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Abstract. Multiplexes(alsotermedMultilayerNetworksornetworksof
networks)areusefulformodelingdatasetswithmultiple entity types, and
relationships among them.Thenotionofacommunityiswell-definedfor
simplegraphs(oramonoplex/network)andiswidelyusedforaggregate
analysisongraphs.Severalsimplegraphalgorithms(e.g.,Infomap,Lou-
vain) for computing a community and algorithms for computing other
metrics (e.g.,centrality,substructure, etc. ) exist aswell. Although mul-
tilayernetworks(MLNs)areusedformodeling,theconceptofacommu-
nityandalgorithmsforitscomputationarelacking.Ideally,anMLNcom-
munitydefinitionshouldbecomparabletothesimplegraphdefinitionand
beageneralization. AsMLNshavestructureintermsoflayers,includ-
inginter-layeredges,itisimportanttodefineacommunitythatincludes
itsstructureandsemantics. Theresultingcommunityshouldalsobean
MLN. The focus of this paper is on heterogeneous MLN (or HeMLN),
whichisatypeofMLNwithexplicitlydefinedinter-layeredges.
Inthispaper,weintroduceacommunitydefinitionfor HeMLNsthat
is structure-preserving and is also consistent with the traditional def-
inition. Layer semantics are also preserved for drill-down and visual-
ization. First, we define a community for any k£ connected layers of a
HeMLN (termed k-community (1l-community is the same as the tradi-
tionalcommunityonasimplegraphoralayerofHeMLN.))usingbinary
composition. Then, we propose an algorithm for its computation using
the concept of bipartite graphs. Further, we show how weight metrics
canbecustomized toincludethesemanticsofparticipatingcommunity
characteristics. Ourdefinition:i)leveragesextantsimplegraphcommu-
nity computationalgorithms,ii) composes partialresults fromdifferent
layersforcomputingHeM LNcommunities(i.e.,usesthedecouplingapp-
roach), iii) is customizable using weight metrics based on participating
communities, and iv) is computationally efficient. We have experimen-
tally validated thecommunity concept (definition and computation) on
severalreal-worldandsyntheticdatasets.

Keywords: Community DefinitionandDetection - Heterogeneous
Multilayer Networks - Decoupling Approach - StructureandSemantic
Preservation
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1 Motivation

Asdatasets become more complexin terms of the number and types of enti-
tiesandrelationships,approachesfortheirmodelingand analysis alsowarrant
extensionsornewalternativestomatchthedatasetcomplexity. Withtheadvent
ofsocialnetworksandlargedatasets, wehavealready seenasurgeintheuse
ofgraphsformodeling,alongwitharenewedinterestinconcepts,suchascom-
munity,substructures,andcentrality (e.g.,hubs)beingusedforanalysis.
Informally,MultilayerNet- .
works (or MLNSs) are lay- %,
ers of networks where each q
layerisasimplegraphcaptur- L),
ingtherelationshipsemantics
between two entity instances s
(either of the same or dif-
ferent type) using an edge. %o,
Entities from different lay- %
ers can also be connected. T e e\,
If each MLN layer has a
common subset of entities of %
a single type, it is termed %
a homogeneous MLN (OI‘ Homogeneous Airline MLN Heterogeneous IMDb MLN
HoMLN.)ForHoMLN, intra- @ o
layer edges are shown explic-
itly and inter-layer edges
are considered implicit (and
hence not shown.) For example, US cities are linked based on a direct flight
between them operated by a specific airline (Fig. 1 (a)).Ontheotherhand,if
the entity types are different for eachlayer,thenrelationshipsbetween entities
across layers are shown using explicit inter-layer edges. This distinguishes a
heterogeneous MLN w

Fig. 1. Homogeneousand Heterogeneous MLNs
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(Fig. 1 (b)).Theinter-layeredgesrepresent therelationship acrosslayers,such
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asdirects-movie,directs-actor,andacts-in-movie(notillustrated). Ourfocus,in
thispaper,isonHeMLNs.

ForaggregatecomputationsonMLNs,anoveldecouplingapproachhasbeen
proposedin| 18,22,23].Figure 2 showsthedecouplingapproach.Threelayers
andtheirinter-layerconnectionsareshown. HeMLNcommunitycomputationis
accomplished by combining communities from two layersof a HeMLN using a
binary composition function( ©)andisextendedto  k layersbycomposingthe
result with additional layers one at atime. Figure 2 alsoshows how a 3-layer
HeMLN community is expressed for computation. Composing partial results
fromindividual(orpreviouslycomputed)layersiscentraltotheefficiencyofthe
approachaselaboratedinSect.  7.Thisapproachalsopreservesthestructureof
theMLNanditssemanticsfordrill-downand visualization.

ThecontributionsofthispaperareshownbelowwithrelatedworkinSect. 2
andconclusionsinSect. 8.

— Definitionandsomepropertiesofk-community foraHeMLN (Sect. 3),

— Compositionfunctionfork-community computation (Sect.  4),

— Anewbipartitematchalgorithmforcomposition (Sect. 5),

— Experimentalanalysistoestablishthevalidityoftheproposedapproachalong
withperformanceanalysis(Sects. 6 and 7)

2 Related Work

AsthispaperfocusesontheHeMLNcommunitydefinitionanditsefficientdetec-
tion, wepresentrelevant workonsimplegraphsand HeMLNs. Theadvantages
ofmodelingusingMLNsarediscussedin | 4,14,15,20,23].

