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Abstract—Graph mining analyzes graphs to find core substruc-
tures (connected subgraphs) in applications that are modeled
using graphs. These identified substructures, based on frequency
or some other metric, are important as they reveal an inher-
ent feature or property in the given graph/forest. Interesting
substructures that are frequent or compress the graph well
offer insights into hidden regularities. The process of finding
these interesting patterns using unsupervised learning is termed
substructure discovery. SUBDUE is an early main-memory al-
gorithm developed for substructure discovery. Since then, this
algorithm has been extended using disk-based, database-oriented
approaches, and more recently using the Map/Reduce paradigm
to exploit distributed and parallel processing. Graph sizes have
increased steadily, thanks to the advent of the Internet and
social network applications. To model complex datasets — with
multiple types of entities and relationships — multilayer networks
(or MLNs) have been shown to be effective. MLNs have also
been shown to be superior as compared to simple and attributed
graphs for modeling complex data. MLNs are also useful for
modeling different data types using distinct layers. This paper
focuses on substructure discovery in heterogeneous multilayer
networks (one type of MLN) using the novel decoupling-based
approach. In this approach, each layer is processed independently
and then the results from two or more layers are composed
to identify substructures in the entire MLN. The algorithm
is designed and implemented, including the composition part,
using the Map/Reduce paradigm for understanding speedup.
After validating accuracy of results with ground truth, we
analyze speedup and response time of the proposed algorithm
and approach through extensive experimental analysis on large
synthetic datasets with diverse graph characteristics.

Index Terms—Substructure Discovery, Multilayer Networks,
Decoupling-approach, Map/Reduce Architecture

I. INTRODUCTION

Large applications that can be modeled using graphs are
ubiquitous. Graph models have been used for the analysis
of the World Wide Web’s structure [1], social-media data,
bio-informatics data [2], atoms and covalent relationships in
chemistry [3], etc. Graphs are better than other representations
for data that embed inherent relationships among objects or
entities. Graphs are also easy to understand. Graph models
use vertices and edges where each vertex of the graph will
correspond to an entity and each edge is a relationship between
two entities. Applications can be modeled using several graph
alternatives: (i) Simple graphs, (ii) Attributed graphs, and (iii)
Multilayer networks.

A. Need for Multilayer Network Model

Multilayer networks provide an alternate model for rep-
resenting complex datasets. It can capture each relationship

as a layer which is a separate simple graph increasing un-
derstandability. It also affords itself for flexible analysis of
layers. Nodes from different layers can also be connected by
an edge if relationships exist between two entity types. For
example, actor and director layers can be connected by the
‘direct-actor’ relationship where a director entity has an edge
with each actor entity s/he has directed in a movie. The design
of multilayer network model for a dataset is beyond the scope
of this paper and can be found in [4]. Multilayer networks,
by their structure, also offer flexibility to analyze each layer
individually (and in parallel) and arbitrary subsets of layer
combinations. Multilayer networks, based on entity types in
each layer and connectivity within and across layers, can be
classified into homogeneous MLNs (HoMLNs, Figure 1(a)),
heterogeneous MLNs (HeMLNs, Figure 1(b)), and hybrid
MLNs (HyMLNSs, Figure 1(c)). Since the focus of this paper
is HeMLNSs, thus we start with its formal definition.

Figure 1: MLN Types

Definition 1. A multilayer network M LN (G, X), is defined
by two sets of graphs. The set G = {G1,Ga,...,G,} contains
simple graphs (one for each layer), where G;(Vi, E;) is
defined by a set of vertices V; and a set of edges E;. An edge
e(v,u) € E;, connects vertices v and u, where v,u € V;.
The set X = {X12,X1,3,...,Xm—1,m} consists of bipartite
graphs'. Each graph X; j(V;,V;, L; ;) is defined by two sets
of vertices V; and V; and a set of edges (or links) L; ;, such
that for every link l(a,b) € L; ;, a € V; and b € V;, where V;
(V) is the vertex set of graph G; (G;). Some of X; j can be
empty.

