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Abstract. Multiplexes(alsotermedMultilayerNetworksornetworksof
networks)areusefulformodelingdatasetswithmultiple entity types, and 

relationships among them.Thenotionofacommunityiswell-definedfor
simplegraphs(oramonoplex/network)andiswidelyusedforaggregate
analysisongraphs.Severalsimplegraphalgorithms(e.g.,Infomap,Lou-
vain) for computingacommunityandalgorithms for computingother
metrics(e.g.,centrality,substructure,etc.)existaswell.Althoughmul-
tilayernetworks(MLNs)areusedformodeling,theconceptofacommu-
nityandalgorithmsforitscomputationarelacking.Ideally,anMLNcom-
munitydefinitionshouldbecomparabletothesimplegraphdefinitionand
beageneralization.AsMLNshavestructureintermsoflayers,includ-
inginter-layeredges,itisimportanttodefineacommunitythatincludes
itsstructureandsemantics.Theresultingcommunityshouldalsobean
MLN.The focusof thispaper isonheterogeneousMLN(orHeMLN),
whichisatypeofMLNwithexplicitlydefinedinter-layeredges.

Inthispaper,weintroduceacommunitydefinitionforHeMLNsthat
is structure-preserving and is also consistent with the traditional def-
inition. Layer semantics are also preserved for drill-down and visual-
ization. First, we define a community for any k connected layers of a
HeMLN(termed k-community (1-community is the sameas the tradi-
tionalcommunityonasimplegraphoralayerofHeMLN.))usingbinary
composition.Then,weproposeanalgorithmfor itscomputationusing
the concept of bipartite graphs. Further,we showhowweightmetrics
canbecustomizedtoincludethesemanticsofparticipatingcommunity
characteristics.Ourdefinition:i)leveragesextantsimplegraphcommu-
nitycomputationalgorithms,ii)composespartialresultsfromdifferent
layersforcomputingHeMLNcommunities(i.e.,usesthedecouplingapp-
roach), iii) iscustomizableusingweightmetricsbasedonparticipating
communities, and iv) is computationally efficient.Wehaveexperimen-
tallyvalidatedthecommunityconcept(definitionandcomputation)on
severalreal-worldandsyntheticdatasets.

Keywords: CommunityDefinitionandDetection · Heterogeneous
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1 Motivation 

Asdatasetsbecomemorecomplex intermsofthenumberandtypesofenti-
tiesandrelationships,approachesfortheirmodelingandanalysis alsowarrant
extensionsornewalternativestomatchthedatasetcomplexity.Withtheadvent
ofsocialnetworksandlargedatasets,wehavealreadyseenasurgeintheuse
ofgraphsformodeling,alongwitharenewedinterestinconcepts,suchascom-
munity,substructures,andcentrality(e.g.,hubs)beingusedforanalysis.

Fig. 1. HomogeneousandHeterogeneousMLNs

Informally,MultilayerNet-
works (or MLNs) are lay-
ers of networks where each
layerisasimplegraphcaptur-
ingtherelationshipsemantics
between two entity instances
(either of the same or dif-
ferent type) using an edge.
Entities from different lay-
ers can also be connected.
If each MLN layer has a
common subset of entities of
a single type, it is termed
a homogeneous MLN (or
HoMLN.)ForHoMLN,intra-
layeredgesareshownexplic-
itly and inter-layer edges
are considered implicit (and
hence not shown.) For example, US cities are linked based on a direct flight
betweenthemoperatedbyaspecificairline (Fig. 1 (a)).Ontheotherhand,if
theentitytypesaredifferentforeachlayer,thenrelationshipsbetweenentities
across layers are shown using explicit inter-layer edges. This distinguishes a

Fig. 2. DecouplingApproach:Compute3-community(( . G2 

.Θ2,1 .G1) .Θ2,3 G3) . ωe

heterogeneous MLN
(orHeMLN)fromthe
previousone.Forexa-
mple, relationships
among actors (con-
nected based on co-
acting),directors(con-
nected if they direct
moviesof similargen-
res),andmovies(rela-
tedbypre-definedaver-
ageratingranges)are
modeled through a
heterogeneous MLN
(Fig. 1 (b)).Theinter-layeredgesrepresenttherelationshipacrosslayers,such
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asdirects-movie,directs-actor,andacts-in-movie(notillustrated).Ourfocus,in
thispaper,isonHeMLNs.

ForaggregatecomputationsonMLNs,anoveldecouplingapproachhasbeen
proposedin[ 18,22,23].Figure 2 showsthedecouplingapproach.Threelayers
andtheirinter-layerconnectionsareshown.HeMLNcommunitycomputationis
accomplishedbycombiningcommunities fromtwolayersofaHeMLNusinga
binarycompositionfunction ( . Θ)andisextendedto . k layersbycomposingthe
resultwithadditional layers oneat a time.Figure 2 also showshowa3-layer
HeMLN community is expressed for computation. Composing partial results
fromindividual(orpreviouslycomputed)layersiscentraltotheefficiencyofthe
approachaselaboratedinSect. 7.Thisapproachalsopreservesthestructureof
theMLNanditssemanticsfordrill-downandvisualization.

