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1 Introduction

In recent years, graph signal processing has become popular in many data-driven
applications [4, 8, 15, 18,22, 23], offering a versatile framework for representing and
analyzing relationships within complex datasets. By using nodes to signify entities
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and edges to denote connections between them, graphs can model a wide array of
structures, from social networks and biological systems to transportation grids and
recommendation engines.

Consider a collection of data points {x,-};.“=1 C RY, where n is the number
of points and v is the dimension of each feature vector. One constructs a graph
G(V, E) by treating each point as a vertex v; € V,i = 1,...,n, and E an edge
connectivity representing specific relations between vertices. E can be represented
by a matrix, called an adjacency matrix. Specifically, for a graph with n nodes,
the adjacency matrix, denoted by A, is an n x n matrix where each element a;;
indicates whether there is an edge from node i to node j. The value of a;; is typically
either 1 (indicating the connection) or 0 (no connection). A generalization of the
adjacency matrix is a similarity matrix W associated with a weighted graph where
each edge is characterized by a real weight w;; representing application-specific
meanings, usually a measure of how similar nodes i and j are. This paper focuses
on an undirected and unsigned graph corresponding to a symmetric and nonnegative
weight function, i.e., w;; = w;; > 0,V1 <i, j <n.

The graph Laplacian, derived from the similarity matrix of a weighted graph,
is a fundamental tool in spectral graph theory [11]. Let the degree matrix D be
a diagonal matrix where each diagonal element is defined by d;; = > j wij- The
unnormalized graph Laplacian L, defined as L = D — W, encapsulates important
structural properties of the graph, such as connectivity and the presence of clusters.
For data science applications, it is widely recognized [4, 18] the computational and
performance advantages of deploying the symmetric normalized Laplacian, which
is defined as

Ly=I1—-D"'"?wp™1/2, (1)

The eigenvalues and eigenvectors of Ly are particularly useful, providing insights
into graph partitioning [9], clustering [4, 19, 22, 26], machine learning [8, 13], and
the behavior of diffusion processes on the graph [10].

However, it is computationally intensive to obtain the similarity matrix and
the graph Laplacian, often becoming a bottleneck in dealing with “big data.”
Specifically, the computational complexity of constructing a graph Laplacian is of
the order O (n?), making it intractable when 7 is extremely large. In addition, when
the graph Laplacian is used in certain applications [4, 23], the eigendecomposition
and/or singular value decomposition (SVD) is often required, which is in the
computational complexity of O(n?). Consequently, accelerating the construction
of the graph Laplacian together with its decompositions is essential for handling
large-scale graph-based applications.

This paper studies three methods to approximate L. The first method, called K -
nearest neighbors (KNN), involves creating a sparse approximation by computing
a small number of pairwise weight functions for each node, resulting in a sparse
matrix. The other two methods focus on low-rank approximations and are called
Nystrom method [14] and its variant using the QR decomposition [6]. Our empirical
evaluation of the methods yields the following observations:
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e Nystrom methods (the original one and its QR-based variant) provide good
approximations to the eigendecomposition of the Laplacian for the fully con-
nected graph while considerably reducing computation times since they require
computations for only a handful of samples in the dataset. This is observed in
both benchmarks and high-dimensional datasets.

e Both Nystrom-based methods are particularly advantageous when an eigen-
decomposition is required for downstream tasks, as they provide efficient
algorithms for computing accurate approximations without increasing time
demands.

e The KNN method provides an excellent approximation to the Laplacian of the
fully connected graph (given that the similarity metric is sufficiently smooth),
but requires computations over the entire dataset, which can become intractable
for datasets with a large number of nodes.

The rest of the paper is organized as follows. Section 2 provides a brief review
of the methods: KNN, Nystrom, and QR-based Nystrom. We then investigate the
performance of these approximations in Sect. 3 in terms of accuracy to approximate
the fully connected graph, computational time, and efficiency in applications of
classification, clustering, and CT reconstruction. Finally, the conclusions are given
in Sect. 4.

2 Method Review

A fully connected weighted graph can be represented via a dense weight matrix
W of dimensions n x n, where every pair of nodes is connected with an assigned
similarity value. In this work, we use the Gaussian similarity metric, where each
weight entry is defined as

—d(x-,x-)2 ..
u)u:ﬁXp!# s l,]=1,...,i’l, (2)

with d(x;, x;) being the Euclidean distance between the two samples (i.e., vertices)
x; and x;, which can be computed as dg (x;, X;) = ||X; — X ||2, i.e., the conventional
measure for calculating the distance between two points in the Euclidean space.
Note that o > 0 controls the smoothness of the similarity metric, providing more
drastic differences when its value is small and more gradual transitions when its
value is large. Note that the diagonal element w;; = 1 follows the definition in
Eq. (2), which is reasonable due to self-similarity.

When dealing with big data, e.g., hyperspectral data where the number of
pixels in the image could be in the order of 10°, the weight matrix presents
computational challenges and requires significant storage space. We review three
ways to approximate the weight matrix, namely, K -nearest neighbor [12], Nystrom
method [14], and QR-based Nystrém decomposition [6]. In the experimental
section, we compare their performance in terms of accuracy and efficiency.
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2.1 K-Nearest Neighbor Graph

The K -nearest neighbor (KNN) graph is frequently used in machine learning and
data analysis, particularly in pattern recognition, classification, and clustering tasks
[24, 27, 29]. As the name suggests, KNN constructs a graph by connecting each
node to its K -nearest neighbors based on a chosen distance metric. To do this, one
must first determine an appropriate distance metric and select a value for K.

