
Video Situation Monitoring Using Continuous

Queries

Hafsa Billah(B) and Sharma Chakravarthy

IT Lab and CSE Department, University of Texas at Arlington, Arlington, TX, USA

Abstract. Video situation monitoring is important for many applications such as

infrastructure surveillance, traffic monitoring, etc. Currently, situations are mon-

itored either manually using human-in-the-loop or custom algorithms. Manual

approach was applicable for short videos. Monitoring situations in hours of long

videos manually is difficult and subject to human error. On the other hand, cus-

tom algorithms are designed for specific situations and video types. A new algo-

rithm or software package must be written for every new situation type. Both of

the above approaches cannot monitor situations automatically. In this paper, we

propose an alternative to the above two approaches to facilitate automated sit-

uation monitoring by posing situations as queries. The proposed approach mini-

mizes or avoids human involvement and avoids writing new software packages or

algorithms for every new situation type. The proposed framework extracts video

contents only once using existing video content extraction algorithms. Appropri-

ate data models and new operators and algorithms for efficient situation analysis

are required to perform ad-hoc and what if querying on the extracted contents

for situation monitoring. This paper extends the traditional relational model with

support for representing various extracted content types. The Continuous Query

Language (CQL) is also extended with new operators for posing situations as

continuous queries. Backward compatibility, ease of use, primitive new opera-

tors (including spatial and temporal), and algorithms for efficient execution are

discussed in this paper. Finally, query correctness with manual ground truth, effi-

ciency, and the robustness of the algorithms are demonstrated.

Keywords: Video content extraction · Situation monitoring · Continuous

queries

1 Introduction

Video data is being generated daily in large volume and variety because of the avail-

ability of inexpensive camera devices (e.g., personal cameras, CCTV, etc.). Analyzing

these videos is important for different applications such as traffic monitoring, individual

infrastructure surveillance (e.g., parking lot, shopping mall, etc.), postmortem analysis

of criminal activities, and many others. For example, some of the suspects in the Capitol

riot incident have not been apprehended yet. An automated video situation analysis sys-

tem would have sped up the search for the suspects by warranting the law enforcement

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

C. Strauss et al. (Eds.): DEXA 2024, LNCS 14911, pp. 125–141, 2024.

https://doi.org/10.1007/978-3-031-68312-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68312-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-68312-1_10

126 H. Billah and S. Chakravarthy

officials when these suspects were seen in the CCTV footage of any important places

(e.g., grocery store, parking lot, etc.) Currently, there are two approaches to situation

analysis. They are manual analysis and custom solutions. In the manual analysis pro-

cess, a human watches a video exhaustively and looks for situations of interest. This is

labor intensive, subject to human error, and infeasible for large videos. Custom analysis

algorithms are designed for specific situations or video types. A new algorithm needs to

be written for each new situation type. Even with several custom algorithms available,

the capitol riot incidents were not analyzed. This paper takes an alternative approach

to the above two approaches, which can analyze situations continuously from video

streams by posing situations as continuous queries. The proposed approach can avoid

or minimize human-in-the-loop and eliminate the need for writing custom solutions.

This solution can be eventually extended to a real-time situation monitoring system,

which cannot be achieved using the above two approaches.

Video Content Extraction (VCE) is a prerequisite for any kind of automated situation

analysis task [17]. Meaningful contents (e.g., object location as a bounding box, object

attributes as feature vectors, etc.) can be extracted using advanced deep learning algo-

rithms. These extracted contents can be streamed to a sensor Stream Processing (SP)

framework for continuously querying video streams (and analyzing situations from).

However, for several reasons, existing sensor SP framework functionalities cannot be

directly applied to extracted video contents. First, the extracted video contents are very

different from sensor data as they contain multi-dimensional feature vectors, bounding

boxes, etc. These extracted contents cannot be modeled using the existing relational

model used in sensor SP frameworks. Second, extracted content analysis for situation

monitoring requires different computations (e.g., comparing multi-dimensional feature

vectors based on similarity) and traditional relational operators are not sufficient for

these computations. An appropriate representation model with new operators for pro-

cessing the extracted contents is needed to analyze the relevant situations. In this paper,

we propose that video situation analysis can be effectively enhanced and automated by

extending and synergistically integrating approaches from VCE and SP for obtaining an

end-to-end holistic solution. The contributions of this paper are:

– A non-traditional low-risk framework for Querying Video Contents (QVC) and its

viability for video situation monitoring (Sect. 4).

– An expressive extended relational model (R++) that supports variety of extracted

video content types (Sect. 4).

– A Continuous Query Language for Video Analysis (CQL-VA) with new opera-

tors and algorithms for processing extracted video contents (Sect. 5).

– CQL-VA query formulation for primitive situation analysis (Sect. 6) and Experi-

mentation for accuracy, efficiency, robustness, and scalability (Sect. 7).

The challenges, related work, and conclusion are in Sect. 2, 3, and 8 respectively.

2 Challenges

Robust situation detection is dependent upon what contents can be extracted by the VCE

algorithms. The immediate goal of this paper is to formulate queries that can be posed

Video Situation Monitoring Using Continuous Queries 127

and processed on the extracted video contents. In Table 1, we have summarized a list of

primitive situations that can be analyzed using the extracted contents. These situations

are a starting point for video situation analysis involving aggregation/boolean queries,

where information from the video is aggregated along temporal or spatial dimensions.

