®

Check for
updates

Video Situation Monitoring Using Continuous
Queries

Hafsa Billah®® and Sharma Chakravarthy

IT Lab and CSE Department, University of Texas at Arlington, Arlington, TX, USA
uxb7123@mavs.uta.edu, sharmac@cse.uta.edu
https://itlab.uta.edu/

Abstract. Video situation monitoring is important for many applications such as
infrastructure surveillance, traffic monitoring, etc. Currently, situations are mon-
itored either manually using human-in-the-loop or custom algorithms. Manual
approach was applicable for short videos. Monitoring situations in hours of long
videos manually is difficult and subject to human error. On the other hand, cus-
tom algorithms are designed for specific situations and video types. A new algo-
rithm or software package must be written for every new situation type. Both of
the above approaches cannot monitor situations automatically. In this paper, we
propose an alternative to the above two approaches to facilitate automated sit-
uation monitoring by posing situations as queries. The proposed approach mini-
mizes or avoids human involvement and avoids writing new software packages or
algorithms for every new situation type. The proposed framework extracts video
contents only once using existing video content extraction algorithms. Appropri-
ate data models and new operators and algorithms for efficient situation analysis
are required to perform ad-hoc and what if querying on the extracted contents
for situation monitoring. This paper extends the traditional relational model with
support for representing various extracted content types. The Continuous Query
Language (CQL) is also extended with new operators for posing situations as
continuous queries. Backward compatibility, ease of use, primitive new opera-
tors (including spatial and temporal), and algorithms for efficient execution are
discussed in this paper. Finally, query correctness with manual ground truth, effi-
ciency, and the robustness of the algorithms are demonstrated.

Keywords: Video content extraction + Situation monitoring + Continuous
queries

1 Introduction

Video data is being generated daily in large volume and variety because of the avail-
ability of inexpensive camera devices (e.g., personal cameras, CCTV, etc.). Analyzing
these videos is important for different applications such as traffic monitoring, individual
infrastructure surveillance (e.g., parking lot, shopping mall, etc.), postmortem analysis
of criminal activities, and many others. For example, some of the suspects in the Capitol
riot incident have not been apprehended yet. An automated video situation analysis sys-
tem would have sped up the search for the suspects by warranting the law enforcement

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Strauss et al. (Eds.): DEXA 2024, LNCS 14911, pp. 125-141, 2024.
https://doi.org/10.1007/978-3-031-68312-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68312-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-68312-1_10

126 H. Billah and S. Chakravarthy

officials when these suspects were seen in the CCTV footage of any important places
(e.g., grocery store, parking lot, etc.) Currently, there are two approaches to situation
analysis. They are manual analysis and custom solutions. In the manual analysis pro-
cess, a human watches a video exhaustively and looks for situations of interest. This is
labor intensive, subject to human error, and infeasible for large videos. Custom analysis
algorithms are designed for specific situations or video types. A new algorithm needs to
be written for each new situation type. Even with several custom algorithms available,
the capitol riot incidents were not analyzed. This paper takes an alternative approach
to the above two approaches, which can analyze situations continuously from video
streams by posing situations as continuous queries. The proposed approach can avoid
or minimize human-in-the-loop and eliminate the need for writing custom solutions.
This solution can be eventually extended to a real-time situation monitoring system,
which cannot be achieved using the above two approaches.

Video Content Extraction (VCE) is a prerequisite for any kind of automated situation
analysis task [17]. Meaningful contents (e.g., object location as a bounding box, object
attributes as feature vectors, etc.) can be extracted using advanced deep learning algo-
rithms. These extracted contents can be streamed to a sensor Stream Processing (SP)
framework for continuously querying video streams (and analyzing situations from).
However, for several reasons, existing sensor SP framework functionalities cannot be
directly applied to extracted video contents. First, the extracted video contents are very
different from sensor data as they contain multi-dimensional feature vectors, bounding
boxes, etc. These extracted contents cannot be modeled using the existing relational
model used in sensor SP frameworks. Second, extracted content analysis for situation
monitoring requires different computations (e.g., comparing multi-dimensional feature
vectors based on similarity) and traditional relational operators are not sufficient for
these computations. An appropriate representation model with new operators for pro-
cessing the extracted contents is needed to analyze the relevant situations. In this paper,
we propose that video situation analysis can be effectively enhanced and automated by
extending and synergistically integrating approaches from VCE and SP for obtaining an
end-to-end holistic solution. The contributions of this paper are:

— A non-traditional low-risk framework for Querying Video Contents (QVC) and its
viability for video situation monitoring (Sect. 4).

— An expressive extended relational model (R++) that supports variety of extracted
video content types (Sect. 4).

— A Continuous Query Language for Video Analysis (CQL-VA) with new opera-
tors and algorithms for processing extracted video contents (Sect. 5).

— CQL-VA query formulation for primitive situation analysis (Sect. 6) and Experi-
mentation for accuracy, efficiency, robustness, and scalability (Sect. 7).

The challenges, related work, and conclusion are in Sect. 2, 3, and 8 respectively.

2 Challenges

Robust situation detection is dependent upon what contents can be extracted by the VCE
algorithms. The immediate goal of this paper is to formulate queries that can be posed

Video Situation Monitoring Using Continuous Queries 127

and processed on the extracted video contents. In Table 1, we have summarized a list of
primitive situations that can be analyzed using the extracted contents. These situations
are a starting point for video situation analysis involving aggregation/boolean queries,
where information from the video is aggregated along temporal or spatial dimensions.
Once these primitive situations are addressed, they can be composed further to answer
more complex situations such as “Has the same person entered or exited in a video more
than ‘n’ times?”.

Problem Statement: Develop a framework to a) extract video contents once, b) rep-
resent the extracted contents using an expressive data model, and c) design primitive
operators to answer queries (both ad-hoc and “what if”) on the extracted contents.

