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Abstract—Graph mining analyzes graphs to find core substruc-
tures (connected subgraphs) in applications that are modeled
using graphs. These identified substructures, based on frequency
or some other metric, are important as they reveal an inher-
ent feature or property in the given graph/forest. Interesting
substructures that are frequent or compress the graph well
offer insights into hidden regularities. The process of finding
these interesting patterns using unsupervised learning is termed
substructure discovery. SUBDUE is an early main-memory al-
gorithm developed for substructure discovery. Since then, this
algorithm has been extended using disk-based, database-oriented
approaches, and more recently using the Map/Reduce paradigm
to exploit distributed and parallel processing. Graph sizes have
increased steadily, thanks to the advent of the Internet and
social network applications. To model complex datasets – with
multiple types of entities and relationships – multilayer networks
(or MLNs) have been shown to be effective. MLNs have also
been shown to be superior as compared to simple and attributed
graphs for modeling complex data. MLNs are also useful for
modeling different data types using distinct layers. This paper
focuses on substructure discovery in heterogeneous multilayer
networks (one type of MLN) using the novel decoupling-based
approach. In this approach, each layer is processed independently
and then the results from two or more layers are composed
to identify substructures in the entire MLN. The algorithm
is designed and implemented, including the composition part,
using the Map/Reduce paradigm for understanding speedup.
After validating accuracy of results with ground truth, we
analyze speedup and response time of the proposed algorithm
and approach through extensive experimental analysis on large
synthetic datasets with diverse graph characteristics.

Index Terms—Substructure Discovery, Multilayer Networks,
Decoupling-approach, Map/Reduce Architecture

I. INTRODUCTION

Large applications that can be modeled using graphs are

ubiquitous. Graph models have been used for the analysis

of the World Wide Web’s structure [1], social-media data,

bio-informatics data [2], atoms and covalent relationships in

chemistry [3], etc. Graphs are better than other representations

for data that embed inherent relationships among objects or

entities. Graphs are also easy to understand. Graph models

use vertices and edges where each vertex of the graph will

correspond to an entity and each edge is a relationship between

two entities. Applications can be modeled using several graph

alternatives: (i) Simple graphs, (ii) Attributed graphs, and (iii)

Multilayer networks.

A. Need for Multilayer Network Model

Multilayer networks provide an alternate model for rep-

resenting complex datasets. It can capture each relationship

as a layer which is a separate simple graph increasing un-

derstandability. It also affords itself for flexible analysis of

layers. Nodes from different layers can also be connected by

an edge if relationships exist between two entity types. For

example, actor and director layers can be connected by the

‘direct-actor’ relationship where a director entity has an edge

with each actor entity s/he has directed in a movie. The design

of multilayer network model for a dataset is beyond the scope

of this paper and can be found in [4]. Multilayer networks,

by their structure, also offer flexibility to analyze each layer

individually (and in parallel) and arbitrary subsets of layer

combinations. Multilayer networks, based on entity types in

each layer and connectivity within and across layers, can be

classified into homogeneous MLNs (HoMLNs, Figure 1(a)),

heterogeneous MLNs (HeMLNs, Figure 1(b)), and hybrid

MLNs (HyMLNs, Figure 1(c)). Since the focus of this paper

is HeMLNs, thus we start with its formal definition.

Figure 1: MLN Types

Definition 1. A multilayer network MLN(G,X), is defined

by two sets of graphs. The set G = {G1, G2, . . . , Gn} contains

simple graphs (one for each layer), where Gi(Vi, Ei) is

defined by a set of vertices Vi and a set of edges Ei. An edge

e(v, u) ∈ Ei, connects vertices v and u, where v, u ∈ Vi.

The set X = {X1,2, X1,3, . . . , Xm−1,m} consists of bipartite

graphs1. Each graph Xi,j(Vi, Vj , Li,j) is defined by two sets

of vertices Vi and Vj and a set of edges (or links) Li,j , such

that for every link l(a, b) ∈ Li,j , a ∈ Vi and b ∈ Vj , where Vi

(Vj) is the vertex set of graph Gi (Gj). Some of Xi,j can be

empty.