ThecontributionsofthispaperareshownbelowwithrelatedworkinSect. 2
andconclusionsinSect. 8.

– Definitionandsomepropertiesofk-communityforaHeMLN(Sect. 3),
– Compositionfunctionfork-communitycomputation(Sect. 4),
– Anewbipartitematchalgorithmforcomposition(Sect. 5),
– Experimentalanalysistoestablishthevalidityoftheproposedapproachalong

withperformanceanalysis(Sects. 6 and 7)

2 Related Work 

AsthispaperfocusesontheHeMLNcommunitydefinitionanditsefficientdetec-
tion,wepresentrelevantworkonsimplegraphsandHeMLNs.Theadvantages
ofmodelingusingMLNsarediscussedin[ 4,14,15,20,23].

Communitydetection onasimplegraphinvolves identifyinggroupsofver-
ticesthataremoreconnectedtoeachotherthantootherverticesinthenetwork.
Mostoftheworkintheliteratureconsiderssinglenetworksorsimplegraphs
wherethisobjectiveistranslatedtooptimizingnetworkmeasuressuchasmod-
ularity [ 3], conductance [ 16] or map equation [ 6]. As the combinatorial opti-
mizationofcommunitydetectionisNP-complete[ 7],manycompetitiveapprox-
imationalgorithmsanddeeplearningbasedmethodshavebeendeveloped(see
reviews in [ 11,13,25].) Algorithms for community detection have been devel-
opedfordifferenttypesofinputgraphs,includingdirected,edge-weighted,and
dynamicnetworks.However,tothebestofourknowledge,thereisnocommu-
nitydefinitionforHeMLNs, letaloneitscomputationthatpreservesstructure
alongwithnodeandedgelabelsfordrill-down(semantics).

ThemajorityoftheworkonanalyzingHeMLN(reviewedin[ 5,24,26])focuses
ondevelopingmeta-pathbasedtechniquesfordeterminingclustering,similarity
of objects, classification of objects, predicting the missing links, ranking/co-
ranking,andrecommendations.

The type-independent [ 8] and projection-based [ 2] approaches used for
groundtruth(GT)forHeMLNsusetheexistingcommunitydefinitionanddo
not preserve the structure or semantics of the community. Both approaches,
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inslightlydifferentways,conflatelayersintoasimplegraphkeepingall nodes
andedges(includinginter-layeredges)sanstheirtypesandlabels.Thishasbeen
showntoresultininformationloss[ 15].Mostofthecommunitydetectionwork
inMLNshasfocusedonhomogeneousMLNs,wherethecommonsetofnodes
ispresentineachlayer([ 12,14,21]).However,thepresenceofdifferentsetsof
entitiesineachlayerandthepresenceofintra- andinter-layeredgesmakethe
structure-preservingdefinitionmorechallengingforHeMLNsandalsowarrants
an alternate technique (the decoupling approach.) A few existing works have
proposed techniques for generating clusters of entities [ 10,17], but they have
onlyconsideredtheinter-layer linksandnot thenetworksthemselves.

Thispaperfillsthegapbyprovidingaclearnewformaldefinitionofcommu-
nityforHeMLNsthatisstructure- andsemantics-preserving.Thisdefinitioncan
beshowntobesimilartothetraditionalmodularitydefinitionforcommunities.
Adistinctadvantageofthedefinitionandtheuseofthedecouplingapproachis
thatitleveragesexistingcommunitydetectionalgorithms(andseveralofthem
are currently available.) Infomap and Louvain are more popular than others.
ThispaperalsoestablishedtheefficiencyofthedecouplingapproachforHeMLN
communitydetection.

3 Community Definition for a HeMLN 

3.1 MultilayerNetworks:NotationsUsedinthePaper

Westartwithaformalmultilayernetworkdefinitionthatcoversbothhomoge-
neousandheterogeneousnetworks.

Table 1. Notationsusedinthispaper

.Gi(Vi, Ei) Simple Graph for layer i 

.Xi,j (Vi, Vj , Li,j ) Bipartite graph of layers i and j 

.MLN(G,X) Multilayer Network of layer graphs (set 

G) and Bipartite graphs (set X ) 

.Ψ Analysis function for .Gi (community) 

.Θi,j ProposedMaximum Weighted 

Bipartite Coupling (MWBC) function 

.CBGi,j Community Bipartite Graph for .Gi and 

. Gj 

.Ui Meta nodes of layer i 1-community 

.L′

i,j Meta edges between .Ui and . Uj 

.cm 
i .mth community of . Gi 

.vcm 

i , .ec
m 

i Vertices and Edges in community . cm 
i 

.Hm 
i Hubs in . cm 

i 

.H
m,n 
i,j

Hubs in .cm 
i connected to . cn 

j 

.xi,j {Expanded (meta edge .< cm 
i , .c

n 
j >)} 

.0 and .φ null community id and empty . xi,j 

.ωe, .ωd, .ωh Weight metrics for meta edges (see 

Sect. 5) 