Table 1. Example Primitive Situations

Query | Category Example Situations Computation

Q1 Searching | Searching for an object in a video using its image Spatial

Q2 Aggregation | Busy period in a public area (e.g., shopping mall) Temporal

3 Join Is the same person present in two or more videos Temporal
p p p
(captured using an entry or exit camera)?

Q4 Direction Which direction an object moved in the video? Temporal

There are several challenges in addressing the situations in Table 1. First, extracted
video contents cannot be modeled completely with the existing relational model.
For example, Q4 in Table 1 requires computing the direction between two bounding
boxes. Modeling an object bounding box using a traditional relational model would
require four columns. A self-join is required to bring the bounding boxes of two frames
for comparison using the relational model. This will be much more difficult when
multi-dimensional feature vectors need to be compared for a situation (e.g., Q1, Q3 in
Table 1). Structured Query Language (SQL) and Procedural Language extensions to the
SQL (PL/SQL) have provisions for representing multi-dimensional vectors using JSON
array or VARRAY data type, respectively. Performing computations and expressing
queries using these arrays are complicated. The array DBMSs [5] also support multi-
dimensional vectors of one type (e.g., coordinate positions), and the whole relation is
modeled as a multi-dimensional vector. Even though feature vectors can be represented
using this model, other extracted content types (e.g., object class label) cannot be repre-
sented. Though the column-oriented semantics proposed in AQuery [11] can represent
two-dimensional array, they cannot model multi-dimensional feature vectors. Compu-
tations on the different extracted content types are also not supported by the above
representation models. To answer the situations in Table 1 using SQL, PL/SQL, array
DBMSs, or object-oriented databases would require writing user-defined functions for
each of them. This is similar to developing a custom algorithm for each situation.

Performing joins on videos is another challenge. Traditional joins compute matches
by applying relational model comparison operators. These operators cannot compare
multi-dimensional feature vectors, as they vary significantly for the same object and

128 H. Billah and S. Chakravarthy

must be compared based on similarity. Hence, A matching condition (with an appro-
priate similarity measure) is needed. Consecutive frames in a video contain repetitive
information (e.g., the same set of objects in multiple frames). Not all frames are neces-
sary for many computations. For example, counting an object occurrence once across
frames is sufficient to answer Q2 in Table 1. For Q3, all the frames from two videos are
not required to be compared. Hence, new operators are needed to compress the repeti-
tive information and efficiently process it, which is not supported by existing systems.

3 Relevant Work

Different aspects of video content analysis have been researched for a long time. We
have summarized these works into three different categories in Table 2. They are Cus-
tom Solutions (CS), Video Streaming (VS) systems, and Low-level Content Analysis
(LCA) systems. We have also shown in Table 2 whether these systems address the prim-
itive situations from Table 1. CS shown in Table 2, row 1, are mostly deep learning
approaches having fixed situation classes, such as searching for a person or spatial rela-
tionship between objects in a video. Their main focus is neural network optimization
(speeding up training and inference), and they need to be retrained for a new situation
type. For example, NoScope [10], MIRIS [4], and SVQ++ [6] can address partially Q1
from Table 1. They cannot address the situations Q2-Q4 from Table 1 and compose the
situations to address complex situations. Existing VS systems (row 2 in Table 2) support
storing, searching, and retrieval of video/image based on some metadata. Though they
are efficient for streaming video frames, there is no query processing support.

Table 2. Summary of existing video content analysis literature vs. QVC.

Category System Data Model | Supported Situations
Ql Q2 1Q3 Q4
CS NoScope [10], MIRIS [4], SVQ++ [6] | Video Partial No |No | No
BLAZEIT [9] Relational | No No | No | No
VS Systems | Amazon Kinesis [13] Relational | No No |No | No
LCA Systems | BilVideo [7], SVQL [12] Relational | No Yes | No | Yes
LVDBMS [3] No Yes | No | No
Extended SP | Proposed QVC Framework R++ Yes Yes | Yes | Yes

The LCA systems (row 3 in Table2) model video contents using the relational
model and support several low-level spatial operators (bounding box overlap, direction,
etc.). BilVideo [7] and SVQL [12] allow query processing on fixed event and content
databases. These databases must be updated frequently, as extracted video contents and
situations (or events) change over time. LVDBMS [3] also supports some spatial oper-
ations. However, they do not support window-based joins or other window-based oper-
ations. Even though these systems can answer aggregation queries (Q2 from Table 1),

Video Situation Monitoring Using Continuous Queries 129

they do not have the functionality to answer Q1, Q3—-Q4 from Table 1. Recently, graph-
based analysis [16—18] has become popular for video situation monitoring. However,
they can not also answer Q1, Q3—-Q4 from Table 1. They are not discussed here elabo-
rately, as this paper extends the relational model.

4 Proposed QVC Framework

The proposed QVC framework (shown in Fig. 1(b—d)) is composed of three modules:
A) Video Content Extraction (VCE), B) Representation of extracted contents using
extended relational (R++) model, and C) Continuous query processing with CQL-VA
operators for situation detection. These components are discussed below.

A) Video Content Extraction (VCE): The VCE component of the proposed frame-
work employs two VCE algorithms: object detection (YOLO [14]) and object tracking
(deep sort [15]). Once all the content attributes are extracted, they are post-processed
for appropriate formatting. After post-processing, the VCE module extracts Frame id
(fid): a unique identifier of a frame, Object id (oid): a unique identifier for an object
across frames assigned by object tracking, Object class label, class confidence score,
Bounding box ([BB]): object location in a particular frame, Feature vector ([FV]):
multi-dimensional vectors representing an object feature, and timestamp (ts): a times-
tamp for each ‘f” frames, where f is the frame-per-second rate of the video.

