
An algorithm with exact bounds for coverage path planning in

UAV-based search and rescue under windy conditions

Sina Kazemdehbashi1 and Yanchao Liu2*

1,2Department of Industrial and Systems Engineering, Wayne State University, 4815 4th
Street, Detroit, 48201, Michigan, USA.

*Corresponding author(s). E-mail(s): yanchaoliu@wayne.edu;

Abstract

Unmanned aerial vehicles (UAVs) are increasingly utilized in global search and rescue efforts, enhancing
operational efficiency. In these missions, a coordinated swarm of UAVs is deployed to efficiently cover
expansive areas by capturing and analyzing aerial imagery and footage. Rapid coverage is paramount in these
scenarios, as swift discovery can mean the difference between life and death for those in peril. This paper
focuses on planning the flight paths for multiple UAVs in windy conditions to efficiently cover rectangular
search areas in minimal time. We address this challenge by dividing the search area into a grid network and
formulating it as a mixed-integer program (MIP). We derive a precise lower bound for the objective function
and develop a fast algorithm with a proven capability of finding either the optimal solution or a near-
optimal solution with a constant absolute gap to optimality. Notably, as the problem complexity increases,
our solution exhibits a diminishing relative optimality gap while maintaining negligible computational costs
compared to the MIP approach. The fast execution speed of the algorithms is demonstrated by numerical
experiments with area sizes up to 10000 grid cells.

Keywords: Coverage Path Planning, Unmanned Aerial Vehicle, Mixed-Integer Programming

1 Introduction

Thousands of people are reported missing and later found dead each year, due to being trapped or immobilized
in harsh environments. For instance, approximately 4, 000 casualties in maritime environments have been
reported each year since 2014 (Cho et al., 2021). To enhance the efficiency of life-saving operations, search and
rescue (SAR) teams nowadays try to embrace cutting-edge technologies like UAVs and artificial intelligence
to improve safety and operational efficiency (Martinez-Alpiste et al., 2021). Remote controlled or autopiloted
UAVs are quicker to deploy, less expensive to operate and maintain and can reach more locations, compared
to other means of search such as ones conducted by canine, on foot or by helicopter. UAVs are becoming the
preferred equipment for many SAR missions (Lyu et al., 2023).

Despite the many benefits, using UAVs to conduct large area searches comes with several unique challenges,
such as limitations and uncertainties brought about by the battery capacity, weather conditions, and air traffic
safety considerations. The energy consumption, flight time and stability of small-sized multirotor UAVs are
particularly susceptible to the effects of wind (Gianfelice et al., 2022). Furthermore, when multiple UAVs are
employed in a SAR mission, the division of tasks and the planning of flight paths in the midst of the above
constraints become nontrivial, and often require sophisticated treatment and calculation. Operations research
that addresses the such challenges are termed Coverage Path Planning (CPP) and there is a rich literature
about it (Bouzid et al., 2017; Di Franco and Buttazzo, 2016; Forsmo et al., 2013; Maza and Ollero, 2007).
However, most of the studies ignored weather conditions. We argue that minimizing the overall time to search
an area exhaustively is a primary objective in SAR type of operations, and the relation between flight and wind
directions plays an important role in optimizing that objective. This argument is corroborated in Coombes
et al. (2018), which presented a wind-aware area survey method to optimally cover an area with a single UAV.

1

In this paper, we aim to fill a research gap by solving a practical version of the CPP problem that involves
using multiple UAVs to cover a rectangular area with explicit consideration for wind condition. Specifically,
we propose to discretize the search area into a grid of square cells whereas the dimension of a cell matches the
flight altitude and camera aperture configurations of the mission. The orientation of this artificial grid is set
in a way such that UAVs traversing the grid in a Von Neumann fashion (to be explained in Sect. 3.1) will fly
in a direction either parallel to (same or opposite) or perpendicular to the wind direction. On top of this grid,
we formulate the multiple-UAV CPP problem as a mixed-integer programming model which can be solved
using commercial solvers such as CPLEX and GUROBI. To significantly shorten the computing time for larger
instances, we develop a specialized algorithm that can guarantee a feasible solution with a provable performance
bound. More specifically, the solution produced by our proposed algorithm either yields the minimal coverage
time or yields a coverage time which is exactly Tp longer than the minimum, where Tp is the time it takes for
a UAV to traverse one cell in the direction perpendicular to the wind.

The organization of the paper is as follows: Section 2 reviews the related literature. Section 3 defines the
problem and presents a MIP formulation of the problem. In Sect. 4, we derive a mathematical formula to obtain
the lower bound of the problem’s objective, and introduce an efficient algorithm to construct a feasible solution
whose objective is either the same as or close to the lower bound, thereby solving the problem much faster than
a commercial MIP solver. Section 5 proves that the proposed method can be extended to cases utilizing the
Moore neighborhood connectivity (to be defined in Sect. 3.1). Validation experiments and sensitivity analysis
are presented in Sect. 6. Section 7 concludes the paper and suggests several extensions and new developments
for future work. Some proofs, auxiliary procedures and additional experiments are put in the Appendices.

2 Literature Review

In recent years, UAVs are utilized in a growing variety of tasks, including delivering restaurant food (Liu, 2019),
providing emergency network coverage for disaster inflicted areas (Park et al., 2024), performing maritime
search and rescue (Cho et al., 2021), and aiding in humanitarian logistics (Zhang and Li, 2023). In search and
rescue operations, the UAV mission planning challenge can often be modeled as a CPP problem, the primary
objective of which is to survey an entire target region in minimal time. Cabreira, Brisolara, and Ferreira
(2019) reviewed studies on CPP using UAVs with several classification criteria, including the shape of the
search area, how the search area is decomposed into smaller, more manageable parts, the performance metrics
being used to guide the path planning, and how the search patterns are formed. Among these criteria, the
area decomposition method is the primary factor that determines the nature of the mathematical model and
solution approach for the problem. Therefore, we categorize CPP methods into two types based on this factor:
ones that employed an exact cellular decomposition of the search area, and ones that employed an approximate
(grid-based) decomposition of the search area.

In the exact cell decomposition method, the area of interest is divided into several sub-areas using linear
boundaries, and the sub-areas are called cells. Latombe (1991) presented a trapezoidal decomposition that
divided the target region into trapezoidal cells, whereas each cell could be covered with simple back-and-forth
motions. Choset (2000) proposed an improved method called the boustrophedon decomposition that attempted
to merge the trapezoidal cells into larger non-convex cells to create opportunities for path length reduction when
the robots engaged in back-and-forth motions to cover the cells. Kong et al. (2006) utilized the boustrophedon
cell decomposition to address the multi-robot coverage problem. Jiao et al. (2010) presented a method for the
CPP problem in polygonal areas. They defined the width of a convex polygonal shape and demonstrated that
a UAV should fly along the vertical direction of the width to achieve a coverage path with the least number of
turns. Then, they proposed a convex decomposition algorithm to partition a concave area into convex subregions
by minimizing the sum of the widths of those subregions. They developed a subregion connection algorithm to
determine which combination of subregions has the minimum traversal path to cover the entire area. Li et al.
(2011) proposed a method to address the coverage path planning for UAVs in a polygonal area. They showed
that, in terms of duration, energy, and path length, turning is an inefficient motion and should be avoided. The
authors presented a path with minimal turns for a UAV. They developed a decomposition algorithm to convert
a concave area into convex subregions and proposed a subregion connection algorithm to connect adjacent
subregions. Di Franco and Buttazzo (2015) proposed an energy-aware path planning algorithm to fully cover a
given area while considering other constraints, namely the available energy, the minimum spatial resolution for
the pictures, and the maximum camera sampling period. Furthermore, the same authors proposed an energy
model for a single UAV based on real measurements, and used this model to reduce energy consumption in path
planning, see Di Franco and Buttazzo (2016). This method assumes back-and-forth motions and determines
the UAV’s speed to minimize energy consumption, and then the estimated energy consumption is checked for
sufficiency to sustain the generated path. Coombes et al. (2018) proposed a new method for planning coverage

2

paths for fixed-wing UAV aerial surveys. They considered windy conditions and proved that flying perpendicular
to the wind direction confers a flight time advantage over flying parallel to the wind direction. Additionally,
they used dynamic programming to find time-optimal convex decomposition within a polygon. Bähnemann et
al. (2021) extended the boustrophedon coverage planning by considering different sweep directions in each cell
to identify the efficient sweep path. Additionally, they utilized the Equality Generalized Traveling Salesman
Problem (E-GTSP) to formulate and find the minimum total path in the adjacency graph.

In addressing the CPP problem, ensuring the complete coverage of the given area is one of the main concerns.
This is commonly accomplished by employing cellular decomposition in the area of interest, where the target
area is divided into cells to make coverage simpler (Choset, 2001). In addition to exact cell decomposition,
approximate cellular decomposition, or grid-based decomposition, is a common approach used in the literature,
where the area of interest is divided into a set of cells, all of which have the same size and shape (Choset,
2001). In the grid-based decomposition scheme, some borderline regions outside the area of interest may be
included in grid cells, leading to a waste of time and resources which is proportional to the granularity of the
grid. Despite the loss of accuracy due to discretization, the grid-based decomposition scheme has been adopted
in many research works. In our opinion, the advantage of grid-based approach includes the ease of managing
trajectory conflicts among multiple UAVs, the availability of well-developed frameworks such as mixed-integer
programming to analyze the algorithmic performances, and its flexibility to accommodate exact and heuristic
enhancements for the path planning task. This viewpoint is corroborated by the appreciable volume of studies
centered on grid-based decomposition.

Barrientos et al. (2011) proposed an integrated tool using a fleet of unmanned aircraft capable of capturing
georeferenced images. They considered both regular and irregular grid shapes and utilized the Wavefront
algorithm in their approach. Their tool included several components such as task partitioning and allocation,
the CPP algorithm, and robust flight control. Valente et al. (2013) proposed a path planning tool that converts
an irregular area into a grid graph and generates near-optimal trajectories for UAVs by minimizing the number
of turns in their paths. Nam et al. (2016) used grid-based decomposition and wavefront algorithm for a single
UAV and considered not only the number of turns but also the route length. Balampanis et al. (2017) proposed
a method to decompose and partition a complex coastal area and generate a list of waypoints for multiple
heterogeneous unmanned aircraft systems (UAS) to cover the area. In their method, the search area was
partitioned into several subregions, with each subregion assigned to a UAS for coverage. Furthermore, each
subregion was decomposed into a grid of triangular cells, for the designated UAS to follow a moving pattern
that connects the borders of the sub-area to the inner regions. Bouzid et al. (2017) converted a quadrotor
optimal coverage planning problem in areas with obstacles into a Traveling Salesman Problem (TSP) that
minimizes the overall energy consumption, and used Genetic Algorithms (GA) to solve it. Cabreira, Ferreira,
et al. (2019) proposed an energy-aware grid-based covering path planning algorithm (EG-CPP) to minimize
the energy consumption of UAVs for covering irregular-shaped areas. They stated that solely considering turns
would inadequately approximate the energy consumption of UAV paths. Consequently, they improved the cost
function proposed in Valente et al. (2013), which previously only accounted for the number of turns. This
enhancement resulted in a 17% energy saving in real flight tests. Cho et al. (2021) considered heterogeneous
UAVs in polygon-shaped areas in maritime search and rescue. They proposed a grid-based area decomposition
method to convert an area into a graph, and formulated a MIP model on the graph to find the coverage path
with minimal completion time. Moreover, they introduced a randomized search heuristic (RSH) algorithm
to shorten the computation time for large-scale instances while preserving a small optimality gap. In their
subsequent work Cho et al. (2022), the authors compared the use of hexagonal cells and square cells in a MIP
framework, and concluded that the former is more effective for generating paths to minimize the coverage time.
The exponential growth in computational complexity with the size of the search area was observed in their
experiments. In this paper, we also use a MIP model as comparison baseline, but develop a fast algorithm
with exact performance bounds instead of a heuristic one for our main contribution. Ai et al. (2021) used
reinforcement learning in coverage path planning for a vessel agent, in which wind and water flow data were
collected to make a probability map of the true location of the target in the grid. The authors showed that
their approach outperforms some of the previous approaches in three simulated scenarios. Song et al. (2022)
presented a method for UAV path planning, focusing on visiting important points within the search area
instead of exhaustive full coverage. They decomposed the area into a grid and assign a score to each cell
by using a classifier, generating a new map called heatmap. They tried to enhance the efficiency of rescue
operations by incorporating this heatmap into path planning because of the limited endurance of UAVs and
the constrained rescue time following a disaster. They proposed three path planning algorithms, conducting
comparative analyses among them and an existing algorithm. One of the proposed algorithms demonstrated
superior performance; however, none of the algorithms could ensure optimality. Ahmed et al. (2023) developed
two methods, a greedy algorithm and Simulated Annealing (SA), to address the CPP problem for multiple

3

Fig. 1: Suppose a SAR team receives a report of a missing mid-age hiker whose last contact was about two
hours ago. Assuming an average human walking speed of 5 km/h, the radius of the region of interest would
be approximately 10 km.