Formally,amultilayernet-
work, .MLN(G,X) , isdefined
bytwosetsofgraphs:(i).The
set .G={G 1, G2, . . . , GN} con-
tains graphs of N individual
layers . L = {L 1, L2, . . . , LN}
eachofwhichisasimplegraph,
where .Gi(Vi, Ei) is defined by
a set of vertices, .Vi and a set
ofedges, . Ei.Anedge . e(v,u)∈
Ei, connects vertices . v and . u,
where .v,u∈V i and(ii).Aset
. X={X 1,2, X1,3, . . . , XM−1,M }
ofbipartitegraphs.Eachbipar-
tite graph .Xi,j(Vi, Vj , Li,j) is
definedby two sets of vertices
.Vi and . Vj , and a set of edges
(also called linksor inter-layer
edges) .Li,j ,suchthatforevery

link .l(a,b)∈L i,j , .a∈V i and .b∈V j ,where .Vi (. Vj)isthevertexsetofgraph . Gi

(.Gj .)ForaHeMLN(thefocusofthispaper), .X isexplicitlyspecified.Without
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lossofgenerality,weassumeuniquenumbersfornodesacrosslayersanddisjoint
setsofnodesacrosslayers.

Our definition of community for a HeMLN uses communities from each
layerandinter-layeredgeconnectionstrengthbetweencommunitiesacrosslayers
expressedasaweight.Oneoftheweights(numberofinter-layeredges)iscom-
patiblewiththesimplegraphdefinitionofacommunity.Inaddition,coupling
alternativescanbeformulatedforthesame .Θ toprovidemultiple(orafamily 

of)communitydefinitionsthatcanbeused fordifferentanalysisobjectivesas
needed. Finally, the framework is extensible in that it allows one to propose
additionalparameters(orweights)tocustomizeforaspecificdatasetorasetof
analysisobjectives.Furthermore, italsopreservesthestructureandsemantics
due to composition using the decoupling approachwhich is also shown tobe
computationallyefficient(seeSect. 7).Table 1 listsnotationsusedinthepaper
forquickreference.

3.2 DefinitionofHeMLNCommunity

ACommunityBipartiteGraphor .CBGi,j(. Ui, .Uj , .L′
i,j)isdefinedbetween

twodisjointandindependentcommunities .Ui and .Uj .Eachelementof .Ui (.Uj)
isacommunityfrom .Gi (.Gj)thatisrepresentedasasinglemetanode. .L′

i,j is
thesetofmetaedgesbetweenthenodesof .Ui and .Uj (orbipartitegraphedges.)
Foranytwometanodes,asingle edge isused for .L′

i,j , if there isat least one
inter-layeredgebetweenanypairofnodesfromthecorrespondingcommunities
(actingasmetanodesinCBG)inlayers .Gi and .Gj .Thestrength(orweight)
componentofthemetaedgesiselaboratedinSect. 5.

Fora layergraph,a1-community is thesameasthetraditionalcommu-
nitiesidentifiedusinganyofthecommunitydetectionalgorithms.AHeMLN
communityfor2layers(termed2-community)isformallydefinedusingthe
communitybipartitegraph .CBGi,j(. Ui, .Uj , .L

′
i,j)correspondingtolayers .Gi and

.Gj .A2-communityisasetoftupleseachwithapairofelements .< cm
i , cn

j >,
where .cm

i ∈ U i and .cn
j ∈ U j , that satisfy the Maximum Weighted Bipartite

Coupling(MWBC)(compositionfunction . Θ)forthebipartitegraphof .Ui and
.Uj ,alongwiththesetofinter-layeredgesbetweenthem(denotedby .xi,j .)The
ideaistoobtainthegroup(s)ofnodesthataretightlycoupledwithinandacross
layers.Thepairing isdone fromleft-to-right (as it isnot commutative)anda
single community fromthe left layer canpairwith zero ormore communities
fromtherightlayer.Thatis,one-to-manyormany-to-onepairingsarepossible,
unliketraditionalbipartitematching.

AHeMLNcommunityof k connectedlayers,termedk- community 

isdefinedastheapplicationof2-community definitionrecursivelytocompute
k-community.The2-communitydefinitioncanbeappliedtot1-communityand
t2-communitytogeneratea(t1+t2)-community.Thebasecasecorrespondsto
applyingthedefinitionof2-community for2 layers t1andt2.Thisapplies to
anyexpressionwithprecedence.Forsinplicity,wediscusstheleft-to-rightcom-
putationofk-community.

