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1 Introduction 

In recent years, graph signal processing has become popular in many data-driven 
applications [4, 8, 15, 18, 22, 23], offering a versatile framework for representing and 
analyzing relationships within complex datasets. By using nodes to signify entities 
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and edges to denote connections between them, graphs can model a wide array of 
structures, from social networks and biological systems to transportation grids and 
recommendation engines. 

Consider a collection of data points {xi}ni=1 ⊆ R
ν
., where n is the number 

of points and ν . is the dimension of each feature vector. One constructs a graph 
G(V,E). by treating each point as a vertex vi ∈ V ., i = 1, . . . , n., and E an edge 
connectivity representing specific relations between vertices. E can be represented 
by a matrix, called an adjacency matrix. Specifically, for a graph with n nodes, 
the adjacency matrix, denoted by A,  is  an n × n. matrix where each element aij . 

indicates whether there is an edge from node i to node j..The value of aij . is typically 
either 1 (indicating the connection) or 0 (no connection). A generalization of the 
adjacency matrix is a similarity matrix W associated with a weighted graph where 
each edge is characterized by a real weight wij . representing application-specific 
meanings, usually a measure of how similar nodes i and j are. This paper focuses 
on an undirected and unsigned graph corresponding to a symmetric and nonnegative 
weight function, i.e., wij = wji ≥ 0,∀1 ≤ i, j ≤ n.. 

The graph Laplacian, derived from the similarity matrix of a weighted graph, 
is a fundamental tool in spectral graph theory [11]. Let the degree matrix D be 
a diagonal matrix where each diagonal element is defined by dii = j wij ..  The  
unnormalized graph Laplacian L, defined as L = D − W ., encapsulates important 
structural properties of the graph, such as connectivity and the presence of clusters. 
For data science applications, it is widely recognized [4, 18] the computational and 
performance advantages of deploying the symmetric normalized Laplacian, which 
is defined as 

.Ls = I − D−1/2WD−1/2 . (1) 

The eigenvalues and eigenvectors of Ls . are particularly useful, providing insights 
into graph partitioning [9], clustering [4, 19, 22, 26], machine learning [8, 13], and 
the behavior of diffusion processes on the graph [10]. 

However, it is computationally intensive to obtain the similarity matrix and 
the graph Laplacian, often becoming a bottleneck in dealing with “big data.” 
Specifically, the computational complexity of constructing a graph Laplacian is of 
the order O(n2)., making it intractable when n is extremely large. In addition, when 
the graph Laplacian is used in certain applications [4, 23], the eigendecomposition 
and/or singular value decomposition (SVD) is often required, which is in the 
computational complexity of O(n3).. Consequently, accelerating the construction 
of the graph Laplacian together with its decompositions is essential for handling 
large-scale graph-based applications. 

This paper studies three methods to approximate Ls .. The first method, called K-
nearest neighbors (KNN), involves creating a sparse approximation by computing 
a small number of pairwise weight functions for each node, resulting in a sparse 
matrix. The other two methods focus on low-rank approximations and are called 
Nyström method [14] and its variant using the QR decomposition [6]. Our empirical 
evaluation of the methods yields the following observations:
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• Nyström methods (the original one and its QR-based variant) provide good 
approximations to the eigendecomposition of the Laplacian for the fully con-
nected graph while considerably reducing computation times since they require 
computations for only a handful of samples in the dataset. This is observed in 
both benchmarks and high-dimensional datasets. 

• Both Nyström-based methods are particularly advantageous when an eigen-
decomposition is required for downstream tasks, as they provide efficient 
algorithms for computing accurate approximations without increasing time 
demands. 

• The KNN method provides an excellent approximation to the Laplacian of the 
fully connected graph (given that the similarity metric is sufficiently smooth), 
but requires computations over the entire dataset, which can become intractable 
for datasets with a large number of nodes. 

The rest of the paper is organized as follows. Section 2 provides a brief review 
of the methods: KNN, Nyström , and QR-based Nyström . We then investigate the 
performance of these approximations in Sect. 3 in terms of accuracy to approximate 
the fully connected graph, computational time, and efficiency in applications of 
classification, clustering, and CT reconstruction. Finally, the conclusions are given 
in Sect. 4. 

2 Method Review 

A fully connected weighted graph can be represented via a dense weight matrix 
W of dimensions n × n., where every pair of nodes is connected with an assigned 
similarity value. In this work, we use the Gaussian similarity metric, where each 
weight entry is defined as 

.wij = exp
−d(xi , xj )

2

2σ 2
, i, j = 1, . . . , n, (2) 

with d(xi , xj ). being the Euclidean distance between the two samples (i.e., vertices) 
xi . and xj ., which can be computed as dE(xi , xj ) xi − xj 2 ., i.e., the conventional 
measure for calculating the distance between two points in the Euclidean space. 
Note that σ > 0. controls the smoothness of the similarity metric, providing more 
drastic differences when its value is small and more gradual transitions when its 
value is large. Note that the diagonal element wii = 1. follows the definition in 
Eq. (2), which is reasonable due to self-similarity. 

When dealing with big data, e.g., hyperspectral data where the number of 
pixels in the image could be in the order of 106 ., the weight matrix presents 
computational challenges and requires significant storage space. We review three 
ways to approximate the weight matrix, namely, K-nearest neighbor [12], Nyström 
method [14], and QR-based Nyström decomposition [6]. In the experimental 
section, we compare their performance in terms of accuracy and efficiency.
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2.1 K-Nearest Neighbor Graph 

The K-nearest neighbor (KNN) graph is frequently used in machine learning and 
data analysis, particularly in pattern recognition, classification, and clustering tasks 
[24, 27, 29]. As the name suggests, KNN constructs a graph by connecting each 
node to its K-nearest neighbors based on a chosen distance metric. To do this, one 
must first determine an appropriate distance metric and select a value for K . 