UAVs. They formulated the problem as a MIP model to minimize energy consumption. They showed for small-
scale cases CPLEX had better performance, but in large-scale problems, SA outperformed others to minimize
the overall energy consumption.

The contributions of our study are summarized as follows. First, for the multi-UAV CPP problem we
present a mathematical formula to calculate the lower bound of the coverage time in windy conditions. Second,
we propose a constructive algorithm that can rapidly generate near-optimal concurrent coverage paths for
large rectangular grids, and prove the solution’s near optimality via an exhaustive analysis of data scenarios
that may be encountered in the algorithm’s execution. Third, we conduct thorough numerical experiments of
varying scales to demonstrate the computational advantage and broad usability of the proposed algorithm in
addressing complex search and rescue problems utilizing multiple UAVs.

3 Problem Formulation

Consider a typical scenario of searching for a missing person in rural, mountainous and otherwise scantly
inhabited areas: The SAR team received a call for help with locating a mid-age hiker whose last approximate
location was recorded by a cellular tower two hours ago. By assuming an average walking speed of 5 km/h
in this terrain, the team postulated a circular area of 10 km radius that must be searched as quickly as
possible. To expedite the search, mixed resources would be utilized, including a fleet of UAVs to cover the
central (presumably hard-to-reach) region and canine and on-foot squads to sweep in from the peripheral areas
simultaneously. The division of tasks is demonstrated in Fig. 1. An alternative search mode might be searching
the entire region by UAVs, in which case a square (or rectangular) area that closely approximates or tightly
encloses the region could be set as the target area for aerial search. In either context, we are concerned with
planning the flight paths for the UAVs in a uniform wind field, with the objective of covering (i.e., having a
clear aerial image of) all locations in a given rectangular area in minimal time. The UAVs are assumed identical
and hence fly at the same airspeed. Collision avoidance among these UAVs must be explicitly considered.

3.1 Grid-based decomposition

To plan the flight paths of multiple UAVs in the rectangular shaped search area, we first decompose the search
area into equal-sized square tiles (or cells) so that each tile fits in the image scope of the UAV’s downward facing
camera. The actual side length of the tile, together with the flight altitude of the UAV, is determined by factors
such as the field-of-view (FoV) angle of the camera, the camera’s resolution and the required representation
resolution (centimeters of the ground surface per pixel), as demonstrated in Fig. 2a. Pertinent to our modeling
framework, each cell is denoted by its central coordinates; for example, cell (i, j) signifies that its central
coordinates are located at (i, j), as depicted in Fig. 2b.

In addition, the following assumptions about the search area is made:

Assumption 1: The n×m search area represents a rectangular region consisting of n cells along its length
(X-axis) and m cells along its width (Y-axis), as depicted in Fig. 2b, and m is greater than or equal to the
number of UAVs, denoted by q.

4

(a) (b)

⋯ ⋯
⋮ ⋮

,࢏) ࢐)
⋮ ⋮

⋯ ࢏⋯

࢐

Fig. 2: (a) The camera’s field of view, aligned with a cell in the grid; (b) Cell indexing convention for an
(n×m) rectangular search area.

Assumption 2: The wind speed is constant over the search area and during the entire search time, and
the wind direction is parallel to the X-axis of the search area, flowing from west to east, as shown in Fig. 3.
Since the search area’s orientation can be arbitrary, the latter assumption causes no loss of generality.

In the designated search area, two connectivity types are considered. First, the Von Neumann neighbor-
hood enables a UAV to visit adjacent cells labeled as 1, 3, 5, and 7 (as shown in Fig. 3). Second, the Moore
neighborhood allows the UAV to visit all eight neighboring cells. Throughout the subsequent sections, our
analysis and proposed solution are based on the utilization of the Von Neumann neighborhood. In Sect. 5,
we demonstrate the validity of our proposed solution even when employing the Moore neighborhood as the
selected connectivity type.

(1)(݅ + 1, ݆)

(2)(݅ + 1, ݆ + 1)(3)(݅, ݆ + 1)(4)(݅ − 1, ݆ + 1)
(5)(݅ − 1, ݆)
(6)(݅ − 1, ݆ − 1) (7)(݅, ݆ − 1) (8)(݅ + 1, ݆ − 1)

(݅, ݆)

Fig. 3: Illustration of cell labeling for neighbors under Assumption 2.

Before continuing to the mathematical formulation, let us define some terms used frequently in the rest of
the paper. The term “S move” means a UAV goes from one cell to its neighboring cell in the wind’s direction
(cell labeled 1 in Fig. 3). Conversely, “O move” refers to a UAV moving from a cell to its neighbor opposite
to the wind (cell labeled 5 in Fig. 3). “U move” denotes a UAV moving upward to its upper neighbor (cell
labeled 3 in Fig. 3), and “D move” represents the same action but in the downward direction (cell labeled
7 in Fig. 3). Additionally, the term “P move” signifies UAV transitions to neighboring cells perpendicular to
the wind’s direction (cells labeled 3 or 7 in Fig. 3); in other words, it’s either a U move or a D move. The
term Mission Time denotes the duration required for a UAV to visit its assigned cells for coverage. Also, the
term Operation Time represents the duration required for a fleet of UAVs to fully cover a search area. Table
1 defines the parameters that are used consistently throughout the paper.

3.2 Mathematical formulation - a baseline

We first formulate the problem as a mixed-integer programming (MIP) model utilizing the notations provided
in Table 2. This model helps us to characterize the data, decisions and their relations more rigorously, and

5

Table 1: Parameters that define a problem instance

Notations

n Number of cells along the length (X-axis) of the search area
m Number of cells along the width (Y-axis) of the search area
q Number of UAVs
Ts Time required for a UAV to perform an S move
Tp Time required for a UAV to perform a P move
To Time required for a UAV to perform an O move

will serve as a baseline for validating computational results.

Table 2: MIP model notations

Sets

I Set of X-coordinates for cells
J Set of Y-coordinates for cells
K Set of UAVs
S Set of indices {1, 2, . . . , n×m} for movement steps

Variables For i ∈ I, j ∈ J, k ∈ K, and s ∈ S where applicable

xkijs 1 if UAV k visits cell (i, j) in step s, otherwise 0
yks 1 if UAV k is located outside the area in step s, otherwise 0
pks 1 if UAV k moves perpendicular to the wind direction

from step s− 1 to s, otherwise 0
rks 1 if UAV k moves in the wind direction from step s− 1 to s, otherwise 0
lks 1 if UAV k moves against the wind direction

from step s− 1 to s, otherwise 0
topr Operation time, total time to cover the whole area

Min topr (1)

s.t.
∑

i∈I

∑

j∈J

xkijs + yks = 1 ∀k∈K, ∀s∈S (2)

∑

k∈K

∑

s∈S

xkijs ≥ 1 ∀i∈I, ∀j∈J (3)

∑

k∈K

xkijs ≤ 1 ∀i∈I, ∀j∈J, ∀s∈S (4)

xkijs − (xk(i−1)j(s−1) + xk(i+1)j(s−1) + xki(j−1)(s−1) + xki(j+1)(s−1)) ≤ 0

∀i∈I\{1,|I|}, ∀j∈J\{1,|J|}, ∀k∈K, ∀s∈S\{1} (5)

xkijs − (yk(s+1) + xk(i−1)j(s+1) + xk(i+1)j(s+1) + xki(j−1)(s+1)+

xki(j+1)(s+1)) ≤ 0 ∀i∈I\{1,|I|}, ∀j∈J\{1,|J|}, ∀k∈K, ∀s∈S\{|S|} (6)
∑

j∈J

xkij(s−1) +
∑

j∈J

xk(i+1)js − 1 ≤ rks ∀i∈I\{|I|}, ∀s∈S\{1}, ∀k∈K (7)

∑

j∈J

xkij(s−1) +
∑

j∈J

xk(i−1)js − 1 ≤ lks ∀i∈I\{1}, ∀s∈S\{1}, ∀k∈K (8)

∑

i∈I

xkij(s−1) +
∑

i∈I

xki(j+1)s − 1 ≤ pks ∀j∈J\{|J|}, ∀s∈S\{1}, ∀k∈K (9)

∑

i∈I

xkij(s−1) +
∑

i∈I

xki(j−1)s − 1 ≤ pks ∀j∈J\{1}, ∀s∈S\{1}, ∀k∈K (10)

pks + rks + lks + yks = 1 ∀k∈K, ∀s∈S\{1} (11)

topr ≥ Tp .
∑

s∈S\{1}
pks + Ts .

∑

s∈S\{1}
rks + To .

∑

s∈S\{1}
lks ∀k∈K (12)

6

The objective (1) minimizes the operation time, and Constraint (2) ensures that each UAV is either positioned
within a cell or outside of the search area. Constraint (3) and (4) ensures that all cells are visited at least once
and at any time step at most one UAV can be in the same cell (collision avoidance). Constraint (5) states that
a UAV can enter a cell only from its neighboring cells, and Constraint (6) indicates that a UAV can only move
to adjacent cells or leave the search area. Constraints (7) and (8) indicate moves aligned with and against
the wind direction, respectively; also, Constraints (9) as well as (10) specify moves perpendicular to the wind
direction. According to Constraint (11), a UAV within the search area cannot simultaneously execute two or
more types of moves. Finally, Constraint (12) states that the operation time must be greater than or equal to
the maximum of UAVs’ mission time, which is calculated on the right-hand side of the inequality.

Note that the starting positions of UAVs are not specified in the above model formulation. In an axis-
aligned wind field, minimizing the objective function will automatically place the starting points along the
upwind boundary of the search area. In the same vein, we do not need explicit constraints to keep flight paths
inside the search area, as flying outside the search area amounts to a waste of time and will be automatically
penalized via the objective function.

4 Main Method

In general, MIP problems are intractable and the convergence of branch-and-bound type of algorithms takes
exponentially longer as the instance size grows. The above MIP model is no exception - commercial solvers
running the above MIP model can only solve small-scale instances (see Section 6.1).

We describe an ingenious approach to significantly expedite the search for the optimal solution. While our
algorithm cannot guarantee to always converge to the optimal solution, we can, however, accurately quantify
the gap between the found solution and the optimal solution. In fact, the optimality gap resulted from our
algorithm will be shown to always take one of two values, zero and Tp. Therefore, as the search grid grows in
size (and hence the optimal value which represents the total time it takes to cover all cells), the relative gap
will diminish to zero.

Notations pertinent to the following discussion are defined in Table 3. Most constraints in the MIP for-
mulation, i.e., constraints (5) to (11), are for defining a sequence of ordered cells that constitutes a path. We
first simplify the notation by introducing a decision variable pk which represents a path of length k, where
the definition of a path is absorbed in the definition of the variable, see Table 3. We further drop the colli-
sion avoidance constraint (4), to arrive at a relaxed problem with the aim of covering all grid cells in a n×m
search area using q paths (overlapping allowed). We term this relaxed problem as Multiple UAV Coverage Path
Planning (MUCPP).