Problem Addressed: Given an HeMLN with l layers – G1

1The number of bipartite graphs can be less or even more than the number
of graphs/layers. That is, m can be <= or even > n.
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(V1, E1), G2 (V2, E2), ..., Gl (Vl, El), where Vi and Ei

are the vertex and edge set in the ith layer and X =
{X1,2, X1,3, . . . , Xn−1,n} are interlayer bipartite graphs –

the goal is to discover substructures of the HeMLN for any

r layers correctly and efficiently using the decoupling ap-

proach. For correctness, r HeMLN layers under consideration

are aggregated into a simple graph using the Boolean OR-

operator, and substructures discovered on that simple graph

are used as Ground Truth (GT).

Use of Map/Reduce: We have used the Map/Reduce paradigm

as an example of the distributed and parallel processing

approach. Without loss of generality, any other paradigm (e.g.,

Spark) can be used in its stead without modifying the overall

approach.

Contributions of this paper are:

• Map/Reduce Algorithm for substructure discovery in a

layer.

• Map/Reduce Composition algorithm to correctly gen-

erate substructures spanning layers.

• Partitioned approach to both layer and interlayer graph

processing.

• Extensive experimental analysis on a large number of

synthetic graphs.

• Accuracy with ground truth, response time, and speedup

comparisons.

Road map: MLN analysis alternatives are briefly discussed in

Section II to highlight our choice. Section III has related work.

Preliminaries and terminology are outlined in Section IV. Sec-

tion V details the composition algorithm and Map/Reduce im-

plementation of the proposed substructure discovery. Detailed

experimental evaluation is given in Section VI. Section VII

has conclusions.

II. MLN ANALYSIS ALTERNATIVES AND CHALLENGES

Figure 2 shows three alternatives for performing analy-

sis on MLNs. Figure 2(a) shows the traditional approach,

where an MLN is conflated into a simple graph using type-

independent [5] and projection-based [6] approaches. As both

ignore type information for the transformation, they do not

support structure and semantics preservation. As observed in

the literature, without additional mappings, the above aggre-

gation approaches are likely to result in some information

loss and distortion of properties [7], or hide the effect of

different entity types and/or different intra- or inter-layer

relationships as elaborated in [8]. At the other end of the

spectrum, Figure 2(c) shows computing the result by traversing

the whole MLN as a single graph. Although this has been

implemented for community detection (e.g., Infomap recently,

[9]), this is likely to be computationally expensive and not

flexible as the number of layers and data sizes become large

and new MLN algorithms need to be developed for each

analysis.

Figure 2(b), on the other hand, shows an approach (termed

networking decoupling) where the analysis metric for each

layer is computed independently (possibly in parallel) during

the analysis (Ψ) phase only once and the results are composed

using a binary operator Θ as shown [10], [11]. Other layer

or interlayer information is not used while processing a

layer! This approach has been shown to be effective, can be

done for Boolean operations without aggregating and losing

type information. Furthermore, it has been shown to be more

efficient than the approaches shown in Figures 2(a) or (c).

Figure 2: Lossy (a) Vs. Decoupling (b) Vs. MLN approaches

The challenges in developing a substructure discovery al-

gorithm are: i) enumerating all connected subgraphs of any

size in a given graph or forest (completeness), ii) identifying

duplicates, if any, and remove them (soundness), iii) count

isomorphic substructures to apply the metric for each distinct

substructure and rank them, and iv) retain top-k substruc-

tures for the next iteration. The enumeration is typically

done iteratively increasing the connected subgraph size by 1

with each iteration. Evaluation of each substructure with the

desired metric (frequency or minimum description length) is

carried out after each iteration. To contain the search space, a

heuristic is applied to carry top-k results from each iteration.

Current algorithms do this on a simple graph or forest. How

the decoupling approach has been adapted to the HeMLN

substructure discovery is the focus of this paper and is

elaborated in Section V.

III. RELATED WORK

SUBDUE was the earliest main memory algorithm [12] devel-

oped for substructure discovery. It can perform both supervised

and unsupervised substructure discovery. It uses an iterative

algorithm to systematically generate larger substructures which

are evaluated using Minimum Description Length (MDL [13]).

SUBDUE uses the notion of a beam to restrict the number of

substructures carried to the next iteration.