For each data point, a distance metric is computed between this point and the 
other points, followed by Eq. (2) to obtain the similarity measures between any pair. 
Subsequently, weights are only stored for the K-nearest neighbors, corresponding 
to the K largest similarity values. This process results in a sparse weight matrix W 
with each row having at most K( n). nonzero elements. 

The naive KNN does not guarantee a symmetric matrix, since the node i being 
in the top K neighbor of j does not entail j being in the top K neighbor of i.. To 
make the weight symmetric, we adopt a simple approach by taking the average of 
the weight and its transpose, i.e., W ← 1

2 (W + W ).. Another alternative is the 
mutual KNN [20], which is out of the scope of this paper. 

2.2 Nyström Method 

To reduce the time/space complexity, Fowlkes et al. [14] proposed the Nyström 
method to approximate the eigenvalues and eigenvectors of W ∈ Rn×n

. by using 
only p sampled data points with p n.. Up to permutations, we adopt a block-
matrix form to represent the weight matrix W as follo ws: 

.W = W11 W12

W21 W22
, (3) 

where W11 ∈ Rp×p
. is the weight (similarity) matrix between the sampled data 

points, W12 = W21 . is the one between the sampled points and the unsampled points, 
and W22 . is the one between the unsampled points. The idea of Nyström extension 
is to approximate the matrix W and its corresponding normalized graph Laplacian, 
Ls . defined in Eq. (1),  using W11 . and W12 ., thereby avoiding the computation of the 
relatively large matrix W22.. Since the matrix Ls . involves the degree matrix, we 
begin by normalizing W so that its degree matrix becomes the identity. In particular, 
we define a m atrix 

.W = W11 W21
W21 W21W

−1
11 W21

, (4) 

and its row-sum vector in a block form:
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. 
d1
d2

= W1n = W11 W21
W21 W21W

−1
11 W21

1p

1n−p
,

where 1k . denotes the k-dimensional all one vector. Denoting s1 = √
d1 . and s2 =√

d2 ., we can normalize the matrices W11 . and W21 . by 

.W11 = W11 (s1s1 ) W21 = W21 (s1s2 ), (5) 

where . denotes the componentwise division. In the same block format as W,. we 
define 

.W = W11 W21
W21 W21W

−1
11 W21

. (6) 

By definition, the degree matrix corresponding to W . becomes the identity, and the 
symmetric normalized graph Laplacian becomes 

.Ls = I − W. (7) 

Next, we describe the SVD of W . and use it to represent the symmetric 
normalized graph Laplacian Ls..We assume W11 . is positive definite (by choosing a 
proper value of σ . in Eq. (2)); then it is invertible and we further denote W

1/2
11 . as its 

square root. We can express W . in the following way: 

. W = W11

W21
W−1

11 [W11 W21]

= W11

W21
W

−1/2
11

−1/2 −1/2U W
−1/2
11 [W11 W21] , (8) 

for any diagonal matrix . and unitary matrix U,. both of which can be determined 
by the requirement that V V = I .with 

. V := W11

W21
W

−1/2
11

−1/2.

We elaborate on this requirement by expressing it into 

. I = V V = −1/2U W
−1/2
11 [W11 W21] W11

W21
W

−1/2
11

−1/2 .

Multiplying the above equation from the left by 1/2
. and from the right by 

1/2U . yields
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. = W11 + W
−1/2
11 W21 W21 W

−1/2
11 ,

which implies that U and . can be obtained by the SVD of the matrix W11 +
W

−1/2
11 W21W21W

−1/2
11 .. In summary, we have W = .with V V = I.. 

Using the SVD of W ., we further approximate Ls ., defined in Eq. (7),  b  y  

.Ls ≈ V (I − = , (9) 

with = I − .. This is an approximation, as V V . is generally not the identity 
matrix. An improvement, originally suggested in [7], is to use the decomposition 
to approximate I − Ls . instead, i.e., Ls ≈ I − .. We denote this alternative 
approximation as Nyström (I − Ls .). In Sect. 3, we compare the performance of the 
two Nyström-based alternatives to compute Ls . through numerical experiments. 

Overall, the Nyström approach significantly reduces the computational costs by 
computing pairwise similarities only for a subset of the dataset, resulting in the 
computational complexity and storage requirements of O(n). instead of O(n2).,  as  p 
is negligible compared to n. 

2.3 QR-Based Nyström Decomposition 

The Nyström method requires W11 . to be positive definite so that its square root is 
well-defined in Eq. (8) to calculate the SVD of the corresponding normalized graph 
Laplacian. If W11 . is indefinite, Fowles et al. [14] provided a feasible solution based 
on [3], but unfortunately, this approach incurs additional computational cost and is 
prone to numerical errors. 