Table 3: MUCPP model and propositions notations

Symbol Meaning

C̄ Set of cells in the n×m search area, {(1, 1), (1, 2), ..., (n,m)}
Nc Set of neighboring cells for cell c where c ∈ C̄, |Nc| ≤ 4
pk Sequence of k ordered cells, (c(1), c(2), ..., c(k)), in which

c(i) ∈ C̄ for i = 1, 2, 3, ..., k, c(i+1) ∈ Nc(i) for i = 1, 2, ..., k − 1, called path of length k

p′
k

Set of cells within path pk
Pk Set of all paths of length k

P Set of all paths, ∪kPk

tc,c′ Time taken to move from cell c to cell c′, where c ∈ C̄ and c′ ∈ Nc (tc,c′ ∈ {Ts, To, Tp})

tpk Time taken to cover cells in path pk by a UAV, equal to
∑k−1

i=1 tc(i),c(i+1)
for pk ∈ Pk

di Number of cells assigned to UAV i, where i ∈ {1, 2, . . . , q}
v⃗a 2-D vector representing the airspeed of the UAV
v⃗w 2-D vector representing the wind speed
v⃗g 2-D vector representing the ground speed of the UAV

Note that v⃗g = v⃗a + v⃗w.

MUCPP :

min
pd1

,pd2
,...,pdq

max
i∈{1,2,...,q}

tpdi
(13)

s.t. ∪qi=1 p
′
di

= C̄ (14)

7

pdi
∈ P ∀i ∈ {1, 2, . . . , q} (15)

The objective (13) is to minimize the maximum time taken by UAVs to cover cells in their assigned
path. Constraint (14) requires that the solution must cover all cells, and Constraint (15), along with variable
definitions in Table 3, ensures the sequential connectivity of cells that constitute a valid path. To derive a
lower bound, denoted as “LB”, for the MUCPP problem we replace Constraint (14) by a weaker one to create
a relaxed version of the problem called R-MUCPP (Relaxed Multiple UAVs Coverage Path Planning).

R-MUCPP :

min
pd1

,pd2
,...,pdq

max
i∈{1,2,...,q}

tpdi
(16)

s.t.

q
∑

i=1

di ≥ nm di ∈ N (17)

pdi
∈ P ∀i ∈ {1, 2, . . . , q} (18)

In the R-MUCPP problem, the objective (16) and Constraint (18) are inherited from the original MUCPP
formulation. Constraint (17) requires that the total number of cells assigned to UAVs must be greater than or
equal to the number of cells within the search area. If a solution satisfies Constraint (14), it is evident that it
will also satisfy Constraint (17). In the next step, Section 4.1 presents two propositions that form the basis for
obtaining the solution to the R-MUCPP problem. The optimal objective value of R-MUCPP will serve as the
LB for MUCPP, thus a valid LB for the MIP.

4.1 Lower bound derivation

Let D̄ represent the distance between the centers of two adjacent cells, and assume ∥v⃗a∥ = va, ∥v⃗w∥ = vw, and
va > vw ≥ 0. Then, the values of Ts, Tp, and To can be calculated using Eq. (19).

Ts =
D̄

va + vw
Tp =

D̄
√

v2a − v2w
To =

D̄

va − vw
(19)

Furthermore, we have Ts ≤ Tp ≤ To because of va + vw ≥
√

v2a − v2w ≥ va − vw. To introduce and prove the
LB for the MUCPP problem, we need to establish some preliminary results.
Lemma 1. Let A, B, K, H, and N be non-negative real numbers satisfying A ≤ B ≤ K, A +K ≥ 2B, and
H ≥ N . Then, the optimal value for (x1, x2, x3) in the following linear programming problem is (x∗

1, x
∗
2, x

∗
3) =

(N,H −N, 0).

min Ax1 +Bx2 +Kx3 (20)

s.t. x1 − x3 ≤ N (21)

x1 + x2 + x3 = H (22)

xi ≥ 0 i ∈ {1, 2, 3} (23)

Proof.

min
x1,x2,x3≥0

Ax1 +Bx2 +Kx3

= min
x1,x3≥0

Ax1 +B(H − x1 − x3) +Kx3

= min
x1,x3≥0

(A−B)x1 + (K −B)x3 +BH

≥ min
x3≥0

(A−B)(N + x3) + (K −B)x3 +BH

= min
x3≥0

(A+K − 2B)x3 + (A−B)N +BH

=AN + (H −N)B

8

where the first equality is by applying (22), the second equality is by collecting terms, the inequality is by (21)
and the assumption that (A−B) ≤ 0, and the last step is because of A+K − 2B ≥ 0 and the nonnegativity
of x3. The lower bound of the objective value is attained when x3 = 0 and the third line holds at equality,
i.e., when x1 is equal to x3 +N . The solution (x1, x2, x3) = (N,H −N, 0) is feasible and makes the objective
function achieves a valid lower bound, therefore, it is optimal.

Proposition 1. The time taken to fly a path of length d is at least T , defined as

T =

{

(d− 1)Ts if d ≤ n

(n− 1)Ts + (d− n)Tp if d > n

Proof. We know that

pd = (c(1), c(2), ..., c(d))

tpd
=

d−1
∑

i=1

tc(i),c(i+1)

tc(i),c(i+1)
∈ {Ts, Tp, To}

Consider the first state (d ≤ n), since tc(i),c(i+1)
can take three values, the minimum of the tpd

would be attained
if we choose Ts for tc(i),c(i+1)

, for all i ∈ {1, . . . , d − 1}. Hence, in this state, the mission time, tpd
, cannot be

less than (d− 1)Ts.
In the second case, for a clearer explanation, the formula to calculate tpd

can be written as tpd
= Tsx1 +

Tpx2 +Tox3, where x1, x2, and x3 are defined as the number of S moves, P moves, and O moves, respectively,
with the constraint x1 + x2 + x3 = d− 1.

By the definitions given in Eq. (19), we have

Ts + To =
2vaD̄

v2a − v2w
=

va
√

v2a − v2w

2D̄
√

v2a − v2w
≥ 2D̄

√

v2a − v2w
= 2Tp

Furthermore, we have Ts ≤ Tp ≤ To by assumption. Therefore, Lemma 1 can be applied; for this purpose,
as it is mentioned before, consider x1 as the number of S moves, x2 as the number of P moves, x3 as the
number of O moves, Ts as A or x1 coefficient, Tp as B or x2 coefficient, and To as K or x3 coefficient. In
addition, it is supposed that the length of the area has n cells, which means the summation of the S moves
and O moves should always be less than n − 1 to guarantee that the UAV will stay in the search area, it
can be stated x1 − x3 ≤ n − 1. It is clear that x1 + x2 + x3 = d − 1 due to the length of the path, and
additionally, it is considered d − 1 as H and n − 1 as N in Lemma 1. Based on the Lemma 1 solution, the
optimal values are x∗

1 = n− 1, x∗
2 = d− n, x∗

3 = 0; therefore, the minimum possible time for a path of length d
is (n− 1)Ts + (d− n)Tp.

Lemma 2. For any positive integer N , if we express it as the sum of d non-negative integers, then the largest
summand in the summation cannot be smaller than ⌈N

d
⌉.

Proof. Assume for contradiction that the largest component is equal to Q := ⌈N
d
⌉ − k, (k ≥ 1). There is a

α ∈ [0, 1) such that ⌈N
d
⌉ = N

d
+ α, so Q can be written as Q = N

d
+ α − k. All of the d summands are less

than or equal to Q, so their sum cannot exceed dQ = N + d(α− k), a quantity strictly less than N . This is a
contradiction.

Now, we can state a key proposition as follows.
Proposition 2. Let n,m, q be positive integers satisfying q ≤ m, then the time that is required to cover all
cells of the n×m search area by q UAVs cannot be less than (n− 1)Ts + (⌈nm

q
⌉ − n)Tp.

Proof. It is clear that the time required to fully cover the n×m search area by q UAVs, i.e., operation time,
must be greater than or equal to the maximum mission time of the UAVs. Based on Lemma 2, we establish
that the maximum number of cells assigned to UAVs must be no less than ⌈nm

q
⌉. Consequently, in accordance

with Proposition 1, the maximum mission time of the UAVs cannot be less than (n−1)Ts+(⌈nm
q
⌉−n)Tp.

9

Table 4: Notations used in the NOPP algorithm

Symbol Meaning

F Set of uncovered cells
C Arbitrary cell in the search area, its coordinates (coordinates of the center)

are indicated by (cx, cy)
NP Number of available (remaining) P moves for a UAV
NU Number of U moves made by a UAV
ND Number of D moves made by a UAV
A Number of cells assigned to a UAV to cover
SP Cell from which a UAV starts its path, referred as Starting point

Ō Binary variable denotes the parity of the initial value of NP : True for odd, False for even
cx X-coordinate of cell C
cy Y-coordinate of cell C
path Sequence of cells’ coordination traversed and covered by a UAV
path∗ Sequence of moves executed by a UAV, elements must be “U”, “D”, or “S” such that:

• “U” means U move
• “D” means D move
• “S” means S move

∪∗ Operator between two sequences with the following definition: let S1 and S2 be two
sequences such that S1 = (a1, a2, . . . , az) and S2 = (b1, b2, . . . , bw), for z, w ∈ N; then,
S1 ∪∗ S2 = (a1, a2, . . . , az , b1, b2, . . . , bw)

Note: For further clarification regarding path and path∗, let’s consider a scenario in which a UAV
starts from the bottom-left corner of Fig. 2b at cell (1, 1) and covers the subsequent four cells above
it. In this case, path is defined as ((1, 1), (1, 2), (1, 3), (1, 4), (1, 5)), while path∗ corresponds to the
UAV’s four U moves, represented as (“U”, “U”, “U”, “U”).

According to Proposition 2, the optimal solution of the R-MUCPP problem, acting as the lower bound of
the MUCPP problem (LB), can be derived using the following formula: (n− 1)Ts + (⌈nm

q
⌉ − n)Tp (referred to

as the “LB formula” throughout the rest of this paper). In Sect. 4.2, we will employ the LB formula as a key
insight in the development of the solution algorithm for the MUCPP problem.

4.2 Near-optimal path planning algorithm (NOPP)

We develop a set of procedures that deterministically construct feasible solutions of an objective value lying in
the set {LB,LB + Tp}, where LB represents the lower bound established for the MUCPP problem (explained
in Sect. 4.1). We call the procedures near-optimal path planning (NOPP) algorithm. Solutions constructed by
NOPP always have each cell visited exactly once by one UAV, while satisfying all other constraints described
in the MIP formulation (described in Sect. 3.2). The relation between solutions from different formulations are
illustrated in Fig. 4.

Fig. 4: To solve the MIP, we construct a feasible solution using NOPP and develop a lower bound using
R-MUCPP, and then prove that the solution found by NOPP is near or equal to the lower bound.

The NOPP algorithm consists of running four sub-procedures (or phases) sequentially for each UAV. Rel-
evant notations are summarized in Table 4. For a given UAV i, Phase 1 is executed after the initial settings,
then the H-value (defined in Sect. 4.2.3) is calculated. If the H-value is odd, Phase 2 is invoked; otherwise,
Phase 2 is omitted for this UAV. Subsequently, the number of remaining P moves (i.e., the NP value which is
updated in Phases 1 and 2) is checked. If it exceeds zero and is an even number, Phase 3 is directly initiated,
and if it is an odd number, then it is incremented to the next even number before Phase 3 is initiated. Finally,
if NP is zero, Phase 3 is omitted for this UAV. For the last UAV (i.e., i = q), after Phase 3 (if initiated at

10

Start

n,m, q

i ← 1

Initial
settings

Phase 1Calculate
H-value

H-value is odd Phase 2

NP > 0NP is oddNP ←
NP + 1

Phase 3 i = q i ← i + 1

F ̸= ∅ Phase 4

path

End

no

yes

no

yesyes

no

yes

yes

no

no

Fig. 5: The flowchart of the NOPP algorithm.

all), Phase 4 will be executed only if the set F is not empty. This phase ensures that all uncovered cells at this
point will be covered by the last UAV. The process flow of the NOPP algorithm is illustrated in Fig. 14.

The detailed algorithmic procedures presented below are for cases with q ≤ n, which account for most
situations in practice, that is, fewer UAVs than the number of columns in the grid. A proof of the solution’s near
optimality is provided in Appendix A. For cases with q > n, we can decompose the main problem into multiple
subproblems with q ≤ n, and apply the proposed algorithm to each subproblem with no loss of efficiency (see
proof in Appendix B).