For each data point, a distance metric is computed between this point and the
other points, followed by Eq. (2) to obtain the similarity measures between any pair.
Subsequently, weights are only stored for the K-nearest neighbors, corresponding
to the K largest similarity values. This process results in a sparse weight matrix W
with each row having at most K (< n) nonzero elements.

The naive KNN does not guarantee a symmetric matrix, since the node i being
in the top K neighbor of j does not entail j being in the top K neighbor of i. To
make the weight symmetric, we adopt a simple approach by taking the average of
the weight and its transpose, i.e., W <« %(W + WT). Another alternative is the
mutual KNN [20], which is out of the scope of this paper.

2.2 Nystrom Method

To reduce the time/space complexity, Fowlkes et al. [14] proposed the Nystrom
method to approximate the eigenvalues and eigenvectors of W € R"*" by using
only p sampled data points with p < n. Up to permutations, we adopt a block-
matrix form to represent the weight matrix W as follows:

W= [Wu le} ’ 3)
Wo1 Wa

where Wy € RP*P is the weight (similarity) matrix between the sampled data
points, Wi, = W2Tl is the one between the sampled points and the unsampled points,
and Wy, is the one between the unsampled points. The idea of Nystrom extension
is to approximate the matrix W and its corresponding normalized graph Laplacian,
L defined in Eq. (1), using W11 and Wj,, thereby avoiding the computation of the
relatively large matrix W»,. Since the matrix L involves the degree matrix, we
begin by normalizing W so that its degree matrix becomes the identity. In particular,
we define a matrix

— [w W,
W=[ ! 2, T], @)
Wa1 Wa Wi Wy,

and its row-sum vector in a block form:
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il —, [wn W, 1,
—Wln— —1 T )
d> Wor Wa W, "Wy, 1, .,

where 1; denotes the k-dimensional all one vector. Denoting s; = +/d; and sy =
+/d3, we can normalize the matrices Wy and W5 by

Wit =W @ (s1s]) W = Wa @ (s189), &)

where @ denotes the componentwise division. In the same block format as W, we
define

W= [W“ ~ W21 ~ ] (6)
W21 W21W11 W21

By definition, the degree matrix corresponding to W becomes the identity, and the
symmetric normalized graph Laplacian becomes

Ly=1-W. )

Next, we describe the SVD of w and use it to represent the symmetric
normalized graph Laplacian L. We assume W is positive definite (by choosing a
proper value of o in Eq. (2)); then it is invertible and we further denote W11/ as its

square root. We can express W in the following way:

o Wn} =T
W= VTR TAN
[W2] 1 21

:{[gﬂ} W Pus- 1/2}2{2 V2yTw 2wy, WJ]}, (8)
21

for any diagonal matrix ¥ and unitary matrix U, both of which can be determined
by the requirement that VTV = I with

Vo [‘1’11] WHI/ZUE—I/Z.
W21

We elaborate on this requirement by expressing it into
I=vTy = { —12T i [W11 WZI]} {|:£11:| W_I/ZUE 1/2}.
21

Multiplying the above equation from the left by UX!/?

1207 yields

and from the right by
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~ ~1/2 T G o—1/2
UsUT = Wi + W;,'? Wi, Wy Wy '2,

which implies that U and ¥ can be obtained by the SVD of the matrix Wi +
Wi, Wy, Wy W2, In summary, we have W = VEVT with VTV = 1.
Usmg the SVD of W, we further approximate LA, defined in Eq. (7), by

~VI-=%)V =vVAVT, ©)

with A = I — X. This is an approximation, as VV " is generally not the identity
matrix. An improvement, originally suggested in [7], is to use the decomposition
to approximate I — L, instead, i.e., L ~ I — VEZVT. We denote this alternative
approximation as Nystrom (I — L ). In Sect. 3, we compare the performance of the
two Nystrom-based alternatives to compute Zs through numerical experiments.

Overall, the Nystrom approach significantly reduces the computational costs by
computing pairwise similarities only for a subset of the dataset, resulting in the
computational complexity and storage requirements of O (n) instead of O (n?), as p
is negligible compared to n.

2.3 QR-Based Nystrom Decomposition

The Nystrém method requires Wi to be positive definite so that its square root is
well-defined in Eq. (8) to calculate the SVD of the corresponding normalized graph
Laplacian. If Wy is indefinite, Fowles et al. [14] provided a feasible solution based
on [3], but unfortunately, this approach incurs additional computational cost and is
prone to numerical errors.