AGM [14] and FSG [15] are two popular main memory

graph mining algorithms that use the apriori concept. These

approaches generate frequent (k+1) subgraphs from frequent

k-subgraphs. The FSG identifies repeating substructures in

graphs using an apriori approach [15]. This is different from

Subdue since it entails finding interesting substructures in a

graph or forest. Canonical labeling is added to the apriori

algorithm. The property that identical graphs have identical

canonical labeling has been strategically used to identify

frequent substructures. FSG determines canonical labels using

a flattened graph adjacency matrix.
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Disk-based graph mining algorithms [16]–[18] were devel-

oped to deal with larger graph sizes. Portions of the graph are

staged into memory for processing using buffer-management

techniques. Indexing was used to improve retrieval for staging.

gIndex [19] uses frequent substructures as units for indexing.

However, these solutions need explicit data marshaling be-

tween disk and main memory entailing developing buffer man-

agement strategies. This leads to the use of relational databases

for graph mining to leverage buffer management and query

optimization. HDB-Subdue [20] used the Relational DBMS for

graph representation and SQL to discover substructures. This

approach was able to scale to handle graphs with millions of

edges. However, self-joins on large relations and the number

of joins needed seemed to have limited scaling further.

A number of graph mining methods have shown success

in cloud-based deployments [21]. Splitting/partitioning large

graphs into manageable chunks for distributed processing is

explored in [22]. Scalable substructure discovery on large

simple graphs using Map/Reduce has been developed in [23].

A graph can be split into partitions in different ways, processed

by distributed and parallel architecture, and results from across

partitions combined to obtain correct results. This paper’s

focus is on MLNs instead of simple graphs. Further, the

decoupling-approach is chosen which entails the development

of a composition function for its efficient and flexible analysis.

It also uses extant substructure discovery for each layer. The

correctness of the composition algorithm is also validated by

comparing results with the ground truth.

IV. PRELIMINARIES AND TERMINOLOGY

Edge List as Input: A graph (layer, interlayer, or a par-

tition) is represented as a list of unordered edges. Each

edge is completely represented by a 5 element tuple2 <

El, Vsid, Vsl, Vdid, Vdl > where, El is edge label, Vsid is

source vertex ID, Vsl is source vertex label, Vdid is destination

vertex ID and Vdl is destination vertex label. In this context,

it is important to note that the vertex IDs (Vsid and Vdid)

are guaranteed to be unique. However, it is not necessary for

the vertex labels (Vsl and Vdl) and the edge label (El) to be

unique. Table I shows the edge list representation for the input

graph (or a layer) shown in Figure 3 (a).

Figure 3: Partitions for a HeMLN layer graph

This 5 element tuple edge representation (that includes di-

rection) is used to represent a k-edge substructure (a connected

graph with k edges and k+1 nodes) as a collection of k 1-edge

2This representation is generic and can be extended to attributed graphs
by using a distinct edge identifier in the edge representation. Our discussion
excludes multiple edges.

substructures. Our algorithm takes an input graph represented

as a text file with a 1-edge substructure per line.

Adjacency List: Adjacency list is a representation where each

vertex on which the edges are incident (both in and out) are

associated with the node using a list (of 1-edge substructures.)

This adjacency list is used for the expansion of a node in a

subgraph to generate new substructures. Table II shows the

adjacency list of the input layer graph shown in Figure 3 (a).

Table I: Edge List

Edge List

〈ab,4,A,5,B〉
〈ac,4,A,6,C〉
〈bd,5,B,7,D〉
〈ch,6,C,1,H〉
〈dc,7,D,6,C〉
〈ja,2,J,4,A〉
〈jh,2,J,1,H〉
〈ih,11,I,1,H〉
〈ja,10,J,12,A〉
〈ji,10,J,11,I〉

Table II: Adjacency List

Vertex

ID

Adjacency List

1 〈ch,6,C,1,H〉;〈jh,2,J,1,H〉;〈ih,11,I,1,H〉;
2 〈ja,2,J,4,A〉;〈jh,2,J,1,H〉;
4 〈ab,4,A,5,B〉;〈ac,4,A,6,C〉;〈ja,2,J,4,A〉;
5 〈ab,4,A,5,B〉;〈bd,5,B,7,D〉;
6 〈ac,4,A,6,C〉;〈dc,7,D,6,C〉;〈ch,6,C,1,H〉;
7 〈bd,5,B,7,D〉;〈dc,7,D,6,C〉;
10 〈ja,10,J,12,A〉;〈ji,10,J,11,I〉;
11 〈ih,11,I,1,H〉;〈ji,10,J,11,I〉;
12 〈ja,10,J,12,A〉;

