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Abstract. We propose an efficient offline monitoring algorithm for prop-
erties written in DMTL (Dynamic Metric Temporal Logic), a temporal
formalism that combines MTL (Metric Temporal Logic) with regular
expressions. Our algorithm has worst-case running time that is is poly-
nomial in the size of the temporal specification and linear in the length
of the input trace. In particular, our monitoring algorithm needs time
O(m?-n), where m is the size of the DMTL formula and 7 in the length
of the input trace.
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1 Introduction

Monitoring is a lightweight verification technique for checking at runtime that a
program or system behaves as desired. It has proved to be effective for evaluating
the correctness of the behavior of complex systems, where static verification is
computationally intractable. This includes cyber-physical systems (CPSs) that
consist of both computational and physical processes. A monitor is a program
that observes the execution trace of the system and emits values that indicate
events of interest or other actionable information.

It is common to specify monitors using special-purpose formalisms such as
variants of temporal logic [65], regular expressions [45], and other domain-specific
programming languages [13]. In the context of cyber-physical systems, logics that
are interpreted over signals are frequently used. This includes Metric Temporal
Logic (MTL) [47] and Signal Temporal Logic (STL) [51].

Linear Temporal Logic (LTL) [65] cannot express all regular properties and
is therefore expressively weaker than regular expressions. MTL inherits this lack
of expressiveness. Several extensions of LTL have been considered in order to
make it expressively complete for the class of regular properties [77,21].

We focus here on properties that are interpreted over discrete-time signals
and are specified using an extension of MTL with regular expressions. We call
this formalism Dynamic Metric Temporal Logic or DMTL. Its syntax is
based on the dynamic modalities of Dynamic Logic [67] and it is similar to LDL
(Linear Dynamic Logic) [21]. DMTL provides the dynamic temporal connectives
(r|r (past diamond) and |r); (future diamond), where r is a regular expression
and [ is an interval that specifies the domain of temporal quantification.
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Main contribution. We propose a novel algorithm for the efficient offline mon-
itoring of DMTL (Theorem 5) with unrestricted past-time and future-time dy-
namic temporal connectives. Our algorithm goes beyond existing algorithms by
considering a more expressive specification language that fuses metric tempo-
ral logic and regular expressions. Efficient monitoring algorithms for MTL have
been considered before [71,41] (as well as in the setting of quantitative seman-
tics [56]), but the fusion of MTL with regular expressions poses challenges that
cannot be addressed by prior approaches. Monitoring for MDL (Metric Dynamic
Logic, which is essentially the same formalism as what we call DMTL here) has
been considered in [14] and [68]. These works propose algorithms whose time
complexity is at least exponential in the size of the temporal specification.

In order to obtain our monitoring algorithm, we devise specialized data struc-
tures and algorithms for dealing with the dynamic temporal connectives (r|; and
|r)r. These algorithms are expressed using the NFA for an appropriate abstrac-
tion of the regular expression r. The main challenge is dealing with the intervals
I, which are succinctly represented in binary notation. The key feature of our
algorithm is that it needs time-per-item that is polynomial in the size of the spec-
ification ¢ (in fact, O(|¢|*)) and constant in the size of the input signal. Each
past-time (resp., future-time) dynamic temporal connective is handled with a
left-to-right (resp., right-to-left) pass over the trace.

2 Dynamic Metric Temporal Logic

We start this section by presenting the syntax of DMTL (Dynamic Metric Tem-
poral Logic), a logical formalism that fuses metric temporal logic and regular
expressions. The syntax that we use is based on LDL (Linear Dynamic Logic)
[21] with the time interval annotations of MTL (Metric Temporal Logic) [47].
We interpret DMTL over discrete signals that can be either finite or infinite.
In the case of finite signals we use a truncated semantics, in the spirit of [30].
We consider a qualitative (Boolean) semantics (Definition 4), which is given in
terms of the satisfaction relation f=.

For integers i,j € Z we define the intervals [i,j] = {n € Z | i < n < j}
and [i,00) = {n € Z | i < n}. For a set I of integers and n € Z, define
n+I={n+iliellandn—-I={n—-1i|iel}.

For an alphabet D, we write D* for the set of all finite strings over D.
We denote by e the empty string. For subsets of strings A, B C D*, we define
A-B={uv|u€ Aandve B}. We also define the n-fold concatenation A™ as
follows: A = {e} and A"T! = A" - A.

The two-element set of Boolean values is B = {0, 1}. Given a set A, a function
p: A — B represents a subset of A.

Definition 1 (Regular Expressions). Regular expressions RExp(D) are given
by the following grammar:

T, Te =€ |plridre | r o | 17,
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where p : D — B is an atomic predicate. Every regular expression r is interpreted
as a subset L£(r) C D* as follows:

L(e) ={e} L(r1+12) =L(r1)UL(r2) L(r") =U,5cL(r)"
Lp)={ueD|[p(u) =1}t L(ri-r2) = L(r1)L(rz)
We say that r denotes the language L(r).