Foraleft-to-rightcomputation,thebasecaseisappliedtothefirst2layers.For
eachrecursivestep,therearetwocasesforthe2-communityunderconsideration:
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i)the .Ui isfromalayer .Gi alreadyinthet-communityandthe .Uj isfromanew
layer .Gj .Thisbipartitegraphmatchissaidtoextendat-community(t .< k)
toa(t+1)-community,orii)both .Ui and .Uj fromlayers .Gi and .Gj ,respectively
arealreadyinthet-community.Thisbipartitegraphmatchissaidtoupdatea
t-community(t . < k),notextendit.

Table 2. CasesandoutcomesforMWBC(Algo. 1)

(Glef t,G right) outcome Effecton tuple t 

case (i) - one processed and one new layer 

a) consistent match Copy & Extend t with paired 

community id andx i,j 

b) no match Copy&Extend t with 0 and φ

case (ii) - both are processed layers 

a) consistent match Copy&Update t onlywithx

b) no match Copy&Update t onlywithφ

c) inconsistent match Copy&Update t onlywithφ

Forboth cases i) and
ii) above, two outcomes
arepossible.Ametanode
from .Ui either,a)matches
one or more meta nodes
in .Uj resulting in one
(or many) consistent
match, or b) does not
match a meta node in
.Uj resulting in a no
match.However,forcase
ii) a third possibility
existswhichcanbecharacterizedasc)matchesanodein .Uj thatisnotconsistent
withapreviousmatch,termed inconsistentmatch.Sincebothcommunities
have already been matched, a previous match exists (either consistent or no
match).Ifthecurrentmatchisnotthesame,thenitisaninconsistentmatch.

Structure preservation is accomplished by retaining, for each tuple of t-
community,eitheramatchingcommunity id(or0ifnomatch)and .xi,j (or . φ

fortheemptyset)representinginter-layeredgescorrespondingtothemetaedge
between the meta nodes (termed expanded(meta edge).) The extend and
update carried out for eachof the outcomes on the representation is listed in
Table 2.Notethatduetomultiplepairingofnodesduringanycomposition,the
numberoftuples(ort-communities)mayincrease.Copyingisusedtodealwith
multiple pairings. In general, each element of a k-community can be total or
partial.Apartialk-communityelementhasat least one . φ or 0 as part of
thetuple.Otherwise,itisatotalk-communityelement.Anyk-community
thatistotalreflectsastrongercouplingasit includesall inter-layeredgesfor
thosecommunities(asisthecaseofM-A-D-MinFig. 6 (b)inSect. 7.)

3.3 Characteristicsofk-Community

To clearly understand, a HeMLN can be viewed as a simple graph (termed
HeMLN-graph)witheachHeMLNlayerbeinganodeandtheinter-layeredges
betweenlayersdenotedbyaweightededgebetweencorrespondingnodes.Then,
ak-communitycanbespecifiedoveranyconnectedsubgraphofthisHeMLN-
graph.Casei)abovecorrespondstoak-communityofanacyclicsubgraph,and
caseii)toak-communityofacyclic subgraphoftheHeMLN-graph.Forboth,
thenumberofcompositionswillbedeterminedbythenumberofedgesinthe
connectedsubgraphandcanbemorethanthenumberoflayers(ornodes).Also,
forbothcases,MWBCresultsinoneofthe3outcomes:aconsistentmatch,no
match, or aninconsistentmatch(onlyforcase(ii))asshowninTable 2.
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Fig. 3. Illustrationoforderdependenceonak-community

Theabovedefinitionwhenappliedtoaspecification(suchastheoneshown
inFig. 3 generatesprogressively strongcouplingof communities between layers
(dueto left-to-rightprecedenceof . Θ)usingMWBC.Thus,ourdefinitionofa
k-communityischaracterizedbydenseconnectivitywithinthelayer(community
definition)andstrongcouplingacross layers (comparable tocommunitydefini-
tioncapturedbyMWBCsemantics.)Hence,webelieve, thatthisdefinitionof
k-communitymatchesorcomesclosetotheoriginalmodularityintuition[ 19] of a
community1 forasimplegraph(seeTable 3).Byrefiningtheedgeweightusing
participating community characteristics, a family of community definitions is
supportedthatcanbecustomized.