4.2.1 Initial settings

Initial values of the variables involved in the algorithm are set as follows: A and NP are assigned ⌈nm
q
⌉ and

⌈nm
q
⌉ − n , respectively (derived from Proposition 2). Additionally, the variable Ō is assigned either True or

False based on the parity of NP . Furthermore, the starting point SP for the ith UAV, where ∀i ∈ {1, 2, . . . , q},
is at the coordinate (1,m− q+ i). Lastly, the set F encompasses all cells within the n×m search area, except
for those that have already been covered.

4.2.2 Phase one

In this phase, the UAV’s path (a sequence of cell coordinates covered by the UAV) starts from the starting
point determined in the Sect. 4.2.1. In each iteration, the algorithm evaluates the feasibility of the D, S, and
U moves in order, and selects the first feasible move. In addition to being unvisited, a cell must satisfy the
following conditions to be a feasible destination for the next move: (1) The UAV cannot move to a cell whose

11

Y-coordinate is greater than that of the starting point, referred as Y-coordinate condition in the rest of the
paper; (2) the total number of P moves (the sum of D and U moves) made by a UAV must be less than or
equal to ⌈nm

q
⌉−n, based on Proposition 2; and (3) if Ō is True, the maximum count of U moves is constrained

to be one less than the count of D moves. The pseudo code for Phase 1 is given in Algorithm 1.

Algorithm 1 Phase one of NOPP

1: function phaseOne(SP ,NP , F, A, Ō)
2: Initialize path and path∗ to be empty sequence, NU ← 0, ND ← 0, C ← SP
3: s2 ← the second element (Y-coordinate) of SP , path← path ∪∗ (C), and F ← F\{C}
4: for 1 through A do

5: if (cx, cy − 1) ∈ F and NP > 0 then

6: C ← (cx, cy − 1)
7: path← path ∪∗ (C), F ← F\{C}, path∗ ← path∗ ∪∗ (“D”)
8: NP ← NP − 1, ND ← ND + 1
9: else if (cx + 1, cy) ∈ F then

10: C ← (cx + 1, cy)
11: path← path ∪∗ (C), F ← F\{C}, path∗ ← path∗ ∪∗ (“S”)
12: else if (cx, cy + 1) ∈ F and NP > 0 and NU < ND and cy + 1 ≤ s2 then

13: if Ō then

14: if NU < ND − 1 then

15: C ← (cx, cy + 1)
16: path← path ∪∗ (C), F ← F\{C}, path∗ ← path∗ ∪∗ (“U”)
17: NP ← NP − 1, NU ← NU + 1

18: else

19: C ← (cx, cy + 1)
20: path← path ∪∗ (C), F ← F\{C}, path∗ ← path∗ ∪∗ (“U”)
21: NP ← NP − 1, NU ← NU + 1

22: return path, path∗, F,NP

4.2.3 Phase two

This phase can be executed only when the path∗ (generated by Phase 1) concludes with a sequence of U
moves, denoted as U∗. Derived from the structure of Phase 1, a sequence of S moves consistently precedes U∗,
termed as S∗. We define the H-value as |S∗|−1 when the move prior to S∗ is a D move, and as |S∗| otherwise.
Furthermore, if the path∗ does not conclude with a sequence of U moves, the H-value assumes a value of zero,
as depicted in Fig. 6b. If the H-value is an odd number, Phase 2 is implemented, during which the algorithm
removes U∗ from the path∗ and updates path, path∗, F , and NP—all of which were obtained from Phase 1.
Algorithm 2 shows the pseudocode for Phase 2.

Algorithm 2 Phase two of NOPP

1: function phaseTwo(path, path∗, F,NP)
2: Initialize pathCopy ← path, i← 0
3: i← |path∗| − |U∗|
4: path← the first i+ 1 elements in path, path∗ ← the first i elements in path∗

5: F ← F ∪ {elements of pathCopy excluding the first i+ 1 elements}
6: NP ← NP + |U∗|
7: return path, path∗, F,NP

4.2.4 Phase three

This phase is implemented when the count of remaining P moves (NP) is greater than zero. During this phase,
the algorithm traverses the path∗ to detect two specific subsequences, (“S”, “S”) and (“U”, “S”), referred to
as BI patterns. It then assesses the feasibility of inserting a single U move before the second move of the BI

12

patterns. The insertion of a U move is considered feasible when a UAV can move upward to visit a cell that
has not been covered previously and satisfies the Y-coordinate condition (as described in Sect 4.2.2). If this
insertion is feasible, the algorithm inserts one U move before the second move of the BI patterns as well as
one D move after that, and updates path∗ accordingly. In other words, (“S”, “S”) is replaced with (“S”, “U”,
“S”, “D”), (“U”, “S”) is replaced with (“U”, “U”, “S”, “D”) in path∗. This operation is iterated NP/2 times
by the algorithm.

It should be mentioned that as per the Phase 3 design, NP must be an even number as the input of this
phase. Hence, if NP is an odd number after Phases 1 and 2, it is automatically incremented by one and then
passed to Phase 3. This adjustment might lead the operation time to reach LB+Tp. The pseudocode for Phase
3 is presented by Algorithm 3.

(a) (b)

Fig. 6: Example of calculating the H-value for the first UAV after phase 1 in two cases: (a) Due to |S∗| = 7
and a D move before S∗, the H-value is 6 (n = 8, m = 9, q = 5); (b) Since there is no U∗, the H-value is 0
(n = 8, m = 9, q = 8).

Algorithm 3 Phase three of NOPP

1: function phaseThree(SP , path, path∗, F,NP)
2: Initialize I ← 1, C ← SP , s2 ← the second element (Y-coordinate) of SP
3: for 1 through NP

2 do

4: for i ∈ {1, . . . , |path∗|} do
5: if i > I and ith element of path∗ is “S” and (i− 1)th element of path∗ ∈ {“U”,“S”} then
6: C ← the ith element of path
7: if (cx, cy + 1) ∈ F and cy + 1 ≤ s2 then

8: Update path∗ by placing a “U” and a “D” before and after the ith element of path∗, respectively
9: Update path by placing (cx, cy + 1) followed by (cx + 1, cy + 1) after C in path

10: F ← F\{(cx, cy + 1), (cx + 1, cy + 1)},NP ← NP − 2, I ← i
11: break

12: else

13: continue

14: return path, path∗, F,NP

4.2.5 Phase four

Due to the Phase 3 design, the algorithm may generate a UAV path where some cells with an X-coordinate
equal to n remain uncovered, leaving them for the next UAV to cover. This is not important for other UAVs
except for the last one. Since all cells must be covered, the last UAV cannot leave any cells uncovered because
there are no other UAVs available to cover them. Therefore, Phase 4 is exclusive to the last UAV and operates
only when F is not empty. In other words, the purpose of Phase 4 is to ensure that uncovered cells are covered
by the last UAV. Algorithm 4 presents the pseudocode for Phase 4.

13

Algorithm 4 Phase four of NOPP

1: function phaseFour(path, F)
2: for 1 through |F | do
3: C ← the last element of path
4: if (cx, cy + 1) ∈ F then

5: path← path ∪∗ ((cx, cy + 1))

6: return path

5 Extension to Moore Neighborhood Connectivity

In this section, we demonstrate the effectiveness of our proposed solution when we employ the Moore neigh-
borhood as the selected connectivity type. To do so, we only need to prove that Proposition 1 holds true in the
Moore neighborhood connectivity. In the beginning, we introduce several new definitions. Considering Fig. 3,
we define an “F move” as a UAV’s movement from cell (i, j) to adjacent cells numbered 2 and 8. Likewise, a “B
move” refers to the UAV’s transition from cell (i, j) to adjacent cells numbered 4 and 6. Furthermore, Tf and
Tb denote the time necessary for executing F and B moves, respectively. Let D̄ be the distance from cell (i, j)
to its neighboring cell numbered 1 (or equivalently 3, 5, and 7); likewise,

√
2D̄ be the distance to neighboring

cell numbered 2 (or equivalently 4, 6, and 8). Additionally, we employ the notations v⃗a, v⃗g, and v⃗w (as defined
in Table 3). Then, we define ∥v⃗a∥ = va, ∥v⃗g∥ = vg, and ∥v⃗w∥ = vw and assume that 0 < vw < va. Before stating
the main proposition of this section (Proposition 3), we present a useful inequality as summarized in Lemma 3.
Lemma 3. In a B move, we have vg := ∥v⃗a + v⃗w∥ ≤

√
2(va − vw).

Proof. Since the angle between v⃗g and v⃗w in a B move is 3π
4 , we have (the inner product of two vectors is

represented by ⟨· , ·⟩):

−1√
2
(∥v⃗a + v⃗w∥)vw =

−1√
2
vgvw = ⟨v⃗g, v⃗w⟩ = ⟨v⃗a + v⃗w, v⃗w⟩ = ⟨v⃗a, v⃗w⟩+ v2w

⇒ ⟨v⃗a, v⃗w⟩ =
−1√
2
(∥v⃗a + v⃗w∥)vw − v2w

The angle θ between v⃗a and v⃗w in a B move is clearly between 3π
4 and π (see Fig. 7), thus we have

−1 ≤ cos θ ≤ −1√
2
. Therefore we can write:

− vavw ≤ vavw cos θ = ⟨v⃗a, v⃗w⟩ =
−1√
2
(∥v⃗a + v⃗w∥)vw − v2w

⇒ ∥v⃗a + v⃗w∥ ≤
√
2(va − vw)

Now we can state the key proposition of this section.

Proposition 3. In the Moore neighborhood connectivity where Ts < Tf < Tp < Tb < To, the minimum time
to cover d cells (T), as stated in proposition 1, remains to be

T =

{

(d− 1)Ts if d ≤ n

(n− 1)Ts + (d− n)Tp if d > n

Proof. When d ≤ n, it is evident that a path with d− 1 sequential S moves achieves the shortest time, equal
to (d− 1)Ts. In case where d > n, based on Proposition 1, we know that a path with n− 1 S moves and d− n
P moves, called VN path, has the minimum time in Von Neumann connectivity, which is (n−1)Ts+(d−n)Tp.
Suppose that we can create a faster path than the VN path in the Moore neighborhood connectivity. To do
so, we need to replace a P move in the VN path with either an S move or an F move because both Ts and Tf

are less than Tp, thus making the path faster.
In the first case, we examine replacing a P move in the VN path with an S move. This action creates a

new path that is faster than the VN path, and we refer to it as the Moore path. The Moore path consists
of n S moves and d − n − 1 P moves, resulting in a total path time of (n)Ts + (d − n − 1)Tp, which is less
than (n − 1)Ts + (d − n)Tp. Note that the search area is composed of n cells along its length, and employing
n S moves within the Moore path results in the UAV exiting the search area. To ensure the UAV remains
within the designated search area, it is imperative to substitute a P move in the Moore path with either
one B or O move. Given Tb < To, we update the Moore path by replacing a P move with a B move. After

14

this modification, the Moore path consists of n S moves, one B move, and d − n − 2 P moves, which takes
(n)Ts + Tb + (d− n− 2)Tp to cover d cells. To show that the Moore path is faster than the VN path, we have
to demonstrate that (n)Ts + Tb + (d − n − 2)Tp < (n − 1)Ts + (d − n)Tp, or equivalently, Ts + Tb − 2Tp < 0.