The set Mat(m,n, A) consists of all matrices with m rows and n columns
whose entries are elements of the set A. So, Mat(1,n) consists of row vectors
of size n. Similarly, Mat(m, 1) consists of column vectors of size m. When no
confusion arises, we sometimes identify Mat(1,1, A) with A. For a matrix M :
Mat(m,n, A) and integer indexes i and j with 0 < ¢ < m and 0 < j < n,
we write M (i,7) : A for the entry of M at the i-th row and j-th column. We
write Mat(m,n) as abbreviation for Mat(m, n, B). That is, Mat(m,n) is the set
of Boolean matrices with m rows and n columuns.

Definition 2. A nondeterministic finite automaton (NFA) over D is a tuple
A = (Q,init, A, fin), where Q is a finite set of n states, init : Mat(1,n) is the
initialization (row) vector, A : Mat(n,n, D — B) is the transition matriz, and
fin : Mat(n, 1) is the finalization (column) vector. The automaton A denotes a
function [A] : D* — B, given as follows:

[Al(a1az ... a,) = init- Ala1] - Alag] - - - Alay] - fin,
where Ala] : Mat(n,n) and Ala](7,5) = A(i,5)(a) for all indexes i, j.

Every regular expression r can be converted into an equivalent nondetermin-
istic automaton A, with |r| states, which means that [A,] is the characteristic
function of the language L£(r) C D*. That is, for every u € D*, we have that:
[A.] =1iff u e L(r). We will be using this fact freely in Section 3 to describe
the monitoring algorithm for DMTL.

We will consider a temporal formalism interpreted over traces that are finite
or infinite sequences of data items from a set D. We write D* (resp., D) for
the set of all finite (resp., non-empty finite) sequences over D, and D¥ = w — D
for the set of all infinite sequences over D, where w is the first infinite ordinal
(i.e., the set of natural numbers). We also define D> = D* U D¥. We write ¢
for the empty sequence and |u| for the length of a trace, where |u| = w if u is
infinite. A finite sequence u € D* can be viewed as a function from [0, |u| — 1]
to D, that is, u = u(0)u(1) ... u(ju| — 1).

Definition 3 (Syntax). Let D be a set of data items. The set DMTL(D) of
temporal formulas is built from atomic predicates p : D — B using the
Boolean connectives = and V, and the unary dynamic temporal connectives (r|;
and |r)r, where r is a regular expression and I is an interval of the form [a, b] or
[a,00) with 0 < a < b < w. More precisely, the formulas and regular expressions
of DMTL are defined by mutual induction according to the following grammar:

@12 =D | 2@ | @1 Ve [@(rlr [r)ie  [formulas]
rri,ren=¢ | @t |ri+re|ry e | 7T [regular expressions]
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u,li,jlEFe <= i=j
u, [, j] Ep? < j=i+1land u,if=¢p
u,[i,j] Eri+re < u,[i,j] Eroru,li,j] Ere
u,[i, 4] Er-re <= u,[i,k] = r1 and u, [k, j] = r2 for some k with i <k <j
u, [i,j] Er* <= i =j or there is a decomposition S of [i, j] such that
u, [k, £] |= r for every interval [k,£] in S
wilkp < pu(i) =1
u, i = = u,iEp
U, =1 V2 < u,i =1 or u,i = p2
u,i = |r)rp <= thereis j < |u| with j € i + 1 s.t. w,[i,5] =r and u,j = ¢
u,1 = @(r|r <= there is j > 0 with j € ¢ — I such that

wjEpandu[j+1i+1]Er

Fig. 1. Boolean semantics for DMTL.

We write DMTL(D) and DRExp(D) for the set of formulas and regular expres-
sions respectively that the grammar above defines.

For a temporal connective X € {(r|, |r)}, we write X, as an abbreviation for
Xa,q) and X as an abbreviation for X[ o). The usual temporal connectives P
(sometime in the past), S (since), F (sometime in the future) and U (until) can
be considered as the following abbreviations:

Pro=o(T* 1 Fro=|T"10 @Srp =91 ¢Ury = (7))

where T : D — B is the predicate that always returns 1, i.e., T(u) = 1 for every
u € D. Conjunction A can be defined in terms of — and V. The duals |r]; and [r|;
of |r); and (r|; respectively can also be seen as abbreviations: |r];¢ = —|r)—p
and @[r|r = =((=¢)(r|r)-

A decomposition of an interval [i,j] (where ¢ < j) is a nonempty finite se-
quence of intervals [i1, j1], [i2, jo], - - -, [in, Jn] With i1 =4, j, = j, and jg = ig41
forevery k=1,2,...,n—1.

For a trace u and an interval [¢, j] with 0 <4 < j < |u|, we write u[i..j] =
w(@)u(i+1)...u(j — 1) for the substring of u at location [i, j]. In particular, we
have that u[i..i] = € and u[i..i + 1] = u(7).

Definition 4 (Boolean Semantics). We interpret the formulas in DMTL(D)
over traces from D and at specific time points. The regular expressions of
DMTL are interpreted over time intervals. The Boolean semantics involves two
satisfaction relations, which are defined in Fig. 1.

— For a regular expression r, a trace u € D and two positions 0 < i < j < |ul,
we write u, [¢, j] = r when r is true in u at the interval [i, j].