Problem Addressed: Given an HeMLN with [ layers — G;

!'The number of bipartite graphs can be less or even more than the number
of graphs/layers. That is, m can be <= or even > n.
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(Vl, El), Gg (VQ, Eg), ceny Gl (Vl, El), where V; and El
are the vertex and edge set in the *® layer and X =
{X12,X13,...,Xn_1,} are interlayer bipartite graphs —
the goal is to discover substructures of the HeMLN for any
r layers correctly and efficiently using the decoupling ap-
proach. For correctness, 7 HeMLN layers under consideration
are aggregated into a simple graph using the Boolean OR-
operator, and substructures discovered on that simple graph
are used as Ground Truth (GT).
Use of Map/Reduce: We have used the Map/Reduce paradigm
as an example of the distributed and parallel processing
approach. Without loss of generality, any other paradigm (e.g.,
Spark) can be used in its stead without modifying the overall
approach.
Contributions of this paper are:
o Map/Reduce Algorithm for substructure discovery in a
layer.
« Map/Reduce Composition algorithm to correctly gen-
erate substructures spanning layers.
o Partitioned approach to both layer and interlayer graph
processing.
« Extensive experimental analysis on a large number of
synthetic graphs.
o Accuracy with ground truth, response time, and speedup
comparisons.
Road map: MLN analysis alternatives are briefly discussed in
Section II to highlight our choice. Section III has related work.
Preliminaries and terminology are outlined in Section IV. Sec-
tion V details the composition algorithm and Map/Reduce im-
plementation of the proposed substructure discovery. Detailed
experimental evaluation is given in Section VI. Section VII
has conclusions.

II. MLN ANALYSIS ALTERNATIVES AND CHALLENGES

Figure 2 shows three alternatives for performing analy-
sis on MLNs. Figure 2(a) shows the traditional approach,
where an MLN is conflated into a simple graph using type-
independent [5] and projection-based [6] approaches. As both
ignore type information for the transformation, they do not
support structure and semantics preservation. As observed in
the literature, without additional mappings, the above aggre-
gation approaches are likely to result in some information
loss and distortion of properties [7], or hide the effect of
different entity types and/or different intra- or inter-layer
relationships as elaborated in [8]. At the other end of the
spectrum, Figure 2(c) shows computing the result by traversing
the whole MLN as a single graph. Although this has been
implemented for community detection (e.g., Infomap recently,
[9]), this is likely to be computationally expensive and not
flexible as the number of layers and data sizes become large
and new MLN algorithms need to be developed for each
analysis.

Figure 2(b), on the other hand, shows an approach (termed
networking decoupling) where the analysis metric for each
layer is computed independently (possibly in parallel) during
the analysis (V) phase only once and the results are composed

using a binary operator © as shown [10], [11]. Other layer
or interlayer information is not used while processing a
layer! This approach has been shown to be effective, can be
done for Boolean operations without aggregating and losing
type information. Furthermore, it has been shown to be more
efficient than the approaches shown in Figures 2(a) or (c).
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Figure 2: Lossy (a) Vs. Decoupling (b) Vs. MLN approaches

The challenges in developing a substructure discovery al-
gorithm are: i) enumerating all connected subgraphs of any
size in a given graph or forest (completeness), ii) identifying
duplicates, if any, and remove them (soundness), iii) count
isomorphic substructures to apply the metric for each distinct
substructure and rank them, and iv) retain top-k substruc-
tures for the next iteration. The enumeration is typically
done iteratively increasing the connected subgraph size by 1
with each iteration. Evaluation of each substructure with the
desired metric (frequency or minimum description length) is
carried out after each iteration. To contain the search space, a
heuristic is applied to carry top-k results from each iteration.
Current algorithms do this on a simple graph or forest. How
the decoupling approach has been adapted to the HeMLN
substructure discovery is the focus of this paper and is
elaborated in Section V.

III. RELATED WORK

SUBDUE was the earliest main memory algorithm [12] devel-
oped for substructure discovery. It can perform both supervised
and unsupervised substructure discovery. It uses an iterative
algorithm to systematically generate larger substructures which
are evaluated using Minimum Description Length (MDL [13]).
SUBDUE uses the notion of a beam to restrict the number of
substructures carried to the next iteration.