Once these primitive situations are addressed, they can be composed further to answer

more complex situations such as “Has the same person entered or exited in a video more

than ‘n’ times?”.

Problem Statement: Develop a framework to a) extract video contents once, b) rep-

resent the extracted contents using an expressive data model, and c) design primitive

operators to answer queries (both ad-hoc and “what if”) on the extracted contents.

Table 1. Example Primitive Situations

Query Category Example Situations Computation

Q1 Searching Searching for an object in a video using its image Spatial

Q2 Aggregation Busy period in a public area (e.g., shopping mall) Temporal

Q3 Join Is the same person present in two or more videos

(captured using an entry or exit camera)?

Temporal

Q4 Direction Which direction an object moved in the video? Temporal

There are several challenges in addressing the situations in Table 1. First, extracted

video contents cannot be modeled completely with the existing relational model.

For example, Q4 in Table 1 requires computing the direction between two bounding

boxes. Modeling an object bounding box using a traditional relational model would

require four columns. A self-join is required to bring the bounding boxes of two frames

for comparison using the relational model. This will be much more difficult when

multi-dimensional feature vectors need to be compared for a situation (e.g., Q1, Q3 in

Table 1). Structured Query Language (SQL) and Procedural Language extensions to the

SQL (PL/SQL) have provisions for representing multi-dimensional vectors using JSON

array or VARRAY data type, respectively. Performing computations and expressing

queries using these arrays are complicated. The array DBMSs [5] also support multi-

dimensional vectors of one type (e.g., coordinate positions), and the whole relation is

modeled as a multi-dimensional vector. Even though feature vectors can be represented

using this model, other extracted content types (e.g., object class label) cannot be repre-

sented. Though the column-oriented semantics proposed in AQuery [11] can represent

two-dimensional array, they cannot model multi-dimensional feature vectors. Compu-

tations on the different extracted content types are also not supported by the above

representation models. To answer the situations in Table 1 using SQL, PL/SQL, array

DBMSs, or object-oriented databases would require writing user-defined functions for

each of them. This is similar to developing a custom algorithm for each situation.

Performing joins on videos is another challenge. Traditional joins compute matches

by applying relational model comparison operators. These operators cannot compare

multi-dimensional feature vectors, as they vary significantly for the same object and

128 H. Billah and S. Chakravarthy

must be compared based on similarity. Hence, A matching condition (with an appro-

priate similarity measure) is needed. Consecutive frames in a video contain repetitive

information (e.g., the same set of objects in multiple frames). Not all frames are neces-

sary for many computations. For example, counting an object occurrence once across

frames is sufficient to answer Q2 in Table 1. For Q3, all the frames from two videos are

not required to be compared. Hence, new operators are needed to compress the repeti-

tive information and efficiently process it, which is not supported by existing systems.

3 Relevant Work

Different aspects of video content analysis have been researched for a long time. We

have summarized these works into three different categories in Table 2. They are Cus-

tom Solutions (CS), Video Streaming (VS) systems, and Low-level Content Analysis

(LCA) systems. We have also shown in Table 2 whether these systems address the prim-

itive situations from Table 1. CS shown in Table 2, row 1, are mostly deep learning

approaches having fixed situation classes, such as searching for a person or spatial rela-

tionship between objects in a video. Their main focus is neural network optimization

(speeding up training and inference), and they need to be retrained for a new situation

type. For example, NoScope [10], MIRIS [4], and SVQ++ [6] can address partially Q1

from Table 1. They cannot address the situations Q2-Q4 from Table 1 and compose the

situations to address complex situations. Existing VS systems (row 2 in Table 2) support

storing, searching, and retrieval of video/image based on some metadata. Though they

are efficient for streaming video frames, there is no query processing support.

Table 2. Summary of existing video content analysis literature vs. QVC.

Category System Data Model Supported Situations

Q1 Q2 Q3 Q4

CS NoScope [10], MIRIS [4], SVQ++ [6] Video Partial No No No

BLAZEIT [9] Relational No No No No

VS Systems Amazon Kinesis [13] Relational No No No No

LCA Systems BilVideo [7], SVQL [12] Relational No Yes No Yes

LVDBMS [3] No Yes No No

Extended SP Proposed QVC Framework R++ Yes Yes Yes Yes

The LCA systems (row 3 in Table 2) model video contents using the relational

model and support several low-level spatial operators (bounding box overlap, direction,

etc.). BilVideo [7] and SVQL [12] allow query processing on fixed event and content

databases. These databases must be updated frequently, as extracted video contents and

situations (or events) change over time. LVDBMS [3] also supports some spatial oper-

ations. However, they do not support window-based joins or other window-based oper-

ations. Even though these systems can answer aggregation queries (Q2 from Table 1),

Video Situation Monitoring Using Continuous Queries 129

they do not have the functionality to answer Q1, Q3–Q4 from Table 1. Recently, graph-

based analysis [16–18] has become popular for video situation monitoring. However,

they can not also answer Q1, Q3–Q4 from Table 1. They are not discussed here elabo-

rately, as this paper extends the relational model.

4 Proposed QVC Framework

The proposed QVC framework (shown in Fig. 1(b–d)) is composed of three modules:

A) Video Content Extraction (VCE), B) Representation of extracted contents using

extended relational (R++) model, and C) Continuous query processing with CQL-VA

operators for situation detection. These components are discussed below.