Community detection onasimple graph involvesidentifying groups of ver-
ticesthataremoreconnectedtoeachotherthantootherverticesinthenetwork.
Mostoftheworkintheliteratureconsiderssinglenetworksorsimplegraphs
wherethisobjectiveistranslated tooptimizingnetworkmeasuressuchasmod-
ularity [ 3], conductance [ 16] or map equation| 6]. As the combinatorial opti-
mizationofcommunitydetectionisNP-complete[ 7], manycompetitiveapprox-
imationalgorithmsanddeeplearningbased methodshavebeendeveloped (see
reviewsin [ 11,13,25].) Algorithms for community detection have been devel-
opedfordifferenttypesofinputgraphs,includingdirected,edge-weighted,and
dynamicnetworks. However, tothebest ofour knowledge, thereisnocommu-
nity definition for HeMLNs, let aloneits computation that preservesstructure
alongwithnodeandedgelabelsfordrill-down (semantics).

ThemajorityoftheworkonanalyzingHeMLN(reviewedin] 5,24,26])focuses
ondevelopingmeta-pathbasedtechniquesfordeterminingclustering,similarity
of objects, classification of objects, predicting the missing links, ranking/co-
ranking,andrecommendations.

The type-independent [ 8] and projection-based [ 2] approaches used for
ground truth (GT) for HeMLNs use the existing community definition and do
not preserve the structure or semantics of the community. Both approaches,
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inslightly different ways, conflatelayersintoasimple graph keeping all nodes
andedges(includinginter-layeredges)sanstheirtypesandlabels. Thishasbeen

showntoresultininformationloss|

15]. Mostofthecommunity detectionwork

in MLNshas focused on homogeneous MLNs, where the common set of nodes

ispresentineachlayer (|

12,14,21]). However, the presence of different sets of

entitiesineachlayerandthepresenceofintra- andinter-layeredgesmakethe
structure-preservingdefinitionmorechallengingforHeMLNsand alsowarrants
an alternate technique (the decoupling approach.) A few existing works have

proposed techniques for generating clusters of entities |

10,17], but they have

onlyconsideredtheinter-layerlinksand notthenetworksthemselves.
Thispaperfillsthegapbyprovidingaclearnewformaldefinitionofcommu-
nityforHeMLNsthatisstructure- andsemantics-preserving. Thisdefinitioncan
beshowntobesimilartothetraditionalmodularitydefinitionforcommunities.
Adistinctadvantageofthedefinitionandtheuseofthedecouplingapproachis
thatitleveragesexistingcommunity detectionalgorithms (andseveralofthem
are currently available.) Infomap and Louvain are more popular than others.
ThispaperalsoestablishedtheefficiencyofthedecouplingapproachforHeMLN
community detection.

3 Community Definition for a HeMLN

3.1 Multilayer Networks: Notations Usedinthe Paper

Westart withaformalmultilayer network definitionthat coversboth homoge-
neousand heterogeneousnetworks.

Table 1. Notationsusedinthispaper

G;(Vi, E;)

Simple Graph for layer i

Xi,j(Vi> Vj, Li5)

Bipartite graph of layers ¢ and j

MLNG,X) Multilayer Network of layer graphs (set
G) and Bipartite graphs (set X)

14 Analysis function for G; (community)

;. Proposed Maximum Weighted
Bipartite Coupling (MWBC) function

CBG; Community Bipartite Graph for G; and
Gy

U; Meta nodes of layer ¢ 1-community

L; i Meta edges between U; and Uj

e mt? community of G;

MM . . . m
vy o, e; Vertices and Edges in community c;
H™ Hubs in ¢j"*

H:nj’" Hubs in ¢ connected to c'
i 5 {Expanded (meta edge < ¢, c;]’ >)}
0 and ¢ null community id and empty z; ;

Weight metrics for meta edges (see
Sect. 5)

Formally,amultilayernet-
work, MLN(G,X) ,isdefined
by twosetsof graphs: (i). The
set G:{G 1, GQ, ey GN} con-
tains graphs of N individual
layers L = {L 1,Ls,...,Ln}
eachofwhichisasimplegraph,
where G;(V;, E;) is defined by
aset of vertices, V; andaset
ofedges, E;.Anedge e(vu)e
FE;, connects vertices v and wu,
where vueV ; and(ii). Aset
X={X 12, X13,.... Xn1,m }
ofbipartitegraphs.Eachbipar-
tite graph XL](V;, ‘/ja Li7j) is
defined by two sets of vertices
Vi and V}, and a set of edges
(also called links or inter-layer
edges) L; j,suchthatforevery

link l(ap)eL ;;, a€V ; and b€V j,where V; (V;)isthevertexsetofgraph G;
(G;.)ForaHeMLN (thefocusofthispaper),

X isexplicitlyspecified. Without
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lossofgenerality, weassumeuniquenumbersfornodesacrosslayersanddisjoint
setsofnodesacrosslayers.

Our definition of community for a HeMLN uses communities from each
layerandinter-layeredgeconnectionstrengthbetweencommunitiesacrosslayers
expressed asaweight. Oneoftheweights (numberofinter-layeredges)iscom-
patiblewith thesimple graph definition of acommunity. Inaddition, coupling
alternativescanbeformulatedforthesame © toprovidemultiple (orafamily
of) community definitions that can be used for different analysis objectives as
needed. Finally, the framework is extensible in that it allows one to propose
additionalparameters(orweights)tocustomizeforaspecificdatasetorasetof
analysisobjectives. Furthermore, it also preservesthestructure and semantics
due to composition using the decoupling approach which is also shown to be
computationallyefficient (seeSect. 7). Table 1 listsnotationsusedinthepaper
forquickreference.