AGM [14] and FSG [15] are two popular main memory
graph mining algorithms that use the apriori concept. These
approaches generate frequent (k+1) subgraphs from frequent
k-subgraphs. The FSG identifies repeating substructures in
graphs using an apriori approach [15]. This is different from
Subdue since it entails finding interesting substructures in a
graph or forest. Canonical labeling is added to the apriori
algorithm. The property that identical graphs have identical
canonical labeling has been strategically used to identify
frequent substructures. FSG determines canonical labels using
a flattened graph adjacency matrix.
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Disk-based graph mining algorithms [16]-[18] were devel-
oped to deal with larger graph sizes. Portions of the graph are
staged into memory for processing using buffer-management
techniques. Indexing was used to improve retrieval for staging.
gIndex [19] uses frequent substructures as units for indexing.
However, these solutions need explicit data marshaling be-
tween disk and main memory entailing developing buffer man-
agement strategies. This leads to the use of relational databases
for graph mining to leverage buffer management and query
optimization. HDB-Subdue [20] used the Relational DBMS for
graph representation and SQL to discover substructures. This
approach was able to scale to handle graphs with millions of
edges. However, self-joins on large relations and the number
of joins needed seemed to have limited scaling further.

A number of graph mining methods have shown success
in cloud-based deployments [21]. Splitting/partitioning large
graphs into manageable chunks for distributed processing is
explored in [22]. Scalable substructure discovery on large
simple graphs using Map/Reduce has been developed in [23].
A graph can be split into partitions in different ways, processed
by distributed and parallel architecture, and results from across
partitions combined to obtain correct results. This paper’s
focus is on MLNs instead of simple graphs. Further, the
decoupling-approach is chosen which entails the development
of a composition function for its efficient and flexible analysis.
It also uses extant substructure discovery for each layer. The
correctness of the composition algorithm is also validated by
comparing results with the ground truth.

IV. PRELIMINARIES AND TERMINOLOGY

Edge List as Input: A graph (layer, interlayer, or a par-
tition) is represented as a list of unordered edges. Each
edge is completely represented by a 5 element tuple’ <
FE1, Vsia, Vsiy Vaia, Vi > where, E; is edge label, V4 is
source vertex ID, Vy; is source vertex label, V;4 is destination
vertex ID and V; is destination vertex label. In this context,
it is important to note that the vertex IDs (Vs;q and Vig;q)
are guaranteed to be unique. However, it is not necessary for
the vertex labels (Vy; and V) and the edge label (E;) to be
unique. Table I shows the edge list representation for the input
graph (or a layer) shown in Figure 3 (a).

s

(a) HeMLN Layer Graph

Pid | Range

pt |16

p2 | 712

(b) 2 Partitions of the HeMLN Layer

Figure 3: Partitions for a HeMLN layer graph

This 5 element tuple edge representation (that includes di-
rection) is used to represent a k-edge substructure (a connected
graph with k edges and £+ 1 nodes) as a collection of £ 1-edge

2This representation is generic and can be extended to attributed graphs
by using a distinct edge identifier in the edge representation. Our discussion
excludes multiple edges.

substructures. Our algorithm takes an input graph represented
as a text file with a 1-edge substructure per line.

Adjacency List: Adjacency list is a representation where each
vertex on which the edges are incident (both in and out) are
associated with the node using a list (of 1-edge substructures.)
This adjacency list is used for the expansion of a node in a
subgraph to generate new substructures. Table II shows the
adjacency list of the input layer graph shown in Figure 3 (a).

Table I: Edge List Table II: Adjacency List

Edge List ‘ Vertex| Adjacency List
(ab4,A5,B) ID
(ac,4,A,6,C) 1 (ch,6,C,1,H);(jh,2,J,1, H);(ih,11,1,1,H);
(bd.5.B.7.D) 2 (Ga,2,7.4,A);(jh,2.7, T HY;
(ch,6,C,1,H) 4 (ab,4,A,5,B);(ac,4,A,6,C);(ja,2,J.4,A);
{de,7.D.6,C) 5 (ab4.A5.B):(bd,5,B,7,D);
(a2 T4A) 6 (ac,4,A,6,C);(dc,7,D,6,C); (ch,6,C,1,HY;
(h.2.J.1H) 7 (bd,5,B,7,D);(dc,7.D.6,C);
(ih, I T.L1LH) 10 (Ga,10.J,12,A); (1,103, 1 ,1);
(Ga.10.7.12.A) 11 (i, IT.LLH); (i, 10.1,11.1);
GLI0JI1.D) 2 (ja,10J,12,A);
Table III: Adjacency List Partitions L
Graph  Partitioning:
Vertex | Adjacency List Partition | Ap MLN layer L;
1D for p1 _ can be  partitioned
1 (ch6.C.LH:Gh2JLH) | partitions
(ih,11,1,1,H); I i i B
2 Gazgaangnarna: | Li Lo Ly for
) (ab4.A5,B):(ac4,A6,C); | distributed processing.
(ja,2,0,4,A); We use range-based
5 (ab,4,A,5,B);(bd,5,B,7.D); | partitioning [24] to
6 (ac4,A.6,C):(dc.7.D.6.C); | create the partitions
{ch.6.C.1H); using vertex IDs. Each
Vertex | Adjacency List Partition | graph partition® is a
D for p2 range of node IDs and
7 (bd.5.B,7.D):(dc,7.D,6,C); | the size of each partition
10 Qa,lO,J,lZ,A);@l,lO,J,l1,I>; need not be same. There
11 (ih, 11,1, 1,H); (3i,10,J,11,I); b o "
3 (2107 T2A); can be missing vertex