(d) MavVstream Server

(b) VCE (c) Representation Continuous Query Processor
Post-processing ‘ R++ Table for Video, s, J-Join operators
ffg lod . | 1 S,-Select operators
c i & R2A,-R++ to Arrable
ontent Attributes P> 3

operators
Object Tracker R++ Table for Video, R2A, R2A, Buffer

Obiject Detector Ly R++ Stream,; |R++ Stream,

R++ Feeder ?
- |

T I \4
() Input Videos () CQL-VA Query Expression (f) Situations Identified
Select ARq.o0id, ARj.oid
From Same person present

(R2A (Ry, Rq.0id, Ry.fid)) AR in two different videos
cJoin

(R2A (Ry, Rp.oid, R,.fid)) AR,

ol @
on T
sMatch (ARy. [[FV]], %T‘L ﬂ
LS

Video, Video, AR,. [[FV]]) > .864

Fig. 1. Video situation analysis steps: (a) Input video streams, (b) VCE with post-processing,
(c) Representation (using R++ model), (d) Continuous Query Processing (using MavVStream
server), () CQL-VA Query expression submitted by the user, and (f) Situations identified.

B) Representation of Extracted Contents: The VCE module discussed above extracts
three different categories of contents: numerical (fid, oid, ts), enumerated (object class
label and confidence score), and vectors ([FV], [BB]). These contents cannot be pro-
cessed in an arbitrary order. For example, to answer Q4 in Table 1, the direction of an
object’s bounding box in the first and last frame it appears must be computed. Besides,
a self-join is required to compare all four elements of two bounding boxes to answer

130 H. Billah and S. Chakravarthy

Q4 using the relational model. It would have been much simpler to express and avoid
self-join if all the information associated with an object across frames could be repre-
sented with one tuple. The column-oriented semantics of the arrable data model and the
order-preserving operations in AQuery [11] supports the above to some extent.

An arrable is an ordered collection of vectors (or arrays) of basic type (e.g.,
numeric, boolean, etc.). The arrable data model represents the tuples in a partition with
one tuple after grouping and ordering on a set of attributes. In other words, each group
is represented with one tuple using arrable data model. In Fig. 2(c), R; was grouped on
oid and ordered on fid to generate AR;. All the attributes of AR, are arrable except the
group by attribute oid. As mentioned in Sect. 2, the arrable data model cannot model
multidimensional feature vectors and other different content attributes extracted by
VCE. Hence, the proposed extended relational model (termed R++) supports three dif-
ferent data types. They are basic types (numerical, enumerated for representing object
class labels, directions, etc.) from the relational model, vectors (n-dimensional), and
extended arrables. An R++ relation and extended arrables are defined below.

Definition 1. An R++ relation R consists of attributes Ay, Ao, ..., A,,. An attribute A;
can be of basic, vector, or an extended arrable type. An extended arrable attribute
A; is an n-dimensional array generated by grouping and ordering on the numeric or
enumerated attributes of R.

A tuple is inserted in an R++ relation for each object extracted from a video frame
with its associated attributes. In other words, for each frame processed by VCE, k rows
are added incrementally to the R++ relation corresponding to a video, where k is the
number of objects extracted by VCE. An example of an R++ table is shown in Fig. 2(b).
Here, five different types of object attributes are shown. fid, oid, and ts are numerical
attributes, whereas [BB] and [FV] are multi-dimensional vector types. [BB] vector size
is four, and [FV] vector size varies depending on the VCE algorithm. In Fig. 2(b), frame
1 contains two objects with oid 1 and 2. Therefore, there are two tuples for frame 1 (with
different oids) in the relation. To support a time-based window, each frame is associated
with an actual timestamp (shown as an integer for convenience). Here, feature vectors
are shown as one-dimensional vectors for simplicity.

An example of an R++ (a) Input video (b) An R++ table, R,
table containing extended < < fid oid |[B8] "] ts
arrables is shown in Fig.2(c). a 1t 002045 |[12711] |1
Th‘ tbl t . t 1 1 |2 [15,40,7,8] [.5,.4,.3,.4] 1

1S table contaimns one tuple Frame 1 Frame 2 2 |2 |[30,55,7,8] [9,4,3,45] |2

L

per Old’ instead of COIltall’llIlg (c) An R++ table with extended

a tuple for each fid and oid arrables, AR, = R2A (R, oid, ts) (d) AR, = CCT (AR, first)
pair (see Fig. 2(b)). This allows |Ifial [oid]ifes] [IFVI] fts] | |fid |oid |[BB] [FV] ts

1] 1 |[[10,20,4,511|[[1,2,.7,2.1]] |[[1] 1 1 [10,20,4,5] |[1,2,.7,1.1] |1
us to represent all the [BB], [w212 (154078, 105,434, |12 | 1 |2 |[15407,8] (5.4.3,4] |1
[FV], ts, fid, etc., associated [30,55,7,811 |1.9,4,3,4511

with an oid from R; using an
array across the entire relation
(or even a window, which is
a horizontal partitioning using
ts). All the attributes of AR,

Fig. 2. R++ model. (a) A video with 2 frames, (b) R; is
an R++ table generated from the different attribute types
extracted by VCE, (c) AR; is an R++ table with extended
arrable attributes generated by grouping on oid and order-
ing on ts, (d) CCT operator applied on AR;.

Video Situation Monitoring Using Continuous Queries 131

are extended arrable attributes, except the grouping attribute oid. Since arrable is back-
ward compatible with the relational model, an R++ relation with extended arrable is
also backward compatible with the relational model.

C) Continuous Query Processing for Situation Analysis: The R++ model, extended
arrables, and CQL-VA operators (discussed in Sect. 5) are integrated into the continuous
query processing component (MavVStream server, an extension of MavEStream [8]
of the proposed framework (shown in Fig. 1(d)). The underlying base of MavVStream
supports all basic relational operators and aggregates. This is a client-server architecture
where clients can submit CQL-VA queries to the MavVStream server. A query plan
object is generated from the submitted queries. Each operator in the query plan object is
associated with input and output buffers. The system also supports physical and logical
windows with flexible window specifications. A multi-threaded feeder is used to feed
R++ tuples to the query processor. The complex event processing subsystem has also
been integrated to provide primitive event detection capability (based on continuous
queries) and compose them further in the future. Once the query results, including the
frames where a situation occurs, are generated by the MavVStream Server, these frames
can be extracted from the original video and visualized.