Table III: Adjacency List Partitions

Vertex
ID

Adjacency List Partition
for p1

1 〈ch,6,C,1,H〉;〈jh,2,J,1,H〉;
〈ih,11,I,1,H〉;

2 〈ja,2,J,4,A〉;〈jh,2,J,1,H〉;
4 〈ab,4,A,5,B〉;〈ac,4,A,6,C〉;

〈ja,2,J,4,A〉;
5 〈ab,4,A,5,B〉;〈bd,5,B,7,D〉;
6 〈ac,4,A,6,C〉;〈dc,7,D,6,C〉;

〈ch,6,C,1,H〉;

Vertex
ID

Adjacency List Partition
for p2

7 〈bd,5,B,7,D〉;〈dc,7,D,6,C〉;
10 〈ja,10,J,12,A〉;〈ji,10,J,11,I〉;
11 〈ih,11,I,1,H〉;〈ji,10,J,11,I〉;
12 〈ja,10,J,12,A〉;

Graph Partitioning:

An MLN layer Li

can be partitioned

into p partitions

(Li
1
, Li

2
,..., Li

p) for

distributed processing.

We use range-based

partitioning [24] to

create the partitions

using vertex IDs. Each

graph partition3 is a

range of node IDs and

the size of each partition

need not be same. There

can be missing vertex

IDs in a given range. As

the ranges are disjoint, nodes in adjacency list partitions are

also disjoint. Each vertex ID in the range and its adjacency list

corresponds to a single adjacency list partition. If neighboring

nodes are in two partitions, the edge connecting them will be

in the adjacency list of both partitions. As a result, during

expansion, the same substructure can belong to many graph

partitions. As adjacency list partitions are indexed on vertex

IDs, each substructure is expanded only once.

Two partitions of the graph in Figure 3 (a) are shown in

Figure 3 (b). Partition p1 is assigned vertex IDs from 1 to 6,

whereas partition p2 is allotted vertex IDs 7 to 12 (see table in

Figure 3.) Both partitions are connected by blue edges, which

appear in different adjacency list partitions. The adjacency

list partitions are displayed in table III. The edges that occur

in both adjacency list partitions are < bd, 5, B, 7, D >,

<dc, 7, D, 6, C>, and <ih, 11, I, 1, H>. If these two parti-

tions belong to two layers, these edges will become interlayer

edges.

3Graph partition and partition are used interchangeably. Adjacency List
partition is an adjacency list for a specific graph partition.
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Figure 4: Duplicate substructure identification using canonical instances

Figure 5: Graph isomorphism and canonical substructures

Independent Expansion of Substructures: For substructure

discovery, substructures4 of progressively increasing size are

generated systematically in each iteration. As the best sub-

structures (for a given metric) can be of any size, all sizes (or

as specified by parameters) need to be generated. Hence, graph

expansion plays a salient part in the process of discovering

the best substructures. A k-edge substructure is expanded in

the kth iteration to general all (k+1)-edge substructures. Inde-

pendent expansion is done on each substructure and on each

node of every substructure using the appropriate adjacency

list partitions. As this unconstrained expansion generates an

unwieldy search space, a beam is used to select top-beam

substructures in each iteration to use in the next iteration.

Also, as this independent expansion results in the generation

of duplicate substructures within an iteration, care has to be

taken to remove duplicates in each iteration before applying

the metric.

Canonical Instance for Duplicate Elimination: Independent

expansion of substructures, as noted earlier, can lead to du-

plicate substructure instances. By a duplicate, we mean that

the same substructure instance may be generated more than

once during the expansion of different substructures in the

same iteration. Lexicographic ordering (or canonical form)

of substructure representation is used to identify duplicates.

Edges in a substructure are ordered based on edge label, then

source vertex label, then destination vertex label, and finally

source and destination vertex IDs. If any of the values match,

the comparison moves forward to the next component, else the

ordering is performed. A substructure can be uniquely repre-

sented using the lexicographic order of 1-edge components.

This is called a canonical k-edge instance. Intuitively, two

duplicate k-edge substructures must have the same ordering

of labels and vertex IDs when converted to canonical k-edge

instance. Figure 4 shows an example of duplicate substructures

and how duplicates have the same canonical instance. Note

that substructure < z, 1, A, 2, B > on the left has been

expanded with edge < y, 2, B, 5, B and substructure on the

right < y, 2, B, 5, B > has been expanded with the edge

< z, 1, A, 2, B >. All instances generated in each iteration

are converted to canonical form to eliminate duplicates.

