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Abstract: In this position paper, we make a case for the appropriateness, utility, and effectiveness of graph models for

big data analysis focusing on Multilayer Networks (or MLNs) – a specific type of graph. MLNs have been

shown to be more appropriate for modeling complex data compared to their traditional counterparts. MLNs

have also been shown to be useful for diverse data types, such as videos and information integration. Further,

MLNs have been shown to be flexible for computing analysis objectives from diverse application domains

using extant and new algorithms. There is research for automating the modeling of MLNs using widely used

EER (Enhanced/Extended Entity Relationship) or Unified Modeling Language (UML) approaches.

We start by discussing different graph models and their benefits and limitations. We demonstrate how MLNs

can be effectively used to model applications with complex data. We also summarize the work on the use of

EER models to generate MLNs in a principled manner. We elaborate on analysis alternatives provided by

MLNs and their ability to match analysis needs. We show the use of MLNs for - i) traditional data analysis, ii)

video content analysis, iii) complex data analysis, and iv) propose the use of MLNs for information integration

or fusion. We show examples drawn from the literature of their modeling and analysis usage. We conclude that

graphs, specifically MLNs provide a rich alternative to model and analyze big data. Of course, this certainly

does not preclude newer data models that are likely to come along.

1 INTRODUCTION

Big data analytics is predicated upon our ability to

model and analyze disparate, complex data sets and

associated application objectives. Relational and

object-oriented data models have served well for

modeling and analyzing transactional data sets that

need to be managed over long periods. NoSQL data

models filled the gap in modeling and analysis for

data sets for which earlier data models were not best

suited. New data models including graph models are

gaining importance due to the diverse types of social

networks and other data types being used for mining,

knowledge discovery, querying, and analysis.

Figure 1: Life Cycle Flow Chart of Mining.

In this paper, we focus on the applicability and

versatility of graphs, especially Multilayer Networks

(MLNs) for moving towards modeling and analysis of

big data. In contrast to the mining approach shown in

Figure 1, big data analysis needs to be addressed us-

ing a life cycle starting from modeling to drill-down

and visualization. Currently, graph models are gen-

erated manually for a given data set without using

any principled approach. For many data sets, both

modeling and analysis computations are quite differ-

ent from the ones addressed in earlier data models. In

this paper, instead of generating a schema, application

requirements and data are transformed into different

types of graphs including MLNs. Moreover, an anal-

ysis may require graph computations, such as short-

est path, substructure discovery, community, central-

ity (e.g., hubs), or their combination. Once the cho-

sen data model is generated and the objectives are

mapped into appropriate computations, any available

package/algorithm can be used. Finally, the analysis

results need to be drilled down and visualized in mul-

tiple ways for decision-making and for taking action.

We present several results from the literature to con-

vince the reader that this workflow is needed. Figure

2 shows our view of the big data analysis life cycle

from gathered application requirements to analysis

of objectives to result drill-down with visualization.

Only graph and MLN models are shown. This work-

flow is iterative.

Drill-down of analysis results is critical, espe-

cially for diverse data that has both structure and se-
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Figure 2: Life Cycle of Big Data Modeling and Analysis
using Graphs and MLNs.

mantics. For example, it is not sufficient to know

the objects in a community, but additional object de-

tails are needed, similarly, for a centrality hub. For

graph and MLN models, we also need to know the

edges within and across layers, if any. From a com-

putation/efficiency perspective, minimal information

needs to be used for analysis whereas the drill-down

phase needs to expand upon to the desired extent.

Visualization is not new either and there exists a

wide variety of tools for visualizing base data, results,

and drilled-down information in multiple ways. Sev-

eral data visualization platforms are available (GeP,

2014, Samant et al., 2021). Due to space constraints,

we will not discuss drill-down and visualization in

this paper. The contributions of this paper are:

• Complete Life cycle for big data analytics in

comparison with mining

• Graph and MLN models, and analysis alterna-

tives

• Use and applicability of MLNs for complex data

• Graphs and MLNs applicability for video data

analysis

• MLNs Applicability for information integra-

tion/fusion

The rest of the paper is organized as follows. Rel-

evant literature and different graph models are dis-

cussed in Sec. 2 and Sec. 3 respectively. The use of

MLNs to model and analyze complex data is summa-

rized in Sec. 4. The use of MLN in lieu of graphs

is discussed in Sec. 5. Graphs and MLNs applicabil-

ity to model and analyze video data is summarized in

Sec. 6. Finally, the use and applicability of MLNs for

information integration/fusion are discussed in Sec. 7.