3.2 DefinitionofHeMLN Community

ACommunity Bipartite Graphor  CBG, ;(U;, Uj, L; ;)isdefinedbetween
twodisjoint andindependent communities ~ U; and U;.Eachelementof U, (U;)
isacommunityfrom G, (G;)thatisrepresentedasasinglemetanode. L; ;s
thesetofmetaedgesbetweenthenodesof U; and U; (orbipartitegraphedges.)
For any two metanodes, a single edge is used for L;J ,ifthereis atleast one
inter-layeredgebetweenanypairofnodesfromthecorrespondingcommunities
(actingasmetanodesin CBG)inlayers G; and G;.Thestrength (orweight)
componentofthemetaedgesiselaboratedinSect. 5.

Foralayer graph, a1-community is thesame asthe traditional commu-
nitiesidentified usingany ofthe community detection algorithms. A HeMLN
community for2layers(termed2-community )isformallydefinedusingthe
communitybipartitegraph CBG; ;(U;, Uj, L; ;)correspondingtolayers  G; and
G;.A2-communityisaset of tupleseach withapairofelements <gt >,
where ¢ €U, and ¢} €U j, that satisfy the Mazimum Weighted Bipartite
Coupling (MWBC) (compositionfunction ~ ©)forthebipartitegraphof U, and
U;,alongwiththesetofinter-layeredgesbetweenthem (denotedby z; j.)The
ideaistoobtainthegroup(s)ofnodesthataretightlycoupledwithinandacross
layers. The pairing is done from left-to-right (asitis not commutative) and a
single community from theleft layer can pair with zero or more communities
fromtherightlayer. Thatis, one-to-manyormany-to-onepairingsarepossible,
unliketraditionalbipartitematching.

AHeMLN community of £ connected layers,termed k- community
isdefined asthe application of 2-community definition recursively tocompute
k-community. The2-communitydefinitioncanbeappliedtot1-community and
t2-community togeneratea (t1+t2)-community. The base case corresponds to
applying the definition of 2-community for 2 layerst1 and t2. This applies to
anyexpressionwithprecedence. Forsinplicity, wediscusstheleft-to-right com-
putationofk-community.

Foraleft-to-rightcomputation thebasecaseisappliedtothefirst2layers.For
eachrecursivestep,therearetwocasesforthe2-communityunderconsideration:
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i)the U; isfromalayer

toa(t+1)-community,orii)both

G; alreadyinthet-communityandthe
layer G,;.Thisbipartitegraphmatchissaidtoextendat-community (t

U; isfromanew

< k)

U; and U; fromlayers G; and G respectively

arealreadyinthet-community. Thisbipartitegraphmatchissaidtoupdatea

t-community(t < k),notextendit.
For both casesi) and
ii) above, two outcomes

Table 2. CasesandoutcomesforMWBC(Algo. 1)

arepossible. Ametanode

(Giefts G rignht) outcome ‘ Effect ontuplet

from Uj; either,a)matches |

case (i) - one processed and one new layer ‘

one or more meta nodes
in U; resulting in one

a) consistent match

Copy & Extend ¢t with paired
community id andz ; ;

(or many) consistent b) no match

Copy & Extend ¢t with 0 and ¢

match, or b) does not |

case (ii) - both are processed layers ‘

a) consistent match

match a meta node in

Copy & Updatet only withz

b) no match

Copy & Updatet only with ¢

U; resulting in a no

c) inconsistent match

Copy & Updatet only with ¢

match.However,forcase
ii) a third possibility
existswhichcanbecharacterizedasc)matchesanodein
withapreviousmatch, termed inconsistent match. Sinceboth communities
have already been matched, a previous match exists (either consistent or no
match).Ifthecurrentmatchisnotthesame, thenitisaninconsistentmatch.
Structure preservation is accomplished by retaining, for each tuple of t-
community, either amatching community id (or O ifnomatch) and
fortheemptyset)representinginter-layeredgescorrespondingtothemetaedge
between the meta nodes (termed expanded(meta edge).) The extend and
update carried out for each of the outcomes on the representation is listed in
Table 2. Notethatduetomultiplepairingofnodesduringanycomposition,the
numberoftuples(ort-communities) mayincrease. Copyingisusedtodealwith
multiple pairings. In general, each element of a k-community can be total or
partial. Apartialk-community elementhasat least one
thetuple. Otherwise,itisatotal k-community element. Any k-community
thatistotalreflectsastrongercoupling asitincludesall inter-layer edges for
thosecommunities (asisthecaseof M-A-D-MinFig. 6 (b)inSect. 7.)

3.3 Characteristicsofk-Community

To clearly understand, a HeMLN can be viewed as a simple graph (termed
HeMLN-graph)witheach HeMLNlayerbeing anode and theinter-layeredges
betweenlayersdenotedbyaweightededgebetweencorrespondingnodes.Then,
ak-community can bespecified over any connected subgraph of this HeMLN-
graph.Casei)abovecorrespondstoak-communityofanacyclicsubgraph,and
caseii) toak-community ofa cyclicsubgraphofthe HeMLN-graph. Forboth,
thenumber of compositions will be determined by thenumber of edgesin the
connectedsubgraphandcanbemorethanthenumberoflayers(ornodes).Also,
forbothcases, MWBCresultsinoneofthe3outcomes:a consistentmatch,no
match, or aninconsistentmatch (onlyforcase (i) )asshownin Table 2.