IDs in a given range. As
the ranges are disjoint, nodes in adjacency list partitions are
also disjoint. Each vertex ID in the range and its adjacency list
corresponds to a single adjacency list partition. If neighboring
nodes are in two partitions, the edge connecting them will be
in the adjacency list of both partitions. As a result, during
expansion, the same substructure can belong to many graph
partitions. As adjacency list partitions are indexed on vertex
IDs, each substructure is expanded only once.

Two partitions of the graph in Figure 3 (a) are shown in
Figure 3 (b). Partition pl is assigned vertex IDs from 1 to 6,
whereas partition p2 is allotted vertex IDs 7 to 12 (see table in
Figure 3.) Both partitions are connected by blue edges, which
appear in different adjacency list partitions. The adjacency
list partitions are displayed in table III. The edges that occur
in both adjacency list partitions are < bd,5, B,7,D >,
<dec,7,D,6,C>, and <ih,11,I,1, H>. If these two parti-
tions belong to two layers, these edges will become interlayer
edges.

3Graph partition and partition are used interchangeably. Adjacency List
partition is an adjacency list for a specific graph partition.
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Figure 5: Graph isomorphism and canonical substructures

Independent Expansion of Substructures: For substructure
discovery, substructures* of progressively increasing size are
generated systematically in each iteration. As the best sub-
structures (for a given metric) can be of any size, all sizes (or
as specified by parameters) need to be generated. Hence, graph
expansion plays a salient part in the process of discovering
the best substructures. A k-edge substructure is expanded in
the k*" iteration to general all (k+1)-edge substructures. Inde-
pendent expansion is done on each substructure and on each
node of every substructure using the appropriate adjacency
list partitions. As this unconstrained expansion generates an
unwieldy search space, a beam is used to select top-beam
substructures in each iteration to use in the next iteration.
Also, as this independent expansion results in the generation
of duplicate substructures within an iteration, care has to be
taken to remove duplicates in each iteration before applying
the metric.

Canonical Instance for Duplicate Elimination: Independent
expansion of substructures, as noted earlier, can lead to du-
plicate substructure instances. By a duplicate, we mean that
the same substructure instance may be generated more than
once during the expansion of different substructures in the
same iteration. Lexicographic ordering (or canonical form)
of substructure representation is used to identify duplicates.
Edges in a substructure are ordered based on edge label, then
source vertex label, then destination vertex label, and finally
source and destination vertex IDs. If any of the values match,
the comparison moves forward to the next component, else the
ordering is performed. A substructure can be uniquely repre-
sented using the lexicographic order of 1-edge components.
This is called a canonical k-edge instance. Intuitively, two
duplicate k-edge substructures must have the same ordering
of labels and vertex IDs when converted to canonical k-edge
instance. Figure 4 shows an example of duplicate substructures
and how duplicates have the same canonical instance. Note
that substructure < 2z,1,A4,2, B > on the left has been
expanded with edge < y,2, B,5, B and substructure on the
right < y,2,B,5,B > has been expanded with the edge
< z,1,A,2, B >. All instances generated in each iteration
are converted to canonical form to eliminate duplicates.

4Substructures and substructure instances are used interchangeably. Sub-
structure instances contain vertex IDs from the graph. These are termed
canonical instances when the edges are ordered lexicographically. We also
refer to substructures which are exact isomorphs that are different from
substructure instances. These are referred to as canonical substructures where
relative ordering instead of lexicographic ordering of node IDs is used.