We conclude and outline future work in Sec. 8.

2 RELATED WORK

We discuss here how different phases of the lifecycle

have been addressed in the literature.

EER Modeling: Since the 70s, EER model (Chen,

1976) has served as a methodology for database de-

sign, by representing data and functionality require-

ments of real-world applications in a precise manner

by identifying entities, attributes, and relationships

among them. However, with the emergence of data

sets with multiple entity types and relationships along

with complex analysis requirements, such as shortest

paths, important neighborhoods, dominant nodes (or

groups of nodes), etc., the relational data model was

not adequate for modeling and analysis. Recently,

there has been some work in modeling graphs from

EER diagrams but is limited to simple and attributed

graphs only (Roy-Hubara et al., 2017, Angles, 2018).

Graph and MLN Models: When a graph is used as

a data model, the choice of nodes, edges, and their la-

bels becomes important. There are multiple ways of

creating them depending on the analysis objectives.

Further, creating edges needs similarity/proximity cri-

teria which need to be specified/identified. There

needs to be a systematic and configurable approach

for converting raw data sets (.csv files, extracted video

contents, etc.) to graphs or MLN layers. Only

recently, there has been some work (Komar et al.,

2020, Santra et al., 2022) on extending the EER ap-

proach to generate MLN models.

Graph and MLN Analysis: There is substan-

tial work in the area of simple, attributed graphs

and MLNs. For simple graphs, many algorithms

have been developed for shortest paths, spanning

trees, community detection, centrality measures, and

cliques. The breadth and depth-first approaches are

also used for many algorithms. For attributed graphs,

substructure discovery (Holder et al., 1994, Padman-

abhan and Chakravarthy, 2009, Yan and Han, 2002)

for interesting exact and inexact or similar substruc-

tures, and graph search and querying (Das et al.,

2020) have been developed. For MLNs, algorithms

have been developed for homogeneous (HoMLN) and

heterogeneous (HeMLN) MLNs. Community detec-

tion algorithms have been extended to HoMLNs (re-

view: (Kim and Lee, 2015, Magnani et al., 2021)).

Further, methods have been developed to deter-

mine centrality measures to identify highly influ-

ential nodes (Solé-Ribalta et al., 2014, Zhan et al.,

2015). Recently developed decoupling-based ap-

proaches combine partial analysis results from indi-

vidual layers systematically in a loss-less manner to

compute communities (Santra et al., 2017) or cen-

trality hubs (Pavel et al., 2023) for layer combina-

tions. Majority of HeMLN work (reviews in (Shi

et al., 2017, Sun and Han, 2013)) focuses on de-

veloping meta-path based methods for object simi-

larity, object classification, missing link prediction,

ranking/co-ranking, and recommendations. Few ex-

isting works generate clusters of entities (Melamed,

2014). Most of them concentrate mainly on inter-

layer edges and not the networks themselves.
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Graph Models for Video Analysis: Several custom

approaches have been developed for modeling videos

as scene graphs (Ji et al., 2020, Ou et al., 2022) by

training deep learning algorithms and can perform

fixed types of analysis (Billah et al., 2024). They

need to be retrained or a new algorithm is required to

perform a new type of analysis. Several frameworks

are also available which models extracted video con-

tents as attributed graphs (Yadav et al., 2020, Zhang

et al., 2023) and perform analysis on them. How-

ever, they do not consider all the extracted video con-

tents for modeling and only support simple analysis

such as counting the number of objects. They can-

not perform complex analyses (e.g., finding groups)

on videos. Graphs and MLNs can be leveraged to

model all the extracted video contents and new al-

gorithms/operators need to be developed to perform

interesting analysis on videos.

3 GRAPHS FOR BIG DATA

ANALYSIS

Graphs capture relationships between entities in ap-

plication data using nodes and edges. This represen-

tation allows us to perform various analyses based on

the graph structure and relationships found in the data.

3.1 Graph Types Used as Data Models

A simple graph is defined as (V, E) where V is a set

of vertices or nodes and E is a set of edges connect-

ing two distinct vertices. E is a subset of V × V. The

edges are assumed to be unweighted, either directed

or undirected, and loops and multiple edges between

nodes are not allowed. Typically, vertices have unique

numbers, but labels of nodes and edges need not be

unique. These graph models are widely used for mod-

eling and analyzing applications.