Inspired by the work of [1] that used a recompression technique in [2]  for  
computing a fully connected graph Laplacian, Budd et al. [6] employed the 
QR decomposition instead of SVD when approximating the normalized graph 
Laplacian. Specifically, we consider the thin QR decomposition of 

.
W11

W21
= QR, (10) 

where W11 . and W12 . are obtained in Eq. (5), Q ∈ Rn×p
. is orthonormal, and R ∈

R
p×p

. is upper triangular. Then, we have the eigendecomposition: 

.RW−1
11 R = , (11) 

where ∈ Rp×p
. is orthonormal and ∈ Rp×p

. is diagonal. We define = ., 
which is orthonormal and adopt the following eigendecomposition of the symmetric 
normalized Laplacian:
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Table 1 The computational complexity for KNN and Nyström methods for obtaining a normal-
ized graph Laplacian of size n × n., with K as the internal parameter for KNN and p for both 
Nyström methods 

Method Complexity 

KNN O(Kn). 

Nyström O(np2 + p3). 

QR O(n2p + p3). 

.Ls ≈ − = . (12) 

Please refer to [2, 6] for more details. 
Similar to the Nyström case, the decomposition can be used to approximate I −

Ls . instead, i.e., Ls ≈ I − .. We denote this alternative approximation as QR 
(I − Ls .). In Sect. 3, we compare the performance of the two QR-based alternatives 
to compute Ls . through numerical experiments. 

2.4 Summary 

The choice of method depends on the specific requirements of the task, such as the 
size of the dataset, the desired accuracy, and the available computational resources. 
KNN is a simple and intuitive method for computing the weight matrix. It is 
effective for processing data with a clear local structure, but it can be sensitive to 
the choice of K and less effective for large, nonuniform datasets. Both Nyström 
methods can achieve good approximations for the symmetric normalized graph 
Laplacian with a relatively small number of columns, though random selection 
can sometimes lead to poor performance. The QR variant of the Nyström method 
enhances numerical robustness in the approximation but comes with higher com-
putational costs compared to the standard Nyström method. The computational 
complexity of each method is provided in Table 1. 

3 Numerical Experiments 

We conduct numerical experiments on two benchmark datasets and one high-
dimensional dataset to evaluate the efficacy of three graph Laplacian computation 
approaches, including KNN, Nyström, and QR-based Nyström (QR in short). The 
two benchmark datasets are obtained from the Scikit-learn library [21], while a 
high-dimensional dataset is the low-dose CT dataset [17] as processed for CT 
reconstruction in [28].
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3.1 Benchmark Datasets 

We use two benchmark datasets from Scikit-learn, namely, the two-moon and digits 
datasets. For each dataset, we compute (i) a fully connected graph with Gaussian 
similarity for the weight matrix W defined in Eq. (2), (ii) the symmetric normalized 
Laplacian Ls . defined in Eq. (1), and (iii) the corresponding eigendecomposition via 
the eigh function of the linalg utilities of the NumPy Python package. This matrix 
Ls . and its eigendecomposition become the ground truth with respect to which the 
performance of the methods is evaluated. We compare the performance of the three 
aforementioned methods, including the variant of approximating (I − Ls)..  Note  
that KNN computes a sparse approximation to the weight matrix W,. followed by 
the symmetric normalization to obtain the graph Laplacian Ls .. In this case, we 
again compute the corresponding eigendecomposition via the eigh function of the 
linalg utilities of NumPy. In contrast, Nyström and QR-based Nyström directly 
compute an eigendecomposition of Ls .. 

The results reported include a comparison of the eigendecomposition obtained 
for each method, approximation errors, computation times, and accuracy obtained 
for unsupervised (clustering) and supervised (classification) tasks using the eigende-
composition as a pre-processing step. For the eigendecomposition, we report results 
obtained under different σ 2

. values in Eq. (2) to reveal a stability issue in the original 
Nyström method. For the remaining comparisons, we examine two values of σ 2

., 
and for each value, we vary the number of neighbors (K). in KNN and the number 
of sample data points (p). in Nyström methods. For each combination of parameters, 
we report mean and standard deviations over 30 repetitions of the whole processing 
pipeline, consisting of the following steps: 

1. Generate data. 
2. Split into training (70%) and testing (30%) partitions. 
3. Construct Laplacians and their eigendecompositions using the training partition. 
4. Evaluate clustering accuracy (over training partition). 
5. Evaluate classification accuracy (over testing partition). 

Approximation Error The approximation error is computed in terms of the 
relative Frobenius distance: 

.Er

Ls − Ls F

Ls F

, (13) 

where Ls . is the ground truth, i.e., symmetric normalized Laplacian for the fully 
connected graph, and Ls . is the approximation, which, as a reminder, corresponds 
to 

• KNN: Ls = I − D1/2WD1/2
., with W . the similarity matrix including only 

K-nearest neighbors. 
• Nyström: Ls = ., computed using p sampled data points. 
• Nyström (I − Ls).: Ls = I − ., computed using p sampled data points.
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• QR-based Nyström: Ls = ., computed using p sampled data points. 
• QR-based Nyström (I − Ls).: Ls = I − ., computed using p sampled 

data points. 

Computation Time Computation times reported were obtained on a 2.4 GHz 8-
Core Intel Core i9 MacBook Pro. 