5 CQL-VA Operators and the Relational Model

Operators introduced in CQL-VA are based on the requirements discussed in Sect. 2 and
can play a role in CQL-VA query optimization in the future. These operators process
tuples of an R++ relation like any other relational operator but have some constraints
due to their applicability to specific attributes or data types. For example, to filter objects
from a video using the relational algebra SELECT (o) operator, one needs to provide a
feature vector or an image from which the feature vector can be extracted. On the other
hand, processing a bounding box attribute is relatively simpler using integer values
and available wild cards. Joining video streams for object matching (for Q3 in Table 1)
also requires dealing with feature vectors. These are not semantically valid for other
attributes. This is the same as using operators, such as average, applicable to numeric
values. Care has been taken to introduce a minimum number of primitive operators,
and composition is used (using closure property) to express larger computations. The
CQL-VA operators and conditions, syntax, and complexity are shown in Table 3.

132 H. Billah and S. Chakravarthy

Table 3. CQL-VA Operators and Conditions. Here R;: R++ relation; AR;: R++ relation with
extended arrables; gba, aoa: group by and assuming order attributes; N: number of tuples in R;;
M: unique number of objects; th: threshold; S: the complexity of sMatch; a;: scalar attributes;
G: number of rows in AR;; Nlg, Nry: average number of tuples in left and right groups in join.

CQL-VA Operators Syntax Complexity

Similarity Matching sMatch (R;.[FV], Ra. [FV]) O(S)

Condition <comparison operator>th

R++ to Arrable R2A (R;, gba=R;.ai1, aoa=Rj.az) O(N xlog N)
Compress Consecutive CCT (AR, {first|last|both}) O(G)

Tuples

Consecutive Join AR; cJoin ARs (condition) O(G* Nlg* Nrg*S)
CCT Join AR; cctJoin ARy (condition) O(G? * S)

Direction Direction (AR;.[[BB]]) O(M)

1. Similarity Matching Condition: The similarity matching condition (see the syntax
in row 1, Table 3) in CQL-VA compares the similarity of two feature vector attributes
of an R++ relation (with or without extended arrables) using the sMatch operator. The
sMatch operator computes the similarity score (a numerical distance) between the two
feature vector attributes. In the similarity matching condition, the output of sMatch is
compared (using comparison operators of the relational model) with a given threshold
value (th), which controls to what extent two vectors can be considered similar. Dif-
ferent distance metrics are needed to compute the similarity score since feature vector
semantics and size differ based on the VCE algorithm. Two standard distance metrics
(values ranging from 0-1), cosine distance (for deep sort) and Euclidean distance (for
SIFT and histograms), are supported by CQL-VA. Complexity is shown as O(.S) for
this condition in Table 3 as different distance metrics can have different complexity.

2. R++ to Arrable (R2A): This operator converts an R++ relation into an R++ relation
with extended arrables. The group by (gba) and assuming order (aoa) parameters need to
be numeric or categorical attributes. They perform grouping and ordering, respectively,
according to AQuery semantics. This operator can apply CCT Join (discussed later in
this section) to improve efficiency. It can also be used to perform the running aggregate
operations of AQuery on the extended arrables, again to improve efficiency and avoid
self-join. The group by operation using hashing takes O (V) time, and sorting G groups
can be approximated by O(log N) (upper bound), making the overall complexity O(N
log N) for N tuples in an R++ relation or window.

3. Compress Consecutive Tuples (CCT): In videos, the same object appears consecu-
tively in multiple frames, and there can be more than one tuple for each object. Compu-
tations such as select or join will compare the same object multiple times (quadratically
for join). CCT operator is introduced in CQL-VA to reduce the consecutive occurrences
of the same object to one or two tuples. This can eventually improve the performance
of select and join. CCT takes an R++ relation with extended arrables as input and an
option argument, which can be first, last, or both (syntax shown in row 3, Table 3).
CCT compresses each extended arrable attribute by keeping the first or last element

Video Situation Monitoring Using Continuous Queries 133

or the first and last both elements. If the option is first or last, all the extended arrable
attributes are converted to their original attribute type (basic/vector). If the option is
both, the attribute types remain the same as the input relation. An example of the CCT
operator is shown in Fig. 2(d), with the option argument as first. The [fid],oid, and [ts]
columns of AR, are converted to a numeric type and the columns [[BB]] and [[FV]]
are converted to vector type in the relation ARs. The relational operators such as select
(with similarity matching condition and logical operators), join (on scalar attributes and
similarity matching condition), and aggregation can be applied to the result set gener-
ated by the CCT operator. The computational complexity of CCT is O(G), where G is
the number of tuples in an R++ relation with extended arrables.

4. Consecutive Join (cJoin): Although (a) AR, (c) AR, cloin AR,

P [fid] |oid |[[FV]] AR,.0id |AR,Oid
regular Join works on e'xtf:nd'ed R R . .
arrables using the CQL-VA similarity — [12 2 |15.43.4. (5,434 2 7
matching condition and existing rela- (b) AR,

. 1 . .. in fid] oid |[IFV]] (d) AR, CCT Join AR,
tl().n?l comparison operator, 1t. 1s sti 3 s Erc i ——
a JOln that Compares each pa]r fr()m [2,3,4] 7 [[.3,.1,.7,.6],[.9,.4,.3,.45],[.8,.4,.3,.45]] 8