4

Canonical substructures for identifying Substructure Iso-
morphs: Exact isomorphs in a graph have the same structure
in terms vertex and edge labels as well as connectivity, but
differ in vertex IDs, in contrast to duplicates. After duplicate
elimination, we identify isomorphs to count their occurrences.
For this we need to convert canonical instances of substruc-
tures to canonical substructures using relative ordering of
vertex IDs. Intuitively, in the canonical form, two isomorphic
substructures have the same relative ordering of vertex num-
bers. Conversion to canonical substructure is done by replacing
each vertex ID with their relative positions in the instance
starting from 1. The inclusion of these relative positions is
critical for differentiating the connectivity of the instances.
Figure 5 shows an example of how canonical substructure is
created from the canonical instance. It can be seen that the
isomorphs have different canonical instances. Using the above
technique, the relative positioning of vertex IDs (2, 5, 4) for the
canonical instance 1 and (7, 10, 9) for the canonical instance
2 are converted to (1, 2, 3). Hence we can identify isomorphs
using canonical substructures.

A. Metrics Used for Ranking Substructures

The Minimum Description Length is an information-theoretic,
domain-independent metric that has been demonstrated to
emphasize the significance of a substructure in terms of its
ability to compress a complete graph or forest. Although it is
defined, originally, in terms of bits used for graph representa-
tion, we use the number of nodes and edges for that purpose.
The general formula for MDL (DL(G)/(DL(S) + DL(G|S)))
represents the description length of the substructure S being
evaluated, DL(G|S) represents the description length of the
graph G when compressed by replacing each instance of the
substructure S as a node, and DL(G) (or DL(S)) represents the
description length of the original graph (or the substructure S.)
The substructure of the graph achieves the highest compression
when the MDL value is the highest. Both the frequency of the
subgraph and its connectivity have an impact on compression.
The frequency of substructures can also be used as a metric
as used in FSG and others.

V. COMPOSITION ALGORITHM AND ARCHITECTURE

Details of using the decoupling approach for iterative sub-
structure discovery of HeMLNSs are shown in Figure 6. During
the k' iteration, substructures of size k from each layer5 are

SFor simplicity of discussion, two layers are shown. The algorithm and the
architecture work for more than two layers.
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expanded to generate all substructures of size k& + 1. A layer
may be partitioned for distributed and parallel processing for
which range partitioning is used and partitioned substructure
discovery algorithm proposed in [24] is used. The composition
function takes generated substructure instances (after duplicate
elimination for each layer) along with interlayer edges to
generate substructure instances that span 2 layers that could
not be generated during the analysis phase of a layer as no
information is used other than the layer itself. Duplicates are
eliminated for the composed substructures. After duplicate
elimination, all substructures (from layer 1, layer 2, and
composed substructures) are grouped, and canonical instances
are relatively ordered for isomorphic substructure counting.
Then the metric is applied and each substructure is ranked.
Top-beam substructures (and their instances) are used for the
next iteration. The termination condition is checked after each
iteration, which is based on the maximum substructure size.

LAYER 1 top beam Substructures

Analysis Phase Composition Phase

Find all the substructures that
exist across the layers

Find all the substructures in
each layer individually

(k+1) size I

| composition |

(s-1)

one edge

of Layer 1

Termination Condition

AL of Layer 1

T (Iteration 1) [ ¢ it
ed, Function

AL of Layer 2

Composed
substructures| Substructure

[Beam + MDL]

ij

Substructure to be found

top beam Composed
Substguctures

Maximum Size of

S=

LAYER 2 top beam Substructures
Figure 6: Iterative Decoupling-Based Substructure Discovery
in HeMLN (k" iteration)

Composition algorithm He-ICA is shown as Algorithm 1
after introducing general notations used in Table V and the
adjacency lists used during composition in Table IV.

Table IV: Adjacency Lists used for Composition

‘ Adj List ‘ Description

LYy, Initially generated L' adj list for iteration k = 1

L%, Initially generated L2 adj list for iteration k = 1

I Li{i Adj list of interlayer edges for iteration k = 1

L,14 Lk Adj list generated from k—edge instances of L' for itera-
tion k where k =2,3,...,5 — 1 and S is given max

Li Lk Adj list generated from k-edge instances of L2 for itera-
tion k where k =2,3,...,5 — 1 and S is given max

I Li"ik Adj list generated from top BEAM k-edge interlayer

instances in previous (k — 1)th iteration for iteration k
where k = 2,3,...,5 — 1 and S is given max

As shown in Algorithm 1, the input to our composition
algorithm is the list of k-edge composed instances IL;”,
adjacency list of composed instances generated in previous
iteration [ L;"‘]Lk, and adjacency list of i** and j*" layer gener-

ated from k-edge expanded and not-expanded instances of 7"

Table V: Table of Notations

Notation| Description

k Used as subscript for iteration and takes values 1,2,...,s—1
p!

where s is size of substructures to be obtained.

i, 7 Used for indicating interlayer -ids, where ¢ = 1,2, ..., n and
j =1+ 1 where n is total number of layers in HeMLN.