An attributed graph (also called a multigraph)

is defined as (V, E, φ) where V is a set of vertices

or nodes, E is a set of edges connecting two dis-

tinct vertices, and φ is a function mapping of E to

{{x,y} | x,y ∈ V and x ̸= y}. If the distinctness of

nodes is removed, loops will be allowed as well. The

main advantage of a multigraph or attributed graph

from a modeling viewpoint is that it captures multi-

ple entities and multiple relationships between enti-

ties. Multiple labels can be associated with nodes and

entities. With the attributed graph model, it is possible

to include relevant information from the data descrip-

tion as labels and hence is more expressive as a model

than a simple graph model.

An MLN is a network of simple graphs (or

forests). In this model, every layer represents a dis-

tinct relationship among entities with respect to a sin-

gle (or combination of) feature(s). The sets of entities

across layers, which may or may not be of the same

type, can be related to each other too.

An MLN can be used to separate entities and cor-

responding relationships from an attributed graph into

separate layers where each layer is a simple graph.

This provides more clarity in understanding and pro-

cessing. MLNs are widely used for modeling com-

plex data sets with multiple types of entities and mul-

tiple relationships between the same types of entities.

They can also capture relationships between different

types of entities.

Figure 3: Multilayer Network Types.

Based on the type of relationships and entities,

MLNs can be classified into three types. Layers of

a homogeneous MLN (HoMLN) are used to model

different relationships among the same entity types

like movie actors who are linked based on co-acting

(i.e., they act together in a movie) or have simi-

lar average rating or have worked in similar genres

(Figure 3(a)). Thus, V1 = V2 = . . . = Vn and inter-

layer edge sets are empty as no relations across lay-

ers are necessary. Relationships among different

types of entities like researchers (connected by co-

authorship), research papers (connected if published

in the same conference), and year (related by pre-

defined ranges/eras) are modeled through heteroge-

neous MLN (HeMLN) (Figure 3(b)). The inter-

layer edges represent the relationship across layers

like writes, published-in, and active-in. In addition to

being collaborators, researchers may be social media

friends. Thus, to model multi-feature data that cap-

ture multiple relationships within and across dif-

ferent types of entity sets, a combination of homoge-

neous and heterogeneous MLNs is used, termed hy-

brid MLN (HyMLN), as shown in Figure 3(c). Here,

the first and the third layer have the same node types

(researchers) linked to the city nodes they reside in,

which are in turn connected based on the flight net-

work (second layer).
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The above graph types and MLN variants pro-

vide alternatives for matching modeling and analysis

needed for application data. Further, MLNs provide

clarity in understanding the data set. Additionally, the

availability of algorithms for a specific graph model

also plays a key role in the choice of the graph model.

For instance, there are not many algorithms avail-

able for attributed graphs in contrast to simple graphs.

There is considerable ongoing research in developing

algorithms for the MLNs (Boden et al., 2012, Santra

et al., 2017) due to the clarity of the model. Hence,

MLNs are preferred for modeling complex data sets.

3.2 EER Modeling Extensions

In contrast to the relational data model, a principled

approach to convert application requirements into a

chosen graph model (simple, attributed, or MLN) is

lacking. However, recently there has been some work

in this regard (Komar et al., 2020, Santra et al., 2022)

leading to the wider use of MLNs. Broadly, the enti-

ties in the EER diagram dictate the formation of lay-

ers with the entity instances as layer nodes and the

binary self relationship defining the intra-layer edges.

The binary non-self relationships define the inter-

layer edges. Some relationships are self-explanatory

and can be easily mapped into edges like friendships,

siblings, direct flights, and so on. However, some re-

lationships are non-explicit like “two actors working

in similar genre of movies” for which the EER model

needs to have a parameter attribute for the relation-

ship that defines the similarity metric and threshold.

The value of these parameter attributes will be used

to generate the edges in the MLN. Currently, we are

developing algorithms for converting EER to any type

of graph, not just MLN. More research is needed in

this area to make analysis easier.

4 MLNs FOR BIG DATA

ANALYSIS

Depending on the analysis requirements, the Google

Knowledge Base (GKB) data set can be modeled as

different types of MLNs. For instance, there exist

multiple relationships among the same set of people

- whether they are married to each other or have the

same birth state or studied in the same university, and

so on. This gives rise to a homogeneous GKB MLN

with the same set of nodes being connected differently

in each layer (Figure 4(a)). Similarly, Figure 4(b)

shows an HeMLN where both layers have different

sets of entities - person, and company.

Figure 4: Google Knowledge Base modeled as MLNs.