Clustering Accuracy We use spectral clustering [26], i.e., K-means over the 
eigenvectors of Ls ., as an unsupervised graph-based method to partition data into 
clusters. In each case, we only select a handful (5–25) of the top eigenvectors 
(i.e., the eigenvectors associated with the 5–25 smallest eigenvalues of matrix Ls .). 
Since this is an unsupervised method, we do not make use of the class labels. To 
evaluate the accuracy, we only use the training data (i.e., the data used to build the 
graph Laplacian) and make use of the Scikit-learn [21] rand_score metric, which 
computes the rand index, a similarity measure between two clusterings based on 
“considering all pairs of samples and counting pairs that are assigned in the same or 
different clusters in the predicted and true clusterings. ” 

Classification Accuracy We apply the support vector machine (SVM) technique 
for classification [16] using the Scikit-learn [21] functionality. SVM classification 
is a supervised learning algorithm that tries to find a maximum margin separating 
hyperplane, i.e., a hyperplane that separates the classes and has the maximum 
distance between data points in disparate classes. Instead of using the data points 
in the original domain, we project them onto a subspace defined by the eigenvectors 
of a Laplacian matrix, i.e.,X = XU ,.where X is a matrix with rows corresponding 
to the data points and U is the matrix that is composed of eigenvectors of Ls ..  We  
only use a subset of eigenvectors corresponding to the dimensionality of the data. 
In this way, we can project both training and testing partitions. We also use a linear 
kernel, to evaluate the usefulness of the eigendecomposition as a pre-processing 
mechanism. To evaluate the accuracy, given that we know the true labels, we use 
the testing data and make use of the Scikit-learn accuracy_score metric, which 
computes the fraction of correctly classified samples. 

3.1.1 Two -Moons Dataset 

The two-moons dataset comprises a total of 2000 samples. Each sample is a point 
in a 2D plane, following the arch of a moon. As shown in Fig. 1, the dataset is 
divided into two classes, purple and yellow points, each containing 1000 samples. 
Additionally, each class comprises 500 points where the true moon samples have 
been perturbed with a 10% noise level, and another 500 points where the true moon 
samples have been perturbed with a 20% noise level.
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Fig. 1 Two-moons dataset 
from one random realization 
of the noise distribution. Each 
sample is a 2D vector 
belonging to one of two 
classes: either purple or 
yellow 

Fig. 2 Eigenvalues of the 
symmetric normalized 
Laplacian obtained by KNN 
(K = 10). and Nyström 
methods (p = 250). on the 
two-moons dataset with 
σ 2 = 0.01.. Note that 
Nyström methods completely 
overlap and only QR, which 
lays on top of original 
Nyström, is visible in the 
plots 

Eigendecomposition 

Figure 2 compares the eigenvalues obtained by the three methods with σ 2 = 0.01,. 
K = 10. nearest neighbors for KNN and p = 250. sampled points for both 
Nyström methods. It is clear that all the eigenvalues approximate the ones for the 
fully connected graph (labeled by “Full” in Fig. 2). The inset is included to remark 
that Nyström methods produce a rank p approximation to the eigendecomposition, 
thereby making only p eigenvalues available for these methods. Similarly, Fig. 3 
compares the Nyström and Nyström (I − Ls). approximations (left) as well as QR 
and QR (I − Ls). approximations (right). Both methods with two approximation 
variants display a good agreement with the eigenvalues of the fully connected graph. 

We then examine the top three eigenvectors (i.e., the eigenvectors associated with 
the smallest eigenvalues) of Ls . obtained by all the methods in Fig. 4. As the original 
two-moons data is in 2D, we can plot the distribution of the training set in the x-y 
plane and color each point according to the value of a specific eigenvector. The row 
ordering of the input data X establishes the row correspondence to the eigenvector 
components. Note that the first eigenvector (first row), in which Ls . is related 
to the normalized degree [26], remains consistent between fully connected graph 
and Nyström approximations. In contrast, it remains almost constant for KNN, as 
expected, since the normalized degree should be similar for graphs with the same 
number of nearest neighbors. Likewise, Fig. 5 compares the Nyström , Nyström
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Fig. 3 Eigenvalues of the symmetric normalized Laplacian obtained by Nyström methods (p =
250). on the two-moons dataset with σ 2 = 0.01.. Note that the methods completely overlap and 
only (I − Ls). variants, which lay on top of the direct Ls . approximation, are visible in the plots 

Fig. 4 Top three eigenvectors of the symmetric normalized Laplacian obtained by KNN (K = 10). 
and Nyström methods (p = 250). on the two-moons dataset with σ 2 = 0.01. 

(I − Ls)., QR, and QR (I − Ls). approximations, showing a good agreement among 
these methods. In summary, Figs. 4 and 5 illustrate that, aside from sign differences 
in the eigenvectors, all the Nyström variants produce a good approximation to 
the first eigenvectors. The KNN method, on the other hand, produces much more 
localized patterns. The errors in the approximations given by Eq. (13) are 0.127935 
for KNN, 0.927003 for Nyström , 0.022307 for Nyström (I − Ls)., 0.926823 for 
QR, and 0.021647 for QR (I − Ls).. From these error estimations, it is clear that the 
(I − Ls). variant of the Nyström methods produces much better approximations to 
the full symmetric normalized Laplacian than the direct Ls . approximations. 

We investigate the eigenvalues obtained by the competing methods under 
different values of σ 2

.; specifically, σ 2 = 0.005, 0.01, 0.07. and 0.1. are considered 
in Fig. 6, showing that the smaller σ 2

. is, the larger error to the fully connected 
graph is made by the Nyström approximations. For simplicity, we omit the (I −Ls). 

approximation variants from Fig. 6, because they fall on top of the graphs for the
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Fig. 5 Top three eigenvectors of the symmetric normalized Laplacian obtained by Nyström 
methods (p = 250).with the two approximation variants on the two-moons dataset with σ 2 = 0.01. 