[4,6] 8 [11,2,.7,1.1],[1.1,2.2,.7,1.1]]

two columns. Situation Q3 in Table 1

can be answered efficiently and accu- o 3) AR (b) ARy are two Ra+ tables with

rately without comparing all the pairs extended arrables from two different videos, gener-
of tuple.s. cJ om 18 introduced as an .4 by grouping on oid and ordering on fid, (c) cJoin
alternative to improve accuracy and op AR, and ARs, (d) CCT Join on AR; and ARs.
reduce processing time by perform- [[BB]] and [ts] columns are not shown due to space
ing less number of matches than reg- constraints. (Color figure online)

ular join. cJoin is applied to two R++

relations with extended arrables, and the tuples in each group from both relations are
compared until a match is found for a condition. Once a match is found, the rest of
the tuples are not compared in that pair of partitions. Although cJoin can be applied to
any R++ relations, it provides the best efficiency for feature vector similarity matches
from two relations grouped on oid. In general, this will improve efficiency, although in
the worst case, similarity matching may succeed only on the last tuple from both sides.
Another alternative of cJoin is to drop tuples using CCT and perform a regular join
with the similarity matching condition. This may result in incorrect answers. cJoin will
provide better accuracy than CCT Join for the same computation, as only 2 tuples can
be retained per partition in CCT, which may not match.

An example of the cJoin operation on two R++ relations with extended arrables is
shown in Fig.3(a—c). Here, AR, and AR, are generated from two different videos.
They were grouped on oid and ordered on fid. For simplicity, the [[BB]] and [ts]
attributes are not shown here. In AR, there are two objects with oid 1 and 2. In AR,
there are three objects with oid 5, 7, and 8. The result of performing cJoin using the
similarity matching condition (see query plan Fig. 4 Q3) with a threshold value of 1 is
shown in Fig. 3(c). The elements of [[FV]] column for oid 1 in AR; is matched with
all the elements of [[FV]] column of AR5. There is no matching similar feature vectors
for oid pairs (1, 5) and (1, 7). However, for the tuples of oid pairs (1, 8) from AR,
and AR,, the first element of each feature vector array matches (colored green). In this
case, only one comparison is made between the feature vectors in [[FV]] attribute for
the rows corresponding to oid 1 and 8. Similarly, for oid 2 and 7 from AR, and AR5,

134 H. Billah and S. Chakravarthy

the second element of each feature vector from [[FV]] column was matched. The rest
of the elements are not compared in this case. cJoin performs nested loop join instead
of hash join as the comparison is not “equality”’. However, its performance should be
much better than a regular nested loop join. The worst case complexity of cJoin is
Zngl O(Nl, % N1y S), assuming G groups in both (left: 7, right: r) relations, each
group g with NI, and N7, number of tuples. S is the complexity of similarity matching
condition. This can be simplified to O(G * Nl; * Nrg * S).

5. CCT Join: This operation first applies the CCT operator on an R++ relation with
extended arrables and then a regular join (see Fig.4 Q3 (alternative)). Since CCT
reduces the number of elements in each row of the extended arrable attributes to one or
two, there are fewer comparisons than cJoin. An example of the CCT Join is shown in
Fig. 3(d). Here, only the first and last elements of the arrays in [[FV]] column of AR,
and AR5 relation are kept. Hence, for oid 7 the middle element of the feature vector
array is dropped and oid 2 and 7 do not come out in the result with threshold 1. The
worst case complexity of CCT Join is O((G * 2) * (G * 2) * .S), assuming G groups in
both R++ relation, each group g € G with N, and N, tuples. If first or last is chosen,
complexity will be O(G * G x S). This can be simplified to O(G? * S).

6. Direction (Direction): This primitive operator has been introduced to answer
queries that require direction (e.g., Q4 in Table 1) and can only be applied to the bound-
ing box attribute of an R++ relation with extended arrables (grouped on object id).
Direction outputs one of the 8 directions as an enumerated type in a new column (used
like an aggregate function). It is computed by default using the first and last bound-
ing box elements of each extended arrable. It is also possible to compute the direction
between the it" and jth element of the extended arrables of bounding boxes, where
1 < j if specified in the operator explicitly. The complexity of the direction operator is
O(M), where M is the number of unique objects in that particular relation or window.

6 CQL-VA Query Expression for Situation Analysis

Q1 (Searching for an object using its image): To address this situation, the R++ relation
generated from an input video stream needs to be searched using the feature vector
extracted from the given object image. Select with similarity matching condition in the
where clause can answer this situation (see query plan in Fig. 4).

Q2 (Busy period in a

Select Select

public area): This situ- . b ' e | Direction
. . . Count (*) doin L Join o p e, '
ation requires couqtmg S 1 YANE / \/:»;f.slé;vll) A
the number of unique match ey T2A L) R2A R2A L cCT (both) ccT oty 5™
. 0868 1 AR, | (oidfia) (oidfid) | pp | I
objects (e.g., person/cars) R 1 1 2 1 1 R,
AR, AR,

Ry 1
. .) R R
m a premlse eVCI‘y n 1 z

seconds. An R++ rela-
tion (within the ‘n’ sec-
ond window or whole
video), can be converted

Fig. 4. Query plan for Table 1 situations. Two plans are shown
for Q3. AR; is generated after applying R2A on R++ table R; as
shown in Q3. Only similarity matching conditions are shown.

Video Situation Monitoring Using Continuous Queries 135

to an R++ relation with extended arrables by grouping on oid and ordering on fid using
the R2A operator. Then the number of rows in the resultant relation can be counted. A
busy period can be identified by projecting the timestamps with the maximum number
of unique objects in the relation. The query expression is shown below (see query plan
in Fig. 4).

Q3 (Presence of the same person in two/more videos): The R++ relation generated from
two different videos must be joined using a similarity matching condition to address Q3.
A query expression using cJoin for Q3 is shown below. An alternative query plan using
CCT Join is shown in Q3 (alternative) in Fig. 4. Q3 can also be expressed using a regular
join with the similarity matching condition.