Inspired by the work of [1] that used a recompression technique in [2] for
computing a fully connected graph Laplacian, Budd et al. [6] employed the
QR decomposition instead of SVD when approximating the normalized graph
Laplacian. Specifically, we consider the thin QR decomposition of

Wi
= OR, 10
|:W211| ) (10)

where VT’U and le are obtained in Eq.(5), Q € R"*? is orthonormal, and R €
RP*P is upper triangular. Then, we have the eigendecomposition:

RW'RT =ozoT, an
where & € RP*? is orthonormal and ¥ € RP*” is diagonal. We define ¥ = Q®,

which is orthonormal and adopt the following eigendecomposition of the symmetric
normalized Laplacian:
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Table 1 The computational complexity for KNN and Nystrom methods for obtaining a normal-
ized graph Laplacian of size n x n, with K as the internal parameter for KNN and p for both
Nystrom methods

Method Complexity
KNN O(Kn)
Nystrom Onp* + p?)
QR O(n*p + p*)
Li~xW( —)W = WA, (12)

Please refer to [2, 6] for more details.

Similar to the Nystrom case, the decomposition can be used to approximate / —
L, instead, i.e., Ly ~ I — WX W . We denote this alternative approximation as QR
(I — Lg). In Sect. 3, we compare the performance of the two QR-based alternatives
to compute Ly through numerical experiments.

2.4 Summary

The choice of method depends on the specific requirements of the task, such as the
size of the dataset, the desired accuracy, and the available computational resources.
KNN is a simple and intuitive method for computing the weight matrix. It is
effective for processing data with a clear local structure, but it can be sensitive to
the choice of K and less effective for large, nonuniform datasets. Both Nystrom
methods can achieve good approximations for the symmetric normalized graph
Laplacian with a relatively small number of columns, though random selection
can sometimes lead to poor performance. The QR variant of the Nystrom method
enhances numerical robustness in the approximation but comes with higher com-
putational costs compared to the standard Nystrém method. The computational
complexity of each method is provided in Table 1.

3 Numerical Experiments

We conduct numerical experiments on two benchmark datasets and one high-
dimensional dataset to evaluate the efficacy of three graph Laplacian computation
approaches, including KNN, Nystrom, and QR-based Nystrom (QR in short). The
two benchmark datasets are obtained from the Scikit-learn library [21], while a
high-dimensional dataset is the low-dose CT dataset [17] as processed for CT
reconstruction in [28].
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3.1 Benchmark Datasets

We use two benchmark datasets from Scikit-learn, namely, the two-moon and digits
datasets. For each dataset, we compute (i) a fully connected graph with Gaussian
similarity for the weight matrix W defined in Eq. (2), (ii) the symmetric normalized
Laplacian L defined in Eq. (1), and (iii) the corresponding eigendecomposition via
the eigh function of the 1inalg utilities of the NumPy Python package. This matrix
L and its eigendecomposition become the ground truth with respect to which the
performance of the methods is evaluated. We compare the performance of the three
aforementioned methods, including the variant of approximating (I — Ly). Note
that KNN computes a sparse approximation to the weight matrix W, followed by
the symmetric normalization to obtain the graph Laplacian Lg. In this case, we
again compute the corresponding eigendecomposition via the eigh function of the
linalg utilities of NumPy. In contrast, Nystrom and QR-based Nystrom directly
compute an eigendecomposition of L.

The results reported include a comparison of the eigendecomposition obtained
for each method, approximation errors, computation times, and accuracy obtained
for unsupervised (clustering) and supervised (classification) tasks using the eigende-
composition as a pre-processing step. For the eigendecomposition, we report results
obtained under different o2 values in Eq. (2) to reveal a stability issue in the original
Nystrom method. For the remaining comparisons, we examine two values of o2,
and for each value, we vary the number of neighbors (K) in KNN and the number
of sample data points (p) in Nystrém methods. For each combination of parameters,
we report mean and standard deviations over 30 repetitions of the whole processing
pipeline, consisting of the following steps:

1. Generate data.

2. Split into training (70%) and testing (30%) partitions.

3. Construct Laplacians and their eigendecompositions using the training partition.
4. Evaluate clustering accuracy (over training partition).

5. Evaluate classification accuracy (over testing partition).

Approximation Error The approximation error is computed in terms of the
relative Frobenius distance:

-~

_ IILs = LsllIF

= , (13)
' I Lsl

where Lg is the ground truth, i.e., symmetric normalized Laplacian for the fully
connected graph, and L; is the approximation, which, as a reminder, corresponds
to

« KNN: Ly = I — D'2WD'Y? | with W the similarity matrix including only
K -nearest neighbors.

e Nystrom: ZS = VAV, computed using p sampled data points.

e Nystrdm (I — Ly): ZS =1 —-VZVT computed using p sampled data points.
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* QR-based Nystrom: L= \IIA\II—r computed using p sampled data points.
* QR-based Nystrom (I — Ly): Ly=1-vsyT | computed using p sampled
data points.

Computation Time Computation times reported were obtained on a 2.4 GHz 8-
Core Intel Core 19 MacBook Pro.

Clustering Accuracy We use spectral clustering [26], i.e., K-means over the
eigenvectors of Lg, as an unsupervised graph-based method to partition data into
clusters. In each case, we only select a handful (5-25) of the top eigenvectors
(i.e., the eigenvectors associated with the 5-25 smallest eigenvalues of matrix Ly).
Since this is an unsupervised method, we do not make use of the class labels. To
evaluate the accuracy, we only use the training data (i.e., the data used to build the
graph Laplacian) and make use of the Scikit-learn [21] rand_score metric, which
computes the rand index, a similarity measure between two clusterings based on
“considering all pairs of samples and counting pairs that are assigned in the same or
different clusters in the predicted and true clusterings.”