By using Tb =
√
2D̄

∥v⃗a+v⃗w∥ , we have:

Ts + Tb − 2Tp =
D̄

va + vw
+

√
2D̄

∥v⃗a + v⃗w∥
− 2D̄

√

v2a − v2w

=
D̄((∥v⃗a + v⃗w∥)(

√

v2a − v2w) +
√
2(va + vw)(

√

v2a − v2w)− 2(va + vw)(∥v⃗a + v⃗w∥))
(va + vw)(∥v⃗a + v⃗w∥)(

√

v2a − v2w)

Since D̄

(va+vw)(∥v⃗a+v⃗w∥)(
√

v2
a−v2

w)
> 0, we focus on the term (∥v⃗a+v⃗w∥)(

√

v2a − v2w)+
√
2(va+vw)(

√

v2a − v2w)−
2(va + vw)(∥v⃗a + v⃗w∥) which can be rewritten as:

(∥v⃗a + v⃗w∥)(
√

v2a − v2w − 2(va + vw)) +
√
2(va + vw)(

√

v2a − v2w)

Since
√

v2a − v2w − 2(va + vw) < 0, by using Lemma 3 we have:

(∥v⃗a + v⃗w∥)(
√

v2a − v2w − 2(va + vw)) +
√
2(va + vw)(

√

v2a − v2w)

≥
√
2(va − vw)(

√

v2a − v2w − 2(va + vw)) +
√
2(va + vw)(

√

v2a − v2w)

=
√
2((va − vw)(

√

v2a − v2w − 2(va + vw)) + (va + vw)(
√

v2a − v2w))

By expressing vw = αva where α ∈ (0, 1), we can write:

(va − vw)(
√

v2a − v2w − 2(va + vw)) + (va + vw)(
√

v2a − v2w) = vaf(α)

where f(α) = (1− α)(
√

1− α2 − 2(1 + α)) + (1 + α)
√

1− α2

The derivative of f(α) can be analytically obtained as f ′(α) = 2α(2
√
1−α2−1)√
1−α2

. It is easy to see that for

α ∈ (0,
√
3
2), f ′(α) > 0, and for α ∈ (

√
3
2 , 1), f ′(α) < 0; also, α = −

√
3

2 , 0,
√
3
2 are the only roots of f ′(α). Since

f(0) = f(1) = 0 and f(
√
3
2) > 0, we have f(α) > 0 for α ∈ (0, 1).

Therefore, Ts + Tb − 2Tp > 0 and Ts + Tb > 2Tp which leads to a contradiction. It means that the Moore
path is slower than the VN path.

In the second case, we consider replacing a P move in the VN path with an F move. Through this action,
we create a new path called the F-Moore path, which we assume is faster than the VN path. Like the first case,
we need to use either a B or O move to keep the UAV inside the search area. Since Tb < To, we replace a P
move in the F-Moore path with a B move and update it. After this update, the F-Moore path includes n− 1
S moves, one F move, one B move, and d−n− 2 P moves, which takes (n− 1)Ts + Tf + Tb + (d−n− 2)Tp to
cover d cells. It is clear that Tf +Tb > Ts +Tb, and, in the first case, we proved that Ts +Tb > 2Tp. Therefore,
it is concluded that Tf + Tb > 2Tp which result in (n− 1)Ts + Tf + Tb + (d− n− 2)Tp > (n− 1)Ts + (d− n)Tp

and leads to contradiction. It means that the VN path is faster than the F-Moore path.
In the next step, it is necessary to discuss using an O move instead of a B move in the Moore path. Suppose

we utilize an O move instead of a B move in the Moore path to maintain the UAV within the search area.
Therefore, the Moore path would include n S moves, one O move, and d − n − 2 P moves. We can observe
that the Moore path only utilizes S, O, and P moves. Thus, the Moore path is one of the available paths
in the Von Neumann neighborhood connectivity to cover d cells. In Proposition 1, we have proved that the
VN path is the fastest path among all available paths in this type of neighborhood connectivity. Therefore,
(n)Ts + To + (d− n− 2)Tp ≥ (n− 1)Ts + (d− n)Tp, or equivalently, Ts + To ≥ 2Tp. Now, it is straightforward
to consider using an O move instead of a B move in the F-Moore path to keep the UAV inside the search area.
By this change, the F-Moore path consists of n − 1 S moves, one F move, one O move, and (d − n − 2) P
moves. Given Tf > Ts, it is evident that Tf + To > Ts + To, so we can write Tf + To > 2Tp, as we have shown
that Ts+To ≥ 2Tp. This implies that (n−1)Ts+Tf +To+(d−n−2)Tp > (n−1)Ts+(d−n)Tp, and therefore,
the VN path is still faster than the F-Moore path.

Finally, since it is not possible to create a feasible path faster than the VN path within the Moore
neighborhood connectivity, Proposition 1 remains valid even when the Moore neighborhood connectivity is
selected.

15

135°

Ԧݒ௔ Ԧݒ௚

Ԧݒ௪ߠ

Fig. 7: The relation of three speed vectors, namely, air speed, ground speed and wind speed, in a B move
considered in the Moore neighborhood connectivity.

6 Numerical Experiments

The experiments are performed on a PC with a Core i7-7700 processor and 32 GB RAM. The proposed
algorithms are implemented in Python 3.7, whereas the MIP models are written in GAMS (version 43.41) and
solved by CPLEX (version 22.10).

We first experiment on small test cases to verify the solution obtained from different approaches, and to
compare the computational time. Then, four medium-sized instances are solved to showcase the algorithm’s
performance, and two of them are used to demonstrate how each phase of the NOPP algorithm works. Finally,
cases of varying numbers of UAVs and different grid sizes are solved to analyze the effect of problem size on
computational complexity.

To determine cell dimensions, recent advancements in AI technology (Martinez-Alpiste et al., 2021) establish
target recognition capabilities at distances of 100 meters during flight at a height of 20 meters. Leveraging
cutting-edge high-resolution cameras, utilizing a grid cell size of 100 × 100 meters square becomes a viable
choice. The experiments are conducted with UAV and wind speeds set at 20 m/s and 5 m/s, respectively;
therefore, transition times between adjacent cells are computed at 4 seconds, 5.16 seconds, and 6.66 seconds
for Ts, Tp, and To. Codes are available at https://github.com/Sina14KD/CPP-SearchRescue.

6.1 Small-sized cases and Comparison with commercial solver

In this section, we compare the solution quality and computing time between CPLEX and NOPP for small
cases of up to 100 cells. The experiments are set up for an n×m search area utilizing a fleet of q UAVs, and
this configuration is represented as a sequence of three values in the first column of Table 5. We impose a time
limit of 3600 seconds for each run on CPLEX, and report the upper bound Z (if available) upon the solver’s
termination.

The first part of Table 5 reports small grids (i.e., up to 20 cells) that can be solved by CPLEX at any
allowable choice of q. We can see that for a given grid size, the setting of q = m always gives the easiest
instances for CPLEX in terms of computing time, consistent with the simplicity of the optimal solutions for
such cases (i.e., each UAV handling a row of the grid). Furthermore, the objective value (Z, optimal when
Z = LBCPLEX) found by CPLEX and the lower bound (LB) found by NOPP always agree, which empirically
validates our lower bound formula. The second and third parts of the table report cases for which CPLEX
struggles to find the optimal solution (and in some cases, even a valid upper bound Z) within the time limit,
whereas NOPP always returns a solution in negligible amount of time. For brevity, we only present cases of
q = 2 in the third part of the table since they are the most challenging cases for NOPP (see Figure 8). Overall,
these experiments reveal the inefficiency of directly solving the MIP model using CPLEX, even for fairly small-
sized cases. In contrast, the NOPP algorithm takes negligible time to run, and produces solutions belonging
to the set {LB,LB + Tp} across all cases.

6.2 Medium-sized cases and visual explanation

In this section, we investigate medium-sized cases, defined as instances comprising a cell count ranging from
100 to 1000. The outcomes for four specific cases are presented in Table 6, where the initial two cases are
used to elucidate the algorithm’s functioning. Cases three and four each encompass 1000 cells with different
configurations, serving to verify that the algorithm efficiently resolves medium-sized cases within remarkably

16

Table 5: Results for small-sized test cases

Case (n,m, q) LB MIP by CPLEX NOPP Relative Absolute

Z LBCPLEX Time ZNOPP Time gap (%) gap

(3,3,2) 18.32 18.32 18.32 1.2 23.48 0.00 28.16 5.16
(3,3,3) 8.0 8.0 8.0 0.8 8.0 0.00 0.00 0.00
(4,3,2) 22.32 22.32 22.32 2.08 22.32 0.00 0.00 0.00
(4,3,3) 12.0 12.0 12.0 0.44 12.0 0.00 0.00 0.00
(3,4,2) 23.48 23.48 23.48 2.12 28.64 0.00 21.97 5.16
(3,4,3) 13.16 13.16 13.16 4.88 13.16 0.00 0.00 0.00
(3,4,4) 8.0 8.0 8.0 0.48 8.0 0.00 0.00 0.00
(4,4,2) 32.64 32.64 32.64 49.24 32.64 0.00 0.00 0.00
(4,4,3) 22.32 22.32 22.32 215.2 22.32 0.00 0.00 0.00
(4,4,4) 12.0 12.0 12.0 2.06 12.0 0.00 0.00 0.00
(4,5,2) 42.96 42.96 42.96 201.21 42.96 0.00 0.00 0.00
(4,5,3) 27.48 27.48 27.48 471.3 27.48 0.00 0.00 0.00
(4,5,4) 17.16 17.16 17.16 157.3 17.16 0.00 0.00 0.00
(4,5,5) 12.0 12.0 12.0 5.75 12.0 0.00 0.00 0.00
(5,4,2) 41.80 41.80 41.80 185.71 46.96 0.00 12.34 5.16
(5,4,3) 26.32 26.32 26.32 153.37 31.48 0.00 19.60 5.16
(5,4,4) 16.0 16.0 16.0 5.29 16.0 0.00 0.00 0.00

(5,5,2) 57.28 57.28 48.58 > 3600 62.44 0.00 9.00 5.16
(5,5,3) 36.64 36.64 32 > 3600 36.64 0.00 0.00 0.00
(5,5,4) 26.32 26.32 24 > 3600 31.48 0.00 19.60 5.16
(5,5,5) 16.0 16.0 16.0 19.03 16.0 0.00 0.00 0.00
(6,5,2) 66.44 66.44 58.66 > 3600 66.44 0.00 0.00 0.00
(5,6,2) 67.60 67.60 60.00 > 3600 67.60 0.00 0.00 0.00
(6,6,2) 81.92 83.28 69.16 >3600 81.92 0.00 0.00 0.00
(6,6,6) 20.0 20.0 20.0 3563.8 20.0 0.00 0.00 0.00
(7,7,2) 116.88 159.86 94.58 >3600 122.04 0.00 4.41 5.16
(7,7,7) 24.0 - 24.0 > 3600 24.0 0.00 0.00 0.00

(8,8,2) 151.84 - 124.00 >3600 151.84 0.00 0.00 0.00
(9,9,2) 197.12 - 158.00 >3600 202.28 0.00 2.62 5.16
(9,10,2) 217.76 - 176.00 >3600 217.76 0.00 0.00 0.00
(10,9,2) 216.60 - 176.00 >3600 216.60 0.00 0.00 0.00
(10,10,2) 242.40 - 196.00 >3600 242.40 0.00 0.00 0.00

LB is obtained from LB formula in Sect. 4.1. Z is the objective value returned by CPLEX upon termination. LBCPLEX is the

lower bound of CPLEX, relative gap =
|LB−ZNOPP |

LB
× 100, and absolute gap = |LB − ZNOPP |.

brief computational intervals. Additionally, as expected, the results demonstrate that all solutions belong to
the set {LB,LB + Tp}.

Table 6: Results for Medium-sized test cases

Case no. Size of the Number LB NOPP Relative Absolute

n×m search area of UAVs ZNOPP Time gap (%) gap

1 11× 10 3 174.16 179.32 0.00 2.9 5.16
2 13× 11 4 166.68 166.68 0.00 0 0
3 25× 40 2 2547 2552.16 0.25 < 0.01 5.16
4 50× 20 6 779.72 779.72 0.15 0 0

LB is obtained from LB formula in Sect. 4.1. Relative gap =
|LB−ZNOPP |

LB
× 100, and absolute gap = |LB − ZNOPP |.