A) Video Content Extraction (VCE): The VCE component of the proposed frame-

work employs two VCE algorithms: object detection (YOLO [14]) and object tracking

(deep sort [15]). Once all the content attributes are extracted, they are post-processed

for appropriate formatting. After post-processing, the VCE module extracts Frame id

(fid): a unique identifier of a frame, Object id (oid): a unique identifier for an object

across frames assigned by object tracking, Object class label, class confidence score,

Bounding box ([BB]): object location in a particular frame, Feature vector ([FV]):

multi-dimensional vectors representing an object feature, and timestamp (ts): a times-

tamp for each ‘f’ frames, where f is the frame-per-second rate of the video.

Fig. 1. Video situation analysis steps: (a) Input video streams, (b) VCE with post-processing,

(c) Representation (using R++ model), (d) Continuous Query Processing (using MavVStream

server), (e) CQL-VA Query expression submitted by the user, and (f) Situations identified.

B) Representation of Extracted Contents: The VCE module discussed above extracts

three different categories of contents: numerical (fid, oid, ts), enumerated (object class

label and confidence score), and vectors ([FV], [BB]). These contents cannot be pro-

cessed in an arbitrary order. For example, to answer Q4 in Table 1, the direction of an

object’s bounding box in the first and last frame it appears must be computed. Besides,

a self-join is required to compare all four elements of two bounding boxes to answer

130 H. Billah and S. Chakravarthy

Q4 using the relational model. It would have been much simpler to express and avoid

self-join if all the information associated with an object across frames could be repre-

sented with one tuple. The column-oriented semantics of the arrable data model and the

order-preserving operations in AQuery [11] supports the above to some extent.

An arrable is an ordered collection of vectors (or arrays) of basic type (e.g.,

numeric, boolean, etc.). The arrable data model represents the tuples in a partition with

one tuple after grouping and ordering on a set of attributes. In other words, each group

is represented with one tuple using arrable data model. In Fig. 2(c), R1 was grouped on

oid and ordered on fid to generate AR1. All the attributes of AR1 are arrable except the

group by attribute oid. As mentioned in Sect. 2, the arrable data model cannot model

multidimensional feature vectors and other different content attributes extracted by

VCE. Hence, the proposed extended relational model (termed R++) supports three dif-

ferent data types. They are basic types (numerical, enumerated for representing object

class labels, directions, etc.) from the relational model, vectors (n-dimensional), and

extended arrables. An R++ relation and extended arrables are defined below.

Definition 1. An R++ relation R consists of attributes A1, A2, ..., An. An attribute Ai

can be of basic, vector, or an extended arrable type. An extended arrable attribute

Ai is an n-dimensional array generated by grouping and ordering on the numeric or

enumerated attributes of R.

A tuple is inserted in an R++ relation for each object extracted from a video frame

with its associated attributes. In other words, for each frame processed by VCE, k rows

are added incrementally to the R++ relation corresponding to a video, where k is the

number of objects extracted by VCE. An example of an R++ table is shown in Fig. 2(b).

Here, five different types of object attributes are shown. fid, oid, and ts are numerical

attributes, whereas [BB] and [FV] are multi-dimensional vector types. [BB] vector size

is four, and [FV] vector size varies depending on the VCE algorithm. In Fig. 2(b), frame

1 contains two objects with oid 1 and 2. Therefore, there are two tuples for frame 1 (with

different oids) in the relation. To support a time-based window, each frame is associated

with an actual timestamp (shown as an integer for convenience). Here, feature vectors

are shown as one-dimensional vectors for simplicity.

Fig. 2. R++ model. (a) A video with 2 frames, (b) R1 is

an R++ table generated from the different attribute types

extracted by VCE, (c) AR1 is an R++ table with extended

arrable attributes generated by grouping on oid and order-

ing on ts, (d) CCT operator applied on AR1.

An example of an R++

table containing extended

arrables is shown in Fig. 2(c).

This table contains one tuple

per oid, instead of containing

a tuple for each fid and oid

pair (see Fig. 2(b)). This allows

us to represent all the [BB],

[FV], ts, fid, etc., associated

with an oid from R1 using an

array across the entire relation

(or even a window, which is

a horizontal partitioning using

ts). All the attributes of AR1

Video Situation Monitoring Using Continuous Queries 131

are extended arrable attributes, except the grouping attribute oid. Since arrable is back-

ward compatible with the relational model, an R++ relation with extended arrable is

also backward compatible with the relational model.

C) Continuous Query Processing for Situation Analysis: The R++ model, extended

arrables, and CQL-VA operators (discussed in Sect. 5) are integrated into the continuous

query processing component (MavVStream server, an extension of MavEStream [8]

of the proposed framework (shown in Fig. 1(d)). The underlying base of MavVStream

supports all basic relational operators and aggregates. This is a client-server architecture

where clients can submit CQL-VA queries to the MavVStream server. A query plan

object is generated from the submitted queries. Each operator in the query plan object is

associated with input and output buffers. The system also supports physical and logical

windows with flexible window specifications. A multi-threaded feeder is used to feed

R++ tuples to the query processor. The complex event processing subsystem has also

been integrated to provide primitive event detection capability (based on continuous

queries) and compose them further in the future. Once the query results, including the

frames where a situation occurs, are generated by the MavVStream Server, these frames

can be extracted from the original video and visualized.