Classification Accuracy We apply the support vector machine (SVM) technique
for classification [16] using the Scikit-learn [21] functionality. SVM classification
is a supervised learning algorithm that tries to find a maximum margin separating
hyperplane, i.e., a hyperplane that separates the classes and has the maximum
distance between data points in disparate classes. Instead of using the data points
in the original domain, we project them onto a subspace defined by the eigenvectors
of a Laplacian matrix, i.e., X = XU, where X is a matrix with rows corresponding
to the data points and U is the matrix that is composed of eigenvectors of L;. We
only use a subset of eigenvectors corresponding to the dimensionality of the data.
In this way, we can project both training and testing partitions. We also use a linear
kernel, to evaluate the usefulness of the eigendecomposition as a pre-processing
mechanism. To evaluate the accuracy, given that we know the true labels, we use
the testing data and make use of the Scikit-learn accuracy_score metric, which
computes the fraction of correctly classified samples.

3.1.1 Two-Moons Dataset

The two-moons dataset comprises a total of 2000 samples. Each sample is a point
in a 2D plane, following the arch of a moon. As shown in Fig. 1, the dataset is
divided into two classes, purple and yellow points, each containing 1000 samples.
Additionally, each class comprises 500 points where the true moon samples have
been perturbed with a 10% noise level, and another 500 points where the true moon
samples have been perturbed with a 20% noise level.
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Fig. 1 Two-moons dataset 1.25
from one random realization 1.00
of the noise distribution. Each
sample is a 2D vector
belonging to one of two
classes: either purple or > 025
yellow 0.00

0.75

0.50

-0.25

-0.50

-0.75
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Fig. 2 Eigenvalues of the
symmetric normalized
Laplacian obtained by KNN y 100

o
o
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methods (p = 250) on the Lo %w

two-moons dataset with © 0.00

02 = 0.01. Note that qCJ 0.4 ’ Ordelfeud Indiczgg
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overlap and only QR, which —— Nystrom

S 0.2
lays on top of original (KJ:\TN
Nystrom, is visible in the ‘ — Full
plots 0.0
0 200 400 600 800 1000 1200 1400
Ordered Indices
Eigendecomposition

Figure 2 compares the eigenvalues obtained by the three methods with o2 = 0.01,
K = 10 nearest neighbors for KNN and p = 250 sampled points for both
Nystrom methods. It is clear that all the eigenvalues approximate the ones for the
fully connected graph (labeled by “Full” in Fig. 2). The inset is included to remark
that Nystrom methods produce a rank p approximation to the eigendecomposition,
thereby making only p eigenvalues available for these methods. Similarly, Fig.3
compares the Nystrom and Nystrom (I — L) approximations (left) as well as QR
and QR (I — Ly) approximations (right). Both methods with two approximation
variants display a good agreement with the eigenvalues of the fully connected graph.

‘We then examine the top three eigenvectors (i.e., the eigenvectors associated with
the smallest eigenvalues) of L obtained by all the methods in Fig. 4. As the original
two-moons data is in 2D, we can plot the distribution of the training set in the x-y
plane and color each point according to the value of a specific eigenvector. The row
ordering of the input data X establishes the row correspondence to the eigenvector
components. Note that the first eigenvector (first row), in which L is related
to the normalized degree [26], remains consistent between fully connected graph
and Nystrom approximations. In contrast, it remains almost constant for KNN, as
expected, since the normalized degree should be similar for graphs with the same
number of nearest neighbors. Likewise, Fig.5 compares the Nystrom , Nystrom
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Fig. 3 Eigenvalues of the symmetric normalized Laplacian obtained by Nystrom methods (p =
250) on the two-moons dataset with @2 = 0.01. Note that the methods completely overlap and
only (I — L) variants, which lay on top of the direct L; approximation, are visible in the plots
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Fig. 4 Top three eigenvectors of the symmetric normalized Laplacian obtained by KNN (K = 10)
and Nystrom methods (p = 250) on the two-moons dataset with o2 =0.01

(I — Lg), QR, and QR (I — L) approximations, showing a good agreement among
these methods. In summary, Figs. 4 and 5 illustrate that, aside from sign differences
in the eigenvectors, all the Nystrom variants produce a good approximation to
the first eigenvectors. The KNN method, on the other hand, produces much more
localized patterns. The errors in the approximations given by Eq. (13) are 0.127935
for KNN, 0.927003 for Nystrom, 0.022307 for Nystrom (I — L), 0.926823 for
QR, and 0.021647 for QR (I — L;). From these error estimations, it is clear that the
(I — Ly) variant of the Nystrom methods produces much better approximations to
the full symmetric normalized Laplacian than the direct L, approximations.