U; thatisnotconsistent

Ti,j5 (OI‘ ¢

¢ or 0 as part of
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Meta Edge Weights

/sss]

=
o
g
<
< Meta Nodes (Communities)

2- and 3-community Specification and Result
Representation
G;0,,G,={<c!, 6" X;2>, < 6%, 6 Xy, >,
3 c4-
<c?, 6%, >}
(G, 01, G,) 9,3G;3= {<et, 61,05 X192, P>,
<c?, 61,05 X, P>
3 sde 2y
<e’, 6t 65X, X 3>}

2- and 3-community Specification and Result
Representation
G,0,3G;={<3 65" X3 >, < 6% €25 Xy 3>,
5 c2-
<6’ 6% X3>}
(G, 0,3 G;) 9,,G;= {=ies et X33, %X2,1>,
<6t e, €% X3, X0 >,
<c®,¢%,0; X3, ® >}

Fig. 3. Illustrationoforderdependenceonak-community

Theabovedefinitionwhenapplied toaspecification (suchastheoneshown
inFig. 3 generates progressively strong coupling of communities between layers
(duetoleft-to-right precedenceof @) usingMWBC. Thus, our definition of a
k-communityischaracterizedbydense connectivitywithinthelayer (community
definition) and strong coupling across layers (comparable to community defini-
tion captured by MWBC semantics. ) Hence, we believe, that this definition of
k-communitymatchesorcomesclosetotheoriginalmodularityintuition| 19] of a
community! forasimplegraph (seeTable  3).Byrefiningtheedgeweightusing
participating community characteristics, a family of community definitions is
supportedthatcanbecustomized.
Fortheevaluationpurpose, weused the
IMDb (layerdetailsareshownin Table

Table 3. Community modularity
comparison: Type-independent vs.

4 of

Sect. 7) and DBLP HeMLNs. For IMDb, Proposeddefinitions
we have used the Actor and Director lay- HoMIN Tooodndeonae|D .
e e-lndependen ecouplin,
erswith theirinter-layer edges. For DBLP, i P pne
IMDb | 0.77696 0.643508
we have used the Author and Paper lay-
DBLP |0.694208 0.694208

erswiththeirinter-layeredges. For compo-
sition, wehaveusedthemetric w, thattakesintoaccountthenumberofinter-
layer edges between the layer-wise communities while performing the match-

! Modularity is ameasure of the structure of anetwork or a graph which measures
thestrength of division of a network into modules (also called groups, clusters or
communities). Networks with high modularity have dense connections between the
nodes within modules but sparse connections between nodes in different modules.
Similarly,inourdefinition,wepairthecommunitiesbetweentwolayersbasedonthe
inter-layer edge strength connected to that pair (of all pairs), and hence the pairs
producedhavedenseconnectionswithinandacrosstwolayers. Herethemodularity
of the HeMLN is based on the dense coupling between the dense communities of
layersascomparedtoallpossibleinter-layercouplings.
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ing. This metric is closest to the traditional definition as type-independent
aggregation does not consider any other layer-wise community characteristics.
Table 3 showsthemodularity values 2 forthe decoupling approach andthe type-
independentapproach.AscanbeseentheyareidenticalforDBLPandveryclose
forIMDb.Hence,ourcommunitydefinition,apartfrompreservingthestructure
and semantics, generates communities whose quality, based on modularity is
comparabletothetype-independent communities.

Need for aNew Pairing Algorithm. Inatraditionalbipartitegraph (used
fordating, hiring, etc.),eachnodeisatomic. Thegoalistofind themaximum
number of matches (bipartiteedges) such that notwomatchesshare thesame
node.Hence,anodefromonesetispairedwith atmostonenodefromtheother

set. Toaccommodatemultipleedges, weights areneeded without changing the
pairingsemantics| 9].

Incontrast,eachnodeofourbipartitegraphisametanode(non-atomicand
correspondstoacommunity ) and thebipartiteedgeisalsoametaedge (setof
edgesbetweentwocommunities). Eachmetanode, inour case,isacommunity
representing a group of entities (layer nodes) with additional characteristics.
Eachmetaedgeneedsto,attheleast,capturethenumberofedgesinthatmeta
edge(i.e.,inter-layeredges.) Thenumberofedgesbetweenthemetanodesisone
oftheedgeweights(  w,)proposed,whichcorrespondstothetraditionalintuition
behindacommunity.

Sinceedgeweightsplayasignificantroleinthematchingandarealsousedas
amechanismfordeterminingthestrengthofthecouplingofcommunitiesacross
layers,edgeweightscanbeleveraged toincludeparticipatingcommunity char-
acteristics.Inadditionto  w.,itispossibletobringinparticipatingcommunity
characteristics to capture additional aspects of coupling. This can be done by
definingdifferentedgeweightstocapturedifferentcharacteristicsofthepartici-
patingcommunities. Wehaveusedhubparticipationfromcommunitiesandthe
densityofparticipatingcommunitiesasweightalternatives.

For pairing nodes of the bipartite
graph, since traditional approaches are
not suited for our coupling, we pro-

i Zw =17; #matches =3 poseanedgeweight-based couplingthat
MWRM; X w = 27; #imatches = 2 reflectsthesemanticsof the community.

Eachnodefromthefirstsetispairedwith

Fig. 4. Tllustration of Traditional and zero or more nodes from the second set
Relaxed Pairings on a weighted bipar- solelybasedontheoutgoingedgeweights
titegraph of that node. This is repeated for each
nodefromthefirstset. Mostimportantly, unlikecurrentalternativesinthe MLN
community literature, there is no information loss or distortion or hiding the
effect of differententitytypes orrelationshipsin ourdefinition.

MWEBC?; ¥, w = 20; #matches = 2

MWMT?; ¥, w = 25; #matches = 3

2 Amodularityvaluegreaterthan0.5isconsideredacceptable.Modularityvalueclose
to 1 indicates strong community structure, whereas a value close to 0 indicates
thatthecommunitystructureisnotbetterthanrandom.



CommPlex: Communityin Multiplexes 11

Figure 4 providesanexampleofabipartitegraphtoillustratemultipletypes
ofpairingsappropriateforMLNcommunities. MWM(MaximumWeightMatch-
ing); MWMT (MWM with Ties); MWPM (Maximum Weight Perfect Match);
MWRM (Maximum Weight with Relaxed Matching).