4Substructures and substructure instances are used interchangeably. Sub-
structure instances contain vertex IDs from the graph. These are termed
canonical instances when the edges are ordered lexicographically. We also
refer to substructures which are exact isomorphs that are different from
substructure instances. These are referred to as canonical substructures where
relative ordering instead of lexicographic ordering of node IDs is used.

Canonical substructures for identifying Substructure Iso-

morphs: Exact isomorphs in a graph have the same structure

in terms vertex and edge labels as well as connectivity, but

differ in vertex IDs, in contrast to duplicates. After duplicate

elimination, we identify isomorphs to count their occurrences.

For this we need to convert canonical instances of substruc-

tures to canonical substructures using relative ordering of

vertex IDs. Intuitively, in the canonical form, two isomorphic

substructures have the same relative ordering of vertex num-

bers. Conversion to canonical substructure is done by replacing

each vertex ID with their relative positions in the instance

starting from 1. The inclusion of these relative positions is

critical for differentiating the connectivity of the instances.

Figure 5 shows an example of how canonical substructure is

created from the canonical instance. It can be seen that the

isomorphs have different canonical instances. Using the above

technique, the relative positioning of vertex IDs (2, 5, 4) for the

canonical instance 1 and (7, 10, 9) for the canonical instance

2 are converted to (1, 2, 3). Hence we can identify isomorphs

using canonical substructures.

A. Metrics Used for Ranking Substructures

The Minimum Description Length is an information-theoretic,

domain-independent metric that has been demonstrated to

emphasize the significance of a substructure in terms of its

ability to compress a complete graph or forest. Although it is

defined, originally, in terms of bits used for graph representa-

tion, we use the number of nodes and edges for that purpose.

The general formula for MDL (DL(G)/(DL(S) + DL(G|S)))

represents the description length of the substructure S being

evaluated, DL(G|S) represents the description length of the

graph G when compressed by replacing each instance of the

substructure S as a node, and DL(G) (or DL(S)) represents the

description length of the original graph (or the substructure S.)

The substructure of the graph achieves the highest compression

when the MDL value is the highest. Both the frequency of the

subgraph and its connectivity have an impact on compression.

The frequency of substructures can also be used as a metric

as used in FSG and others.

V. COMPOSITION ALGORITHM AND ARCHITECTURE

Details of using the decoupling approach for iterative sub-

structure discovery of HeMLNs are shown in Figure 6. During

the kth iteration, substructures of size k from each layer5 are

5For simplicity of discussion, two layers are shown. The algorithm and the
architecture work for more than two layers.
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expanded to generate all substructures of size k + 1. A layer

may be partitioned for distributed and parallel processing for

which range partitioning is used and partitioned substructure

discovery algorithm proposed in [24] is used. The composition

function takes generated substructure instances (after duplicate

elimination for each layer) along with interlayer edges to

generate substructure instances that span 2 layers that could

not be generated during the analysis phase of a layer as no

information is used other than the layer itself. Duplicates are

eliminated for the composed substructures. After duplicate

elimination, all substructures (from layer 1, layer 2, and

composed substructures) are grouped, and canonical instances

are relatively ordered for isomorphic substructure counting.

Then the metric is applied and each substructure is ranked.

Top-beam substructures (and their instances) are used for the

next iteration. The termination condition is checked after each

iteration, which is based on the maximum substructure size.iteration, which is based on the maximum substructure size.

Figure 6: Iterative Decoupling-Based Substructure Discovery

in HeMLN (kth iteration)

Composition algorithm He-ICA is shown as Algorithm 1

after introducing general notations used in Table V and the

adjacency lists used during composition in Table IV.