We investigate the eigenvalues obtained by the competing methods under
different values of o2; specifically, o2 = 0.005,0.01, 0.07 and 0.1 are considered
in Fig. 6, showing that the smaller o2 is, the larger error to the fully connected
graph is made by the Nystrom approximations. For simplicity, we omit the (I — L)
approximation variants from Fig. 6, because they fall on top of the graphs for the
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Fig. 5 Top three eigenvectors of the symmetric normalized Laplacian obtained by Nystrom
methods (p = 250) with the two approximation variants on the two-moons dataset with o2 = 0.01

o2 =0.005 o?=10.01
1.0 1.0
0.8 0.8
4 4
506 506
© ©
> >
c [=4
S04 S04
i} )
—e— Nystrom —e— Nystrom
0.2 o 0.2 R
—— KNN —— KNN
0.0 — Full 0.0 — Full
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Ordered Indices Ordered Indices
0?2 =0.07 o2=0.1
1.0 ( 1.0 !
0.8 0.8
] 3
506 S 0.6
© ©
> >
c f=
S04 S04
in fin}
—e— Nystrom
02 ~#+— QR 02 ~#*- QR
—— KNN —— KNN
0.0 — Full 0.0 — Full
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Ordered Indices Ordered Indices
Fig. 6 Eigenvalues of the symmetric normalized Laplacian obtained by KNN (K = 10) and

Nystrom methods (p = 250) on the two-moons dataset under different values of o2. Note that
Nystrom methods completely overlap and only QR, which lays on top of original Nystrom, is

visible in the plots
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Table 2 Comparison of the approximations errors, i.e., E, defined in (13), made by KNN (K =
10) and Nystrom method (p = 250) on the two-moons dataset under different values of o2. NaN
indicates that the original Nystrém method fails at 62 = 0.1 when the submatrix Wi; is not
positive definite

2

o
Method 0.005 0.01 0.07 0.1
KNN 0.180776 0.127935 0.066262 0.058065
Nystrom 0.940897 0.927003 0.911308 NaN
Nystrom (I — Ly) 0.068371 0.022307 0.000006 NaN

QR 0.941037 0.926823 0.911150 0.910177
QR (I — Ly) 0.069773 0.021647 0.000008 0.000005

direct Ly approximation when plotted. On the other hand, both variants of the
original Nystrom method fail for larger values of 02, e.g., 02 = 0.1 and p = 250
used here, as the submatrix Wy is not positive definite. Note that both QR-based
variants succeed in this case. Table 2 records the approximation errors for these four
values of o2, Note that, in general, the (/ — L) variants yield better approximation
results.

Approximation Errors

The approximation errors with respect to a range of K -nearest neighbors in KNN
and p sampled data points in both Nystrém methods, using both approximation
variants, are plotted in Fig. 7 for 0> = 0.01 and o> = 0.07. The results are averaged
over 30 random trials. Since the ranges of K and p are different, the plots include
two x-axis: the top one in red corresponds to the K values for KNN, while the
bottom one in black corresponds to the p values for Nystrom methods. Figure 7
clearly illustrates that the approximation given by the Nystrom methods improves
as the number of sample points p increases. It also shows that the Nystrom method
does not converge for larger values of p, where only results for p < 250 can be
computed. Since the original Nystrom and QR mostly overlap, it is difficult to
observe the lack of convergence of the original Nystrém from these error plots.
However, the other plots, especially Fig.9, make this observation more apparent.
The approximation errors for the KNN method are generally smaller than the
Nystrom methods (for the direct L approximation) and are relatively independent
of K. The Nystrom methods that approximate (I — Lg) produce smaller errors,
compared to KNN. The performance of Nystrom methods on downstream tasks
involving the eigendecomposition is better than the KNN method as shown in Figs. 9
and 10.
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Fig. 7 Error in L approximation for KNN as a function of K (top axis) and Nystrdm methods
as a function of p, for o2 = 0.01 (left) and 62 = 0.07 (right), on the two-moons dataset.
The results are averaged over 30 random trials and computed means are reported. The standard
deviation computed is very small, with practically no-shaded region distinguishable. Note that
Nystrom methods completely overlap (up to where the original Nystrom is stable, i.e., p < 800
(left) and p < 200 (right)), and only QR results, which fall on top of the original Nystrom (same
phenomenon for the QR methods), are visible in the plots
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Fig. 8 Computation times for KNN as a function of K (top axis) and Nystrom methods as a
function of p, for 02 = 0.01 (left) and 02 = 0.07 (right), on the two-moons dataset. The results
are averaged over 30 random trials and computed means are reported. The shaded region in the
plots represents the standard deviation calculated over the random trials

Computation Time

Under the same setup as the approximation error, the computation times are plotted
in Fig. 8, where the standard deviations calculated over 30 random trials are depicted
as a shaded region. Note that the times reported for KNN include the eigendecom-
position stage, which is naturally included in the Nystrom class. Figure 8 shows
that the QR-based Nystrom is slightly faster than the original Nystrom method, and
their difference becomes larger as p or o2 increases. In addition, the KNN method,
utilizing the nearest neighbors routine from the giotto-tda Python package [25],
ensures stable computation times, remaining almost constant across the range of
K € [2,75] most probably due to its exploitation of multi-core parallelism. Figure 8
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Fig. 9 Accuracy of spectral clustering for KNN as a function of K (top axis) and Nystrom methods
as a function of p, for o2 = 0.01 (left) and 62 = 0.07 (right), on the two-moons dataset. The
results are averaged over 30 random trials and computed means are reported. The shaded region in
the plots represents the standard deviation calculated over the random trials
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Fig. 10 Accuracy of SVM classification for KNN as a function of K (top axis) and Nystrom
methods as a function of p, for 2 = 0.01 (left) and 62 = 0.07 (right), for the two-moons dataset.
The results are averaged over 30 random trials and computed means are reported. The shaded
region in the plots represents the standard deviation calculated over the random trials. Note that
Nystrom methods completely overlap (up to where the original Nystrom is stable, i.e., p < 800

(left) and p < 200 (right)), and only QR, which lays on top of original Nystrom, is visible in the
plots

reveals that there is a range where substantial computation savings can be obtained
by using the Nystrom approximation methods, without a significant sacrifice in
performance (see accuracy plots, e.g., Figs. 9 and 10).