Q2 Expression: Q3 Expression:

Select count (x) Select ARj.o0id, ARgp.o0id

From From

(R2A(R1, Rp.0id, Rp.fid)) ARy (R2A(Ry, Rp.o0id, Rp.fid)) AR;
Where Rj;.label = "person" cJoin

(R2A(R2, Rg.o0id, Ro.fid)) ARs
on sMatch (AR;p.[FV], ARs.[FV])> .864

Q4 (Which direction an object moved?): Query formulation is similar to Q2, where
Direction operator (instead of the count operator) can be used in the Select clause
(see query plan in Fig. 4).

7 Experimental Results

Dataset and Experimental Setup: In this work, three different datasets: CamNeT [19],
MavVid [1], and MavVidR [2] have been used for experiments. The CamNeT dataset
contains video footage of people passing by a place (e.g., hallway) in a complex envi-
ronment (e.g., low light, shadow). The MavVid dataset was prepared in ITLAB by cap-
turing entry and exit videos with situations Q1-Q4 from Table 1. Videos 43, 37, and
39 from the MavVid dataset were concatenated with arbitrary videos from the Cam-
NeT dataset and videos (of the Capitol riot incident and a soccer match) containing
arbitrary situations to generate videos 437, 377", and 39" in the MavVidR dataset.
The dataset description in terms of video length and number of tuples generated by the
R-++ relation is shown in Table 4. All the videos in this table were generated at a 30-
frame-per-second rate. Although two videos can be of different lengths, the number of
tuples varies significantly depending upon the objects present in a video (e.g., Video 57
has fewer tuples than 41 even though their length is the same). This is important as the
query processing time depends on the number of tuples processed.

136 H. Billah and S. Chakravarthy

The MavVStream prototype was implemented Table 4. Dataset description

in JAVA. Videos were pre-processed using YOLO
. . . Dataset Vi Length | Tuples

and deep-sort implementation in Python on an VIFTTITS P py o=
NVIDIA Quadro RTX 5000 GPU with 10 GB B T
memory. Query processing experiments were per- a1 28s oam
formed on the same machine with 2 Intel Xeon B |37s =52
processors (48 cores, 748 GB main memory). 3 |50 |2218

57 28 1645
MavVidR [2] |371F | 825 7520
39T+ 565 1370

Result Comparison: None of the existing sys-
tems can completely address all the situations

from Table 1. Even though some systems can par- 137 (565 1857
tially address Q2 and Q4 (as shown in Table 2), CamNeT [19] | 1 2amin 11691
these systems and their datasets are not open- 23 205 min | 15700
source, making comparison difficult. No baseline 29 [22min | 11035

system can answer Q3 to the best of our knowl-
edge. Besides, the proposed approach differs from the existing systems (e.g., query
processing vs. machine learning, relational vs. graph model). Comparing them will not
appropriately highlight the differences between the systems.

CQL-VA Query Results and Evaluation: CQL-VA query evaluation using accuracy,
robustness, efficiency, and scalability are discussed below.

A) Accuracy: Accuracy is computed by manually generating the ground truth. There
can be two types of ground truth: Ground Truth (GT) from the actual video and Ground
Truth from the pre-processed video (GT(vce)). There is a significant difference between
GT and GT(vce), as the information (in terms of situations present) in the actual video
differs from the pre-processed video. For example, the same oid may be given to two
objects (having the same colored clothes, shape, etc.), or the same object can have two
different oids in two consecutive frames (because of being recognized as two different
objects). The vision community is investigating these challenges, which differ from
the query processing problems discussed here. Hence, this paper computes the query
accuracy using GT(vce) (termed as Acc(vce)).

Q1 (Searching for an object): Q1 experiments were conducted on MavVid Dataset (see
Table 5, rows 1-3) using a time-based disjoint window of 40s. Since Q1 requires the
similarity matching condition to be used with select and is a tuple-by-tuple comparison,
different window sizes do not have any effect, and the window size was set to take the
whole video as a window for most of the videos in MavVid (except 53). Feature vectors
of object images were extracted separately using the same VCE algorithm. The videos
were searched with different 7 as a small deviation in th affects accuracy significantly
(feature vectors vary significantly in the video in consecutive frames). The accuracies
shown in Table 5 are obtained based on best #4 (set experimentally) for which the highest
accuracy was obtained. The best th for videos 41, 43, and 53 are .85, .864, and .835
respectively. Changing the th value of video 41 from .85 to .7990 drops the accuracy to
0%. This is true for other videos and represents the sensitivity of the ¢& value (automated
th determination is an open problem).

Video Situation Monitoring Using Continuous Queries 137

Q2 (Aggregation) and Q4 (Direction): Q2 and Table5.Ql, Q2, and Q4 Accuracy
Q4 experiments were performed on the CamNeT

. . Vid A

and MavVid datasets using the query formula- a | Query | Acclvee)
. . - 41 [Q1 |100%
tion shown in Sect. 6 and the query plan in Fig. 4.

. . Q2 |100%
The results are shown in Table5. A time-based Q4 |100%
disjoint window 40s was used for the videos 5ol |100%
of the MavVid dataset. These experiments eval- Q@2 |100%
vated if the newly introduced CQL-VA opera- Q4 |100%
tors (R2A, Direction) can perform the computa- 53 [Q1 |100%
tions correctly. Hence, for smaller videos of the Q2 |100%
MavVid dataset, the window was set so that the Q4 |100%
whole video was a window (except video 53). For 1 1Q2]100%
Q2 and Q4, accuracy is 100% for videos 41, 43, Q4 |100%
and 53. A bigger dataset, CamNeT, with a larger 23 Q2 [100%
window size (10 min.), was also used for evalu- Q4 | 100%
ation, and accuracy was 100% for Q2 and Q4. » gi lgg;

These experiments show that the CQL-VA oper-
ator computations are correct.