5 CQL-VA Operators and the Relational Model

Operators introduced in CQL-VA are based on the requirements discussed in Sect. 2 and

can play a role in CQL-VA query optimization in the future. These operators process

tuples of an R++ relation like any other relational operator but have some constraints

due to their applicability to specific attributes or data types. For example, to filter objects

from a video using the relational algebra SELECT (σ) operator, one needs to provide a

feature vector or an image from which the feature vector can be extracted. On the other

hand, processing a bounding box attribute is relatively simpler using integer values

and available wild cards. Joining video streams for object matching (for Q3 in Table 1)

also requires dealing with feature vectors. These are not semantically valid for other

attributes. This is the same as using operators, such as average, applicable to numeric

values. Care has been taken to introduce a minimum number of primitive operators,

and composition is used (using closure property) to express larger computations. The

CQL-VA operators and conditions, syntax, and complexity are shown in Table 3.

132 H. Billah and S. Chakravarthy

Table 3. CQL-VA Operators and Conditions. Here Ri: R++ relation; ARi: R++ relation with

extended arrables; gba, aoa: group by and assuming order attributes; N: number of tuples in Ri;

M: unique number of objects; th: threshold; S: the complexity of sMatch; ai: scalar attributes;

G: number of rows in ARi; Nlg , Nrg: average number of tuples in left and right groups in join.

CQL-VA Operators Syntax Complexity

Similarity Matching

Condition
1 R2

th

O(S)

R++ to Arrable 1 1 1 R1.a2 O(N ∗ log N)

Compress Consecutive

Tuples
1, { } O(G)

Consecutive Join 1 2 O(G ∗ Nlg ∗ Nrg ∗ S)

CCT Join 1 2 O(G2 ∗ S)

Direction 1. O(M)

1. Similarity Matching Condition: The similarity matching condition (see the syntax

in row 1, Table 3) in CQL-VA compares the similarity of two feature vector attributes

of an R++ relation (with or without extended arrables) using the sMatch operator. The

sMatch operator computes the similarity score (a numerical distance) between the two

feature vector attributes. In the similarity matching condition, the output of sMatch is

compared (using comparison operators of the relational model) with a given threshold

value (th), which controls to what extent two vectors can be considered similar. Dif-

ferent distance metrics are needed to compute the similarity score since feature vector

semantics and size differ based on the VCE algorithm. Two standard distance metrics

(values ranging from 0–1), cosine distance (for deep sort) and Euclidean distance (for

SIFT and histograms), are supported by CQL-VA. Complexity is shown as O(S) for

this condition in Table 3 as different distance metrics can have different complexity.

2. R++ to Arrable (): This operator converts an R++ relation into an R++ relation

with extended arrables. The group by (gba) and assuming order (aoa) parameters need to

be numeric or categorical attributes. They perform grouping and ordering, respectively,

according to AQuery semantics. This operator can apply CCT Join (discussed later in

this section) to improve efficiency. It can also be used to perform the running aggregate

operations of AQuery on the extended arrables, again to improve efficiency and avoid

self-join. The group by operation using hashing takes O(N) time, and sorting G groups

can be approximated by O(log N) (upper bound), making the overall complexity O(N∗

log N) for N tuples in an R++ relation or window.

3. Compress Consecutive Tuples (): In videos, the same object appears consecu-

tively in multiple frames, and there can be more than one tuple for each object. Compu-

tations such as select or join will compare the same object multiple times (quadratically

for join). CCT operator is introduced in CQL-VA to reduce the consecutive occurrences

of the same object to one or two tuples. This can eventually improve the performance

of select and join. CCT takes an R++ relation with extended arrables as input and an

option argument, which can be first, last, or both (syntax shown in row 3, Table 3).

CCT compresses each extended arrable attribute by keeping the first or last element

Video Situation Monitoring Using Continuous Queries 133

or the first and last both elements. If the option is first or last, all the extended arrable

attributes are converted to their original attribute type (basic/vector). If the option is

both, the attribute types remain the same as the input relation. An example of the CCT

operator is shown in Fig. 2(d), with the option argument as first. The [fid],oid, and [ts]

columns of AR1 are converted to a numeric type and the columns [[BB]] and [[FV]]
are converted to vector type in the relation AR2. The relational operators such as select

(with similarity matching condition and logical operators), join (on scalar attributes and

similarity matching condition), and aggregation can be applied to the result set gener-

ated by the CCT operator. The computational complexity of CCT is O(G), where G is

the number of tuples in an R++ relation with extended arrables.

Fig. 3. (a) AR1, (b) AR2 are two R++ tables with

extended arrables from two different videos, gener-

ated by grouping on oid and ordering on fid, (c) cJoin

on AR1 and AR2, (d) CCT Join on AR1 and AR2.

[[BB]] and [ts] columns are not shown due to space

constraints. (Color figure online)

4. Consecutive Join (): Although

regular join works on extended

arrables using the CQL-VA similarity

matching condition and existing rela-

tional comparison operator, it is still

a join that compares each pair from

two columns. Situation Q3 in Table 1

can be answered efficiently and accu-

rately without comparing all the pairs

of tuples. cJoin is introduced as an

alternative to improve accuracy and

reduce processing time by perform-

ing less number of matches than reg-

ular join. cJoin is applied to two R++

relations with extended arrables, and the tuples in each group from both relations are

compared until a match is found for a condition. Once a match is found, the rest of

the tuples are not compared in that pair of partitions. Although cJoin can be applied to

any R++ relations, it provides the best efficiency for feature vector similarity matches

from two relations grouped on oid. In general, this will improve efficiency, although in

the worst case, similarity matching may succeed only on the last tuple from both sides.