— For a formula ¢ € DMTL(D), a trace u € D> and a position 0 < i < |u|, we
write u,4 |= ¢ when ¢ is true in u at position 4.
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ple,u, [i,§]) = {1, ifi=j

0, otherwise

. plpsu,i), ifj=i+1
p(?,u,li, j]) = .
0, otherwise

p(rl + 72, U, [Zv.]]) = p(rl,u, [Zvj]) U p(?‘Q,u, [7‘7.7])

plr-ragu i g) = || (plrewfi k) 0 p(ra,u, [k, 5)))
i<k<j
o liil = [ (e i k) Mooty e k) 11 1w, [k )
i<k1<-<kn<j
p(p, u, ) = p(u(i))
Py u,) = ~plp,u, )
Pl V1 u,i) = p(p,u, i) U p(, u, 1)
pryrpud)y = L] (o0 usli,30) 1ol u )
JjEi+I, j<|u|
pletrlnuiy = || (ple,ud) Mptruli+1i+1)

Fig. 2. Some properties of the interpretation function for DMTL.

We define the (formula) interpretation function p : DMTL(D) x D*® x w — B,
where p(p,u, 1) is defined when 0 < i < |u|, as follows:

plp,ui) =1, ifui o plp,u,i) =0, if u,i =@

For a formula ¢ and a trace u € D, then we write p(¢,u) to denote the trace v
with |v| = |u| given by v(i) = p(p,u, i) for every 0 < i < |u|. Similarly, we define
the (regular expression) interpretation function p : DRExp(D) x D> x (NxN) —
B, where p(r,u, [i,j]) is defined when 0 < i < j < |u|, as follows:

p(go,u, [17]]) =1, if u, [7’7.7] ': r p((p,u, [17]]) =0, if u, [27]] b& r

Notice that u,i = ¢ iff u, [¢,i+1] = ¢?. Another way to describe this property
is as follows: p(p,u,i) = p(e?,u,[i,i+ 1]).

The set B = {0,1} of Boolean values is a lattice. We write M for the meet
operation (i.e., conjunction) and Ll for the join operation (i.e., disjunction).

Fig. 2 shows some properties that the interpretation function of Definition 4
satisfies. These properties are an immediate consequence of the definition of the
satisfaction relation |= from Fig. 1.

From DMTL to Regular Expression Matching. Let r € DRExp(D) be a
regular expression of DMTL. The expression r may contain subexpressions of the
form ¢?, where @ is a temporal formula. Let g, ©1, ..., ¢x_1 be an enumeration
of the maximal subexpressions of the form ¢? that r contains. We will see now
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how to reduce the interpretation of ¢ (r| to the interpretation of a pure regular
expression.

Define pi(r| and ' = 7g - r[m;/p;?], where r[mr;/@;?] results from r by
replacing each ¢;? by m;. Each m; : BX+! — B is the i-th projection function.
We call 7/ the abstraction of the formula @ (r|.

This abstraction operation is similar to the “oracle-projection” operation used
in [55] to deal with regular expressions that contain lookaround assertions.

Let w € D* be a finite trace and ¢ be a time instance with 0 < 7 < |ul.
The main observation is that u,i = @ (r| iff 7[0..i + 1] € L(r"), where 7 =
plpo,u) X -+ X plpr—1,u) X plx, u).

3 Efficient Monitoring

Given a temporal property ¢ and a trace u, the monitoring problem asks to
compute p(p,u) (see Definition 4). In other words, the output of monitoring is
a tape v : B* with length |v| = |u| so that v(i) = p(y, u, 1) for every 0 < i < |ul.

DMTL monitoring can be reduced to a small set of computational primitives.
In order to efficiently monitor formulas that involve the temporal connectives
(r|r and |r)y, we provide specialized algorithms that are presented later in Fig. 3,
Fig. 4, Fig. 5, and Fig. 6. The base expressions in each r are of the form ¢?,
where ¢ is a temporal formula.

The temporal connective (r|; is handled with a left-to-right pass over the
input trace. For the formula @g (r|r, let ©o?7, 017 ..., oK_17 be an enumeration
of the maximal temporal subexpressions ¢;? that appear in r. Evaluating the
formula g (r|; over a trace u € D™ is the same as evaluating the formula
(pr (r|r)[m:i/pi] that results from @x (r|; by replacing each ¢; by m;, over

7= p(o, u) X plp1,u) X -+ X plpr—1,u) X p(pr,u) : (BEHH™
We write 7m; : Ag X A1 X --- x Ax — A; for the i-th projection. So, the mon-
itoring of pg(r|; can be performed in two stages: (1) monitoring each of the
©0, 1, -, Pr—1, K formulas, and (2) propagating the output signals from the
first stage into a monitor for the formula 7 (r[m; /@;]|r. Notice that r[m;/¢;] is
a pure regular expression, that is, there is no nesting of regular and temporal
operators.