Unsupervised Task

We report the performance of the weight approximation methods in a downstream
task: unsupervised clustering. Specifically, averaged accuracy results obtained by
spectral clustering over 30 random trials are plotted in Fig.9 for 6> = 0.01 and
o2 = 0.07. The standard deviations calculated over the random trials are depicted
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Fig. 11 Representative samples from each of the ten-class digits dataset. Each sample is an 8 x8

pattern that can be flattened to a 64-dimensional vector. The training set used has about 1250
samples

as a shaded region in the plots. Given that the eigenvectors tend to be more localized
in KNN, 25 eigenvectors are used for the spectral clustering, while only five
eigenvectors are used for Nystrom methods. It is clear in Fig. 9 that projecting on the
eigendecomposition of the Nystrom methods produces better results than KNN, but
no major improvements are observed for approximations using larger K or p. These
plots also make more evident that no results are reported for Nystrom p > 800 (left
plot) and for p > 250 (right plot) due to the invalid partial computations (i.e.,
submatrix Wi not positive definite or unstable inversion).

Supervised Task

Another downstream task given by the SVM classification is examined in Fig. 10,
showing that supervised learning contributes to a large improvement in the clas-
sification results compared to unsupervised clustering. It is also interesting to
note that although the Nystrom methods that directly approximate L yield larger
approximation errors than KNN (see Fig.7), the classification accuracy is similar
and relatively high for all the weight approximation methods, probably due to the
supervised nature of this task.

3.1.2 Digits Dataset

The digits dataset comprises a total of 1797 images of handwritten digits ranging
from O to 9. Each image is of dimension 8 x 8 and hence can be represented by a
64-dimensional array of gray-scale intensity values, vectorized from a 2D image.
This dataset is a copy of the test set of the UCI ML handwritten digits datasets.! An
illustration of the images in each class can be found in Fig. 11.

Uhttps://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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Fig. 13 Eigenvalues of the symmetric normalized Laplacian obtained by Nystrom methods (p =
250) on the digits dataset with o> = 1.0. Note that the methods completely overlap and only
(I — L) variants, which lay on top of the direct L; approximation, are visible in the plots

Eigendecomposition

Figure 12 compares the eigenvalues obtained by three methods with o2 = 1.0,
K = 10 nearest neighbors for KNN, and p = 250 sampled points for both Nystrom
methods. All the eigenvalues approximate the ones for the fully connected graph,
except that the Nystrom methods start to show a slight deviation from the ground
truth. Figure 13 compares the Nystrom, Nystrom (I — Lg), QR, and QR (I — Ly)
approximations, showing a very good agreement between them.

Following the two-moons example, we examine the top three eigenvectors of Lg
obtained by all the methods in Figs. 14 and 15. As it is difficult to directly visualize
the distribution of the original 64-dimensional data in the x-y plane, we plot each
eigenvector as a function of the row index and color each component according to
the value of such index. Again, the row ordering of the input data X establishes
the row correspondence to the eigenvector components. Similar to the two-moons
case, the first eigenvector (first row), which is related to the normalized degree [26],
is consistent between fully connected graph and all the Nystrom approximations,
while it is almost constant for KNN. Briefly, Figs. 14 and 15 illustrate that, aside
from sign differences in the eigenvectors, both Nystrom variants produce a good
approximation to the first eigenvectors, while the KNN method produces different
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Fig. 14 Eigendecomposition of the symmetric normalized Laplacian for the digits dataset for each
of the methods with 62 = 1.0, K = 10 for KNN, and p = 250 for Nystrém methods
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Fig. 15 Eigendecomposition of the symmetric normalized Laplacian obtained by Nystrom meth-
ods (p = 250) with the two approximation variants on the digits dataset with 2 = 1.0

patterns. The errors in the approximations given by Eq.(13) are 0.071614 for
KNN, 0.906414 for Nystrom, 0.031120 for Nystrom (I — Ly), 0.906467 for QR,
and 0.030089 for QR (I — Lg). Similar to the two-moons case, from these error
estimations, it is clear that the (I — L) variants of the Nystrom methods produce
much better approximations to the full symmetric normalized Laplacian than the

direct Ly approximations.