Another alternative of cJoin is to drop tuples using CCT and perform a regular join

with the similarity matching condition. This may result in incorrect answers. cJoin will

provide better accuracy than CCT Join for the same computation, as only 2 tuples can

be retained per partition in CCT, which may not match.

An example of the cJoin operation on two R++ relations with extended arrables is

shown in Fig. 3(a–c). Here, AR1 and AR2 are generated from two different videos.

They were grouped on oid and ordered on fid. For simplicity, the [[BB]] and [ts]

attributes are not shown here. In AR1, there are two objects with oid 1 and 2. In AR2

there are three objects with oid 5, 7, and 8. The result of performing cJoin using the

similarity matching condition (see query plan Fig. 4 Q3) with a threshold value of 1 is

shown in Fig. 3(c). The elements of [[FV]] column for oid 1 in AR1 is matched with

all the elements of [[FV]] column of AR2. There is no matching similar feature vectors

for oid pairs (1, 5) and (1, 7). However, for the tuples of oid pairs (1, 8) from AR1

and AR2, the first element of each feature vector array matches (colored green). In this

case, only one comparison is made between the feature vectors in [[FV]] attribute for

the rows corresponding to oid 1 and 8. Similarly, for oid 2 and 7 from AR1 and AR2,

134 H. Billah and S. Chakravarthy

the second element of each feature vector from [[FV]] column was matched. The rest

of the elements are not compared in this case. cJoin performs nested loop join instead

of hash join as the comparison is not “equality”. However, its performance should be

much better than a regular nested loop join. The worst case complexity of cJoin is∑G

g=1
O(Nlg ∗ Nrg ∗ S), assuming G groups in both (left: l, right: r) relations, each

group g with Nlg and Nrg number of tuples. S is the complexity of similarity matching

condition. This can be simplified to O(G ∗ Nlg ∗ Nrg ∗ S).

5. CCT Join: This operation first applies the CCT operator on an R++ relation with

extended arrables and then a regular join (see Fig. 4 Q3 (alternative)). Since CCT

reduces the number of elements in each row of the extended arrable attributes to one or

two, there are fewer comparisons than cJoin. An example of the CCT Join is shown in

Fig. 3(d). Here, only the first and last elements of the arrays in [[FV]] column of AR1

and AR2 relation are kept. Hence, for oid 7 the middle element of the feature vector

array is dropped and oid 2 and 7 do not come out in the result with threshold 1. The

worst case complexity of CCT Join is O((G ∗ 2) ∗ (G ∗ 2) ∗ S), assuming G groups in

both R++ relation, each group g ∈ G with Nlg and Nrg tuples. If first or last is chosen,

complexity will be O(G ∗ G ∗ S). This can be simplified to O(G2 ∗ S).

6. Direction (): This primitive operator has been introduced to answer

queries that require direction (e.g., Q4 in Table 1) and can only be applied to the bound-

ing box attribute of an R++ relation with extended arrables (grouped on object id).

Direction outputs one of the 8 directions as an enumerated type in a new column (used

like an aggregate function). It is computed by default using the first and last bound-

ing box elements of each extended arrable. It is also possible to compute the direction

between the ith and jth element of the extended arrables of bounding boxes, where

i < j if specified in the operator explicitly. The complexity of the direction operator is

O(M), where M is the number of unique objects in that particular relation or window.

6 CQL-VA Query Expression for Situation Analysis

Q1 (Searching for an object using its image): To address this situation, the R++ relation

generated from an input video stream needs to be searched using the feature vector

extracted from the given object image. Select with similarity matching condition in the

where clause can answer this situation (see query plan in Fig. 4).

Fig. 4. Query plan for Table 1 situations. Two plans are shown

for Q3. ARi is generated after applying on R++ table Ri as

shown in Q3. Only similarity matching conditions are shown.

Q2 (Busy period in a

public area): This situ-

ation requires counting

the number of unique

objects (e.g., person/cars)

in a premise every ‘n’

seconds. An R++ rela-

tion (within the ‘n’ sec-

ond window or whole

video), can be converted

Video Situation Monitoring Using Continuous Queries 135

to an R++ relation with extended arrables by grouping on oid and ordering on fid using

the R2A operator. Then the number of rows in the resultant relation can be counted. A

busy period can be identified by projecting the timestamps with the maximum number

of unique objects in the relation. The query expression is shown below (see query plan

in Fig. 4).

Q3 (Presence of the same person in two/more videos): The R++ relation generated from

two different videos must be joined using a similarity matching condition to address Q3.

A query expression using cJoin for Q3 is shown below. An alternative query plan using

CCT Join is shown in Q3 (alternative) in Fig. 4. Q3 can also be expressed using a regular

join with the similarity matching condition.
Q2 Expression: Q3 Expression:

1 1 1 1

1

1 2

1 1 1 1

2 2 2 2

1 2) > .864

Q4 (Which direction an object moved?): Query formulation is similar to Q2, where

operator (instead of the count operator) can be used in the Select clause

(see query plan in Fig. 4).

7 Experimental Results

Dataset and Experimental Setup: In this work, three different datasets: CamNeT [19],

MavVid [1], and MavVidR [2] have been used for experiments. The CamNeT dataset

contains video footage of people passing by a place (e.g., hallway) in a complex envi-

ronment (e.g., low light, shadow). The MavVid dataset was prepared in ITLAB by cap-

turing entry and exit videos with situations Q1-Q4 from Table 1. Videos 43, 37, and

39 from the MavVid dataset were concatenated with arbitrary videos from the Cam-

NeT dataset and videos (of the Capitol riot incident and a soccer match) containing

arbitrary situations to generate videos 43++, 37++, and 39++ in the MavVidR dataset.