I L:J Set of composed interlayer substructures of i,j and this changes
with iteration. For £ = 1, it is list of interlayer edges.

1 LZJL,C Adjacency list of composed substructures of previous iteration

and this changes with iteration. For £ = 1, its adjacency list
of interlayer edges.

L; Lk Adjacency list of expanded substructures of ¢-th layer and this
changes with iteration.

Li‘ Lk Adjacency list of expanded substructures of j-th layer and this
changes with iteration.

ks Each ks € ILy7 ks =< Ell,\gslid,vsll,\/dlid,vdll >

i < EZ V3 Va Vi Vi > <
Ef VE VE VE VE > aslist of 5 tuples

where, E;— edge label, Vj;q— source vertex-id,

Vs — source vertex label, V;4— destination vertex-id, Vg —
destination vertex label.

ct Canonical instance, generated after arranging the expanded
instance in lexicographical order.

Algorithm 1 Composition Algorithm He-ICA (k'™ iteration)

Require: 11,7, ILY LY. LYy, ‘
Ensure: Return Top beam substructures of size k+1
2,
1: Ile]H «— 0 N
2: for each k-edge instance ks € IL;’ do
3: for each vertex-id v € ks do )
4: ELy +{ve Il UL, UL, ,|vedgelist}
{edge list of v from union of adjacency lists}

5: for each edge e € E'L, do
6: if e ¢ ks then
7: ci <— merge ks to e in lexicographical order
8: if ci ¢ L}, then
9: ILY), < 1Ly, U {ci}
{check for duplicates in the result set}
10: end if
11: end if
12: end for
13:  end for
14: end for

and j*" layer respectively (L"A ,» and Lil .« respectively). The
output generated is the (k + 1)-edge composed substructures
of k'" iteration.

For each of the k-edge instances, we expand on all the
vertex IDs present in the instance using all the three adjacency
lists as depicted (lines 2 to 14.) We get all the edge lists
corresponding to the vertex ID from the union of all the three
adjacency lists as depicted in (lines 2 to 4.) We expand each
edge on vertex ID v and convert to canonical instance using
lexicographical order technique. This helps us to eliminate
duplicates as shown in (lines 5 to 9.) Hence, all the missing
substructures that span layers under consideration are gener-
ated using interlayer substructures and layer substructures.

A. Distributed Architecture

Map/Reduce architecture is used for the implementation, but
this can be any other distributed architecture without the need
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to change the overall approach sans minor details (e.g., no need
to load adjacency lists as they can be maintained in memory
across iterations if Spark is used.) The complete Map/Reduce
architecture and data flow is shown in Figure 7 including the
flow of results from one job to the next (for k*" iteration.) The
first and second map/reduce jobs are utilized for performing
layer-wise expansion, which is the independent expansion of
subgraphs using the adjacency list for that partition.

In our composition, we employ the adjacency list of in-
terlayer edges during the first iteration. Beyond that we
use the adjacency list generated in the previous iteration
using the composed substructures. In addition, we generate
the substructure within the interlayer by exclusively utilizing
interlayer edges in the first iteration, and composed instances
in subsequent iterations for expansion purposes.

All the substructures from layer 1, layer 2, and the com-
posed substructures in job 3 are used in job 4 for substructure
evaluation. We rank the substructures based on MDL metric
and top-beam substructures are carried to the next iteration for
further expansion. This process continues until the termination
condition is satisfied.

VI. EXPERIMENTAL EVALUATION AND VALIDATION

In this section, we describe the Map/Reduce environment,
generation of synthetic HeMLN layers, and validation of
correctness using ground truth (GT). In addition to that, we an-
alyze a large number of synthetic datasets with varying graph
characteristics and map/reduce configurations. Table VI shows
the Expanse cluster (located at San Diego super-computing
center (SDSC)) details used for experiments.