We investigate the eigenvalues obtained by the competing methods under
different values of 02; specifically, ol = 0.5, 1.0,5.3 and 10.3 are considered in
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Table 3 Comparison of the error E, (13) of the approximation methods for the digits dataset for
different o2 and for K = 10 (KNN) and p = 250 (Nystrom methods)

Method

KNN

Nystrom
Nystrom (I — Ly)
QR

QR(I — Ly)

o2

0.5

0.337764
0.925103
0.264682
0.922371
0.270744

1.0

0.071614
0.906414
0.031120
0.906467
0.030089

5.3

0.007724
0.896262
0.000317
0.896263
0.000296

10.3

0.003838
0.895787
0.000063
0.895788
0.000068

Fig. 16, showing that the smaller o' is, the larger error to the fully connected graph
is made by the Nystrom approximations. However, in contrast with the two-moons
case, for all these o2 values used, both the original Nystrom and QR-based Nystrém
succeed. Table 3 records the approximation errors for these four values of 2. Note
again that the (I — L) variants yield small approximation errors.
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Fig. 17 Error in L approximation for KNN as a function of K (top axis) and Nystrom methods
as a function of p, for 02 = 1.0 (left) and 02 = 10.3 (right), on the digits dataset. The results
are averaged over 30 random trials and computed means are reported. The standard deviation
computed is very small, with practically no-shaded region distinguishable. Note that Nystrom
methods completely overlap and only QR results, which fall on top of original Nystrom , (or
QR(I — L) which fall on top of Nystrom (I — Ly)), are visible in the plots

Approximation Errors

The approximation errors with respect to a range of K -nearest neighbors in KNN
and p sampled data points in both Nystrém methods are plotted in Fig. 17 for 62 =
1.0 and o2 = 10.3. The results are averaged over 30 random trials. Since the ranges
of K and p are different, the plots include two x-axis: the top one in red corresponds
to the K values for KNN, while the bottom one in black corresponds to the p values
for Nystrom methods. For this dataset, the Nystrom method produces valid results
across all the parameters tested. Figure 17 agrees with the observations made for the
two-moons datasets, showing again that the approximations obtained via Nystrom
methods improve as the number of sample points p increases and that the error of
the KNN method is smaller than the Nystrom methods that directly approximate L
and is relatively independent of K. Nystrom methods that approximate (I — Ly)
produce smaller errors. The performance of Nystrom methods on downstream tasks
involving the eigendecomposition is better (see Fig. 19) or matches (see Fig. 20) the
performance of the KNN method.

Computation Time

Under the same setup as the approximation error, the computation times are
plotted in Fig. 18, where the standard deviations calculated over 30 random trials
are depicted as a shaded region. As before, the times reported for KNN include
the eigendecomposition stage. Figure 18 shows that the QR-based Nystrom is
slightly faster than the original Nystrom method and that the KNN computation
(via giotto-tda routine [25]) ensures stable computation times, remaining almost
constant across the range K € [2,75]. Figure 18 reveals that there is a range
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Fig. 18 Computation times for KNN as a function of K (top axis) and Nystrom methods as a
function of p, for 0?2 = 1.0 (left) and 02 = 10.3 (right), on the digits dataset. The results are
averaged over 30 random trials and computed means are reported. The shaded region in the plots
represents the standard deviation calculated over the random trials
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Fig. 19 Accuracy of spectral clustering for KNN as a function of K (top axis) and Nystrom
methods as a function of p, for 02 = 1.0 (left) and 62 = 10.3 (right), on the digits dataset.
The results are averaged over 30 random trials and computed means are reported. The shaded
region in the plots represents the standard deviation calculated over the random trials. Note that
Nystrom methods completely overlap and practically only QR(/ — L), which falls on top of the
other Nystrom variants, is visible in the plots

when substantial computation savings can be obtained by using the Nystrom
approximation methods, without a significant sacrifice in performance (see accuracy
plots, e.g., Figs. 19 and 20).

Unsupervised Task

We report the performance of the weight approximation methods in the downstream
task of unsupervised clustering. Averaged accuracy results obtained by spectral
clustering over 30 random trials are plotted in Fig. 19 for 6> = 1.0 and 0> = 10.3.
The standard deviations calculated over the random trials are depicted as a shaded
region in the plots. Given that the eigenvectors tend to be more localized in KNN-
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Fig. 20 Accuracy of SVM classification for KNN as a function of K (top axis) and Nystrom
methods as a function of p, for o2 = 1.0 (left) and 62 = 10.3 (right), on the digits dataset. The
results are averaged over 30 random trials and computed means are reported. The shaded region
in the plots represents the standard deviation calculated over the random trials. Note that Nystrom
methods completely overlap and only QR, which lays on top of original Nystrom, is visible in the
plots

based decompositions, 25 top eigenvectors were used for the spectral clustering,
while only five top eigenvectors were used for Nystrom methods. It is clear in Fig. 19
that projecting on the eigendecomposition of the Nystrom methods produces good
results, with around 90% accuracy, and these are much better than what is obtained
with KNN. Nevertheless, in this case, major improvements in accuracy are observed
for using a larger number of neighbors K in the KNN method.

Supervised Task

We also evaluate the downstream task of SVM classification and report results in
Fig.20. As observed before, the supervised learning improves the classification
results, and again, even when the approximation to Ly computed by the Nystrom
methods has a larger error than KNN (see Fig. 17), the accuracy results are similar
and deemed satisfactory in all cases.