Table 3. Community modularity
comparison: Type-independent vs.
Proposeddefinitions

HeMLN Type-Independent Decoupling 

IMDb 0.77696 0.643508 

DBLP 0.694208 0.694208 

Fortheevaluationpurpose,weusedthe
IMDb(layerdetailsareshowninTable 4 of
Sect. 7) and DBLP HeMLNs. For IMDb,
we have used the Actor and Director lay-
erswiththeir inter-layeredges.ForDBLP,
we have used the Author and Paper lay-
erswiththeirinter-layeredges.Forcompo-
sition,wehaveusedthemetric .ωe thattakesintoaccountthenumberofinter-
layer edges between the layer-wise communities while performing the match-

1 Modularity isameasureof thestructureofanetworkoragraphwhichmeasures
the strengthofdivisionof anetwork intomodules (also calledgroups, clusters or
communities).Networkswithhighmodularityhavedenseconnectionsbetweenthe
nodeswithinmodulesbut sparse connectionsbetweennodes indifferentmodules.
Similarly,inourdefinition,wepairthecommunitiesbetweentwolayersbasedonthe
inter-layeredgestrengthconnectedtothatpair (ofallpairs),andhencethepairs
producedhavedenseconnectionswithinandacrosstwolayers.Herethemodularity
of theHeMLN is based on the dense coupling between the dense communities of
layersascomparedtoallpossibleinter-layercouplings.
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ing. This metric is closest to the traditional definition as type-independent
aggregationdoesnotconsideranyother layer-wise communitycharacteristics.
Table 3 showsthemodularityvalues 2 forthedecouplingapproachandthetype-
independentapproach.AscanbeseentheyareidenticalforDBLPandveryclose
forIMDb.Hence,ourcommunitydefinition,apartfrompreservingthestructure
and semantics, generates communities whose quality, based on modularity is
comparableto thetype-independentcommunities.

NeedforaNewPairingAlgorithm. Inatraditionalbipartitegraph(used
fordating,hiring,etc.),eachnodeisatomic.Thegoalistofindthemaximum
numberofmatches(bipartiteedges)suchthatnotwomatchessharethesame
node.Hence,anodefromonesetispairedwithatmostonenodefromtheother
set.Toaccommodatemultipleedges,weightsareneededwithoutchangingthe
pairingsemantics[ 9].

Incontrast,eachnodeofourbipartitegraphisametanode(non-atomicand
correspondstoacommunity)andthebipartiteedgeisalsoametaedge(setof
edgesbetweentwocommunities).Eachmetanode,inourcase,isacommunity
representing a group of entities (layer nodes) with additional characteristics.
Eachmetaedgeneedsto,attheleast,capturethenumberofedgesinthatmeta
edge(i.e.,inter-layeredges.)Thenumberofedgesbetweenthemetanodesisone
oftheedgeweights( . ωe)proposed,whichcorrespondstothetraditionalintuition
behindacommunity.

Sinceedgeweightsplayasignificantroleinthematchingandarealsousedas
amechanismfordeterminingthestrengthofthecouplingofcommunitiesacross
layers,edgeweightscanbeleveragedtoincludeparticipatingcommunitychar-
acteristics.Inadditionto . ωe,itispossibletobringinparticipatingcommunity
characteristics tocaptureadditionalaspectsof coupling.Thiscanbedoneby
definingdifferentedgeweightstocapturedifferentcharacteristicsofthepartici-
patingcommunities.Wehaveusedhubparticipationfromcommunitiesandthe
densityofparticipatingcommunitiesasweightalternatives.

Fig. 4. Illustration of Traditional and
Relaxed Pairings on a weighted bipar-
titegraph

For pairing nodes of the bipartite
graph, since traditional approaches are
not suited for our coupling, we pro-
poseanedgeweight-basedcouplingthat
reflectsthesemanticsofthecommunity.
Eachnodefromthefirstsetispairedwith
zero or more nodes fromthesecondset
solelybasedontheoutgoingedgeweights
of that node. This is repeated for each

nodefromthefirstset.Mostimportantly,unlikecurrentalternativesintheMLN
community literature, there is no information loss or distortion or hiding the
effectofdifferententitytypesorrelationshipsinourdefinition.

2 Amodularityvaluegreaterthan0.5isconsideredacceptable.Modularityvalueclose
to 1 indicates strong community structure, whereas a value close to 0 indicates
thatthecommunitystructureisnotbetterthanrandom.
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Figure 4 providesanexampleofabipartitegraphtoillustratemultipletypes
ofpairingsappropriateforMLNcommunities.MWM(MaximumWeightMatch-
ing);MWMT(MWMwithTies);MWPM(MaximumWeightPerfectMatch);
MWRM(MaximumWeightwithRelaxedMatching).

4 HeMLN k-Community Computation 

Algorithm 1 acceptsalinearizedspecificationofak-communityandcomputes
the result asdescribed earlier.Theoutput is a set whose elements are tuples
corresponding to distinct, single HeMLN k-community for that specification.
Figure 3 shows2- and3-communityexampleresultscomputedusingthisalgo-
rithm.

