significantly.
Nevertheless, scenarios with higher human activity could generate
sonotypes, and they will still be informative, as they would contrib-
ute meaningfully to the similarity patterns and network structure,
capturing a broader view of the acoustic landscape. However, cau-
tious interpretation may be necessary to ensure accurate ecological
insights.

It is also important to highlight that our sonotype-based ap-
proach does not directly imply taxonomic identification or ecological
similarity traditionally obtained through species lists or taxonomic
measures. Instead, this method offers a complementary, unsuper-
vised, cost-effective approach to assessing biological similarity using
acoustic data. This analytical advantage not only provides an initial
indication of acoustic similarity but also suggests biological similarity
among sites. Based on the positive link between acoustic similar-
ity and landscape connectivity proxies (e.g. Burivalova et al., 2019;
Hayashi et al., 2020), our approach could also serve as a potential
complementary tool for early assessment and monitoring of con-
nectivity or fragmentation measures at diverse spatial scales, aiding
management and conservation decisions, especially when traditional
ecological surveys are logistically or financially challenging.

This work not only highlights the potential of acoustic monitor-
ing in ecological network inference but also points towards the need
for more interpretable and direct analysis methods. Doing so will
pave the way for future studies to further refine and expand upon
acoustic data in ecological research, enhancing our understanding of

biodiversity and ecosystem dynamics.
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