The person nodes are connected if they studied

in the same university, the company nodes are con-

nected if they focus on similar fields, and the person

nodes are connected to the company nodes that they

founded/established through inter-layer edges. This

may also be extended to Hybrid MLNs if two differ-

ent person layers are connected to a company layer.

4.1 MLN: Multiple Analysis Choices

Figure 5 shows three MLN analysis alternatives. Fig-

ure 5(a) shows an MLN conflated into a simple graph

by aggregating layers. These aggregation approaches,

termed type-independent (Domenico et al., 2014) and

projection-based (Berenstein et al., 2016), ignore type

information. Hence, they do not support structure and

semantics preservation without elaborate mappings as

they aggregate or collapse layers into a simple graph

in different ways. As observed in the literature, with-

out additional mappings, currently-used aggregation

approaches are likely to result in some information

loss, distortion of properties, or hide the effect of dif-

ferent entity types and/or different intra- or inter-layer

relationships (Kivelä et al., 2013,De Domenico et al.,

2014). At the other end of the spectrum, Figure 5(c)

shows the same MLN layers and result computation

by traversing the MLN as is.

Figure 5: (a) Lossy Vs. (b) Decoupling Vs. (c) Whole
MLN approaches (Santra et al., 2022).

Figure 5(b) on the other hand proposes an ap-

proach, termed networking decoupling, where net-

work property for each layer is computed indepen-
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dently (possibly in parallel) in the analysis (Ψ) phase

and compose them using a binary operator Θ. This

approach has been shown to be effective and can

be done using Boolean operations for HoMLNs and

HeMLNs without losing type information. Further-

more, it is more efficient than the approaches shown

in Figure 5(a) or (c). Finally, the clarity of modeling

using MLNs is retained as well.

5 USE OF MLNs IN LIEU OF

GRAPHS

Based on daily life interactions (education, social me-

dia platforms, restaurant check-ins, healthcare check-

up appointments, etc.) different facts are available on

the web. In terms of knowledge base, “different facts”

about a person are captured in the GKB. Freebase

captures such information for famous personalities:

birth place and residence, education institutions at-

tended, birth and death date (if available), companies

worked in/founded, family-based relationships and so

on (Bollacker et al., 2008). Here, people, universi-

ties, companies, and states are related to each other

based on explicitly available interactions or relation-

ships. Some interesting analysis objectives can be:

(GKB-O1) Find frequently occurring patterns

among states, based on university locations

and place of company headquarters for the

entrepreneurs.

(GKB-O2) Find groups of people who were born in

the same state and have studied in the same uni-

versity.

(GKB-O3) For each group of founders who have

studied in the same university, find out the most

popular focus field among the group of similar

companies that they have founded.

Although objective (GKB-O1) can be computed us-

ing traditional graph models, MLNs are needed for

objective (GKB-O2) and others similar to that. The

HoMLN shown in Figure 4(a) is required to address

(GKB-O2). In this case, we need to “Find groups

of people who were born in the same state and have

studied in the same university”. Here “grouping” key-

word means that we need to compute communities

among the people nodes, followed by AND compo-

sition (due to the “and” keyword). For AND com-

position, here the CE-AND composition algorithm is

used that intersects the community edges, then per-

form a connected component analysis to obtain the

group of nodes that are tightly connected in both the

layers (Santra et al., 2022, Santra et al., 2017). Thus,

the analysis expression based on the decoupling ap-

proach can be expressed as:

Expression: Ψ(PERSON-Born-in-same-state) Θ
Ψ(PERSON-Studied-in-same-university);
where Ψ = Community; Θ = CE-AND (composition)

Similarly, for (GKB-O3), the HeMLN shown in

Figure 4(b) is used. Here, “For each group of

founders who have studied in the same university,

we need to find out the most popular focus field

among the group of similar companies that they have

founded.” Thus, communities need to be detected

in both person and company layers, which become

meta-nodes in the bipartite graph. The number of

inter-layer edges between the constituent nodes of

each pair of meta nodes will define the edge weight.

Finally, maximal weighted matching (MWM) will

give us the required optimal pairing of person and

company communities (Santra et al., 2022). The anal-

ysis expression is as follows:

Expression: Ψ(PERSON-Studied-in-same-univer- sity)

Θ Ψ(COMPANY-Focus-on-similar-fields);

where Ψ = Community; Θ = MWM (bipartite maximum

weighted matching)

6 GRAPHS/MLNs FOR VIDEO

ANALYSIS

Our goal, as part of big data analysis, is to han-

dle different data types (4 Vs of big data) in the

same way we handle structured and tabular data. If

videos (or extracted contents) can be modeled using

graphs/MLNs, the same life cycle approach can be

applied for video analysis, enabling the modeling and

analysis of video data alongside other data types. As

discussed in Sec. 2, the existing custom approaches

for video analysis require new software/algorithm/re-

training to perform a new analysis. Hence, this ap-

proach does not lend itself to the holistic analysis re-

quired for big data. In contrast, if big data analy-

sis were to include video analysis in mainstream data

processing, a different approach would be needed.