Table IV: Adjacency Lists used for Composition

Adj List Description

L1
AL Initially generated L1 adj list for iteration k = 1

L2
AL Initially generated L2 adj list for iteration k = 1

IL
1,2
AL

Adj list of interlayer edges for iteration k = 1

L1

ALk Adj list generated from k–edge instances of L1 for itera-
tion k where k = 2, 3, . . . , S − 1 and S is given max

L2

ALk Adj list generated from k–edge instances of L2 for itera-
tion k where k = 2, 3, . . . , S − 1 and S is given max

IL
1,2

ALk Adj list generated from top BEAM k–edge interlayer
instances in previous (k − 1)th iteration for iteration k
where k = 2, 3, . . . , S − 1 and S is given max

As shown in Algorithm 1, the input to our composition

algorithm is the list of k-edge composed instances IL
i,j
k ,

adjacency list of composed instances generated in previous

iteration IL
i,j

ALk , and adjacency list of ith and jth layer gener-

ated from k-edge expanded and not-expanded instances of ith

Table V: Table of Notations

Notation Description

k Used as subscript for iteration and takes values 1, 2, . . . , s−1
where s is size of substructures to be obtained.

i, j Used for indicating interlayer -ids, where i = 1, 2, . . . , n and
j = i+ 1 where n is total number of layers in HeMLN.

IL
i,j
k

Set of composed interlayer substructures of i,j and this changes
with iteration. For k = 1, it is list of interlayer edges.

IL
i,j

ALk Adjacency list of composed substructures of previous iteration
and this changes with iteration. For k = 1, its adjacency list
of interlayer edges.

Li
ALk Adjacency list of expanded substructures of i-th layer and this

changes with iteration.

L
j

ALk Adjacency list of expanded substructures of j-th layer and this
changes with iteration.

ks Each ks ∈ IL
i,j
k

, ks =< E1
l
, V 1

sid
, V 1

sl
, V 1

did
, V 1

dl
>

;< E2
l
, V 2

sid
, V 2

sl
, V 2

did
, V 2

dl
>; . . . ;<

Ek
l
, V k

sid
, V k

sl
, V k

did
, V k

dl
> as list of 5 tuples

where, El− edge label, Vsid− source vertex-id,
Vsl− source vertex label, Vdid− destination vertex-id, Vdl−
destination vertex label.

ci Canonical instance, generated after arranging the expanded
instance in lexicographical order.

Algorithm 1 Composition Algorithm He-ICA (kth iteration)

Require: ILi,j
k , ILi,j

ALk , Li
ALk , Lj

ALk

Ensure: Return Top beam substructures of size k+1

1: ILi,j
k+1

← ∅

2: for each k-edge instance ks ∈ ILi,j
k do

3: for each vertex-id v ∈ ks do
4: ELv ← {v ∈ ILi,j

ALk ∪ Li
ALk ∪ Lj

ALk |v.edgelist}
{edge list of v from union of adjacency lists}

5: for each edge e ∈ ELv do
6: if e /∈ ks then
7: ci ← merge ks to e in lexicographical order
8: if ci /∈ ILi,j

k+1
then

9: ILi,j
k+1

← ILi,j
k+1

∪ {ci}
{check for duplicates in the result set}

10: end if
11: end if
12: end for
13: end for
14: end for

and jth layer respectively (Li
ALk and L

j

ALk respectively). The

output generated is the (k + 1)-edge composed substructures

of kth iteration.

For each of the k-edge instances, we expand on all the

vertex IDs present in the instance using all the three adjacency

lists as depicted (lines 2 to 14.) We get all the edge lists

corresponding to the vertex ID from the union of all the three

adjacency lists as depicted in (lines 2 to 4.) We expand each

edge on vertex ID v and convert to canonical instance using

lexicographical order technique. This helps us to eliminate

duplicates as shown in (lines 5 to 9.) Hence, all the missing

substructures that span layers under consideration are gener-

ated using interlayer substructures and layer substructures.

A. Distributed Architecture

Map/Reduce architecture is used for the implementation, but

this can be any other distributed architecture without the need

5
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Figure 7: Complete Map/Reduce Architecture and Data Flow (kthiteration)

to change the overall approach sans minor details (e.g., no need

to load adjacency lists as they can be maintained in memory

across iterations if Spark is used.) The complete Map/Reduce

architecture and data flow is shown in Figure 7 including the

flow of results from one job to the next (for kth iteration.) The

first and second map/reduce jobs are utilized for performing

layer-wise expansion, which is the independent expansion of

subgraphs using the adjacency list for that partition.

In our composition, we employ the adjacency list of in-

terlayer edges during the first iteration. Beyond that we

use the adjacency list generated in the previous iteration

using the composed substructures. In addition, we generate

the substructure within the interlayer by exclusively utilizing

interlayer edges in the first iteration, and composed instances

in subsequent iterations for expansion purposes.