2 
= 0.005 

2 
=  0.01  

2 
=  0.07  

2 
=  0.1  

Fig. 6 Eigenvalues of the symmetric normalized Laplacian obtained by KNN (K = 10). and 
Nyström methods (p = 250). on the two-moons dataset under different values of σ 2 .. Note that 
Nyström methods completely overlap and only QR, which lays on top of original Nyström , is 
visible in the plots
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Table 2 Comparison of the approximations errors, i.e., Er . defined in (13), made by KNN ( K =
10.) and Nyström method (p = 250.) on the two-moons dataset under different values of σ 2 ..  NaN  
indicates that the original Nyström method fails at σ 2 = 0.1. when the submatrix W11 . is not 
positive definite 

σ 2 . 

Method 0.005 0.01 0.07 0.1 

KNN 0.180776 0.127935 0.066262 0.058065 

Nyström 0.940897 0.927003 0.911308 NaN 

Nyström (I − Ls). 0.068371 0.022307 0.000006 NaN 

QR 0.941037 0.926823 0.911150 0.910177 

QR (I − Ls). 0.069773 0.021647 0.000008 0.000005 

direct Ls . approximation when plotted. On the other hand, both variants of the 
original Nyström method fail for larger values of σ 2,. e.g., σ 2 = 0.1. and p = 250. 
used here, as the submatrix W11 . is not positive definite. Note that both QR-based 
variants succeed in this case. Table 2 records the approximation errors for these four 
values of σ 2

.. Note that, in general, the (I − Ls). variants yield better approximation 
results. 

Approximation Errors 

The approximation errors with respect to a range of K-nearest neighbors in KNN 
and p sampled data points in both Nyström methods, using both approximation 
variants, are plotted in F ig. 7 for σ 2 = 0.01. and σ 2 = 0.07.. The results are averaged 
over 30 random trials. Since the ranges of K and p are different, the plots include 
two x-axis: the top one in red corresponds to the K values for KNN, while the 
bottom one in black corresponds to the p values for Nyström methods. Figure 7 
clearly illustrates that the approximation given by the Nyström methods improves 
as the number of sample points p increases. It also shows that the Nyström method 
does not converge for larger values of p, where only results for p ≤ 250. can be 
computed. Since the original Nyström and QR mostly overlap, it is difficult to 
observe the lack of convergence of the original Nyström from these error plots. 
However, the other plots, especially Fig. 9, make this observation more apparent. 
The approximation errors for the KNN method are generally smaller than the 
Nyström methods (for the direct Ls . approximation) and are relatively independent 
of K . The Nyström methods that approximate (I − Ls). produce smaller errors, 
compared to KNN. The performance of Nyström methods on downstream tasks 
involving the eigendecomposition is better than the KNN method as shown in Figs. 9 
and 10.
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Fig. 7 Error in Ls . approximation for KNN as a function of K (top axis) and Nyström methods 
as a function of p,  for σ 2 = 0.01. (left) and σ 2 = 0.07. (right), on the two-moons dataset. 
The results are averaged over 30 random trials and computed means are reported. The standard 
deviation computed is very small, with practically no-shaded region distinguishable. Note that 
Nyström methods completely overlap (up to where the original Nyström is stable, i.e., p ≤ 800. 
(left) and p ≤ 200. (right)), and only QR results, which fall on top of the original Nyström (same 
phenomenon for the QR methods), are visible in the plots 

Fig. 8 Computation times for KNN as a function of K (top axis) and Nyström methods as a 
function of p,  for σ 2 = 0.01. (left) and σ 2 = 0.07. (right), on the two-moons dataset. The results 
are averaged over 30 random trials and computed means are reported. The shaded region in the 
plots represents the standard deviation calculated over the random trials 

Computation Time 

Under the same setup as the approximation error, the computation times are plotted 
in Fig. 8, where the standard deviations calculated over 30 random trials are depicted 
as a shaded region. Note that the times reported for KNN include the eigendecom-
position stage, which is naturally included in the Nyström class. Figure 8 shows 
that the QR-based Nyström is slightly faster than the original Nyström method, and 
their difference becomes larger as p or σ 2

. increases. In addition, the KNN method, 
utilizing the nearest neighbors routine from the giotto-tda Python package [25], 
ensures stable computation times, remaining almost constant across the range of 
K ∈ [2, 75].most probably due to its exploitation of multi-core parallelism. Figure 8
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Fig. 9 Accuracy of spectral clustering for KNN as a function of K (top axis) and Nyströmmethods 
as a function of p,  for σ 2 = 0.01. (left) and σ 2 = 0.07. (right), on the two-moons dataset. The 
results are averaged over 30 random trials and computed means are reported. The shaded region in 
the plots represents the standard deviation calculated over the random trials 

Fig. 10 Accuracy of SVM classification for KNN as a function of K (top axis) and Nyström 
methods as a function of p,  for σ 2 = 0.01. (left) and σ 2 = 0.07. (right), for the two-moons dataset. 
The results are averaged over 30 random trials and computed means are reported. The shaded 
region in the plots represents the standard deviation calculated over the random trials. Note that 
Nyström methods completely overlap (up to where the original Nyström is stable, i.e., p ≤ 800. 
(left) and p ≤ 200. (right)), and only QR, which lays on top of original Nyström, is visible in the 
plots 

reveals that there is a range where substantial computation savings can be obtained 
by using the Nyström approximation methods, without a significant sacrifice in 
performance (see accuracy plots, e.g., Figs. 9 and 10). 