Algorithm1.HeMLNk-communityDetectionAlgorithm
Require: -

INPUT: HeMLN, (.Gn1 .Θn1,n2 .Gn2 ... .Θni,nk .Gnk), and a weight metric (. ω). 
OUTPUT: Set of distinct k-community tuples 

1: Initialize: k=2, .Ui = . φ, .Uj = . φ, result. ′ = . ∅
result .← MWBC(.Gn1,.Gn2, HeMLN,  . ω) 
left, right .← left and right subscripts of second . Θ

2: while left .�= null && right .�= null do 
3: .Ui .← subset of 1-community(.Glef t,result ) 
4: .Uj .← subset of 1-community(.Gright,result ) 
5: MP .← MWBC(.Ui, .Uj , HeMLN,  . ω) //a set of comm pairs .< cp 

lef t
,. cq 

right 
>

6: for each tuple t .∈ result do 

7: kflag = false 
8: if both .cx 

lef t andc y 

right 
are part of t and .∈ MP [case ii (processed layer): consistent 

match] then 
9: Update a copy of t with (.xlef t, right) and append to result. 

′

10: else if .cx 
lef t is part of t and .∈ MP and .Gright layer has been processed [case ii 

(processed layer): no and inconsistent match] then 

11: Update a copy of t with .φ and append to result. ′

12: else if .cx 
lef t is part of t and for each .c

x 
lef t ∈ MP [case i (new layer): consistent 

match] then 
13: copy and Extend t with paired .cy 

right 
.∈ MP and .xlef t, right and append to result. ′; 

kflag = true 
14: else if .cx 

lef t is part of t and . /∈ MP [case i (new layer): no match] then 

15: copy and Extend t with 0 (community id) and .φ and append to result. ′; kflag = true 
16: end if 

17: end for 

left, right = next left, right subscripts of .Θ or null 
if kflag k = k + 1; result = result. ′; result. ′ = . ∅

18: end while 

Thebipartitegraphforthebasecaseandeach iteration isconstructedfor
theparticipatinglayers(eitheroneisneworbotharefromthet-communityfor
somet)andMWBCalgorithmisapplied.Theresultobtainedisusedtoeither
extendorupdatethetuplesofthet-communityandaddnewtuplesaswell.All
casesaredescribedinTable 2.

Thealgorithmiterates(lines2to18)untiltherearenomorecompositions
tobeapplied.Line5computesthefirst2-community.Lines6to17applythe
resultsoftheMWBC(line5)togeneratetuplesofthek-communityusingthe
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Table 2.Careistakeninthecompositiontomakesureeitherthetupleisupdated
orextendedbykeepingaflagandcheckingitafterline17.Theorderofchecking
inside the for loop (lines6 to 17) is important to generate the correct k-
communitytuples.

5 Customizing the Bipartite Graph 

Withoutincludingthecharacteristicsofmetanodesandedgesforthematch,we
cannotarguethatthepairingobtainedrepresentsanalysisbasedonparticipating
community characteristics. Hence, it is important to identify how qualitative
communitycharacteristicscanbemappedquantitativelytoaweightmetric(that
is,theweightofthemetaedgeinthecommunitybipartitegraph)toinfluencethe
bipartitematching.Outofthethreedevelopedweightmetricsbasedon(number
of inter-community edges ( . ωe), density ( . ωd), and hubparticipation ( .ωh)), we
detailonlyoneweightmetricduetospaceconstraintsbelow.

Hub Participation ( .ωh): For many analyses, we are interested in knowing
whether highly influential nodes within a community also interact across the
community.Thiscanbetranslatedtotheparticipationofinfluentialnodeswithin
andacrosseachparticipatingcommunity foranalysis.Thisismodeledbyusing
the notion of hub 3 participationwithin a community and their interaction
across layers. In this paper,wehaveuseddegree centrality for thismetric to
connotehigherinfluence.Theratioofparticipatinghubsfromeachcommunity
andtheedgefractionismultipliedtocompute .ωh.Formally,

Forevery .(um
i , un

k ) .∈ .L′
i,k,where .um

i and .un
k arethemetanodesdenotingthe

communities, .cm
i and .cn

k intheCBG,respectively,theweight,

. ωh(um
i , un

k ) =
|Hm,n

i,k |

|Hm
i |

∗
|xi,k|

|vcm 

i | ∗ |vcn 

k |
∗

|Hn,m
k,i |

|Hn
k |

,

where, .xi,k = .{(a,b) :a∈ v cm 

i , b∈ v cn 

k , and(a,b)∈L i,j}; .Hm
i and .Hn

k are
setofhubsin .cm

i and . cn
k ,respectively; .H

m,n
i,k isthesetofhubsfrom .cm

i thatare

connected to . cn
k ; .H

n,m
k,i isthesetofhubsfrom .cn

k thatareconnectedto .cm
i .

6 Expressing Analysis Objectives on HeMLNs 

Wedemonstratehowanalysisobjectivescanbeexpressedask-communitycom-
putationsonHeMLNs.Also,dependingontheanalysis,appropriateweightmet-
ricscanbechosen.Duetospaceconstraints,wearenotdiscussingtheresults
forotherreal-world(likeDBLP)andsyntheticdatasets.