4 HeMLN k-Community Computation

Algorithm 1 acceptsalinearized specification of ak-community and computes
theresult as described earlier. The output is a set whose elements are tuples
corresponding to distinct, single HeMLN k-community for that specification.
Figure 3 shows2- and 3-community exampleresults computed using thisalgo-
rithm.

Algorithm 1.HeMLNk-community Detection Algorithm

Require: -
INPUT: HeMLN, (Gn1 Oni,n2 Gn2 ... Onink Gnk), and a weight metric (w).
OUTPUT: Set of distinct k-community tuples

1: Initialize: k=2, U; = ¢, U; = ¢, result’ = 0
result «— MWBC(G,1,Grn2, HeMLN, w)
left, right < left and right subscripts of second ©

2: while left # null && right # null do

3: U; < subset of 1-community(Gjef¢,result )

4: U; « subset of 1-community(Grignt,result )

5: MP — MWBC(U;, Uj, HeMLN, w) //a set of comm pairs < cfeft,cq >

6

7

8

right
for each tuple t € result do
kflag = false
if both cj, sy andc
match] then

Y

right 8re€ part of t and € MP [case ii (processed layer): consistent

9: Update a co of t with (z1cs¢, right) and append to result’
P Y ft, rig pp
10: else if cj,;, is part of ¢ and € MP and Grighs layer has been processed [case ii
(processed layer): no and inconsistent match] then
11: Update a copy of t with ¢ and append to result’
12: else if ¢} is part of ¢t and for each cf € MP [case i (new layer): consistent
left p left y
match] then ’
13: copy and Extend t with paired ci{ight € MP and Zieft, right and append to result’;
kflag = true
14: else if ¢, , is part of ¢ and ¢ MP [case i (new layer): no match] then
left p y
15: copy and Extend ¢ with 0 (community id) and ¢ and append to result’; kflag = true
16: end if

17: end for
left, right = next left, right subscripts of @ or null
if kflag k = k + 1; result = result’; result’ =

18: end while

Thebipartite graph for the base case and each iteration is constructed for
theparticipatinglayers(eitheroneisneworbotharefromthet-communityfor
somet)and MWBCalgorithmisapplied. Theresultobtainedisused toeither
extendorupdatethetuplesofthet-communityandaddnewtuplesaswell. All
casesaredescribedinTable 2.

Thealgorithmiterates(lines2to18)untiltherearenomorecompositions
tobeapplied.Line5computesthefirst 2-community. Lines 6 to 17applythe
resultsofthe MWBC (line 5) togeneratetuplesofthek-community usingthe



12 A.Santraetal.

Table 2.Careistakeninthecompositiontomakesureeitherthetupleisupdated
orextendedbykeepingaflagandcheckingitafterlinel7.Theorderofchecking
inside the for loop (line$ to 17)isimportant to generate the correct k-
communitytuples.

5 Customizing the Bipartite Graph

Withoutincludingthecharacteristicsofmetanodesandedgesforthematch,we
cannotarguethatthepairingobtainedrepresentsanalysisbasedonparticipating
community characteristics. Hence, it is important to identify how qualitative
communitycharacteristicscanbemappedquantitativelytoaweightmetric(that
is,theweightofthemetaedgeinthecommunitybipartitegraph)toinfluencethe
bipartitematching.Outofthethreedevelopedweightmetricsbasedon(number

of inter-community edges ( we ), density ( wq), and hub participation ( wy)), we
detailonlyoneweight metricduetospaceconstraintsbelow.

Hub Participation ( wy,): For many analyses, we are interested in knowing
whether highly influential nodes within a community also interact across the
community. Thiscanbetranslatedtotheparticipationofinfluentialnodeswithin
andacross eachparticipating community foranalysis. Thisismodeled by using
thenotion of hub 2 participation within a community and their interaction
across layers. In this paper, we have used degree centrality for this metric to
connotehigherinfluence. Theratioof participating hubsfromeach community
andtheedgefractionismultiplied tocompute wp,.Formally,

Forevery (uj",uy) € Lj ;,where u]" and uj arethemetanodesdenotingthe

1
communities, ¢j* and ¢} intheCBG,respectively,theweight,

e H |23 1] |Hy|
on (s ) = Tl * o T o] * ]

where, z; 1, = {(ap) a€v " bew ,ﬁn, andap)eL  ;;}; H™ and H} are
setofhubsin  c* and c}},respectively; HZW,;" isthesetofhubsfrom  ¢* thatare
connectedto cj; H,"™ isthesetofhubsfrom cp thatareconnectedto cj".

6 Expressing Analysis Objectives on HeMLNs

Wedemonstratehowanalysisobjectivescanbeexpressedask-communitycom-
putationsonHeMLNs.Also,dependingontheanalysis,appropriateweightmet-
ricscan bechosen. Duetospace constraints, we are not discussing theresults
forotherreal-world (like DBLP) andsyntheticdatasets.

3 High centrality nodes (or hubs) have been defined based on different metrics, such
asdegreecentrality (vertexdegree), closenesscentrality (meandistance of the ver-
tex from other vertices), betweenness centrality (fraction of shortest paths passing
throughthevertex),andeigenvector centrality.



CommPlex: Communityin Multiplexes 13

IMDbDataSet[ 1]:TheIMDbdatasetcapturesmovies, TVepisodes,actors,
directors, and other related information, such as rating. Some IMDDb detailed
analysisobjectivesarelisted below,

(A1) Based onthesimilarity of genres, for each director group which are the
actorgroupswhosemajority ofthemostversatilemmembersinteract?
2-community:D ©4 p A; wp,

(A2) For the most popular actor groups, for each movierating class, find the
directorgroupswithwhichtheyhave mazimuminteractionandwhoalso
directmovieswithsimilarratings.