The dataset description in terms of video length and number of tuples generated by the

R++ relation is shown in Table 4. All the videos in this table were generated at a 30-

frame-per-second rate. Although two videos can be of different lengths, the number of

tuples varies significantly depending upon the objects present in a video (e.g., Video 57

has fewer tuples than 41 even though their length is the same). This is important as the

query processing time depends on the number of tuples processed.

136 H. Billah and S. Chakravarthy

Table 4. Dataset description

Dataset Vid Length Tuples

MavVid [1] 39 41 s 173

37 49 s 6442

41 28 s 2447

43 37 s 382

53 50 s 2218

57 28 s 1645

MavVidR [2] 37
++ 82 s 7520

39
++ 56 s 1370

43
++ 56 s 1857

CamNeT [19] 1 24 min 11691

23 20.5 min 15700

29 22 min 11035

The MavVStream prototype was implemented

in JAVA. Videos were pre-processed using YOLO

and deep-sort implementation in Python on an

NVIDIA Quadro RTX 5000 GPU with 10 GB

memory. Query processing experiments were per-

formed on the same machine with 2 Intel Xeon

processors (48 cores, 748 GB main memory).

Result Comparison: None of the existing sys-

tems can completely address all the situations

from Table 1. Even though some systems can par-

tially address Q2 and Q4 (as shown in Table 2),

these systems and their datasets are not open-

source, making comparison difficult. No baseline

system can answer Q3 to the best of our knowl-

edge. Besides, the proposed approach differs from the existing systems (e.g., query

processing vs. machine learning, relational vs. graph model). Comparing them will not

appropriately highlight the differences between the systems.

CQL-VA Query Results and Evaluation: CQL-VA query evaluation using accuracy,

robustness, efficiency, and scalability are discussed below.

A) Accuracy: Accuracy is computed by manually generating the ground truth. There

can be two types of ground truth: Ground Truth (GT) from the actual video and Ground

Truth from the pre-processed video (GT(vce)). There is a significant difference between

GT and GT(vce), as the information (in terms of situations present) in the actual video

differs from the pre-processed video. For example, the same oid may be given to two

objects (having the same colored clothes, shape, etc.), or the same object can have two

different oids in two consecutive frames (because of being recognized as two different

objects). The vision community is investigating these challenges, which differ from

the query processing problems discussed here. Hence, this paper computes the query

accuracy using GT(vce) (termed as Acc(vce)).

Q1 (Searching for an object): Q1 experiments were conducted on MavVid Dataset (see

Table 5, rows 1–3) using a time-based disjoint window of 40 s. Since Q1 requires the

similarity matching condition to be used with select and is a tuple-by-tuple comparison,

different window sizes do not have any effect, and the window size was set to take the

whole video as a window for most of the videos in MavVid (except 53). Feature vectors

of object images were extracted separately using the same VCE algorithm. The videos

were searched with different th as a small deviation in th affects accuracy significantly

(feature vectors vary significantly in the video in consecutive frames). The accuracies

shown in Table 5 are obtained based on best th (set experimentally) for which the highest

accuracy was obtained. The best th for videos 41, 43, and 53 are .85, .864, and .835

respectively. Changing the th value of video 41 from .85 to .7990 drops the accuracy to

0%. This is true for other videos and represents the sensitivity of the th value (automated

th determination is an open problem).

Video Situation Monitoring Using Continuous Queries 137

Table 5. Q1, Q2, and Q4 Accuracy

Vid Query Acc(vce)

41 Q1 100%

Q2 100%

Q4 100%

43 Q1 100%

Q2 100%

Q4 100%

53 Q1 100%

Q2 100%

Q4 100%

1 Q2 100%

Q4 100%

23 Q2 100%

Q4 100%

29 Q2 100%

Q4 100%

Q2 (Aggregation) and Q4 (Direction): Q2 and

Q4 experiments were performed on the CamNeT

and MavVid datasets using the query formula-

tion shown in Sect. 6 and the query plan in Fig. 4.

The results are shown in Table 5. A time-based

disjoint window 40 s was used for the videos

of the MavVid dataset. These experiments eval-

uated if the newly introduced CQL-VA opera-

tors (R2A, Direction) can perform the computa-

tions correctly. Hence, for smaller videos of the

MavVid dataset, the window was set so that the

whole video was a window (except video 53). For

Q2 and Q4, accuracy is 100% for videos 41, 43,

and 53. A bigger dataset, CamNeT, with a larger

window size (10 min.), was also used for evalu-

ation, and accuracy was 100% for Q2 and Q4.

These experiments show that the CQL-VA oper-

ator computations are correct.

Q3 (Presence of same objects in two videos): As mentioned earlier, Q3 is important for

analyzing and monitoring the entry and exit of individuals in a premise. To validate that,

entry and exit videos from the MavVid datasets were used to determine the presence of

the same persons in two or more videos. A sample result of Q3 (using proposed cJoin) is

shown in Fig. 5. Here, in video 43, people enter through a corridor; in video 39, people

exit through a door, and both have one common person. In Fig. 5(c), using cJoin, the

same person’s presence at different times in 39 and 43 was identified. The experiments

for Q3 were conducted using the alternative query plans shown in Fig. 4 along with the

regular join (with similarity matching condition).