3.2 CT Reconstruction

To test and compare the algorithms in different downstream processing tasks, we use
a low-dose CT reconstruction problem with real image data of high dimensionality
(256 x 256). In particular, we follow the MAGIC (manifold and graph integrative
convolution network) approach [28], which unrolls a gradient descent algorithm into
a neural network, using a convolutional neural network (CNN) to preserve pixel-
level features and a graph convolutional network (GCN) to extract the nonlocal
features from a patch-based manifold space. The graph is constructed by treating
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every pixel of the CT image as a node and computing the weight using the Eq. (2)
measured by the Euclidean distance between two small patches, whose top-left
corner corresponds to the respective nodes. Then, the graph Laplacian is used in
the GCN component of MAGIC to define the spectral graph convolution [5]. Here,
the matrix composed of eigenvectors of the normalized graph Laplacian, i.e., V
in Eq. (9), is analogous to the Fourier transform in standard spatial convolution,
following the convolution theorem.

In what follows, we use three methods, KNN, Nystrom, and QR-based Nystrom,
to approximate the computation of L; for the GCN component of MAGIC and
evaluate the obtained reconstructions in terms of peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM), and computational time. In all cases, we
build the similarity matrix using a Gaussian similarity, Eq. (2), with 0> = 5.7. Note
that given the high dimensionality of the data, we do not even attempt to build a fully
connected graph for this case. We do not run Nystrom variants that approximate
(I — Ly) since we expect similar performance to the one obtained with the direct
L approximations. We follow the MAGIC work and use the same architecture and
training parameters. For a proof of concept, we enact the following simplifications:
(1) we use a reduced set of ten training images, (ii) we train for 50 epochs using a
batch size of 2, and (iii) we test the trained model on ten test images different from
the training set. We compare results for dose levels of 0.01 and 0.1 (see more details
about the dose levels in the original work [28]).

Table 4 displays performance results for the reconstructions for the two dose
levels or each of the three methods for computing L;. The mean and standard
deviations over the testing set are reported. Note that PSNR results are computed
assuming a signal range in [0, 1], not the actual dynamic range. It can be observed
that the results are very similar for all three methods, and of course, better results
are obtained for measurements using a large dose level. Specific visual results are
shown in Figs. 21 and 22 for dose levels of 0.01 and 0.1, respectively. Results for the
lower-dose level have more granular artifacts, while results for the high-dose level
are smoother (it may be necessary to zoom over the figures to note the difference).
Finally, Fig. 23 shows a comparison of computation times on a GPU cluster (one
node, eight NVIDIA GeForce RTX 2080 Ti GPUs), obtained for the three methods
when approximating the symmetric normalized Laplacian for the coarse stage of the

Table 4 CT reconstruction PSNR [dB] SSIM
f:‘f:lz a(r(lfgrll ;lrrllg%r ;;vi?ofose Dose level | Method |Mean |Std |Mean | Std
K =5 (KNN) and p = 50 0.01 KNN 35.60 1 0.38 |0.9133 | 0.0066
(Nystrom methods) Nystrom | 35.60 |0.38 |0.9118 |0.0063
QR 36.04 |0.39 |0.9252 |0.0057
0.10 KNN 41.36 10.36 | 0.9676 |0.0033

Nystrom | 41.33 | 0.37 |0.9670 | 0.0033
QR 41.13 0.38 | 0.9654 |0.0036
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Fig. 21 Visual results of CT reconstruction under 0.01 dose level. From left to right: ground truth,
KNN, Nystrom, and QR

Fig. 22 Visual results of CT reconstruction under 0.1 dose level. From left to right: ground truth,
KNN, Nystrom, and QR

MAGIC reconstruction, using different numbers of p sampled data patches for the
Nystrom methods and different numbers of K patch neighbors for the KNN method.
It is seen, consistent with results presented in previous sections, that the Nystrom
methods considerably reduce the computation time without significantly decreasing
performance. Also, note that the QR-based Nystrom method is slightly faster than
the original Nystrom method, which aligns with the observation in the synthetic
case.
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4 Conclusions

Through extensive numerical experimentation, including benchmarks as well as
high-dimensional real datasets, we confirm the advantages of the Nystrom methods
for approximating the eigendecomposition of the symmetric Laplacian. Briefly,
these methods provide accurate approximations of the eigenvalues and eigenvectors
of a fully connected graph. Additionally, significant time savings are achieved by
computing approximations based on eigendecompositions using subsets of data
samples. The direct computation of eigenvalues and eigenvectors also facilitates
the analysis of the graph structure, which is beneficial for downstream tasks such
as clustering, classification, or graph-based signal filtering. We also observe that the
QR method is slightly faster than the original Nystrom method. However, the latter
can become unstable or yield nonvalid solutions when a “large” number of data
samples or a “large” value of o2 (resulting in the weight matrix being low rank) is
used. It also seems the case that the Nystrom approximations to the fully connected
graph become worse when a “smaller” value of o2 is used. The problem, however,
is that typically there is no a priori way to determine what “small” or “large” means
in this context since it is heavily dataset-dependent. Overall, the QR-based method
seems like a good alternative for more robust and faster approximations. Moreover,
variants that approximate (I — L) have much smaller approximation errors to the
fully normalized symmetric Laplacian. It is also worth noticing that the relative
Frobenius distance E, can provide a somewhat misleading idea of the quality of
the approximations, in particular when comparing the relative errors of KNN and
Nystrom methods. Although Nystrém methods that directly approximate Ly seem
to have worse errors compared to KNN and Nystrom methods that approximate
(I — Ly) have much smaller approximation errors, their performance can be similar
in downstream tasks.
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