Unsupervised Task 

We report the performance of the weight approximation methods in a downstream 
task: unsupervised clustering. Specifically, averaged accuracy results obtained by 
spectral clustering over 30 random trials are plotted in Fig. 9 for σ 2 = 0.01. and 
σ 2 = 0.07.. The standard deviations calculated over the random trials are depicted
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Fig. 11 Representative samples from each of the ten-class digits dataset. Each sample is an 8 ×.8 
pattern that can be flattened to a 64-dimensional vector. The training set used has about 1250 
samples 

as a shaded region in the plots. Given that the eigenvectors tend to be more localized 
in KNN, 25 eigenvectors are used for the spectral clustering, while only five 
eigenvectors are used for Nyström methods. It is clear in Fig. 9 that projecting on the 
eigendecomposition of the Nyström methods produces better results than KNN, but 
no major improvements are observed for approximations using larger K or p. These 
plots also make more evident that no results are reported for Nyström p > 800. (left 
plot) and for p > 250. (right plot) due to the invalid partial computations (i.e., 
submatrix W11 . not positive definite or unstable inversion). 

Supervised Task 

Another downstream task given by the SVM classification is examined in Fig. 10, 
showing that supervised learning contributes to a large improvement in the clas-
sification results compared to unsupervised clustering. It is also interesting to 
note that although the Nyström methods that directly approximate Ls . yield larger 
approximation errors than KNN (see Fig. 7), the classification accuracy is similar 
and relatively high for all the weight approximation methods, probably due to the 
supervised nature of this task. 

3.1.2 Digits Dataset 

The digits dataset comprises a total of 1797 images of handwritten digits ranging 
from 0 to 9. Each image is of dimension 8 × 8. and hence can be represented by a 
64-dimensional array of gray-scale intensity values, vectorized from a 2D image. 
This dataset is a copy of the test set of the UCI ML handwritten digits datasets.1 An 
illustration of the images in each class can be found in Fig. 11.

1 https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits 

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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Fig. 12 Eigenvalues of the 
symmetric normalized 
Laplacian for the digits 
dataset for each of the 
methods with σ 2 = 1.0., 
K = 10. for KNN, and 
p = 250. for Nyström 
methods. Note that Nyström 
methods completely overlap 
and  only  QR,  which  lays  on  
top of original Nyström, is 
visible i n the plots 

Fig. 13 Eigenvalues of the symmetric normalized Laplacian obtained by Nyström methods (p =
250). on the digits dataset with σ 2 = 1.0.. Note that the methods completely overlap and only 
(I − Ls). variants, which lay on top of the direct Ls . approximation, are visible in the plots 

Eigendecomposition 

Figure 12 compares the eigenvalues obtained by three methods with σ 2 = 1.0., 
K = 10. nearest neighbors for KNN, and p = 250. sampled points for both Nyström 
methods. All the eigenvalues approximate the ones for the fully connected graph, 
except that the Nyström methods start to show a slight deviation from the ground 
truth. Figure 13 compares the Nyström, Nyström (I − Ls)., QR, and QR (I − Ls). 

approximations, showing a very good agreement between them. 
Following the two-moons example, we examine the top three eigenvectors of Ls . 

obtained by all the methods in Figs. 14 and 15. As it is difficult to directly visualize 
the distribution of the original 64-dimensional data in the x-y plane, we plot each 
eigenvector as a function of the row index and color each component according to 
the value of such index. Again, the row ordering of the input data X establishes 
the row correspondence to the eigenvector components. Similar to the two-moons 
case, the first eigenvector (first row), which is related to the normalized degree [26], 
is consistent between fully connected graph and all the Nyström approximations, 
while it is almost constant for KNN. Briefly, Figs. 14 and 15 illustrate that, aside 
from sign differences in the eigenvectors, both Nyström variants produce a good 
approximation to the first eigenvectors, while the KNN method produces different
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Fig. 14 Eigendecomposition of the symmetric normalized Laplacian for the digits dataset for each 
of the methods with σ 2 = 1.0., K = 10. for KNN, and p = 250. for Nyström methods 

Fig. 15 Eigendecomposition of the symmetric normalized Laplacian obtained by Nyström meth-
ods (p = 250).with the two approximation variants on the digits dataset with σ 2 = 1.0. 

patterns. The errors in the approximations given by Eq. (13) are 0.071614 for 
KNN, 0.906414 for Nyström , 0.031120 for Nyström (I − Ls)., 0.906467 for QR, 
and 0.030089 for QR (I − Ls).. Similar to the two-moons case, from these error 
estimations, it is clear that the (I − Ls). variants of the Nyström methods produce 
much better approximations to the full symmetric normalized Laplacian than the 
direct Ls . approximations. 

We investigate the eigenvalues obtained by the competing methods under 
different values of σ 2

.; specifically, σ 2 = 0.5, 1.0, 5.3. and 10.3. are considered in
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2 
=  0.5  

2 
=  1.0  

2 
=  5.3  

2 
=  10.3  

Fig. 16 Eigenvalues of the symmetric normalized Laplacian obtained by KNN (K = 10). and 
Nyström methods (p = 250). on the digits dataset under different values of σ 2 .. Note that Nyström 
methods completely overlap and only QR, which lays on top of original Nyström, is visible in the 
plots 

Table 3 Comparison of the error Er . (13) of the approximation methods for the digits dataset for 
different σ 2 . and for K = 10. (KNN) and p = 250. (Nyström methods) 

σ 2 . 