Cyeclic3-community:M Op 4 A O4p D Op pr M; we

ToaddresstheIMDbanalysisrequirements, threelayersfortheIMDbdata
setaregenerated. Layer Aand Layer D connectactorsanddirectorswhoactin
ordirectsimilargenresfrequently (intra-layeredges),respectively. Layer M con-
nectsmovieswithinthesameratingrange. Theinter-layeredgesdepict acts-in-
a-movie ( La ), directs-movie ( Lp ar) and directs-actor (L a p)relationships.
Therearemultiplewaysofquantifyingthesimilarityofactors(directors)based
on the movie genres they have worked in. A vector was generated with the
number of movies for each genre he/she has acted in (directed). To take into
account the frequency of genresinthesimilarity calculation, twoactors (direc-
tors) are connected if the Pearsons’ Correlation between their corresponding
genrevectorsis > 0.9%*.Moreover,10movieratingrangesareconsidered - [0-1),
[1-2),...,[9-10].

For aspecific analysis, the characteristics of the communities connected in
the bipartite graph need to be used as meta edge weight to get the desired
coupling.

For example, most popular in (A2) isinterpreted as the higher number of
edgesbetweentheparticipatingcommunities. Incontrast, versatilityismapped
totheparticipationofhubnodesineachgroupasin(A1l).

To compute a k-community, k needs to be identified. (A1) requires 2-
community.analysis:IMdbHespsmadmrequiresacyclic3-communityusinginter-
layerrelationshipsbetweenalllayersinaparticularorder.Notethattheanalysis
objectiveshavebeenchosencarefullytocovertheweightsdiscussedinthepaper.
Thelimitationonthenumberofanalysisobjectivesispurely duetospacecon-
straints.

7 HeMLN Community Analysis on Real-World Data Sets

We would like to point out that the choice of data sets and sizes was mainly
todemonstratetheversatility ofanalysisusingthek-community detectionand
itsefficiencyaswellasdrill-downcapability basedonstructure- and -semantics

4 Thechoiceof the coefficient isnot arbitrary asit reflects relationship quality. The
choiceofthisvaluecanbebasedonhowactors (directors) areweightedagainstthe
genres. Wehavechosen0.9forconnectingactors (directors) intheirtopgenres.
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preservation. Wearenot trying todemonstrate scalability in this paper. Also,

insteadofpresentingcommunities,wepresentafewimportantdrill-downresults
toshowcasethestructureand semantics preservation,and thegeneral applica-
bility ofourapproach.

7.1 ExperimentalSetupandDataSets

Duetothelack of real-world HeMLNs, we generated HeMLNs from data col-

lected /crawledfromsomewell-knownreal-worlddomains. ForIMDbHeMLN ,we
extracted,forthetop500actors,themoviestheyhaveworkedin (7500-+movies

with 4500+ directors). The actor set wasrepopulated with the co-actors from
thesemovies,givingatotalof9000+actors.Forthissetofactors,directors,and
movies,theHeMLNwith3layersdescribedinSect. 6 wasbuilt.WidelyusedLou-
vainmethod| 3]wasusedtodetectlayer-wisel-communities . Thek-community
detectionalgorithm 1 wasimplementedinPythonversion3.6andwasexecuted

onaquad-core 8" generationInteli5processorWindowsl0machinewith8 GB
RAM.

Table 4. IMDBHeMLN Statistics

Actor |DirectorMovie
#Nodes 9,485 4,510 |7,951 #Inter-layer Edges
#Edges 996,5271250,845 8,777,618 "y -+ : Director 32,033
#Communities 63 61 9 Actor-Movie 31,422
(Size>1) . :

Director-Movie 8,581

Average Commu-|148.5 |73 883.4
nity Size

Individual Layer Statistics: Table4 shows the IMDb HeMLN statistics.
63 Actor (A) and 61 Director (D) communities based on similar genres are
generated. Out of the 10 ranges (communities) in the movie (M) layer, most
ofthemovieswereratedintherange [6-7), whiletheleast popularrating was
[1-2).Nomoviehadaratingintherange[0-1).

7.2 Analysis Resultsand Discussion

(A1)

Analysis Results: 34 D-A (Director-Actor) similar genre-based community
pairswereobtained,wherethemajority ofthemostversatilemembersinteract.
Intuitively,agroupofdirectorsthat prominently makes movies insome genre

® Louvainnumbersallcommunitiesfrom 1 and weonly consider communitieshaving
at least two members forthispaper. Thenumberingusedinthepaperhasthelayer
namefollowed by the Louvain-generated communityID (e.g. A91).
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ThomasCarter
CralgBrewer
DamienChazelle

ElaineCo nstaﬁtme

RJCutler

HughGrant

Witherspoon
JohnCusack
EmmaStone
SteveCarell

B s ColinFirth
RichardLinklater TOmJHan s

JoelHopkins liaRoberts
Analysis (A1)
D Op 4 A; Wy,

WoodyAllen

RobertZemeckis
DavidRussell

RichardCurtis

(say,Drama,Action,Romance,
..) must pair up with the
group(s) of actors who pri-
marily actinsimilarkindsof
movies. Moreover, a director
groupmayworkwithmultiple
actor groups and vice-versa.
For example, in Fig. 5, the
sampleresult shows that the
directorgroups,D28andD91,
with academy award win-

ners like Damien Chazelle
and Woody Allen,respec-
tively, pair up with the
actor group with mem-
bers like Diane Keaton,
Emma Stone, and Hugh Grant. Members from these groups are primar-
ilyknownformoviesfromthe Romance, Comedy,and Dramagenre.