3 Highcentralitynodes(orhubs)havebeendefinedbasedondifferentmetrics,such
asdegreecentrality(vertexdegree),closenesscentrality(meandistanceofthever-
texfromothervertices),betweennesscentrality(fractionofshortestpathspassing
throughthevertex),andeigenvectorcentrality.
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IMDbDataSet[ 1]:TheIMDbdatasetcapturesmovies,TVepisodes,actors,
directors, and other related information, such as rating. Some IMDbdetailed
analysisobjectivesarelistedbelow,

(A1) Basedonthesimilarityofgenres, for eachdirectorgroupwhichare the
actorgroupswhosemajorityofthemostversatilemembersinteract?
2-community:D .ΘA,D A; . ωh

(A2) For the most popular actorgroups, foreachmovie ratingclass,findthe
directorgroupswithwhichtheyhavemaximuminteractionandwhoalso
directmovieswithsimilarratings.
Cyclic3-community:M .ΘM,A A .ΘA,D D .ΘD,M M; . ωe

ToaddresstheIMDbanalysisrequirements,threelayersfortheIMDbdata
setaregenerated.LayerAandLayerDconnectactorsanddirectorswhoactin
ordirectsimilargenresfrequently(intra-layeredges),respectively.LayerM con-
nectsmovieswithinthesameratingrange.Theinter-layeredgesdepictacts-in-
a-movie ( .LA,M ),directs-movie ( .LD,M )anddirects-actor ( .LA,D) relationships.
Therearemultiplewaysofquantifyingthesimilarityofactors(directors)based
on the movie genres they have worked in. A vector was generated with the
numberofmovies for eachgenrehe/shehasacted in (directed).To take into
accountthefrequencyofgenres inthesimilaritycalculation,twoactors(direc-
tors) are connected if the Pearsons’ Correlation between their corresponding
genrevectorsis . ≥ 0.94.Moreover,10movieratingrangesareconsidered - [0–1),
[1–2),...,[9–10].

Foraspecificanalysis, thecharacteristicsof thecommunitiesconnected in
the bipartite graph need to be used as meta edge weight to get the desired
coupling.

For example,most popular in (A2) is interpretedas thehighernumberof
edgesbetweentheparticipatingcommunities.Incontrast,versatility ismapped
totheparticipationofhubnodesineachgroupasin(A1).

To compute a k-community, k needs to be identified. (A1) requires 2-
community.analysis:IMdbHespsmadmrequiresacyclic3-communityusinginter-
layerrelationshipsbetweenalllayersinaparticularorder.Notethattheanalysis
objectiveshavebeenchosencarefullytocovertheweightsdiscussedinthepaper.
Thelimitationonthenumberofanalysisobjectivesispurelyduetospacecon-
straints.

7 HeMLN Community Analysis on Real-World Data Sets 

Wewould like topoint out that the choice ofdata sets and sizeswasmainly
todemonstratetheversatilityofanalysisusingthek-communitydetectionand
itsefficiencyaswellasdrill-downcapabilitybasedonstructure- and -semantics

4 Thechoiceofthecoefficientisnotarbitraryasitreflectsrelationshipquality.The
choiceofthisvaluecanbebasedonhowactors(directors)areweightedagainstthe
genres.Wehavechosen0.9forconnectingactors(directors)intheirtopgenres.
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preservation.Wearenottryingtodemonstratescalability inthispaper.Also,
insteadofpresentingcommunities,wepresentafewimportantdrill-downresults
toshowcasethestructureandsemanticspreservation,andthegeneralapplica-
bilityofourapproach.

7.1 ExperimentalSetupandDataSets

Duetothe lackof real-worldHeMLNs,wegeneratedHeMLNsfromdatacol-
lected/crawledfromsomewell-knownreal-worlddomains.ForIMDbHeMLN,we
extracted,forthetop500actors,themoviestheyhaveworkedin(7500+movies
with4500+directors).Theactorsetwasrepopulatedwiththeco-actors from
thesemovies,givingatotalof9000+actors.Forthissetofactors,directors,and
movies,theHeMLNwith3layersdescribedinSect. 6 wasbuilt.WidelyusedLou-
vainmethod[ 3]wasusedtodetectlayer-wise1-communities 5.Thek-community
detectionalgorithm 1 wasimplementedinPythonversion3.6andwasexecuted
onaquad-core .8th generationInteli5processorWindows10machinewith8GB
RAM.

Table 4. IMDBHeMLNStatistics

Actor Director Movie

#Nodes 9,485 4,510 7,951

#Edges 996,527 250,845 8,777,618

#Communities
(Size>1)

63 61 9

Average Commu-
nitySize

148.5 73 883.4

#Inter-layerEdges

Actor-Director 32,033

Actor-Movie 31,422

Director-Movie 8,581

Individual Layer Statistics: Table 4 shows the IMDb HeMLN statistics.
63 Actor (A) and 61 Director (D) communities based on similar genres are
generated.Out of the 10 ranges (communities) in themovie (M) layer,most
ofthemovieswereratedintherange[6–7),whiletheleastpopularratingwas
[1–2).Nomoviehadaratingintherange[0–1).