Table VI: Expanse Cluster Details

What SDSC Expanse Configuration

SSCUs 13 SDSC Scalable Compute Units

Node Count 728

Cores/Node 128 built on 2 processors (64 cores each)
Processor AMD EPYC 7742

Memory/Node 256 GB DDR4 DRAM

Total Storage 1TB Intel P4510 NVMe PCle SSD

Dataset Generation: For our experiments, we use a single
graph to generate as many layers of HeMLN as needed. This
allows us to generate layers with diverse characteristics in
terms of nodes, edges, and interlayer edges. This also allows us
to test the correctness using the GT. We embed substructures
(of different sizes with differing frequencies) for testing the
correctness of our algorithms.

Dataset Description: Synthetically generated datasets are
used to cover diverse input MLN characteristics. For each
graph, we further generated three random node distributions
that have an effect on intra and interlayer edges as well
as embedded substructure distribution. Table VII shows the
datasets used, their purpose, and M/R configurations used
for analysis. For these datasets, diverse two layer HeMLNs

Table VII: Dataset Description

Dataset Used For Layer M/R configs
Synthetic: Accuracy, 2M/2R, 4M/4R
50KV_100KE Response Time 8M/8R, 16M/16R

16M/16R, 32M/32R
64M/64R, 128M/128R

Synthetic Large:
IMV_4ME,2.5MV_I10ME

Response Time,
Speedup

were generated with three node distributions (50/50, 70/30,
and 90/10, nodes chosen randomly) for testing. An edge con-
necting two layers is an interlayer edge. Nodes, edges, and
interlayer edges for each layer are also shown in Table VIII.
Dataset size nnnKV_eeeME denote nnn Kilo vertices and
eee Million edges.

A. Correctness Validation using Ground Truth.

We included multiple embedded graphs of different sizes
and frequencies to verify our algorithm and framework with
ground truth generated by Subdue. We could only do it
for graphs up to 100K edges. For larger datasets, we also
embedded graphs of known size and frequency to validate our
results directly without using ground truth. This comprehen-
sive testing ensured a principled evaluation.

We conducted experiments using synthetic graphs generated
by Subgen [25]. Subgen is used to generate synthetic graphs of

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on September 14,2025 at 22:39:22 UTC from |IEEE Xplore. Restrictions apply.



Table VIII: Datasets With Node Distributions

Dataset Node [ LT L? LT L? Lh?
Dist. #Nodes | #Nodes | #Edges | #Edges | #Edges
50KV 50/50 | 25000 25000 29236 29048 49858
100KE 70730 | 35000 15000 49250 8880 41870
90710 | 45000 5000 81203 1040 17757
100KV 50/50 | 50000 50000 124719 | 124837 | 250444
S00KE 70730 | 70000 30000 245122 | 45196 209682
90710 | 90000 10000 404942 | 4998 90060
50/50 | 200000 | 200000 | 250297 | 249961 | 499742
400KV IME | 70/30 [ 280000 | 120000 | 490686 | 89987 419327
90/10 | 360000 [ 40000 809920 | 9967 180113
50/50 | 400000 | 400000 | 749725 | 750265 | 1500010
800KV 3ME | 70/30 | 560000 | 240000 | 1468707| 269877 | 1261416
90710 | 720000 [ 80000 2429768] 29972 540260
50/50 | 500000 | 500000 | 998911 | 1000756| 2000333
IMV 4ME 70730 | 700000 [ 300000 [ 1959976] 359709 | 1680315
90710 | 900000 [ 100000 | 3239820] 40233 719947
25MV 50/50 | 1250000| 1250000 2497921| 2498771| 5003308
1OME 70730 | 1750000 750000 [ 4902860] 899571 | 4197569
90710 | 2250000[ 250000 [ 8100658] 99761 1799581

given node and edge distributions, and is embedded with sub-
structures with some frequency. We have generated synthetic
graphs ranging from 50KV_100KE to 2.5MV_10ME sizes.