All the substructures from layer 1, layer 2, and the com-

posed substructures in job 3 are used in job 4 for substructure

evaluation. We rank the substructures based on MDL metric

and top-beam substructures are carried to the next iteration for

further expansion. This process continues until the termination

condition is satisfied.

VI. EXPERIMENTAL EVALUATION AND VALIDATION

In this section, we describe the Map/Reduce environment,

generation of synthetic HeMLN layers, and validation of

correctness using ground truth (GT). In addition to that, we an-

alyze a large number of synthetic datasets with varying graph

characteristics and map/reduce configurations. Table VI shows

the Expanse cluster (located at San Diego super-computing

center (SDSC)) details used for experiments.

Table VI: Expanse Cluster Details

What SDSC Expanse Configuration

SSCUs 13 SDSC Scalable Compute Units

Node Count 728

Cores/Node 128 built on 2 processors (64 cores each)

Processor AMD EPYC 7742

Memory/Node 256 GB DDR4 DRAM

Total Storage 1TB Intel P4510 NVMe PCIe SSD

Dataset Generation: For our experiments, we use a single

graph to generate as many layers of HeMLN as needed. This

allows us to generate layers with diverse characteristics in

terms of nodes, edges, and interlayer edges. This also allows us

to test the correctness using the GT. We embed substructures

(of different sizes with differing frequencies) for testing the

correctness of our algorithms.

Dataset Description: Synthetically generated datasets are

used to cover diverse input MLN characteristics. For each

graph, we further generated three random node distributions

that have an effect on intra and interlayer edges as well

as embedded substructure distribution. Table VII shows the

datasets used, their purpose, and M/R configurations used

for analysis. For these datasets, diverse two layer HeMLNs

Table VII: Dataset Description

Dataset Used For Layer M/R configs

Synthetic: Accuracy, 2M/2R, 4M/4R
50KV 100KE Response Time 8M/8R, 16M/16R

Synthetic Large: Response Time, 16M/16R, 32M/32R
1MV 4ME,2.5MV 10ME Speedup 64M/64R, 128M/128R

were generated with three node distributions (50/50, 70/30,

and 90/10, nodes chosen randomly) for testing. An edge con-

necting two layers is an interlayer edge. Nodes, edges, and

interlayer edges for each layer are also shown in Table VIII.

Dataset size nnnKV eeeME denote nnn Kilo vertices and

eee Million edges.

A. Correctness Validation using Ground Truth.

We included multiple embedded graphs of different sizes

and frequencies to verify our algorithm and framework with

ground truth generated by Subdue. We could only do it

for graphs up to 100K edges. For larger datasets, we also

embedded graphs of known size and frequency to validate our

results directly without using ground truth. This comprehen-

sive testing ensured a principled evaluation.

We conducted experiments using synthetic graphs generated

by Subgen [25]. Subgen is used to generate synthetic graphs of
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Table VIII: Datasets With Node Distributions

Dataset Node

Dist.

L1

#Nodes

L2

#Nodes

L1

#Edges

L2

#Edges

L1,2

#Edges

50KV

100KE

50/50 25000 25000 29236 29048 49858

70/30 35000 15000 49250 8880 41870

90/10 45000 5000 81203 1040 17757

100KV

500KE

50/50 50000 50000 124719 124837 250444

70/30 70000 30000 245122 45196 209682

90/10 90000 10000 404942 4998 90060

400KV 1ME

50/50 200000 200000 250297 249961 499742

70/30 280000 120000 490686 89987 419327

90/10 360000 40000 809920 9967 180113

800KV 3ME

50/50 400000 400000 749725 750265 1500010

70/30 560000 240000 1468707 269877 1261416

90/10 720000 80000 2429768 29972 540260

1MV 4ME

50/50 500000 500000 998911 1000756 2000333

70/30 700000 300000 1959976 359709 1680315

90/10 900000 100000 3239820 40233 719947

2.5MV

10ME

50/50 1250000 1250000 2497921 2498771 5003308

70/30 1750000 750000 4902860 899571 4197569

90/10 2250000 250000 8100658 99761 1799581

given node and edge distributions, and is embedded with sub-

structures with some frequency. We have generated synthetic

graphs ranging from 50KV 100KE to 2.5MV 10ME sizes.