The key observation from the previous paragraph is that the original formula
i (r|r is true in w (original trace) at time instant ¢ iff the rewritten formula
i (r[mi/@;i]|1 is true in the trace 7 (output tapes from maximal temporal subfor-
mulas) at time instant ¢. In turn, this is equivalent to the pure regular expression
r’ = 7 - r[m;/;?] matching over the appropriate interval (determined by T)

The temporal connective |r); is handled with a right-to-left pass over the
input trace. The computation is completely symmetric to the past-time case, so
we omit the discussion.
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// D =BE*! is the type of input data items
// n = # states of the automaton A = (Q,init, A,fin) : NFA(D) for p-r
Mat(1,n) vec ¢ Opat(1,n) // Tow vector for automaton configuration
// Invariant for the configuration row vector wec:
// Suppose that the input history is [zg,z1,...,2n-1] € D*.
// Then, vec = Ufigl(init cAlx] - Alziga] - Alzy-]) -
Function Next (D z):
vec <— vec Llinit // re-initialize: a new automaton execution is spawned
// the automaton takes a transition:
vec < vec - Alz] // vector-matrix multiplication
return vec - fin // emit output value

Fig. 3. Monitor for the formula ¢(r|[ -

3.1 Monitor for the formula p(r|[o,c0)

Based on the previous discussion, we will assume from now on that a formula of
the form ¢(r|; contains only atomic predicates in r that are projections (i.e., m;
for some index 7). We also assume that ¢ is a projection atomic predicate.

Since r is a pure regular expression (that is, every occurrence of the ? oper-
ator is applied to atomic propositions), the monitoring of the formula p(r|j )
amounts to matching the regular expression p?-r. As shown in Fig. 3, the mon-
itoring algorithm constructs the automaton A = (Q,init, A, fin) : NFA(D) for
p? - r and simulates its execution. Let u be a finite trace and ¢ = |u| > 1 be its
length. We have that:

pp(rl0.00) s € = 1) = L3 (PP, ) 1 p(r s [i +1,10)
L= (o7 10,))

L= (init - Afu@)] -+ Afu(in)] - Afu(¢ = 1) - fin)
= Xy - fin, where
Xo = ®Mat(l,n) and Xiv1 = (Xl + init) . A[U(Z)]

For example, for the trace u = uguqus, we would have
X3 = (((0+init) - Alug] + init) - Afuq] + init) - Afus]
= init - Afug| - Aluq] - Alug] + init - Afuq] - Alug] + init - Afus).

The algorithm maintains a row vector vec that represents the configuration of
the automaton. At every step, the initialization row vector is added to vec (which
essentially means that a new thread of execution is spawned at that moment)
and then vec is multiplied with the transition matrix Afz], where z is the current
data item. The output is vec - fin € B, where fin is the finalization column vector
of the automaton. This algorithm uses space O(n) to store vec and time-per-
item O(n?) to perform a vector-matrix multiplication, where n is the number of
states of A.
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// D =BXT! is the type of input data items
// n = # states of the automaton A = (Q,init, A,fin): NFA(D) for p-r

// State for UpdateWnd,: buf, wnd, m, z, agg.

[D;a) buf < [nil;a] // input buffer: f£ill array of size a with nil items
// window -- fill array of size a with identity matrices:

[Mat(n,n); a] wnd < [Ivat(n,n); @]

Nat m <— 0 // size of new block

Mat(n,n) z < Imat(n,n) // aggregate of new block: identity matrix
Mat(n,n) agg < Imat(n,n) // initial overall aggregate: identity matrix

Function UpdateWnd, (D z):
buf[m] <— x // new item is placed on the buffer
wnd[m] < Alz] // evict oldest matrix, replace with Alz]
m < m+1 // new block enlarged
z 4 z-Alz] // update aggregate for new block: matrix multiplication
if m = a then // the new block is full

fori<—a—2to0do // convert new block to old block

| wnd[i] < wnd[i] - wnd[i + 1] // matrix multiplication

m <+ 0 // empty new block

2 4 TMat(n,n) // identity matrix
agg < wnd[m] -z // update overall aggregate: matrix multiplication

// State for Next:
Nat £ <~ 0 // counter for number of items consumed so far (up to a items)
Mat(1,n) vec <= Opat(1,n) // row vector for automaton configuration

Function Next (D z):
D old < buf[m] // oldest item gets evicted from the input buffer
UpdateWnd,(z) // update the window data structure with current item
if / < athen // no item evicted from the input buffer
{+{+1 // increment ¢
return 0 // the formula is false
else // {=a: item evicted from the input buffer
vec <— vec Llinit // re-initialize: a new automaton execution is spawned
vec <— vec - Alold] // automaton transition: vector-matrix multiplication
return vec - agg - fin // emit output value

Fig. 4. Monitor for the formula p(r|(q,-c), where a > 1.

3.2 Monitor for the formula p(r|[4,00) Where a > 1

As shown in Fig. 4, the monitoring algorithm constructs the automaton A =
(Q,init, A, fin) : NFA(D) for p? - r and simulates its execution. Let u be a finite
trace and £ = [u| be its length. If £ < a, then p(p(r|[4,00), u,{—1) = 0. If £ > a+1,
then we have:

p(p<r|[a,oo)7u7€ - 1) =

s (p(p, w, i) M p(r,u, [i + 1,z])) -
LIz (p(p? 7y, (i 12])) —
T (init CA(i)] - Afu(€ — 1 = a)] - Afu(€ — a)] - Afu(f — 1)] - ﬁn) _

=0
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(Sizs it Afu(@)] -+ Afu(t = 1 - a))) - (Alut - @)+ Afu(¢ = 1)]) - fin.