Table IX: Ground Truth Comparison Using SUBDUE for
50KV_100KE dataset with 5- and 10-edge embedded sub-
structures

5-edge | 10-edge

[ Embedded Frequency (Ground Truth) | 3000 | 1000 |
Node Distribution (L1/L2) | Substructure Instance Frequency

L1 41 17

L2 40 16

30750 Composed 2919 967

Total 3000 1000

L1 342 178
L2 1 2

70730 Composed 2657 820

Total 3000 1000

L1 1416 457
L2 0 0

90710 Composed 1584 543

Total 3000 1000

Layer Node Distribution And GT Accuracy. Table IX
shows GT substructures identified by our algorithm for dif-
ferent node distributions. Total substructures found in layer 1,
and layer 2, along with the total composed substructure by
the He-ICA algorithm are shown. For 50/50 node distribution,
there are significantly more substructures that span layers (and
are detected as part of the composition) and less in each layer,
but all add up to the embedded frequency. The number of
embedded substructures increases as layer distribution changes
from 50% to 70% and increases even further when that
percentage increases to 90%. The same observation is repeated
for the larger embedded 10-edge substructure. Correctness
with GT is established in both cases when node distribution
is changed. Substructure and frequency correctness was
established for larger synthetic datasets, indicating that
He-ICA correctly generated all substructures that span
layers for different node distributions.

7

B. Response Time and Speedup on Large graphs.

To evaluate our response time, we use different number of
partitions alongside an equivalent number of mappers and
reducers to maximize parallelization. The goal is to observe
a proportionate decrease in the total response time as we
scale up resources. We seek to comprehend the speedup
characteristic to understand whether it adheres to a linear
trend or demonstrates diminishing returns beyond a certain
configuration. Our verification of the speedup and response
time of our approach involves the use of large synthetic
datasets.

Synthetic Graphs: For the analysis of speedup achieved on
synthetic datasets, we explored various dataset sizes, ranging
from 50,000 vertices and 100,000 edges (50KV_100KE) to
2.5 million vertices and 10 million edges (2.5MV_I10ME).
Despite variations in layer size, each layer was partitioned
into the same number of partitions. We conducted experiments
with 2, 4, 8, 16, 32, 64, and 128 partitions, maintaining an
equal number of mappers and reducers for each configuration.
Although consistent trend was observed across all datasets, we
limit, due to space constraints, our focus to the analysis of the
largest datasets, namely, IM_4ME and 2.5MV_10ME.
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Figure 8: Speedup: (a) IMV_4ME, (b) 2.5MV_10ME

As we can observe in Figure 8(a), we get an average
speedup of 30% by increasing both the number of parti-
tions and the number of mappers/reducers from 16 to 32.
Subsequently, a speedup of 22% was noted upon further
increasing them from 32 to 64. Finally, a speedup of 13%
was observed by further increasing them from 64 to 128. It
is important to highlight that the achieved speedup was not
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linear; doubling the mappers and reducers did not result in
halving the time taken. As the number of partitions increased,
the speedup exhibited diminishing returns. Similar trend was
observed in Figure 8(b). We have also studied the partitions
based on node distributions and observed better speedup as
more partitions and more resources on smaller layers incurred
additional overhead.

C. Response Time of All Datasets

To provide a comprehensive overview, we have synthesized
the results from various experiments into a single graph in
Figure 9.

m16M/16R ®32M/32R m64M/64R

'l
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20 B | 1 | | |
OlM | ’J nLnem 1 N

50/50 70/30 90/10 50/50 70/30 90/10 50/50 70/30 90/10
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SYNTHETIC DATASETS WITH VARYING LAYER-WISE (L1/L2) NODE DISTRIBUTION

Figure 9: Response Times of Synthetic Datasets with Layer
Node Distributions and M/R configurations

As can be consistently seen from Figure 9, the more skewed
the layer node distribution is, greater is the processing time, as
the processing time is dominated by the denser layer. However,
there is significant speedup as resources are doubled. We
believe that this can be further improved by choosing resources
to match layer edge and interlayer edge sizes.

D. Desiderata

We have analyzed more real-world and synthetic datasets than
able to include in the paper. We have verified the correctness of
composition on forests in layers, GT substructures spanning
layers, and more GT validations of He-ICA with SUBDUE
using pathological cases have been done successfully.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced a new algorithm for substructure discov-
ery in Heterogeneous Multilayer Networks (HeMLNs) using
the decoupling-based approach. We designed and implemented
a composition algorithm to identify missing substructures that
span HeMLN layers. We have also cast the algorithm into
distributed and parallel processing paradigm for scalability.
We validated the correctness of our algorithm using GT
and conducted extensive experimental analyses on synthetic
datasets.

Substructure discovery on MLNSs offers plenty of challenges
and opportunities for future research.
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