TimBuron
Fig. 5. Sample (A1) Result for Romance, Comedy,
Drama

Consistent Match

Analysis (A2)
MOy aA0,D 0,y M; w,

Total Element
——————————— Inconsistent Match JohnnyDepp)
MorganFreeman
radPitt
Al44 PierceBrosnan
RobertDeNiro
WillSmith

[6-7) Rating

D D102
m/ TheDaVinciCode GaryRoss
MIB3 HancocH FrankDarabont
\nd\EHEJDﬂEE" ScottKalvert
V3 . StevenSpielberg
AL (10D TopGunBas ‘ DavidFincher
KingsmanTheGoldenCircle ClintEastwood
N D106 ] RobinHood RidleyScott

Hannibal RonHoward

Actor Communities

TheMatrixRevolutions

Movie Communities Director Communities

(a) Final Result (b) Sample Movies, Actors and Directors from the Total Element

Fig. 6. (A2)Result:1 Total, 9 Partial Elements.(Colorfigureonline)

(A2) Analysis Results: Here, the most popular actor groups for each movie
rating classarefurther coupledwith directors. These directorgroupsare coupled
againwithmouviestocheckwhetherthedirectorgroupsalsohavesimilarratings.
Resultsofeachsuccessivepairing (thereare3)areshowninFig. 6 (a)usingthe
same color notation. The coupling of movie and actor communities (first com-
position) resultsin 10 consistent matches. When the base case is extended to
thedirectorlayer (second composition) usingall director communitiesand the
matched4actor communities, we get 4 consistent matches. Thefinal composi-
tiontocompletethecycleusesddirectorcommunitiesand9moviecommunities
as left and right sets of community bipartite graph, respectively. Only one
consistentmatchisobtainedtogeneratethetotalelement (M3-A144-
D102-M3) for the cyclic 3-community (bold bluetriangle.) Theresulting
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totalelementisfromthe A ction,Dramagenreascanbeseenfromthesample
membersshowninFig. 6 (b).Itisinterestingtosee3inconsistentmatches(red
brokenlines)betweenthecommunities, whichclearlyindicatethatallcouplings
arenotsatisfied by thesepairs. Theseresultin9partialelements. The incon-
sistent matchesalsohighlight theimportance of mappingananalysis
objectivetoak-community specificationfor computation.Ifadifferent
orderhadbeenchosen (viz.,directorandactorlayerasthebasecase),theresult
couldhaveincludedtheinconsistent matches.

7.3 Efficiency of Decoupling Approach

The goal of the decoupling approach was to preserve the structure as well as
improve the efficiency of k-community detection. We illustrate that with the
largest k-community we have computed which uses 3iterations (including the
basecase.)Fig. 7 showstheexecutiontimefortheone-timeanditerativecosts
discussed earlier for (A2). Thedifferenceinone-time 1-community cost for the
3layersfollowstheirdensityshowninTable 4.Wecanalsoseehowtheiterative
costisinsignificantascomparedtotheone-timecost(byanorderofmagnitude.)
Iteration cost includes creating the bipartite graph, computing w, for meta
edges, and MWBC cost. The
costofalliterationstogether
(0.515 sec) is still almost
an order of magnitude less
than the largest one-time
cost (5.21 sec for Movie
layer.) We have used this
case as this subsumes all other

[©

IS

N

[N

Execution Time (in seconds)
w

(=}

H .
A

cases. Theadditional increm- b M M-A ADbem
ental COSt for Computing a 1-community Base Case Iterations
M One Time Cost we + CBG Generation Time m MWBC Time

k-community is extremely
small validating the effici-

Fig.7. Performance Results for cyclic 3-
ency ofdecoupled approach.

communityin (A2)

8 Conclusions

In this paper, we have provided a community definition for HeMLNs that is
consistent with the traditional definition and isstructure preserving. Thisdef-
inition can be applied to an arbitrary number of layers of a HeMLN. In fact,
with w as a customizable parameter, this supports a family of definitions that
are customizable to analysis needs. We proposed a new bipartite match-based
compositionfunction(MWBCalgorithm)forthedecouplingapproach. Wehave
comparedourresultswiththetraditionalgroundtruthusingmodularitytoshow
their compatibility. Finally, we used the proposed approach todemonstrateits
analysis versatility using the IMDb dataset. In the future, we plan to extend
thisworktoweighted MLNs.



CommPlex: Communityin Multiplexes 17

Acknowledgment:. This work was supported by NSF awards CCF-1955798, and
CCF-1956373.

References
1. Theinternetmoviedatabase.  ftp://ftp.fu-berlin.de/pub/misc/movies/database/
2. Berenstein, A.,Magarinos,M.P.,Chernomoretz, A., Aguero,F.: Amultilayernet-

10.

11.

12.

13.

14.

15.

16.

17.

18.

workapproachforguidingdrugrepositioninginneglected diseases. PLOS (2016)

. Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-

munityhierarchiesinlargenetworks. CoRR arXiv:abs/0803.0476 (2008)

. Boccaletti, S., et al.: The structure and dynamics of multilayer networks. Phys.

Rep.544(1),1-122(2014)

. Boden, B., Glinnemann, S., Hoffmann, H., Seidl, T.: Mining coherent subgraphs

inmulti-layergraphswithedgelabels.In:Proceedingsofthe 18t h ACMSIGKDD
InternationalConferenceonKnowledgeDiscoveryandDataMining,pp.1258—1266
(2012)

. Bohlin, L., Edler, D., Lancichinei, A., Rosvall, M.: Community detection and

visualization of networks with the map equation framework (2014). http://www.
mapequation.org/assets/publications/mapequationtutorial.pdf

. Brandes, U., Gaertler, M., Wagner, D.: Experiments on graph clustering algo-

rithms. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp.
568-579. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39658-
1.52

. Domenico, M.D., Nicosia, V., Arenas, A., Latora, V.: Layer aggregation and

reducibility of multilayer interconnected networks. CoRR arXiv:abs/1405.0425
(2014)

. Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. J. Res.