We see above that the value can be expressed as the product of a row vector
vec : Mat(1,n), a matrix agg : Mat(n,n), and the finalization column vector fin :
Mat(n, 1). Intuitively, the row vector vec is the configuration of the automaton
A after consuming all the input except for the last a data items. So, vec can
be computed by executing the automaton A using input that is delayed by a
steps. This delay of the input can be realized efficiently using a ring buffer. The
matrix agg is the product of the transition matrices for the last a data items.
This corresponds to a sliding-window computation, which means that at every
step the window over which the product is computed shifts one step to the right.

The algorithm of Fig. 4 gives an efficient implementation of the ring buffer
for computing vec and the algorithm for computing agg. The key data structures
of the algorithm are buf, wnd, agg, m, and z. The arrays buf and wnd are split
into a “new block” containing entries that correspond to the last m items and
an “old block”. Suppose that the last a input items are the following;:

[0, T1y -+ s Ta—m—1, Ta—mys - - -y La—2, La—1], Where Z,_7 is the last item.

last m input items

Then, the ring buffer buf (array of size a with elements of type D) has the
following contents:

buf:[ Ta—my-++sLa—2,La—1 7x0a$17"'7xa7m71]'

new block: last m input items old block

The window wnd (array of size a with elements of type Mat(n,n)) has the
following contents:

wnd = [A[xafm]v cey A[xa72]7 A[(Ea,ﬂ, Yo,Y1y-- s Ya—m—1 ]7 where
new block: m matrices old block: a — m matrices
yi = Alz;] - Alwipa] - Alxa—m—1] for every i =0,...,a—m —1

The key invariant for the matrix z : Mat(n,n) is that it is always the product
z2=Axg—m]|  AlTa—2] - Alxe_1]

of the transition matrices for the last m items. Finally, the matrix agg : Mat(n,n)
is the product (aggregate) of the transition matrices for the entire window:

agg = %Yo 2 = A[xO] T A[-ra—nL—l] . A[xa—m} T A[xa—l]-

When a new item x arrives, we evict the aggregate yy corresponding to the
oldest item xo and replace it by A[z]. Thus, the new block is expanded with the
additional matrix A[x] and therefore we also update the aggregates z and agg.
When the new block becomes full (i.e., m = a) then we convert it to an old block
by performing all partial products from right to left. This conversion requires
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// D =BX* is the type of input data items
// n= # states of the automaton A = (Q,init, A, fin) : NFA(D) for p-r
// s=b+1>1 is the size of the window

// State for PUpdateWndVM,: wndm, wndv, k, zm, zv, aggm, aggv.
[Mat(n,n); s] wndm < [IMat(n,n); 8] // £ill array of size s with identity matrices
[Mat(1,n); s] wndv = [Omat(1,n); 8] // £ill array of size s with zero row vectors
Nat k<0 // size of new block

Mat(n,n) 2m ¢ Tpag(nn) // matrix aggregate of new block: identity matrix
Mat(1,n) 2v ¢ Omat(1,n) // vector aggregate of new block: zero row vector
Mat(n,n) aggm < IMat(nn) // initial matrix aggregate: identity matrix
Mat(1,n) aggv < Ouvae(1,n) // initial vector aggregate: zero row vector

Function PUpdateWndVM, (D z):
wndm(k] < Alz] // evict oldest matrix, replace with A[z]
wndv[k] < init- Az] // evict oldest vector, replace with init- Alz]
k< k+1 // new block enlarged
// update matrix aggregate for new block (matrix multiplication):
zm < zm - Alx]
// update vector aggregate for new block (vector-matrix multiplication):
2v 4= zv - Alz] + init - Afz]
if £ = s then // the new block is full
for i <~ s—2to 0do // convert new block to old block
wndmli] < wndml[i] - wndm[i +1] // matrix multiplication
// vector-matrix multiplication:
wndv[i] < wndv[i] - wndm[i + 1] + wndv[i + 1]
k<0 // empty new block
2m < IMat(nn) // identity matrix

20 <= OMat(1,n) // zero rTow vector

// update overall matrix aggregate (matrix multiplication):

aggm <+ wndmlk] - zm

// update overall vector aggregate (vector-matrix multiplication):
aggv < wndvlk] - zm + zv

Function Next (T z):
PUpdateWndVM,,(x) // update the data structure
return aggv - fin // emit output value

Fig. 5. Monitor for the formula p(r|jop-

a — 1 applications of matrix multiplication, but it is performed once every a
items. So, the algorithm needs O(n?) amortized time-per-item and O(a - n?)
space to store the window of matrices.