Method 0.5 1.0 5.3 10.3 

KNN 0.337764 0.071614 0.007724 0.003838 

Nyström 0.925103 0.906414 0.896262 0.895787 

Nyström (I − Ls). 0.264682 0.031120 0.000317 0.000063 

QR 0.922371 0.906467 0.896263 0.895788 

QR(I − Ls). 0.270744 0.030089 0.000296 0.000068 

Fig. 16, showing that the smaller σ 2
. is, the larger error to the fully connected graph 

is made by the Nyström approximations. However, in contrast with the two-moons 
case, for all these σ 2

. values used, both the original Nyström and QR-based Nyström 
succeed. Table 3 records the approximation errors for these four values of σ 2

..  Note  
again that the (I − Ls). variants yield small approximation errors.
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Fig. 17 Error in Ls . approximation for KNN as a function of K (top axis) and Nyström methods 
as a function of p,  for σ 2 = 1.0. (left) and σ 2 = 10.3. (right), on the digits dataset. The results 
are averaged over 30 random trials and computed means are reported. The standard deviation 
computed is very small, with practically no-shaded region distinguishable. Note that Nyström 
methods completely overlap and only QR results, which fall on top of original Nyström , (or 
QR(I − Ls).which  fall  on  top  of  Nyström (I − Ls).), are visible in the plots 

Approximation Errors 

The approximation errors with respect to a range of K-nearest neighbors in KNN 
and p sampled data points in both Nyström methods are plotted in F ig. 17 for σ 2 =
1.0. and σ 2 = 10.3.. The results are averaged over 30 random trials. Since the ranges 
of K and p are different, the plots include two x-axis: the top one in red corresponds 
to the K values for KNN, while the bottom one in black corresponds to the p values 
for Nyström methods. For this dataset, the Nyström method produces valid results 
across all the parameters tested. Figure 17 agrees with the observations made for the 
two-moons datasets, showing again that the approximations obtained via Nyström 
methods improve as the number of sample points p increases and that the error of 
the KNN method is smaller than the Nyström methods that directly approximate Ls . 

and is relatively independent of K . Nyström methods that approximate (I − Ls). 

produce smaller errors. The performance of Nyström methods on downstream tasks 
involving the eigendecomposition is better (see Fig. 19) or matches (see Fig. 20)  the  
performance of the KNN method. 

Computation Time 

Under the same setup as the approximation error, the computation times are 
plotted in Fig. 18, where the standard deviations calculated over 30 random trials 
are depicted as a shaded region. As before, the times reported for KNN include 
the eigendecomposition stage. Figure 18 shows that the QR-based Nyström is 
slightly faster than the original Nyström method and that the KNN computation 
(via giotto-tda routine [25]) ensures stable computation times, remaining almost 
constant across the range K ∈ [2, 75].. Figure 18 reveals that there is a range
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Fig. 18 Computation times for KNN as a function of K (top axis) and Nyström methods as a 
function of p,  for σ 2 = 1.0. (left) and σ 2 = 10.3. (right), on the digits dataset. The results are 
averaged over 30 random trials and computed means are reported. The shaded region in the plots 
represents the standard deviation calculated over the random trials 

Fig. 19 Accuracy of spectral clustering for KNN as a function of K (top axis) and Nyström 
methods as a function of p,  for σ 2 = 1.0. (left) and σ 2 = 10.3. (right), on the digits dataset. 
The results are averaged over 30 random trials and computed means are reported. The shaded 
region in the plots represents the standard deviation calculated over the random trials. Note that 
Nyström methods completely overlap and practically only QR(I − Ls)., which falls on top of the 
other Nyström variants, is visible in the plots 

when substantial computation savings can be obtained by using the Nyström 
approximation methods, without a significant sacrifice in performance (see accuracy 
plots, e.g., Figs. 19 and 20). 

Unsupervised Task 

We report the performance of the weight approximation methods in the downstream 
task of unsupervised clustering. Averaged accuracy results obtained by spectral 
clustering over 30 random trials are plotted in Fig. 19 for σ 2 = 1.0. and σ 2 = 10.3.. 
The standard deviations calculated over the random trials are depicted as a shaded 
region in the plots. Given that the eigenvectors tend to be more localized in KNN-
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Fig. 20 Accuracy of SVM classification for KNN as a function of K (top axis) and Nyström 
methods as a function of p,  for σ 2 = 1.0. (left) and σ 2 = 10.3. (right), on the digits dataset. The 
results are averaged over 30 random trials and computed means are reported. The shaded region 
in the plots represents the standard deviation calculated over the random trials. Note that Nyström 
methods completely overlap and only QR, which lays on top of original Nyström, is visible in the 
plots 

based decompositions, 25 top eigenvectors were used for the spectral clustering, 
while only five top eigenvectors were used for Nyströmmethods. It is clear in Fig. 19 
that projecting on the eigendecomposition of the Nyström methods produces good 
results, with around 90% accuracy, and these are much better than what is obtained 
with KNN. Nevertheless, in this case, major improvements in accuracy are observed 
for using a larger number of neighbors K in the KNN method. 

Supervised Task 

We also evaluate the downstream task of SVM classification and report results in 
Fig. 20. As observed before, the supervised learning improves the classification 
results, and again, even when the approximation to Ls . computed by the Nyström 
methods has a larger error than KNN (see Fig. 17), the accuracy results are similar 
and deemed satisfactory in all cases. 