Fig. 5. Sample results of Q3 for 43 �� 39.

As no existing system

addresses Q3, we have consid-

ered regular join with the simi-

larity matching condition as our

baseline and compared the accu-

racy and performance of Q3

using cJoin and CCT Join. The

th value was the same for the

similarity matching condition in

join for all the joins. Time-based

disjoint windows of 10 s, 20 s,

and 40 s were used. The window sizes were multiplied by two to evaluate the effect

on accuracy with varying window sizes. In Table 6, experiment results for only 20 s,

and 40 s windows are shown due to space constraints. The number of objects in each

video and common object pairs from the two videos used for joining (true positives) are

also shown. Performance improvement for cJoin and CCT Join are shown with respect

to regular join. A self-join was performed on video 37 to verify the correctness of the

different join operators, and accuracy was 100% for all the joins (row 1, Table 6). For

138 H. Billah and S. Chakravarthy

a 20 s window (in Table 6 rows 2–8) cJoin obtained the highest accuracies for 6 video

pairs. In these videos, regular join brings out all the object pairs having feature vec-

tor similarity above the th. Hence, there are more false positives as the same object is

considered similar to multiple objects because of feature vector sensitivity. Since cJoin

stops matching the pairs of objects once the similarity matching condition is satisfied,

fewer false positives are produced. On the other hand, CCT Join has the second-highest

accuracy for four pairs of videos. However, it has the least query processing time for

all the video pairs except for 39 and 43 (row 5 in Table 6). This happens because these

videos are the smallest (regarding the number of tuples), and an overhead for grouping,

ordering, and dropping tuples for CCT is introduced.

Table 6. Q3 accuracy comparison. Vidi
: Video id, CO: # of common object pairs from two

videos, Ws: window size.

Ws Vid1
�� Vid2

of Objects CO Acc(vce) Performance improvement

Vid1
Vid2

Join cJoin CCT Join cJoin CCT Join

20 s 37 �� 37 5 5 5 100% 100% 100% 40% 75%

37 �� 39 5 3 1 67% 87% 73% 66% 70%

37 �� 43 5 3 1 87% 87% 60% 67% 70%

37 �� 57 5 3 1 20% 73% 67% 89% 86%

39 �� 43 3 3 2 89% 78% 89% 33% -57%

39++
�� 43++ 14 23 2 91% 99% 98% 78% 96%

37++
�� 39++ 6 14 2 85% 92% 90% 74% 83%

37++
�� 43++ 6 23 2 93% 95% 83% 66% 83%

40 s 37 �� 39 5 3 1 67% 93% 80% 14% 19%

37 �� 43 5 3 1 87% 67% 67% 29% 37%

37 �� 57 5 3 1 20% 73% 80% 86% 84%

39 �� 43 3 3 2 89% 100% 100% 50% -40%

39++
�� 43++ 14 23 2 93% 96% 94% 82% 85%

37++
�� 39++ 6 14 2 82% 94% 92% 48% 71%

37++
�� 43++ 6 23 2 93% 96% 89% 29% 73%

When the window size was increased twice (40 s) (shown in Table 6, rows 9–15),

cJoin obtained the highest accuracies for five pairs of videos. CCT Join accuracy was

second highest among those video pairs. For video pairs 37 and 57, cJoin and CCT

obtain 73% and 80% accuracy, respectively, whereas regular join obtains 20% accu-

racy. This happened because cJoin and CCT Join make fewer comparisons, generating

fewer false positives. For a 40 s window, CCT Join reduces the query processing time

for four pairs of videos and cJoin for two pairs of videos. cJoin improves accuracy and

reduces query processing time in the majority of cases. CCT Join reduces the query

processing time of cJoin further by sacrificing the highest 13% accuracy (still, the accu-

racy is 80%). The trend is similar in the 10 s window as well. The average accuracy

Video Situation Monitoring Using Continuous Queries 139

for Join, cJoin, and CCT Join was 84%, 89%, and 89%, respectively, for the 10 s win-

dow. cJoin, and CCT Join improved the join performance on average by 93% and 99%,

respectively, for a 10 s window. The above experiments showcase that cJoin is the ideal

operator for both improving accuracy and reducing performance time. CCT Join may

sacrifice some accuracy for a better performance (accuracy vs performance tradeoff).

However, for real-time processing of large videos, this operator might be ideal. Even

the average accuracy of cJoin and CCT Join is 85% and 80%, and the average perfor-

mance improvement is 47% and 50% for all three window sizes, respectively. Given the

inconsistency of feature vectors, this accuracy and performance improvement is good.

B) Robustness: A query formulation is highly robust if the same accuracy is obtained

with and without the presence of other situations in the video. The MaVidR dataset

was used to validate the robustness of our queries using 10 s, 20 s, and 40 s windows

for Q3, as it is the most complex query. The experiment results are shown in Table 6

(rows 6–8 and 13–15). Here, the true negatives increased, but true positives remained

the same because of additional objects in the concatenated video part. For the video

pairs (39++, 43++), (37++, 39++), and (37++, 43++), in both 20 s and 40 s window

in Table 6, cJoin and CCT Join improves accuracy from Join as they do not bring out

the additional object pairs as false positives. They also improve performance by at least

29% and 71% for these video pairs. This shows that the CQL-VA operators can identify

a situation correctly in the presence of arbitrary situations and optimize performance.