Finally, notice that the updating of wvec is very similar to the monitor of
Fig. 3. The main difference is that the input items are delayed by a steps using
the ring buffer buf.
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3.3 Monitor for the formula p(r|[o,

As shown in Fig. 5, the monitoring algorithm constructs the automaton A =
(Q, init, A, fin) : NFA(D) for the regular expression p? - r. Let u be a finite trace
and ¢ = |u| be its length. We have:

p((rloe s £ = 1) = Ui 0m1—n) (p(po 1, 4) T p(rw, [i + 1,£ = 1))
= (o 1pyinit - Afu(@)] -+ Afu(€ = 1)]) - fin.

We see above that the value can be expressed as the product of a row vector
aggv : Mat(1,n) and the finalization column vector fin : Mat(n, 1). Intuitively, the
row vector aggv is the configuration of the automaton A (with re-initialization
at every step) after consuming the last s = b+ 1 data items. It corresponds to
a sliding-window aggregation, which means that at every step the window over
which the aggregate is computed shifts one step to the right!.

The algorithm of Fig. 5 gives an efficient implementation of the algorithm for
computing aggv. The key data structures of the algorithm are wndm (window
of matrices), wndv (window of row vectors), k, zm, zv, aggm (overall matrix
aggregate), and aggv (overall vector aggregate). The arrays wndm and wndv are
split between a “new block” containing entries that correspond to the last k items
and an “old block”. Suppose that the last s input items are the following:

[0, X1y Tg—f—1,Ts—ky- .-, Ts—2,Ts—1]|, Where x5_1 is the last item.

last k input items

The window wndm (array of size s with elements of type Mat(n,n)) has the
following contents:

wndm = [Alzs_i], ..., Alzs—2], Alzs_1], ymo,ym1, ..., yms_r_1], where
new block: k& matrices old block: s — k matrices
ym; = Alz;] - Alxiqq] - Alxs—g—1] for every i =0,...,s —k — 1

The window wndv (array of size s with elements of type Mat(1,n)) has the
following contents:

wndv = [init- Alxs—g),...,init- Alzs—1], yvo,yv1,...,YVs—k—1 |, where

new block: k row vectors old block: s — k row vectors

Yoy = Z‘;:_f_l(init . H‘;;f_lA[xj]) foreveryt =0,...,s —k—1

The key invariants for the matrix zm : Mat(n,n) (new block matrix aggregate)
and the row vector zv : Mat(1,n) (new block vector aggregate) are the following:

am = Ay Alwas] - Alzea] 20 =35, (init- [[5Z; Alz;))

i=s—k

! Notice that this aggregation is not the same as the aggregation of Fig. 4, which is
simply a product of transition matrices.
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// D =BX*"! is the type of input data items
// n= # states of the automaton A = (Q,init,A,fin) : NFA(D) for p-r

// State for UpdateWnd,: buf, wnd, m, z, agg.
// State for PUpdateWndVM; with s=b—a+12>1:
// wndm, wndv, k, zm, zv, aggm, agqov.

Nat £/ < 0 // counter for number of items consumed so far (up to a items)

Function Next (T z):
D old + buf[m] // oldest item gets evicted from the input buffer
// update the window data structure for the interval [0,a —1]:
UpdateWnd,, ()
if / < athen // no item evicted from input buffer
{+{¢+1 // increment ¢
return 0 // the formula is false
else // { =a: item evicted from the input buffer
// update the data structure for the interval [a,b]:
PUpdateWndVM,_, . (old)
return aggv - agg - fin // emit output value

Fig. 6. Monitor for the formula p(r|(4,;}, where a > 1.

Notice that zm is the product of transition matrices for last k& items. Finally,
the overall matrix aggregate aggm : Mat(n,n) and the overall vector aggregate
aggv : Mat(1,n) satisty the following invariants:

aggm = ymg - 2m
= Alxo] - Alws—p—1] - Alws—p] -+ Alxs_1]

aggu = yuvg - 2m + 2v
= (Soozgtinie - T2 Alag) ) TE20 Al) + (X520 inie 12 Aley))
= (o2 it TI2  Aley]) + (2520 yinit - T2 Afey))
= 52 (init - T2 Al ])

When a new item x arrives, we evict the aggregates ymg, yvg corresponding to
the oldest item zo and replace them by A[z] and init - A[z] respectively. Thus,
the new block is expanded and therefore we also update the aggregates zm,
zv, aggm, and aggv. When the new block becomes full (i.e., m = s) then we
convert it to an old block. This conversion requires s — 1 applications of matrix
multiplication and vector-matrix multiplication, but it is performed once every
s items. So, the algorithm needs O(n?) amortized time-per-item and O(s - n?)
space to store the windows of matrices and vectors.
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3.4 Monitor for the formula p(r|[q4,p

As shown in Fig. 6, the monitoring algorithm constructs the automaton A =
(Q, init, A, fin) : NFA(D) for the regular expression p? - r. Let u be a finite trace
and ¢ = |u| be its length. We have:

p((r|jap,u, b — 1) =
LS 0,6—1-0) (P(py s 8) 11 p(r, w, [i,€ = 1])) =
([ — (init - Afu(@)] - - - Afu(¢ — 1 — a)] - Alu(l — a)] - - - Afu(¢ — 1)] - fin) =

i=max(0,{—1—b)
(Cihatoe 1 pinit- Alu(@)] - Afu(e = 1 = a)]) - (Afu(t = a)] - Alu( — 1)]) - fin

We see above that the value can be expressed as the product of a row vector
aggv : Mat(1,n), a matrix agg : Mat(n,n), and the finalization column vector
fin : Mat(n, 1). Intuitively, the row vector aggv is the vector aggregate computed
with the algorithm of Fig. 5 (procedure PUpdateWndVM, with size s = b—a+1).
The difference here is that aggv is delayed by a steps, which can be accomplished
using a buffer of size a. The matrix agg is the product of the transition matrices
for the last a data items. This corresponds to the sliding-window computation
described in Fig. 4 (procedure UpdateWnd,,).