Q3 (Presence of same objects in two videos): As mentioned earlier, Q3 is important for
analyzing and monitoring the entry and exit of individuals in a premise. To validate that,
entry and exit videos from the MavVid datasets were used to determine the presence of
the same persons in two or more videos. A sample result of Q3 (using proposed cJoin) is
shown in Fig. 5. Here, in video 43, people enter through a corridor; in video 39, people
exit through a door, and both have one common person. In Fig. 5(c), using cJoin, the
same person’s presence at different times in 39 and 43 was identified. The experiments
for Q3 were conducted using the alternative query plans shown in Fig. 4 along with the
regular join (with similarity matching condition).
As no existing system

addresses Q3, we have consid- : =t E
ered regular join with the simi-] : ﬁ
larity matching condition as our (el sample input frames from video 33, [cJoin ﬁ

where people are exiting a premlse

baseline and compared the accu- —
racy and performance of Q3 H
using cJoin and CCT Join. The

th value was the same for the (5 sample frames from video 43 where

similarity matching condition in peoplesreenering premie

Join for all the joins. Time-based Fig. 5. Sample results of Q3 for 43 > 39.
disjoint windows of 10s, 20s,

and 40 s were used. The window sizes were multiplied by two to evaluate the effect
on accuracy with varying window sizes. In Table 6, experiment results for only 20s,
and 40 s windows are shown due to space constraints. The number of objects in each
video and common object pairs from the two videos used for joining (true positives) are
also shown. Performance improvement for cJoin and CCT Join are shown with respect
to regular join. A self-join was performed on video 37 to verify the correctness of the
different join operators, and accuracy was 100% for all the joins (row 1, Table 6). For

(c) Sample output frames for Q3
after joining 39 and 43. Objects with
red rectangle is same in both vndeos .

138 H. Billah and S. Chakravarthy

a 20 s window (in Table 6 rows 2—-8) cJoin obtained the highest accuracies for 6 video
pairs. In these videos, regular join brings out all the object pairs having feature vec-
tor similarity above the th. Hence, there are more false positives as the same object is
considered similar to multiple objects because of feature vector sensitivity. Since cJoin
stops matching the pairs of objects once the similarity matching condition is satisfied,
fewer false positives are produced. On the other hand, CCT Join has the second-highest
accuracy for four pairs of videos. However, it has the least query processing time for
all the video pairs except for 39 and 43 (row 5 in Table 6). This happens because these
videos are the smallest (regarding the number of tuples), and an overhead for grouping,
ordering, and dropping tuples for CCT is introduced.

Table 6. Q3 accuracy comparison. V;4,: Video id, C'o: # of common object pairs from two
videos, W,: window size.

Ws | Via, D Via, # of Objects | Co | Acc(vee) Performance improvement
Vida, | Vidy Join |clJoin | CCT Join | cJoin | CCT Join

20s |37 > 37 5 5 5 100% | 100% | 100% 40% | 75%
37 <139 5 3 1 |67% |87% |73% 66% | 70%
37143 5 3 1 87% |87% |60% 67% | 70%
37157 5 3 1 20% |73% |67% 89% | 86%
391143 3 3 2 |89% |78% |89% 33% | -57%
39Tt bad3tt 14 |23 |2 |91% |99% |98% 78% | 96%
37Tt 3971 |6 14 2 |85% |92% |90% 74% | 83%
37T 43t |6 23 2 193% |95% |83% 66% | 83%

40s|37>139 5 1 67% |93% |80% 14% | 19%
371143 5 1 87% 67% |67% 29% | 37%
371157 5 1 |20% |73% | 80% 86% | 84%
39143 3 2 |89% |100% | 100% 50% | -40%
39T pq43tt 14 |23 2 193% |96% |94% 82% | 85%
37T 397 |6 14 2 |82% |94% |92% 48% | T1%
37Tt 43t |6 |23 |2 |93% |96% |89% 29% |73%

When the window size was increased twice (40 s) (shown in Table 6, rows 9-15),
cJoin obtained the highest accuracies for five pairs of videos. CCT Join accuracy was
second highest among those video pairs. For video pairs 37 and 57, cJoin and CCT
obtain 73% and 80% accuracy, respectively, whereas regular join obtains 20% accu-
racy. This happened because cJoin and CCT Join make fewer comparisons, generating
fewer false positives. For a 40 s window, CCT Join reduces the query processing time
for four pairs of videos and cJoin for two pairs of videos. cJoin improves accuracy and
reduces query processing time in the majority of cases. CCT Join reduces the query
processing time of cJoin further by sacrificing the highest 13% accuracy (still, the accu-
racy is 80%). The trend is similar in the 10s window as well. The average accuracy

Video Situation Monitoring Using Continuous Queries 139

for Join, cJoin, and CCT Join was 84%, 89%, and 89%, respectively, for the 10 s win-
dow. cJoin, and CCT Join improved the join performance on average by 93% and 99%,
respectively, for a 10 s window. The above experiments showcase that cJoin is the ideal
operator for both improving accuracy and reducing performance time. CCT Join may
sacrifice some accuracy for a better performance (accuracy vs performance tradeoff).
However, for real-time processing of large videos, this operator might be ideal. Even
the average accuracy of cJoin and CCT Join is 85% and 80%, and the average perfor-
mance improvement is 47% and 50% for all three window sizes, respectively. Given the
inconsistency of feature vectors, this accuracy and performance improvement is good.

B) Robustness: A query formulation is highly robust if the same accuracy is obtained
with and without the presence of other situations in the video. The MaVidR dataset
was used to validate the robustness of our queries using 10s, 20s, and 40 s windows
for Q3, as it is the most complex query. The experiment results are shown in Table 6
(rows 6-8 and 13-15). Here, the true negatives increased, but true positives remained
the same because of additional objects in the concatenated video part. For the video
pairs (3971, 43T+), (37++,39%), and (377,437), in both 20s and 40 s window
in Table 6, cJoin and CCT Join improves accuracy from Join as they do not bring out
the additional object pairs as false positives. They also improve performance by at least
29% and 71% for these video pairs. This shows that the CQL-VA operators can identify
a situation correctly in the presence of arbitrary situations and optimize performance.