7.2 AnalysisResultsandDiscussion

(A1)
Analysis Results: 34 D-A (Director-Actor) similar genre-based community
pairswereobtained,wherethemajorityofthemostversatilemembersinteract.
Intuitively,agroupofdirectorsthatprominently makes movies insome genre

5 Louvainnumbersallcommunitiesfrom1andweonlyconsidercommunitieshaving
at least two members forthispaper.Thenumberingusedinthepaperhasthelayer
namefollowedbytheLouvain-generatedcommunityID(e.g.A91).
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Fig. 5. Sample(A1)Result forRomance, Comedy, 

Drama 

(say,Drama,Action,Romance,
...) must pair up with the
group(s) of actors who pri-
marilyactinsimilarkindsof
movies. Moreover, a director
groupmayworkwithmultiple
actor groups and vice-versa.
For example, in Fig. 5, the
sample result shows that the
directorgroups,D28andD91,
with academy award win-
ners like Damien Chazelle
andWoodyAllen,respec-
tively, pair up with the
actor group with mem-
bers like Diane Keaton,

Emma Stone, and HughGrant. Members from these groups are primar-
ilyknownformoviesfromtheRomance,Comedy,andDramagenre.

Fig. 6. (A2)Result:1 Total, 9 Partial Elements.(Colorfigureonline)

(A2)Analysis Results:Here, themost popular actor groups for eachmovie
ratingclassarefurthercoupledwithdirectors.Thesedirectorgroupsarecoupled
againwithmoviestocheckwhetherthedirectorgroupsalsohavesimilarratings.
Resultsofeachsuccessivepairing(thereare3)areshowninFig. 6 (a)usingthe
samecolornotation.Thecouplingofmovieandactorcommunities(firstcom-
position) results in10consistentmatches.Whenthebasecase is extendedto
thedirectorlayer(secondcomposition)usingalldirectorcommunitiesandthe
matched4actorcommunities,weget4consistentmatches.Thefinalcomposi-
tiontocompletethecycleuses4directorcommunitiesand9moviecommunities
as left and right sets of community bipartite graph, respectively. Only one
consistentmatchisobtainedtogeneratethetotalelement(M3-A144-
D102-M3) for thecyclic3-community (boldbluetriangle.)Theresulting
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totalelementisfromtheAction,Dramagenreascanbeseenfromthesample
membersshowninFig. 6 (b).Itisinterestingtosee3inconsistentmatches(red
brokenlines)betweenthecommunities,whichclearlyindicatethatallcouplings
arenotsatisfiedbythesepairs.Theseresultin9partialelements.Theincon-
sistentmatchesalsohighlighttheimportanceofmappingananalysis
objectivetoak-communityspecificationforcomputation.Ifadifferent
orderhadbeenchosen(viz.,directorandactorlayerasthebasecase),theresult
couldhaveincludedtheinconsistentmatches.

7.3 EfficiencyofDecouplingApproach

Thegoal of thedecoupling approachwas topreserve the structure aswell as
improve the efficiency of k-community detection. We illustrate that with the
largestk-communitywehavecomputedwhichuses3 iterations(includingthe
basecase.)Fig. 7 showstheexecutiontimefortheone-timeanditerativecosts
discussedearlierfor(A2).Thedifferenceinone-time1-communitycostforthe
3layersfollowstheirdensityshowninTable 4.Wecanalsoseehowtheiterative
costisinsignificantascomparedtotheone-timecost(byanorderofmagnitude.)
Iteration cost includes creating thebipartitegraph, computing .ωe for meta

Fig. 7. Performance Results for cyclic 3-
communityin(A2)

edges, and MWBC cost. The
costofalliterationstogether
(0.515 sec) is still almost
an order of magnitude less 

than the largest one-time 

cost (5.21 sec for Movie
layer.) We have used this
case as this subsumes all other
cases.Theadditional increm-
ental cost for computing a
k-community is extremely
small validating the effici-
encyofdecoupledapproach.

8 Conclusions 

In this paper, we have provided a community definition for HeMLNs that is
consistentwiththetraditionaldefinitionandisstructurepreserving.Thisdef-
initioncanbeapplied toanarbitrarynumberof layersof aHeMLN. In fact,
with . ω as a customizable parameter, this supports a family of definitions that
are customizable to analysis needs.Weproposedanewbipartitematch-based
compositionfunction(MWBCalgorithm)forthedecouplingapproach.Wehave
comparedourresultswiththetraditionalgroundtruthusingmodularitytoshow
theircompatibility.Finally,weusedtheproposedapproachtodemonstrateits
analysisversatilityusingtheIMDbdataset. Inthe future,weplantoextend
thisworktoweightedMLNs.
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