The online monitor of Fig. 6 includes the state needed for UpdateWnd,, (buf,
wnd, m, z, agg) and the state needed for PUpdateWndVM, with size s = b—a+1
(wndm, wndv, k, zm, zv, aggm, aggv). Suppose that the last b+ 1 input items are
the following:

[ 0y @1,y Tb—a »Tb—atls---sTo_1,Tp], Where xp is the last item.

b — a + 1 input items last a input items

From the invariants for the procedures UpdateWnd, and PUpdateWndVM,,_,
we already know that the following hold:

aggy = 0—g (init - TT)—{ Alz;])  agg = Alzp—ara] - Alwy_1] - Al
We conclude that aggv - agg - fin = Zf;g (init - H?ZiA[xj] - fin), which is the
desired output value.
The algorithm needs O(n?) amortized time-per-item and O(b - n?) space to
store the windows of matrices and vectors.

3.5 Overall Monitoring Algorithm

The algorithm proceeds in a bottom-up manner, computing the output p(¢, u)
for every subformula 1 of ¢. The base case of an atomic formula p : D — B is
trivial. The Boolean connectives negation — and disjunction V are easy to handle.
The “box” connectives |r|; and [r|; are encoded using negation the “diamond”
connectives. We discussed earlier in Sections 3.1, 3.2, 3.3 and 3.4 how to handle
the past diamond connective (r|; with 4 different algorithms for each form of the
time interval I: [0, 00), [a,00) with a > 1, [0,b], and [a,b] with a > 1. All these
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algorithms proceed with a single left-to-right pass over the input trace (and the
output tapes of the maximal strict subformulas).

The case of the future diamond connective |r); is completely symmetric to
the case (r|;. The difference is that the future connective requires a right-to-left
pass over the input.

Theorem 5. For a DMTL formula ¢ and a finite input trace u, the monitoring
problem can be solved in time O(|¢|? - £), where ¢ is the length of the trace .

Proof. The main arguments for the correctness of the overall monitoring algo-
rithm (i.e., the invariants for the data structures) have already been provided in
Sections 3.1, 3.2, 3.3 and 3.4. We have also seen for every case of the formulas
of the form ¢ = 1(r|; that the amortized complexity is O(|¢|?) per data item.
Since the amortized per-item running time is an average over the entire input
stream, the overall running time is O(|p|? - £) in the worst case. The complexity
analysis for formulas of the form ¢ = |r);¢ is analogous. The remaining cases of
Boolean connectives are straightforward. a

The space requirements of the algorithm are exponential in the size of the
specification ¢ because of the succinct representation of the time intervals I.

The polynomial complexity bound of Theorem 5 is interesting because the
DMTL formalism combines regular expressions with metric temporal connectives
that express a kind of “counting”. The operator {m,n} of counting (or bounded
repetition) in regular expressions is similar. The pattern r{m,n} describes the
repetition of r from m to n times. Bounded repetition makes regular expressions
exponentially more succinct and thus raises algorithmic challenges. See, for ex-
ample, [36] for relevant results and pointers to relevant literature. Recent works
[72,46,48,75] use automata with counters or bit vectors for efficient matching.
For some special cases of intervals I, more efficient algorithms may apply [35].

The bottom-up monitoring algorithm described in this section performs left-
to-right (resp., right-to-left) passes over the input trace for past-time (resp.,
future-time) temporal connectives. For the special case where there are only
past-time or only future-time connectives, it would be possible to perform a
single pass (similarly to [55] for lookaround assertions). In this case, it seems
that the algorithm could be conveniently described using streaming dataflow
constructs (see, e.g., [44,49,70,15,54]), as is done in [60] for MTL.

As a final remark, it may be possible to use the algorithms of this section
in the context of quantitative formalisms and query languages for streaming
data [19,32]. For example, Quantitative Regular Expressions (QREs) [59,6,9] and
associated automata-theoretic models with registers [7,8,5] could be extended
with “counting” features similar to DMTL’s connectives. QREs have been used
to express complex online detection algorithms for medical monitoring [3,4].
Extending their syntax with “counting” features may provide convenience of
expression, thus making them suitable for more applications.
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4 Related Work