Fig. 6. Query efficiency and scalability on CamNeT dataset

using 10 min. time-based disjoint window

C) Scalability: Scalability

measures query performance

when the video size increases

by a fixed length. Differ-

ent length videos (maxi-

mum 44.5 min.) were used

for scalability experiments.

Since there is a scarcity

of large videos containing

all the situations of interest,

Videos 1 and 23 of the Cam-

NeT dataset were trimmed and increased by a fixed length. 5 and 12 min videos were

created from Videos 1 and 23 by taking the first 5 and 12 min from each video, and a

44.5-min video by merging videos 1 and 23. The purpose of this was to increase the

size of the videos 2 times to understand how the query processing time increases. In

Fig. 6(a), Q1, Q2, and Q4 performance is shown. With increased video size, the query

processing time increases linearly for Q1, Q2, and Q4. The curve values vary based on

the operator used and the computation time. Since Q1 has only select, it takes the least

time among all the queries. Q3 performance was measured in Fig. 6(b) by joining the

same-size videos sampled from 1 and 23 and joining 1 and 23. As mentioned earlier, the

regular join (our baseline) time (maximum 556 s and 98%) is significantly higher than

cJoin and CCT join as the number of comparisons made is higher. This validates our

intuition for introducing these operators. New CQL-VA operators introduced per-

form more than an order of magnitude faster than the regular Join.

140 H. Billah and S. Chakravarthy

8 Conclusion

In this paper, the components for automated video analysis were identified, and a frame-

work was proposed. This paper shows how a few new primitive operators can detect

diverse situations. This paper also demonstrates that query-based situation monitoring

can be achieved using established and low-risk approaches. A complete generalized sit-

uation analysis system supporting more primitive operators and more complex situation

analysis is under development.

Acknowledgements. This work was supported by NSF award #1955798 and #1916084. The

authors would like to thank Dr. Abhishek Santra for his constructive suggestions.

References

1. MavVid Dataset (2023). itlab.uta.edu/downloads/mavVid-datasets/MavVid v2.zip

2. MavVidR Dataset (2023). itlab.uta.edu/downloads/mavVid-datasets/MavVidR v2.zip

3. Aved, A.J., Hua, K.A.: An informatics-based approach to object tracking for distributed live

video computing. Multimedia Tools Appl. 68(1), 111–133 (2014)

4. Bastani, F., et al.: MIRIS: fast object track queries in video. In: ACM SIGMOD, pp. 1907–

1921 (2020)

5. Baumann, P., Misev, D., Merticariu, V., Huu, B.P.: Array databases: concepts, standards,

implementations. J. Big Data 8(1), 1–61 (2021)

6. Chao, D., Koudas, N., Xarchakos, I.: SVQ++: querying for object interactions in video

streams. In: 2020 ACM SIGMOD, pp. 2769–2772 (2020)

7. Dönderler, M.E., Şaykol, E., Arslan, U., Ulusoy, Ö., Güdükbay, U.: BilVideo: design and

implementation of a video database management system. Multimedia Tools Appl. 27(1),

79–104 (2005)

8. Jiang, Q., Adaikkalavan, R., Chakravarthy, S.: MavEStream: synergistic integration of stream

and event processing. In: ICDT, p. 29 (2007)

9. Kang, D., Bailis, P., Zaharia, M.: BlazeIt: optimizing declarative aggregation and limit

queries for neural network-based video analytics. VLDB 13(4), 533–546 (2019)

10. Kang, D., Emmons, J., Abuzaid, F., Bailis, P., Zaharia, M.: NoScope: optimizing deep CNN-

based queries over video streams at scale. PVLDB 10(11), 1586–1597 (2017)

11. Lerner, A., Shasha, D.: AQuery: Query language for ordered data, optimization techniques,

and experiments. In: PVLDB, pp. 345–356 (2003)

12. Lu, C., Liu, M., Wu, Z.: SVQL: a SQL extended query language for video databases. Int. J.

Database Theory Appl. 8(3), 235–248 (2015)

13. Mathew, S., Varia, J.: Overview of Amazon web services. Amazon Whitepapers 105, 1–22

(2014)

14. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint

arXiv:1804.02767 (2018)

15. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep associa-

tion metric. In: IEEE ICIP, pp. 3645–3649 (2017)

16. Xiong, P., Zhan, H., Wang, X., Sinha, B., Wu, Y.: Visual query answering by entity-attribute

graph matching and reasoning. In: CVPR, pp. 8357–8366 (2019)

17. Yadav, P., Curry, E.: VidCEP: complex event processing framework to detect spatiotemporal

patterns in video streams. In: IEEE BigData, pp. 2513–2522. IEEE (2019)

http://arxiv.org/abs/1804.02767

Video Situation Monitoring Using Continuous Queries 141

18. Zhang, E., Daum, M., He, D., Haynes, B., Krishna, R., Balazinska, M.: EQUI-VOCAL:

synthesizing queries for compositional video events from limited user interactions. VLDB

16(11), 2714–2727 (2023)

19. Zhang, S., Staudt, E., Faltemier, T., Roy-Chowdhury, A.K.: A camera network tracking

(CamNeT) dataset and performance baseline. In: IEEE WACV, pp. 365–372 (2015)

	Video Situation Monitoring Using Continuous Queries
	1 Introduction
	2 Challenges
	3 Relevant Work
	4 Proposed QVC Framework
	5 CQL-VA Operators and the Relational Model
	6 CQL-VA Query Expression for Situation Analysis
	7 Experimental Results
	8 Conclusion
	References