For the first case (case no. 1 in Table 6) depicted in Fig. 9, the algorithm initially plans a path for UAV
number one. Preceding the initiation of Phase 1, according to initial settings, the starting point is designated
as (1, 10 − 3 + 1), and the total number of assigned cells (A) and available P moves (NP) are 37 and 26
respectively. In the next step, Phase 1 starts its task and descends from the starting point until reaching (1, 1),
where the D move becomes unavailable. Then, it continues by S moves till (11, 1), and since the S move is
no longer available, it goes up until (11, 8). Next, the H-value is calculated, resulting in an odd value of 9.
Consequently, the algorithm, during Phase 2, removes U∗ from the path, leaving a path comprising 7 sequential
P moves and 10 consecutive S moves. In the subsequent step, the algorithm checks the residual count of P
moves (NP) that is 19 (26 minus 7), and given its odd value, the algorithm automatically applies a one-unit

17

incremental adjustment, setting NP to 20. Then, in accordance with the pattern established during Phase 3,
the allocation of these 20 P moves takes place along the remaining path from Phase 2, creating the ultimate
path of the first UAV. For the next UAV or UAV number 2, the starting point is (1, 10−3+2), and the number
of assigned cells and available P moves remain consistent (37 and 26, respectively). Subsequently, in Phase
1, the algorithm constructs a path following the pattern of this phase, which concludes at cell (11, 9). Then,
The algorithm calculates the H-value, and since it is 4 (an even number), Phase 2 is omitted. In the next step,
given that NP has an even value of 12 (26 minus 14), Phase 3 accomplishes its designated task by placing 12
P moves into the path. Regarding the last UAV or UAV number 3, the algorithm first executes Phases 1, 2,
and 3 sequentially, and then, as the last UAV has four phases, the algorithm checks the set of uncovered cells
(F). Finally, since there is no uncovered cell, Phase 4 is not implemented.

Figure 10 illustrates the algorithm’s performance corresponding to the second case (case no. 2 in Table 6),
where, for all four UAVs, phases 1, 2, and 3 operate similarly to the first case. However, unlike the first case,
the Ō is true (because the initial value of NP is 23), and therefore, after Phase 1 the number of U moves is
one less than D ones. Also, after implementing Phase 3 for the last UAV, set F is not empty and includes cell
(13,11). Consequently, during Phase 4, the algorithm employs a U move to cover cell (13, 11).

0 20 40 60 80 100
Number of UAVs

0

2

4

6

8

10

Co
m

pu
ta

tio
na

l t
im

e
(s

ec
on

ds
)

50 50 search area
75 75 search area
100 100 search area

Fig. 8: Impact of the number of UAVs on the computational time.

6.3 Large-sized cases and sensitivity analysis

In this section, the results of the algorithm’s performance on large-sized cases, which range from 1000 to 10,000
cells, are presented in Table 7. It is important to note that the results in this section carry greater significance as
they reflect the algorithm’s efficiency in handling cases that closely resemble real-world scenarios. According to
the findings, the algorithm demonstrates a very good performance in large-sized cases, and generates solutions
achieving an optimality gap of 0.00%, all within a reasonable timeframe. Also, as expected, all solutions belong
to the set {LB,LB + Tp}.

In the following step, we examine the impact of varying the number of UAVs on computational time,
as depicted in Fig. 8. This analysis shows some aspects of the algorithm’s behavior. Firstly, the maximum
computational time is observed when there are only two UAVs. Secondly, while the addition of UAVs does
increase problem complexity, it initially accelerates algorithm performance. Thirdly, after a certain point,
altering the number of UAVs exhibits no substantial influence on computational time.

Figure 11b illustrates how varying dimensions within a rectangular search area affect computational time.
Seven cases with different dimensions are presented, each containing 10,000 cells. The results demonstrate that
the algorithm requires less computational time in search areas with smaller length and greater width. Further-
more, it is reaffirmed that across all cases, employing two UAVs consistently demands more computational
time. Considering the battery limitation of the UAVs, each operation time has an upper bound. Given one hour
as the upper bound of the operation time, Figure 11a shows the minimum number of UAVs required to cover
the cases in Table 7 in less than one hour. In this regard, it is noteworthy to mention that the LB formula can
provide a very good estimation for calculating the minimum number of UAVs required for an operation with
a determined time.

18

Fig. 9: Demonstration of the algorithm’s phases for 3 UAVs in 11× 10 search area (Case no. 1 in Table 6.)

7 Conclusion and Future Work

Using UAVs for search and rescue comes with its own challenges such as the risk of collision and environmental
factors. To deal with these challenges, we developed a path-planning algorithm to enable a homogeneous fleet
of UAVs to efficiently search a target area in windy conditions. We first proposed a mixed-integer programming
model to formulate the problem. Then, to design a practical solution approach, we investigated a special case
of the problem where the search area is a rectangular grid. In this context, we presented a mathematically
validated formula for calculating the problem’s lower bound. Next, we proposed the NOPP algorithm that
consistently yields feasible solutions, achieving either the lower bound or approaching it closely.

We conducted a series of experiments encompassing scenarios of varying search area sizes: small, medium,
and large cases. The outcomes of these experiments consistently reveal the algorithm’s remarkable proficiency
in promptly generating feasible solutions, even when confronted with a large case containing up to 10,000 cells.
Also, as indicated by the results, augmenting the problem’s complexity by adding more UAVs not only fails to
yield a significant impact on the algorithm’s speed but, in some cases, can actually lead to an increase in its
speed. Furthermore, the results demonstrate that modifying the dimensions of a search area while maintaining

19

Fig. 10: Demonstration of the algorithm’s phases for 4 UAVs in 13× 11 search area (Case no. 2 in Table 6.)

20

Table 7: Results for large-sized test cases

Case no. Size of the Number LB NOPP Relative Absolute

n×m search area of UAVs ZNOPP Time gap (%) gap

1 50× 50 2 6388.00 6388.00 0.81 0.00 0.00
2 50× 75 2 9613.00 9613.00 1.71 0.00 0.00
3 75× 50 2 9584.00 9584.00 2.35 0.00 0.00
4 75× 75 2 14424.08 14429.24 2.92 < 0.01 5.16
5 75× 100 2 19259.00 19264.16 5.37 < 0.01 5.16
6 100× 75 2 19230.00 19230.00 6.34 0.00 0.00
7 100× 100 2 25680.0 25680.0 10.44 0.00 0.00

LB is obtained from LB formula in Sect. 4.1. Relative gap =
|LB−ZNOPP |

LB
× 100, and absolute gap = |LB − ZNOPP |.

(a)

50 50
50 75

75 50
75 75

75 100
100 75

100 100
150 150

n×m search areas

5

10

15

20

25

30

Nu
m

be
r o

f U
AV

s

Min UAVs for <1hr Operation

(b)

1000×10
500×20

200×50
100×100

50×200
20×500

10×1000

Dimensions of the n×m search areas with 10,000 cells

0

10

20

30

40

50

Co
m

pu
ta

tio
na

l t
im

e
(s

ec
on

ds
) Two UAVs

Three UAVs
Four UAVs

Fig. 11: (a) Minimum UAV number for operations under one hour; (b) Impact of different search area
dimensions on computational time.

a constant cell count significantly influences the computational time. In summation, our findings validate the
efficacy of the proposed algorithm as a dependable tool for search and rescue operations. Its ability to efficiently
devise feasible, optimal, or near-optimal solutions within a reasonable timeframe, particularly in the context
of large-scale scenarios, underscores its potential value to search and rescue teams.

Several aspects of the present work can be extended. First, the mathematical framework devised for for-
mulating the lower-bound calculation of the problem can be applied in scenarios involving heterogeneous UAV
fleets with unequal speeds. Second, polygonal shapes can be considered as an alternative to rectangular shapes.
Our primary focus in this research has been on search and rescue, leading us to concentrate solely on opera-
tion time while neglecting other aspects. Future studies can broaden the scope to include factors like battery
consumption, landing location, varying wind field and non-uniform distribution of cellular importance, etc., to
suit for more application scenarios.

Acknowledgements

The research is supported by the National Science Foundation (NSF) under grant CMMI 1944068. The authors
would like to acknowledge the constructive comments from two anonymous reviewers, which helped to improve
the quality of this paper.

References

Ahmed, G., Sheltami, T., Mahmoud, A., & Yasar, A. (2023). Energy-efficient uavs coverage path planning
approach. CMES-Computer Modeling in Engineering & Sciences, 136 (3).

Ai, B., Jia, M., Xu, H., Xu, J., Wen, Z., Li, B., & Zhang, D. (2021). Coverage path planning for maritime
search and rescue using reinforcement learning. Ocean Engineering, 241. https://doi.org/10.1016/j.
oceaneng.2021.110098

Bähnemann, R., Lawrance, N., Chung, J. J., Pantic, M., Siegwart, R., & Nieto, J. (2021). Revisiting bous-
trophedon coverage path planning as a generalized traveling salesman problem. Field and Service
Robotics: Results of the 12th International Conference, 277–290.

21

Balampanis, F., Maza, I., & Ollero, A. (2017). Spiral-like coverage path planning for multiple heterogeneous uas
operating in coastal regions. 2017 International Conference on Unmanned Aircraft Systems, ICUAS
2017. https://doi.org/10.1109/ICUAS.2017.7991461

Barrientos, A., Colorado, J., Cerro, J. D., Martinez, A., Rossi, C., Sanz, D., & Valente, J. (2011). Aerial remote
sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial
robots. Journal of Field Robotics, 28. https://doi.org/10.1002/rob.20403

Bouzid, Y., Bestaoui, Y., & Siguerdidjane, H. (2017). Quadrotor-uav optimal coverage path planning in clut-
tered environment with a limited onboard energy. IEEE International Conference on Intelligent Robots
and Systems, 2017-September. https://doi.org/10.1109/IROS.2017.8202264

Cabreira, T. M., Ferreira, P. R., Franco, C. D., & Buttazzo, G. C. (2019). Grid-based coverage path plan-
ning with minimum energy over irregular-shaped areas with uavs. 2019 International Conference on
Unmanned Aircraft Systems, ICUAS 2019. https://doi.org/10.1109/ICUAS.2019.8797937

Cabreira, T. M., Brisolara, L. B., & Ferreira, P. R. (2019). Survey on coverage path planning with unmanned
aerial vehicles. Drones, 3 (1), 4.

Cho, S. W., Park, J. H., Park, H. J., & Kim, S. (2022). Multi-uav coverage path planning based on hexagonal
grid decomposition in maritime search and rescue. Mathematics, 10. https : / / doi . org / 10 . 3390 /
math10010083

Cho, S., Park, H. J., Lee, H., Shim, D. H., & Kim, S. Y. (2021). Coverage path planning for multiple unmanned
aerial vehicles in maritime search and rescue operations. Computers and Industrial Engineering, 161.
https://doi.org/10.1016/j.cie.2021.107612

Choset, H. (2000). Coverage of known spaces: The boustrophedon cellular decomposition. Autonomous Robots,
9. https://doi.org/10.1023/A:1008958800904

Choset, H. (2001). Coverage for robotics–a survey of recent results. Annals of mathematics and artificial
intelligence, 31, 113–126.

Coombes, M., Fletcher, T., Chen, W. H., & Liu, C. (2018). Optimal polygon decomposition for uav survey
coverage path planning in wind. Sensors (Switzerland), 18. https://doi.org/10.3390/s18072132

Di Franco, C., & Buttazzo, G. (2015). Energy-aware coverage path planning of uavs. 2015 IEEE international
conference on autonomous robot systems and competitions, 111–117.

Di Franco, C., & Buttazzo, G. (2016). Coverage path planning for uavs photogrammetry with energy and
resolution constraints. Journal of Intelligent & Robotic Systems, 83, 445–462.

Forsmo, E. J., Grøtli, E. I., Fossen, T. I., & Johansen, T. A. (2013). Optimal search mission with unmanned
aerial vehicles using mixed integer linear programming. 2013 International conference on unmanned
aircraft systems (ICUAS), 253–259.

Gianfelice, M., Aboshosha, H., & Ghazal, T. (2022). Real-time wind predictions for safe drone flights in toronto.
Results in Engineering, 15, 100534. https://doi.org/10.1016/j.rineng.2022.100534

Jiao, Y. S., Wang, X. M., Chen, H., & Li, Y. (2010). Research on the coverage path planning of uavs for polygon
areas. Proceedings of the 2010 5th IEEE Conference on Industrial Electronics and Applications, ICIEA
2010. https://doi.org/10.1109/ICIEA.2010.5514816

Kong, C. S., Peng, N. A., & Rekleitis, I. (2006). Distributed coverage with multi-robot system. Proceedings
2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2423–2429.