Natl. BureauStand. B69(125-130),55-56 (1965)

Fang,Y.,Yang,Y.,Zhang, W.,Lin,X.,Cao,X.:Effectiveandefficientcommunity
searchoverlargeheterogeneousinformationnetworks. Proc. VLDBEndow.13(6),
854-867(2020)

Fortunato,S.,Castellano,C.: Communitystructureingraphs.In:Encyclopediaof
Complexity and SystemsScience, pp.1141-1163(2009)

Huang,X.,Chen,D.,Ren,T.,Wang,D.:Asurveyofcommunitydetectionmethods
inmultilayernetworks. DataMin. Knowl. Disc. 35,1-45(2021)

Jin,D. etal.: Asurveyofcommunitydetectionapproaches:fromstatisticalmod-
elingtodeeplearning. IEEE Trans. Knowl. DataEng. 35(2),1149-1170(2021)

Kim, J., Lee, J.: Community detection in multi-layer graphs: asurvey. SIGMOD
Rec.44(3),37-48(2015)

Kiveld, M., Arenas, A., Barthelemy, M., Gleeson,J.P.,Moreno, Y., Porter, M.A.:
Multilayernetworks. CoRRarXiv:abs/1309.7233(2013)

Leskovec,J.,Lang,K.J.,Dasgupta, A.,Mahoney, M.W.: Communitystructurein
largen/ws:naturalclustersizesand absenceoflargewell-defined clusters (2008)

Magnani, M., Hanteer, O., Interdonato, R., Rossi, L., Tagarelli, A.: Community
detectioninmultiplexnetworks. ACM Comput.Surv.(CSUR)54(3),1-35(2021)

Mukunda,K.,Roy,A.,Santra,A.,Chakravarthy,S.:Stresscentralityinheteroge-
neousmultilayer networks: heuristics-based detection. In: IEEE 9th International
ConferenceonBigDataComputingServiceand Applications, pp.103-110(2023)


ftp://ftp.fu-berlin.de/pub/misc/movies/database/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
http://arxiv.org/0803.0476
http://www.mapequation.org/assets/publications/mapequationtutorial.pdf
http://www.mapequation.org/assets/publications/mapequationtutorial.pdf
http://www.mapequation.org/assets/publications/mapequationtutorial.pdf
http://www.mapequation.org/assets/publications/mapequationtutorial.pdf
http://www.mapequation.org/assets/publications/mapequationtutorial.pdf
http://www.mapequation.org/assets/publications/mapequationtutorial.pdf
http://www.mapequation.org/assets/publications/mapequationtutorial.pdf
http://www.mapequation.org/assets/publications/mapequationtutorial.pdf
https://doi.org/10.1007/978-3-540-39658-1_52
https://doi.org/10.1007/978-3-540-39658-1_52
https://doi.org/10.1007/978-3-540-39658-1_52
https://doi.org/10.1007/978-3-540-39658-1_52
https://doi.org/10.1007/978-3-540-39658-1_52
https://doi.org/10.1007/978-3-540-39658-1_52
https://doi.org/10.1007/978-3-540-39658-1_52
https://doi.org/10.1007/978-3-540-39658-1_52
https://doi.org/10.1007/978-3-540-39658-1_52
https://doi.org/10.1007/978-3-540-39658-1_52
http://arxiv.org/1405.0425
http://arxiv.org/1309.7233

18

19.

20.

21.

22.

23.

24.

25.

26.

A.Santraetal.

Newman, M.E.: Modularity and community structure in networks. Proc. Natl.
Acad.Sci.103(23),8577-8582(2006)

Santra, A., Bhowmick, S.: Holistic analysis of multi-source, multi-feature data:
modelingandcomputationchallenges.In:BigDataAnalytics - FifthInternational
Conference, BDA2017(2017)

Santra, A., Bhowmick, S., Chakravarthy, S.: Efficient community re-creation in
multilayer networks using Boolean operations. In: International Conference on
ComputationalScience,ICCS2017(2017)

Santra,A.,Bhowmick,S.,Chakravarthy,S.: Hubify:efficientestimationofcentral
entitiesacrossmultiplexlayercompositions.In:IEEEInternational Conferenceon
DataMining Workshops, ICDM Workshops2017(2017)

Santra, A., Irany, F.A., Madduri, K., Chakravarthy, S., Bhowmick, S.: Efficient
community detection in multilayer networks using boolean compositions. Front.
BigData6 (2023)

Shi,C.,Li, Y., Zhang,J.,Sun, Y., Philip,S.Y.: Asurvey ofheterogeneousinfor-
mationnetworkanalysis. IEEE Trans. Knowl. DataEng.29(1),17-37(2017)

Su,X. etal.: Acomprehensivesurveyoncommunitydetectionwithdeeplearning.
IEEE Trans. Neural Netw. Learn. Syst. (2022)

Sun,Y.,Han,J.:Miningheterogeneousinformationnetworks:astructuralanalysis
approach. ACMSIGKDD Explor. Newsl. 14(2),20-28(2013)



	CommPlex: Community in MultiPlexes - Definition and a Suite of Algorithms for Analysis
	1 Motivation
	2 Related Work
	3 Community Definition for a HeMLN
	3.1 Multilayer Networks: Notations Used in the Paper
	3.2 Definition of HeMLN Community
	3.3 Characteristics of k-Community

	4 HeMLN k-Community Computation
	5 Customizing the Bipartite Graph
	6 Expressing Analysis Objectives on HeMLNs
	7 HeMLN Community Analysis on Real-World Data Sets
	7.1 Experimental Setup and Data Sets
	7.2 Analysis Results and Discussion
	7.3 Efficiency of Decoupling Approach

	8 Conclusions
	References