Table IX: Ground Truth Comparison Using SUBDUE for

50KV 100KE dataset with 5- and 10-edge embedded sub-

structures

5-edge 10-edge

Embedded Frequency (Ground Truth) 3000 1000

Node Distribution (L1/L2) Substructure Instance Frequency

50/50

L1 41 17
L2 40 16

Composed 2919 967
Total 3000 1000

70/30

L1 342 178
L2 1 2

Composed 2657 820
Total 3000 1000

90/10

L1 1416 457
L2 0 0

Composed 1584 543
Total 3000 1000

Layer Node Distribution And GT Accuracy. Table IX

shows GT substructures identified by our algorithm for dif-

ferent node distributions. Total substructures found in layer 1,

and layer 2, along with the total composed substructure by

the He-ICA algorithm are shown. For 50/50 node distribution,

there are significantly more substructures that span layers (and

are detected as part of the composition) and less in each layer,

but all add up to the embedded frequency. The number of

embedded substructures increases as layer distribution changes

from 50% to 70% and increases even further when that

percentage increases to 90%. The same observation is repeated

for the larger embedded 10-edge substructure. Correctness

with GT is established in both cases when node distribution

is changed. Substructure and frequency correctness was

established for larger synthetic datasets, indicating that

He-ICA correctly generated all substructures that span

layers for different node distributions.

B. Response Time and Speedup on Large graphs.

To evaluate our response time, we use different number of

partitions alongside an equivalent number of mappers and

reducers to maximize parallelization. The goal is to observe

a proportionate decrease in the total response time as we

scale up resources. We seek to comprehend the speedup

characteristic to understand whether it adheres to a linear

trend or demonstrates diminishing returns beyond a certain

configuration. Our verification of the speedup and response

time of our approach involves the use of large synthetic

datasets.

Synthetic Graphs: For the analysis of speedup achieved on

synthetic datasets, we explored various dataset sizes, ranging

from 50,000 vertices and 100,000 edges (50KV 100KE) to

2.5 million vertices and 10 million edges (2.5MV 10ME).

Despite variations in layer size, each layer was partitioned

into the same number of partitions. We conducted experiments

with 2, 4, 8, 16, 32, 64, and 128 partitions, maintaining an

equal number of mappers and reducers for each configuration.

Although consistent trend was observed across all datasets, we

limit, due to space constraints, our focus to the analysis of the

largest datasets, namely, 1M 4ME and 2.5MV 10ME.

Figure 8: Speedup: (a) 1MV 4ME, (b) 2.5MV 10ME

As we can observe in Figure 8(a), we get an average

speedup of 30% by increasing both the number of parti-

tions and the number of mappers/reducers from 16 to 32.

Subsequently, a speedup of 22% was noted upon further

increasing them from 32 to 64. Finally, a speedup of 13%

was observed by further increasing them from 64 to 128. It

is important to highlight that the achieved speedup was not

7

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on September 14,2025 at 22:39:22 UTC from IEEE Xplore.  Restrictions apply. 



linear; doubling the mappers and reducers did not result in

halving the time taken. As the number of partitions increased,

the speedup exhibited diminishing returns. Similar trend was

observed in Figure 8(b). We have also studied the partitions

based on node distributions and observed better speedup as

more partitions and more resources on smaller layers incurred

additional overhead.

C. Response Time of All Datasets

To provide a comprehensive overview, we have synthesized

the results from various experiments into a single graph in

Figure 9.

Figure 9: Response Times of Synthetic Datasets with Layer

Node Distributions and M/R configurations

As can be consistently seen from Figure 9, the more skewed

the layer node distribution is, greater is the processing time, as

the processing time is dominated by the denser layer. However,

there is significant speedup as resources are doubled. We

believe that this can be further improved by choosing resources

to match layer edge and interlayer edge sizes.

D. Desiderata

We have analyzed more real-world and synthetic datasets than

able to include in the paper. We have verified the correctness of

composition on forests in layers, GT substructures spanning

layers, and more GT validations of He-ICA with SUBDUE

using pathological cases have been done successfully.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced a new algorithm for substructure discov-

ery in Heterogeneous Multilayer Networks (HeMLNs) using

the decoupling-based approach. We designed and implemented

a composition algorithm to identify missing substructures that

span HeMLN layers. We have also cast the algorithm into

distributed and parallel processing paradigm for scalability.

We validated the correctness of our algorithm using GT

and conducted extensive experimental analyses on synthetic

datasets.

Substructure discovery on MLNs offers plenty of challenges

and opportunities for future research.
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