Some works in the literature used graphs for video

analysis as explained in Sec. 2. Recently, (Billah

et al., 2024) proposed a novel approach for video

analysis that has the potential to advance big data

analysis to include videos. This approach is novel

as video contents are extracted once (using existing

Video Content Extraction (VCE) algorithms), mod-

eled, and then analyzed to identify a variety of situ-

ations from them. This approach has several advan-

tages: i) video contents are extracted only once, ii)

it is possible to model these extracted contents com-

pletely, iii) several analysis expressions can be formu-

Multilayer Networks: For Modeling and Analysis of Big Data

387



lated and computed on them, iv) both “ad hoc” and

“what if” analysis can be supported, and v) most im-

portantly, this can be extended for real-time analysis.

A workflow of open-source VCE algorithms can

be used for extracting object bounding boxes and

class labels (with a confidence score) using object de-

tection (YOLO (Wang et al., 2024)) algorithm, unique

identifier (object id) for each object and feature vec-

tors using object tracking (Bot-sort (Aharon et al.,

2022)) algorithm, and pose coordinates using pose es-

timation (HRNet (Wang et al., 2020)) algorithm.

Modeling of Extracted Video Contents: The dif-

ferent types of extracted video contents can be mod-

eled in multiple ways. Two promising models that are

being explored in the literature are the extended re-

lational model (Billah and Chakravarthy, 2024) and

the graph model (Billah et al., 2024). If it is mod-

eled using an extended relational model, Continuous

Query Language (CQL) (an extension of the widely-

used Structured Query Language (SQL)) can be used.

If the extracted contents are modeled as graphs, dif-

ferent graph analysis techniques can be used. The ra-

tionale for using multiple models is that some analysis

may be easier in one model as compared to the other.

For example, clustering of objects is easier using the

graph model than the extended relational model. We

will focus on the graph model as this paper is about

the utility of graphs and MLNs for big data analysis.

To represent extracted video contents as graphs,

nodes and edges need to be identified and other re-

lated information (e.g., the feature vectors, bounding

boxes, etc.) needs to be associated properly for com-

putation. Many analyses involve objects. Hence, ob-

jects are represented as nodes and Object id as node

id in the literature. There are multiple choices to cre-

ate edges (e.g., the distance between objects, and their

spatial relationship in a frame, etc.). Figure 6 shows

a graph representation of a sample video frame with

nodes with two labels: frame id ( fid) and object class

label (Ol) and edges (based on the objects bounding

box centroid distance).

A spectrum of alternatives exists for the graph rep-

resentation, each with different advantages and disad-

vantages. It is possible to model the entire video as

Figure 6: Graph representation of a sample video frame.

one graph (model M1) using object id for nodes (with

a large amount of information with each node). It is

also possible to create a graph for each frame (model

MF ) (shown in Figure 6), where the number of graphs

will be equal to the number of non-empty frames F in

the video. Options in-between are also possible where

a forest of g ( 1 f g f F) graphs (model Mg) can

be generated by aggregating the consecutive frames

into a graph based on some constraints, with vary-

ing numbers of graphs for different videos. The in-

between alternatives allow us to compress node labels

and edges in different ways reducing the storage re-

quired and can also reduce computational complexity

as the graphs are generated in some logical manner.

Video Content Analysis Using the Graph Models:

Below, we indicate video analysis examples using

graph models from the literature.

1. Identifying Groups (Billah et al., 2024): In as-

sisted living environment videos, it is useful to

identify isolated individuals (not participating in

group discussions, etc.) This analysis has been re-

ported in (Billah et al., 2024) to cluster individuals

in video frames by leveraging K-Means clustering

on model MF where nodes are objects and edges

are the object bounding box centroid distances.

2. Identifying if a Parking Slot is Occupied (Ya-

dav et al., 2020): In surveillance videos, it is of-

ten important to know which parking spaces are

occupied. This analysis has been reported in (Ya-

dav et al., 2020) using model MF , where nodes are

objects and edges are spatial bounding box rela-

tionships (e.g., overlap, inside, etc.) between ob-

jects in a frame. Their proposed algorithm identi-

fies a parking lot as occupied if the parking lot and

a car’s bounding box overlap over a threshold.