Latombe, J.-C. (1991). Exact cell decomposition. https://doi.org/10.1007/978-1-4615-4022-9 5
Li, Y., Chen, H., Er, M. J., & Wang, X. (2011). Coverage path planning for uavs based on enhanced exact

cellular decomposition method. Mechatronics, 21, 876–885. https://doi.org/10.1016/j.mechatronics.
2010.10.009

Liu, Y. (2019). An optimization-driven dynamic vehicle routing algorithm for on-demand meal delivery using
drones. Computers & Operations Research, 111, 1–20.

Lyu, M., Zhao, Y., Huang, C., & Huang, H. (2023). Unmanned aerial vehicles for search and rescue: A survey.
Remote Sensing, 15 (13), 3266.

Martinez-Alpiste, I., Golcarenarenji, G., Wang, Q., & Alcaraz-Calero, J. M. (2021). Search and rescue operation
using uavs: A case study. Expert Systems with Applications, 178, 114937.

Maza, I., & Ollero, A. (2007). Multiple uav cooperative searching operation using polygon area decomposition
and efficient coverage algorithms. In Distributed autonomous robotic systems 6 (pp. 221–230). Springer.

Nam, L. H., Huang, L., Li, X. J., & Xu, J. F. (2016). An approach for coverage path planning for uavs. 2016
IEEE 14th International Workshop on Advanced Motion Control, AMC 2016. https://doi.org/10.
1109/AMC.2016.7496385

Park, Y., Ko, C. S., & Moon, I. (2024). Unmanned aerial vehicle variable radius set covering problem for
emergency wireless network. Computers & Operations Research, 170, 106765.

22

Song, H., Yu, J., Qiu, J., Sun, Z., Lang, K., Luo, Q., Shen, Y., & Wang, Y. (2022). Multi-uav disaster envi-
ronment coverage planning with limited-endurance. Proceedings - IEEE International Conference on
Robotics and Automation. https://doi.org/10.1109/ICRA46639.2022.9812201

Valente, J., Sanz, D., Cerro, J. D., Barrientos, A., & de Frutos, M. Á. (2013). Near-optimal coverage trajectories
for image mosaicing using a mini quad-rotor over irregular-shaped fields. Precision Agriculture, 14.
https://doi.org/10.1007/s11119-012-9287-0

Zhang, J., & Li, Y. (2023). Collaborative vehicle-drone distribution network optimization for perishable
products in the epidemic situation. Computers & Operations Research, 149, 106039.

Appendix A: Complete proof of feasibility and near-optimality for
the NOPP algorithm

We start by introducing a foundational framework that forms the basis for the subsequent propositions of this
section. We define Ck

r as a class of grid-based shapes, all of which share the following three properties:

1) All shapes possess r columns, and at least one of the columns has k cells (the distance between the baseline
and the top line is k cells, as shown in Fig. 12a).

2) Within each column, cells are required to initiate from the top line and remain connected, no disjoint.
3) Every column contains a minimum of one and a maximum of k cells.

(a) (b)

(c) (d)

Fig. 12: Valid and invalid examples of C5
9 shapes: (a) valid; (b) invalid because there is a disjoint in column

9; (c) invalid because column 3 does not have even one cell; (d) invalid because cells in columns 5 and 6 do
not initiate from the top line.

In addition, the notations utilized in this section are presented in Table 8 for reference.
Continuing further, according to the definitions in Table 8, we introduce essential terminology employed

within the propositions of this section. To begin, for a Ck
r shape, we establish the term first valley to denote

the valley (as defined in Table 8 as vt) containing element 1 as well as the term final valley to refer to the
valley encompassing the element r, and also, the term middle valley is designated for other valleys. It should be
mentioned that if a valley has both 1 and r, it is considered as the first valley. Furthermore, we introduce the
concept of feasibility feature (FF), wherein all valleys in a Ck

r shape are constrained to possess even cardinalities
(the cardinality of a valley is equal to its length) except the first and final valleys. The notation “FF-G”
is adopted to signify the set G (as defined in Table 8) of a Ck

r shape endowed with the feasibility feature.
Moreover, if a Ck

r shape is representable in the form of an FF-G set, it is designated as an FF-G shape. For
a clearer understanding of defined notations and definitions, consider Figure 12a as an example, depicting an
FF-G shape with its corresponding G set equal to {{1, 2}, {3, 4}, {5, 6, 7, 8}, {9}}. The first valley is v1 = {1, 2}

23

Table 8: Algorithm’s feasibility proof notations

Notations

Ī Set of indices pertaining to the columns of the Ck
r shape, {1, 2, 3, ..., r}

pi Set of cells in column i, {(i, k), (i, k − 1), . . . } for i ∈ Ī, is arranged sequentially
and referred to as “pit i”

vt Subset of Ī refered to as valley of length t, {i1,. . . ,it} for ik ∈ Ī (k = 1, . . . , t), where:
• Indices are sequentially ascending
• If t > 1, then ∀i, j ∈ vtand i ̸= j, |pi| = |pj |
• If i1 ̸= 1,then |pi1−1| ̸= |pi1 |
• If it ̸= n, then |pit | ̸= |pit+1|

d(vt) Depth of an t-length valley calculated as ∀i ∈ vt, d(vt) = |pi|
G A partition of Ī such that:

• All its members are valleys
• Elements of each valley are greater than any element of the preceding valley

and to find its depth, we need to check the pits (as defined in Table 8 as pi) with indices 1 and 2. For the pit
with index 1, we have p1 = {(1, 5)}, and for the pit with index 2, p2 = {(2, 5)}. So, the depth of the first valley
is d(v1) = |p1| = |p2| = 1. The middle valleys are v2 = {3, 4} and v3 = {5, 6, 7, 8}. For v2, we have to consider
pits with index 3 and 4, So p3 = {(3, 5), (3, 4), (3, 3), (3, 2), (3, 1)}, and p4 = {(4, 5), (4, 4), (4, 3), (4, 2)(4, 1)};
then we have, d(v2) = |p3| = |p4| = 5. For v3, pits with indices 5, 6, 7, 8 should be considered. So, we have
p5 = {(5, 5), (5, 4), (5, 3)}, p6 = {(6, 5), (6, 4), (6, 3)}, p7 = {(7, 5), (7, 4), (7, 3)}, and p8 = {(8, 5), (8, 4), (8, 3)}
as well as d(v3) = |p5| = |p6| = |p7| = |p8| = 3. The final valley is v4 = {9} in which p9 = {(9, 5), (9, 4)} and
d(v4) = |p9| = 2. It should be added that the length of valleys v1 (the first valley), v2, v3, and v4 (the final
valley) are 2, 2, 4, and 1 respectively. Since the length of the middle valleys (v2 and v3) is even, we have an
FF-G shape. Now, the following propositions can be stated.
Proposition 4. There is a feasible path to cover all cells within an FF-G shape.

Proof. To prove the proposition, it is necessary to consider the following cases for the valleys of set G:

I) All valleys are even-length:
Given that the length of each valley is an even number, they can be divided into one or more pairs of pit
indices. For each pair of pit indices, consider the pair of pits corresponding to it. To cover each pair of pits,
we can start from the first cell of the first pit (pit with the lower index) and use D moves to reach the end
cell. Following this, with a single S move, we can transit to the final cell of the next pit, and subsequently
cover all cells in this pit using U moves. Finally, by employing S moves, we can establish connectivity across
all pairs.

II) All valleys are even-length except for the first valley:
Initially, omit 1 (index of the first column) from the first valley. As a result, all valleys become even-length,
thereby allowing us to use the pattern of case one. Finally, we can cover the cells in p1 by starting from the
last cell and using U moves, and also it can be connected to the next pit by an S move.

III) All valleys are even-length except for the final valley:
Initially, disregard r (index of the last column) from the last valley. Consequently, all valleys become even-
length, enabling us to apply the pattern of case one. At the end, cells in pr can be covered by starting from
the first cell and employing D moves. It must be mentioned that an S move makes a connection between
pr−1 and pr.

IV) All valleys are even-length except for the first and final valleys:
This case can be effectively resolved by combining cases two and three.

In addition, it is crucial to highlight that when the depth of a valley equals one, the associated pits only need
S moves to be covered and connected to other pits. Therefore, it is consistently achievable to create a feasible
path for covering an FF-G shape.

Before proceeding, we need to define two types of FF-G shapes that will be used in propositions 5 and 6.
These types are:

• FF-G1: This refers to FF-G shapes with just one valley. For example, a rectangle is an FF-G1 shape.
• FF-G2: This refers to FF-G shapes where the first valley has a depth of one, and the depth of middle valleys
is greater than one. For instance, Figure 12a shows an FF-G2 shape.

24

Also, since the feasibility and optimality of the proposed algorithm are obvious for q = m, for the next
propositions, we suppose that q < m and q ≤ n.

Proposition 5. Upon completion of Phases 1, 2 and 3 of the NOPP algorithm which result in a path for the
ith UAV (i = 1, 2, . . . , q − 1), available cells for the (i+ 1)th UAV form an FF-G2 shape.

Proof. In the beginning, let us state that the available cells for the ith UAV (i = 1, 2, . . . , q) are those uncovered
cells that satisfy the Y-coordinate condition (as explained in Sect. 4.2.2). In this proof, we employ gi (for
i = 1, ..., |G|) to denote the ith valley (member) of the set G, and we also use g′i to represent the ith valley after
completing Phases 1 and 2. Additionally, we assume that the depth of a valley can be temporarily zero.

First, we consider the FF-G1 shape that is related to the first UAV. Based on the algorithm design, the
first UAV starts from the cell (1,m − q + 1). Therefore, we can say that the available cells for the first UAV
make a Cm−q+1

n shape. Since this shape has only one valley (G = {{1, 2, . . . , n}}), it is an FF-G1 shape.
After Phases 1 and 2, the two following cases can occur for the single valley of the shape (g1):

I) It is broken down into two valleys (gα and gβ) that are:
• gα = {1}, and d(gα) = 0
• gβ = {2, . . . , n}, and d(gβ) = d(g1)− 1

II) It is broken down into three valleys (gα, gβ , and gγ) that are:
• gα = {1}, and d(gα) = 0
• gβ = {2, . . . , n− 1}, and d(gβ) = d(g1)− 1
• gγ = {n}, and d(gγ) = d(g1)− k (for k = 2, . . . , d(g1))

Phase 2 guarantees that |gβ | is even in the second case. Also, since Phase 3 considers a pair of pits in each
valley from the lowest index, the length of the middle valleys is even after implementing this phase. We know
that, for the next UAV (the second UAV), the starting point is (1,m − q + 2), so the top line for this UAV
moves up one cell above the top line of the previous UAV (the first UAV). Therefore, we can add one unit to
the depth of the valleys and finally, we have an FF-G2 shape for the second UAV.