The syntax of our temporal formalism DMTL is based on Dynamic Logic [67,37],
and also on the more recent work on ForSpec [10], PSL [28,1], SystemVerilog
[74,17,2], and LDL [21]. Pnueli and Zaks [64,66] consider runtime verification for
PSL using a class of transducers that they call temporal testers. Morin-Allory
and Borrione [62] use PVS to prove the correctness of monitors that are synthe-
sized from PSL specifications. Das et al. [20] present an approach for synthesizing
SystemVerilog assertions in hardware. Armoni et al. [11] use deterministic au-
tomata to monitor temporal specifications. Eisner [27] discusses the use of PSL
in dynamic and runtime verification. Boulé and Zilic [16] use an automata-based
approach for the synthesis of assertion checkers from PSL properties. Morin-
Allory et al. [63] validate several rewrite rules for PSL properties using PVS.
Javaheri et al. [43] studies the synthesis in hardware of PSL regular expressions.
Eisner and Fisman [29] discuss extensions to temporal logic that are included in
SVA and/or PSL and the semantic issues that they raise. Witharana et al. [76]
present both pre-silicon and post-silicon assertion-based approaches for hardware
validation. MDL (Metric Dynamic Logic) is considered in [14] and [68].

The monitoring of LTL properties with only future-time temporal connec-
tives is considered in [38]. The monitoring of LTL with only past-time temporal
connectives (“past-time LTL”) is studied in [39] and [40]. The main observation is
that the semantics of past-time LTL can be defined recursively so that the moni-
toring algorithm only needs to look one step backwards. Markey and Schnoebelen
[61] discuss the complexity of offline monitoring for LTL (with both future-time
and past-time temporal connectives) specifications. Finkbeiner and Sipma [34]
propose monitoring algorithms that make use of alternating automata. The on-
line monitoring of LTL with both past-time and future-time temporal connec-
tives is discussed in [71] (Section 4.2 on “Linear Temporal Logics”).

Thati and Rosu [71] study online monitoring for MTL with past-time (“since”)
and future-time (“until”) temporal connectives. For the special case of past-time
MTL, the online monitoring algorithm has better time and space complexity.
Reinbacher et al. [69] consider an online monitoring algorithm for past-time
MTL specifications and its FPGA realization. The FPGA implementation of
STL monitors is considered in [41].

Basin et al. [14] propose an online MDL monitoring algorithm over traces
with timestamped data items. In order to deal with the unavoidable unbounded
lookahead needed for temporal connectives such as Uy ), the proposed algo-
rithm produces non-standard output, which does not only consist of Boolean
values. Raszyk et al. [68] consider multi-head monitoring of MDL. A multi-head
monitor has multiple pointers, which are called reading heads, in the system
trace. The proposed MDL monitoring algorithm requires space that is expo-
nential in the formula size, but it is independent of the constants in the time
intervals I that annotate the temporal connectives.

There are various approaches for interpreting future-time connectives in the
context of online monitoring. For example, [23] assumes the availability of a pre-
dictor to interpret future connectives, and [26] considers robustness intervals:
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the tightest intervals which cover the robustness for all possible extensions of
the available trace. Reelay [73] uses only past-time connectives. The transducer-
based framework of [60] can be used to monitor temporal properties which de-
pend on bounded future input by allowing some bounded delay in the output.

While this paper focuses on qualitative (Boolean) semantics, it may be pos-
sible to generalize the techniques to quantitative interpretations of the specifi-
cation language. There is a large body of work on monitoring for quantitative
interpretations of temporal formalisms. We discuss some related works below.

Fainekos and Pappas [31] define the robustness degree of satisfaction in terms
of the distance of the signal from the set of desirable ones (or its complement).
They also suggest an under-approximation of the robustness degree which can be
effectively monitored. This is called the robustness estimate and is defined by in-
duction on MTL/STL formulas, by interpreting conjunction (resp., disjunction)
as inf (resp., sup) over the set R*> of the extended real numbers.

In [42], the authors study a generalization of the robustness degree by consid-
ering idempotent semirings of real numbers. They also propose an online mon-
itoring algorithm that uses symbolic weighted automata. While this approach
computes the precise robustness degree in the sense of [31], the construction of
the relevant automata incurs a doubly exponential blowup if one considers STL
specifications. In [18], it is observed that an extension of the robustness estimate
to bounded distributive lattices can be effectively monitored, but this is explored
for the more limited formalism of past-time MTL. The paper [56] considers an
algebraic semantics based on semirings, which is too abstract to define a metric
notion of signed distance and robustness degree. Semirings are also used in [12],
where the authors consider a spatio-temporal logic. Complete lattices are used
in [57,58], where the focus is on online monitoring over continuous-time signals.

A key ingredient for the efficient monitoring of STL is a streaming algorithm
for sliding-window maximum [25,22]. The tool Breach [24], which is used for
the falsification of temporal specifications over hybrid systems, uses the sliding-
maximum algorithm of [50].

The compositional construction of automata-based monitors from temporal
specifications has also been considered in [52,53,33].

5 Conclusion

We have studied the problem of offline monitoring for DMTL, a formalism that
combines MTL with regular expressions. We propose the first polynomial-time
algorithm for offline monitoring. More specifically, our algorithm has time com-
plexity O(m?-n), where m is the size of the DMTL formula and n is the length of
the input trace. Other approaches for monitoring that translate the specification
into a single automaton cannot achieve our polynomial time complexity bound,
since the resulting automaton can be of at least exponential size.
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