C) Scalability: Scalability
measures query performance .
when the video size increases
by a fixed length. Differ-

Time (in seconds)

ent length videos (maxi- T
mum 44.5 mln) were used Video Length(of Tuples)
for scalability experiments. () Q1. Q2, Q4 (b) Q3 with different joins

Since there is a scarcity

of large. Vid.eos COI.ltaining Fig. 6. Query efficiency and scalability on CamNeT dataset
all the situations of interest, yging 10 min. time-based disjoint window
Videos 1 and 23 of the Cam-

NeT dataset were trimmed and increased by a fixed length. 5 and 12 min videos were
created from Videos 1 and 23 by taking the first 5 and 12 min from each video, and a
44.5-min video by merging videos 1 and 23. The purpose of this was to increase the
size of the videos 2 times to understand how the query processing time increases. In
Fig. 6(a), Q1, Q2, and Q4 performance is shown. With increased video size, the query
processing time increases linearly for Q1, Q2, and Q4. The curve values vary based on
the operator used and the computation time. Since Q1 has only select, it takes the least
time among all the queries. Q3 performance was measured in Fig. 6(b) by joining the
same-size videos sampled from 1 and 23 and joining 1 and 23. As mentioned earlier, the
regular join (our baseline) time (maximum 556 s and 98%) is significantly higher than
cJoin and CCT join as the number of comparisons made is higher. This validates our
intuition for introducing these operators. New CQL-VA operators introduced per-
form more than an order of magnitude faster than the regular Join.

140 H. Billah and S. Chakravarthy

8 Conclusion

In this paper, the components for automated video analysis were identified, and a frame-
work was proposed. This paper shows how a few new primitive operators can detect
diverse situations. This paper also demonstrates that query-based situation monitoring
can be achieved using established and low-risk approaches. A complete generalized sit-
uation analysis system supporting more primitive operators and more complex situation
analysis is under development.

Acknowledgements. This work was supported by NSF award #1955798 and #1916084. The
authors would like to thank Dr. Abhishek Santra for his constructive suggestions.

References

1. MavVid Dataset (2023). itlab.uta.edu/downloads/mav Vid-datasets/Mav Vid_v2.zip

2. MavVidR Dataset (2023). itlab.uta.edu/downloads/mavVid-datasets/MavVidR_v2.zip

3. Aved, AJ., Hua, K.A.: An informatics-based approach to object tracking for distributed live
video computing. Multimedia Tools Appl. 68(1), 111-133 (2014)

4. Bastani, F., et al.: MIRIS: fast object track queries in video. In: ACM SIGMOD, pp. 1907—
1921 (2020)

5. Baumann, P, Misev, D., Merticariu, V., Huu, B.P.: Array databases: concepts, standards,
implementations. J. Big Data 8(1), 1-61 (2021)

6. Chao, D., Koudas, N., Xarchakos, I.: SVQ++: querying for object interactions in video
streams. In: 2020 ACM SIGMOD, pp. 2769-2772 (2020)

7. Donderler, M.E., Saykol, E., Arslan, U., Ulusoy, 0., Giidiikbay, U.: BilVideo: design and
implementation of a video database management system. Multimedia Tools Appl. 27(1),
79-104 (2005)

8. Jiang, Q., Adaikkalavan, R., Chakravarthy, S.: MavEStream: synergistic integration of stream
and event processing. In: ICDT, p. 29 (2007)

9. Kang, D., Bailis, P,, Zaharia, M.: Blazelt: optimizing declarative aggregation and limit
queries for neural network-based video analytics. VLDB 13(4), 533-546 (2019)

10. Kang, D., Emmons, J., Abuzaid, F., Bailis, P., Zaharia, M.: NoScope: optimizing deep CNN-
based queries over video streams at scale. PVLDB 10(11), 1586-1597 (2017)

11. Lerner, A., Shasha, D.: AQuery: Query language for ordered data, optimization techniques,
and experiments. In: PVLDB, pp. 345-356 (2003)

12. Lu, C., Liu, M., Wu, Z.: SVQL: a SQL extended query language for video databases. Int. J.
Database Theory Appl. 8(3), 235-248 (2015)

13. Mathew, S., Varia, J.: Overview of Amazon web services. Amazon Whitepapers 105, 1-22
(2014)

14. Redmon, J., Farhadi, A.: YOLOV3: an incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

15. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep associa-
tion metric. In: IEEE ICIP, pp. 3645-3649 (2017)

16. Xiong, P, Zhan, H., Wang, X., Sinha, B., Wu, Y.: Visual query answering by entity-attribute
graph matching and reasoning. In: CVPR, pp. 8357-8366 (2019)

17. Yadav, P., Curry, E.: VidCEP: complex event processing framework to detect spatiotemporal
patterns in video streams. In: IEEE BigData, pp. 2513-2522. IEEE (2019)

http://arxiv.org/abs/1804.02767

Video Situation Monitoring Using Continuous Queries 141

18. Zhang, E., Daum, M., He, D., Haynes, B., Krishna, R., Balazinska, M.: EQUI-VOCAL:
synthesizing queries for compositional video events from limited user interactions. VLDB
16(11), 2714-2727 (2023)

19. Zhang, S., Staudt, E., Faltemier, T., Roy-Chowdhury, A.K.: A camera network tracking
(CamNeT) dataset and performance baseline. In: IEEE WACYV, pp. 365-372 (2015)

	Video Situation Monitoring Using Continuous Queries
	1 Introduction
	2 Challenges
	3 Relevant Work
	4 Proposed QVC Framework
	5 CQL-VA Operators and the Relational Model
	6 CQL-VA Query Expression for Situation Analysis
	7 Experimental Results
	8 Conclusion
	References