Now we have an FF-G2 shape. Initially, disregarding the first and final valleys, the following cases demon-
strate how the middle valleys are modified when Phases 1 and 2 are applied. Therefore, these cases for gi (for
i ∈ {2, . . . , |G| − 1}) are:
I) If d(gi−1) < d(gi) < d(gi+1), then |g′i| = |gi| and d(g′i) = d(gi)− 1
II) If d(gi−1) < d(gi) and d(gi) > d(gi+1), then |g′i| = |gi| − 2 and d(g′i) = d(gi)− 1
III) If d(gi−1) > d(gi) > d(gi+1), then |g′i| = |gi| and d(g′i) = d(gi)− 1
IV) If d(gi−1) > d(gi) and d(gi) < d(gi+1), then |g′i| = |gi|+ 2 and d(g′i) = d(gi)− 1

For the next step, we consider the first valley. Since the first valley is a one-depth valley, there is only one case:

I) |g′1| = |g1|+ 1 and d(g′1) = d(g1)− 1 = 0

In the following, the final valley, g|G|, should be evaluated in some cases. After implementing Phases 1 and 2,
there are two cases for the final valley:

I) It is broken into separate valleys (ga and gb). So, we have the following sub-cases:
1) if d(g|G|) <d(g|G|−1) then we have:
• |ga| = |g|G||, d(ga)=d(g|G|)-1
• |gb| = 1, gb = {n}, d(gb)=d(g|G|)− k, for k = 2, 3, . . . , d(g|G|)

2) if d(g|G|) >d(g|G|−1) then we have:
• |ga| = |g|G|| − 2, d(ga)=d(g|G|)-1
• |gb| = 1, gb = {n}, d(gb)=d(g|G|)− k, for k = 2, 3, . . . , d(g|G|)

Phase 2 guarantees that |ga| is always even.
II) It is not broken into separate valleys, then we have two sub-cases for g′|G|:

1) if d(g|G|) <d(g|G|−1)then we have:
• |g′|G|| = |g|G||+ 1, d(g′|G|)=d(g|G|)-1

2) if d(g|G|) >d(g|G|−1)then we have:
• |g′|G|| = |g|G|| − 1, d(g′|G|)=d(g|G|)-1

After these changes, it is evident that the middle valleys have even lengths following the execution of Phases 1
and 2. As Phase 3 of the algorithm operates on pairs of pits, the parity of the length of middle valleys remains
unchanged. For the next UAV (the third UAV), we shift the top line up by one cell, so all the depth of valleys
increases by one unit. Consequently, the depth of the first valley is equal to one, and the remaining shape for

25

the third UAV is an FF-G2 shape. Finally, we can see that this pattern will be continued for the next UAVs,
and therefore, available cells for ith UAV (i = 2, . . . , q) make an FF-G2 shape.

Now, we can prove the feasibility of the generated solutions by the proposed algorithm.
Proposition 6. The NOPP algorithm generates feasible solutions.

Proof. According to Proposition 5, the last remaining shape for the final UAV is an FF-G2 shape. Since an
FF-G2 shape is a type of FF-G shape, it can be covered by the four phases of the proposed algorithm, as
proved in Proposition 4.

To better understand Proposition 6, Figure 13 illustrates an example featuring five UAVs within a 13 ×

13 search area. The proposed algorithm starts generating a path for the first UAV in a rectangle, forming an
FF-G1 shape. According to Proposition 5, subsequent shapes for the following UAVs are designated as FF-G2
shapes. Consequently, an FF-G2 shape remains for the fifth and last UAV, which can be covered within four
phases of the algorithm.

Fig. 13: Example of the feasibility of the algorithm’s solutions, as proved in Proposition 6 (n = 13, m = 13,
q = 5). All gray shapes are C9

13 shapes in this example.

By the next proposition, we prove the lower bound and upper bound of the algorithm’s solution.
Proposition 7. The solutions generated by the NOPP algorithm have objective values in the set {LB,LB+Tp}.
Proof. Let A = ⌈nm

q
⌉ denote the upper bound on the allocation of cells to a UAV required to achieve the LB

(as used in Sect. 4.2.1). Based on the proposed algorithm’s design, three following cases may occur.

1) The first q − 1 UAVs cover either A or A+ 1 (by using an extra P move as explained in Sect. 4.2.4) cells.
As a result, the last UAV is left with fewer than A+ 1 cells to cover. Consequently, the operation time can
be either LB or LB + Tp.

2) In this case, we have a UAV, denoted by ith UAV (1 < i < q), that covers less than A cells. This situation
arises when the number of cells that meet the Y-coordinate condition (as detailed in Sect. 4.2.2) remaining
for the ith UAV is less than A, and the ith UAV cover these cells. In this case, UAVs numbered from 1 to
i − 1 have covered either A or A + 1 cells, while UAVs numbered from i + 1 to q are required to cover n
cells. Since n is consistently less than ⌈nm

q
⌉, the resulting operation time is either LB or LB + Tp.

3) This case is a sub-state of the previous case. According to the second case, the number of cells left for ith

UAV (1 < i < q) is less than A. However, in this case, the ith UAV covers all of those remaining cells except
some of them whose X-coordinate is n. This situation arises due to the algorithm’s phase 3, which considers
a pair of pits at each step. In this case, UAVs from 1 to i− 1 have covered either A or A+1 cells, and UAV

26

i+1 has a maximum of n+m−q cells to cover. Since m−q ≤ (m−q)n
q
, this leads to n+m−q ≤ nm

q
≤ ⌈nm

q
⌉.

If i ≤ q−2, UAVs from i+2 to q should cover n cells. As a result, the operation time is either LB or LB+Tp.

Appendix B: Addressing cases with q > n

In this section, we propose a sub-area decomposition (SD) algorithm to decompose the main n × m search
area into some sub-areas, which can be handled by the NOPP algorithm. The SD algorithm includes two main
phases that are Separation phase and Final sub-area phase.

Separation phase: In this phase, the SD algorithm divides the main n×m search area into two sub-areas,
called down sub-area and up sub-area. Down sub-area is an n × m1 rectangular area with n UAVs (where
m1 = ⌈mn

q
⌉), and the up sub-area is an n× (m−m1) rectangular area with q − n UAVs. By using the lower

bound formula (described in Sect. 4.1) for the down sub-area we have:

(n− 1)Ts + (⌈m1n

n
⌉ − n)Tp = (n− 1)Ts + (⌈mn

q
⌉ − n)Tp

So, the lower bound of the down sub-area is equal to the lower bound of the main n × m search area, and
therefore, by implementing the NOPP algorithm in the down sub-area the objective values of the solution
belongs to the set {LB,LB+Tp} (as proved in Proposition 7). In the last step of this phase, the SD algorithm
runs the NOPP algorithm for the down sub-area to cover it. Finally, we show that this division of the main
search area into down and up sub-areas is possible by proving that m1 < m in the following proposition.

Start

n,m, q

Separation
phase

q − n > n
m = m − ⌈mn

q
⌉

q = q − n

Final phase

End

yes

no

Fig. 14: The flowchart of the sub-area decomposition algorithm.

Proposition 8. Let m, n and q be natural numbers having the relation n < q ≤ m, then we have ⌈mn
q
⌉ < m.

Proof. By considering n ≤ q − 1 we have:

n ≤ q − 1
×m−→ nm ≤ qm−m

× 1
q−→ nm

q
≤ m− m

q

Since m
q
≥ 1, we have m− m

q
≤ m− 1; therefore, nm

q
≤ m− 1 and hence ⌈mn

q
⌉ ≤ m− 1 < m.

After the separation phase, the SD algorithm focuses on the up sub-area (uncovered sub-area) left from
the separation phase. To consider more precisely the up sub-area, first, we show that the number of UAVs

27

(q − n) is less than or equal to the number of cells along the Y-axis of the sub-area (m − ⌈mn
q
⌉), that is,

Assumption 1 (described in Sect. 3.1) holds for the up sub-area. To do this, we use the following proposition.

Proposition 9. Let m, n and q be natural numbers having the relation n < q ≤ m, then we have q − n ≤
m− ⌈mn

q
⌉.

Proof. Since q ≤ m, there are k′ ∈ N and r′ ∈ N ∪ {0} such that m = qk′ + r′ so we have:

m− ⌈mn

q
⌉ = qk′ + r′ − ⌈ (qk

′ + r′)n

q
⌉ = qk′ + r′ − ⌈k′n+ r′(

n

q
)⌉

we know that n
q
< 1 so:

k′n+ r′(
n

q
) < k′n+ r′ ⇒ ⌈k′n+ r′(

n

q
)⌉ ≤ k′n+ r′

and therefore, we can write:

qk′ + r′ − ⌈k′n+ r′(
n

q
)⌉ ≥ qk′ + r′ − (k′n+ r′) = k′(q − n)

we know k′(q − n) ≥ q − n; hence qk′ + r′ − ⌈ (qk
′+r′)n
q

⌉ ≥ q − n.

Now, we need to evaluate the lower bound of the up sub-area. We show that the lower bound of the up sub-

area (i.e., (n−1)Ts+(⌈ (m−m1)n
q−n

⌉−n)Tp), is less than or equal to the lower bound of the main search area (i.e.,

(n− 1)Ts +(⌈mn
q
⌉−n)Tp). To do this, it is sufficient to show that (m−m1)n

q−n
≤ mn

q
, as stated in Proposition 10.

Proposition 10. Let m, n and q be natural numbers having the relation n < q ≤ m, and let m1 = ⌈mn
q
⌉, then

we have (m−m1)n
q−n

≤ mn
q
.

Proof. We need to show the validity of the inequality q(m−m1)n ≤ mn(q − n), so we can write:

qmn− qm1n ≤ qmn−mn2 ⇒ mn2 ≤ qm1n
× 1

n−→ mn ≤ qm1

⇒ mn

q
≤ m1

Since mn
q
≤ m1 is valid, we conclude the validity of the inequality (m−m1)n

q−n
≤ mn

q
.

After considering the up sub-area, we can explain the next step of the SD algorithm. Following the separation
phase, the SD algorithm checks the inequality q−n > n. If this inequality is true, it means that the number of
UAVs is greater than n in the up sub-area. So, the SD algorithm considers the up sub-area as the main search
area and goes to the separation phase again. If q − n < n is false, the SD algorithm goes to the final phase,
which is explained in the following paragraph.

Final phase: In this phase, the SD algorithm implements the NOPP algorithm in the uncovered sub-area
which is left from one or more runs of the separation phase.

To clarify the performance of the SD algorithm, we consider a 4 × 13 search area with 10 UAVs (n =
4, m = 13, q = 10) as an example (see Fig. 15). The SD algorithm first implements the separation phase, and
therefore, the down sub-area (4 × ⌈ 13×4

10 ⌉ area with 4 UAVs) and the up sub-area (4 × (13 − 6) area with 6
UAVs) will be made. Then, the SD algorithm runs the NOPP algorithm for the down sub-area, which covers
all cells in this sub-area. In the next step, since q − n = 10 − 4 = 6 is greater than n = 4, the SD algorithm
runs the separation phase in the up sub-area (the uncovered sub-area). Therefore, two sub-areas will be made;
first 4 × ⌈ 7×4

6 ⌉ area with 4 UAVs (new down sub-area), and second, 4 × (7 − 5) area with 2 UAVs (new up
sub-area). The NOPP algorithm is implemented for the new down sub-area and covers cells inside it. Next,
q − n = 6− 4 = 2 is less than n = 4, so the SD algorithm go to the final phase in which the NOPP algorithm
is run for the new up sub-area (4× 2 area). At this point, all cells are covered. It should be mentioned that, as
we have already shown and proved, the lower bound of the sub-areas generated by each run of the separation
phase is less than or equal to the lower bound of the main search area (LB). Therefore, it is clear that the
final solution of the SD algorithm belongs to the set {LB, LB + Tp}.

Finally, it is worth noting that although the SD algorithm cannot cluster starting points together in cases
when q > n, in real-world large-scale scenarios where q ≤ n and q ≤ m, the NOPP algorithm naturally put all
starting points next to each other, which effectively eases the deployment of the UAV fleet.

28

Fig. 15: Sub-areas generated by the SD algorithm for 4× 13 search area with 10 UAVs. By assuming Ts = 10
(s), and Tp = 20 (s), the lower bounds of the 4× 6 sub-area with 4 UAVs, 4× 5 sub-area with 4 UAVs, and
4× 2 sub-area with 2 UAVs are 70 (s), 50 (s), 30 (s) respectively. The LB of the main search area (4× 13
search area with 10 UAVs) is 70 (s) which is equal to the maximum of the sub-areas lower bound (max
{70,50,30}). This indicates that the SD algorithm decomposes the main search area without loss of efficiency.
Note that the mission time (objective value) for this example is 70 (s) that belongs to {LB, LB + Tp}.

29

	Introduction
	Literature Review
	Problem Formulation
	Grid-based decomposition
	Mathematical formulation - a baseline

	Main Method
	Lower bound derivation
	Near-optimal path planning algorithm (NOPP)
	Initial settings
	Phase one
	Phase two
	Phase three
	Phase four

	Extension to Moore Neighborhood Connectivity
	Numerical Experiments
	Small-sized cases and Comparison with commercial solver
	Medium-sized cases and visual explanation
	Large-sized cases and sensitivity analysis

	Conclusion and Future Work