In summary, extracted video contents are shown to be

modeled and analyzed using alternative graph mod-

els and analysis algorithms. MLNs come in handy

to model multiple graphs (or videos) as different lay-

ers and perform combined analysis. HoMLNs can be

used by connecting object ids from different graphs

generated from the same video or by connecting ob-

ject ids from different videos if their feature vectors

match. Once modeled appropriately, interesting anal-

ysis (e.g., groups of objects entering and exiting a

premise after n minutes of each other) can be per-

formed using graphs/MLNs.

7 MLNs FOR INFORMATION

FUSION

Analysis of a single modality/data type has been the
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major focus until now, be it structured (e.g., stream

data processing (Barbieri et al., 2010)) or unstructured

data (e.g., image and video analysis (Zhang et al.,

2023, Yadav et al., 2020), text and natural language

processing (Otter et al., 2020)). Yet, when all or a sub-

set of these data types must be analyzed holistically,

several challenges emerge. These problems have been

categorized under various headings, such as data fu-

sion, multi-modal data analysis, and others which are

limited in scope and context (Atrey et al., 2010). The

challenges originate due to the lack of approaches that

can effectively perform information fusion both at the

modeling and analysis stages. Therefore, the holistic

approach needs to accommodate modeling, and anal-

ysis techniques for objectives for performing knowl-

edge discovery. In our view, MLNs with their model-

ing and analysis advantages provide a path to explore

information fusion. Many applications, such as cyber-

security, healthcare, and surveillance can benefit from

this. We illustrate this with an example.

Sample Application – Healthcare: Patient data is

collected in diverse formats by different specialists

over time. This data constitutes the patient’s medi-

cal records including demographics, hospital/doctor

visits, vital signs, medications, progress notes, aller-

gies, radiology images, and laboratory results, and

can be further enriched by exercise data, etc. This

data is both spatial and temporal. When all this data

is accumulated, holistic knowledge discovery over an

individual and the population is possible. This ap-

plication with big data characteristics can be used

for personalized care using querying, searching, and

mining. MLNs can be used for effectively modeling

this data and for flexible analysis. Layers that can

be identified are: i) Demographics Layer(s): Pa-

tient nodes are connected by edges based on demo-

graphics (age, ethnicity, profession, education level,

etc.), ii) Image/Video Layer(s): Patient nodes are

connected based on the similarity of patterns present

in them (X-rays, MRIs, EKG, and CT Scans), iii)

Pathology Layer(s): Patient nodes are connected

based on the similarity of indicators (e.g., high sugar,

high/low BP, etc.), iv) Vaccination Layer(s): Person

nodes are connected based on the number of doses

and type of shots. These layers can be generated for

county/city/state as needed.

Figure 7(a) illustrates 4 possible layers of the

hybrid healthcare MLN, with the inter-layer edges.

For example, the demographics layer can be linked

with scan/pathology layers based on whom the re-

port belongs to with the test report date and symp-

toms as the label information. From this MLN,

it is also possible to extract graphs for an individ-

ual or a select group for different types of analy-

Figure 7: Healthcare MLN.

sis (shown in Figure 7(b) for patient p1 and his/her

family). This model with the extracted graph(s) al-

lows us to query, search, and analyze to discover

knowledge using all or a subset of layers in various

ways. Few examples are - using collective infor-

mation of an individual and family, a physician can

draw holistic inferences which may not be possible

without a model that represents multi-source, multi-

type data (personalized/customized holistic diag-

nosis/inference), find group(S) of people for a spe-

cific demographics who had lung problems and other

co-morbidity (e.g. diabetes) and contracted Covid

(aggregate analysis using homogeneous and het-

erogeneous community detection on multiple lay-

ers), people who did not have any history of lung

issues but contracted Covid (mining on a subset of

layers using Boolean NOT operation).

8 CONCLUSIONS

In this position paper, we argue for MLNs as a vi-

able alternative for big data analytics. We have dis-

cussed the versatility of MLN models and their ability

to model diverse data, the recent work on MLN model

generation using the EER approach, and efficient

MLN algorithm development for analysis. Based on

MLN work in the literature, we have argued for their

use for modeling and analyzing complex data sets in-

cluding images, videos, and other data types (e.g.,

natural language). There is an ongoing effort to ap-

ply MLNs for information fusion/integration as well.
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