3.2 CT Reconstruction 

To test and compare the algorithms in different downstream processing tasks, we use 
a low-dose CT reconstruction problem with real image data of high dimensionality 
(256 ×. 256). In particular, we follow the MAGIC (manifold and graph integrative 
convolution network) approach [28], which unrolls a gradient descent algorithm into 
a neural network, using a convolutional neural network (CNN) to preserve pixel-
level features and a graph convolutional network (GCN) to extract the nonlocal 
features from a patch-based manifold space. The graph is constructed by treating
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every pixel of the CT image as a node and computing the weight using the Eq. (2) 
measured by the Euclidean distance between two small patches, whose top-left 
corner corresponds to the respective nodes. Then, the graph Laplacian is used in 
the GCN component of MAGIC to define the spectral graph convolution [5]. Here, 
the matrix composed of eigenvectors of the normalized graph Laplacian, i.e., V 
in Eq. (9), is analogous to the Fourier transform in standard spatial convolution, 
following the convolution theorem. 

In what follows, we use three methods, KNN, Nyström, and QR-based Nyström, 
to approximate the computation of Ls . for the GCN component of MAGIC and 
evaluate the obtained reconstructions in terms of peak signal-to-noise ratio (PSNR), 
structural similarity index measure (SSIM), and computational time. In all cases, we 
build the similarity matrix using a Gaussian similarity, Eq. (2), with σ 2 = 5.7..  Note  
that given the high dimensionality of the data, we do not even attempt to build a fully 
connected graph for this case. We do not run Nyström variants that approximate 
(I − Ls). since we expect similar performance to the one obtained with the direct 
Ls . approximations. We follow the MAGIC work and use the same architecture and 
training parameters. For a proof of concept, we enact the following simplifications: 
(i) we use a reduced set of ten training images, (ii) we train for 50 epochs using a 
batch size of 2, and (iii) we test the trained model on ten test images different from 
the training set. We compare results for dose levels of 0.01 and 0.1 (see more details 
about the dose levels in the original work [28]). 

Table 4 displays performance results for the reconstructions for the two dose 
levels or each of the three methods for computing Ls .. The mean and standard 
deviations over the testing set are reported. Note that PSNR results are computed 
assuming a signal range in [0, 1]., not the actual dynamic range. It can be observed 
that the results are very similar for all three methods, and of course, better results 
are obtained for measurements using a large dose level. Specific visual results are 
shown in Figs. 21 and 22 for dose levels of 0.01 and 0.1, respectively. Results for the 
lower-dose level have more granular artifacts, while results for the high-dose level 
are smoother (it may be necessary to zoom over the figures to note the difference). 
Finally, Fig. 23 shows a comparison of computation times on a GPU cluster (one 
node, eight NVIDIA GeForce RTX 2080 Ti GPUs), obtained for the three methods 
when approximating the symmetric normalized Laplacian for the coarse stage of the 

Table 4 CT reconstruction 
comparison under two dose 
levels (0.01 and 0.1) for 
K = 5. (KNN) and p = 50. 
(Nyström methods) 

PSNR [dB] SSIM 

Dose level Method Mean Std Mean Std 

0.01 KNN 35.60 0.38 0.9133 0.0066 

Nyström 35.60 0.38 0.9118 0.0063 

QR 36.04 0.39 0.9252 0.0057 

0.10 KNN 41.36 0.36 0.9676 0.0033 

Nyström 41.33 0.37 0.9670 0.0033 

QR 41.13 0.38 0.9654 0.0036
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Fig. 21 Visual results of CT reconstruction under 0.01 dose level. From left to right: ground truth, 
KNN, Nyström, and QR 

Fig. 22 Visual results of CT reconstruction under 0.1 dose level. From left to right: ground truth, 
KNN, Nyström, and QR 

MAGIC reconstruction, using different numbers of p sampled data patches for the 
Nyström methods and different numbers of K patch neighbors for the KNN method. 
It is seen, consistent with results presented in previous sections, that the Nyström 
methods considerably reduce the computation time without significantly decreasing 
performance. Also, note that the QR-based Nyström method is slightly faster than 
the original Nyström method, which aligns with the observation in the synthetic 
case.
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Fig. 23 Computation times 
for KNN as a function of K 
(top axis) and Nyström 
methods as a function of p 
when approximating the 
symmetric normalized 
Laplacian for the coarse stage 
of the MAG IC reconstruction 

4 Conclusions 

Through extensive numerical experimentation, including benchmarks as well as 
high-dimensional real datasets, we confirm the advantages of the Nyström methods 
for approximating the eigendecomposition of the symmetric Laplacian. Briefly, 
these methods provide accurate approximations of the eigenvalues and eigenvectors 
of a fully connected graph. Additionally, significant time savings are achieved by 
computing approximations based on eigendecompositions using subsets of data 
samples. The direct computation of eigenvalues and eigenvectors also facilitates 
the analysis of the graph structure, which is beneficial for downstream tasks such 
as clustering, classification, or graph-based signal filtering. We also observe that the 
QR method is slightly faster than the original Nyström method. However, the latter 
can become unstable or yield nonvalid solutions when a “large” number of data 
samples or a “large” value of σ 2

. (resulting in the weight matrix being low rank) is 
used. It also seems the case that the Nyström approximations to the fully connected 
graph become worse when a “smaller” value of σ 2

. is used. The problem, however, 
is that typically there is no a priori way to determine what “small” or “large” means 
in this context since it is heavily dataset-dependent. Overall, the QR-based method 
seems like a good alternative for more robust and faster approximations. Moreover, 
variants that approximate (I − Ls). have much smaller approximation errors to the 
fully normalized symmetric Laplacian. It is also worth noticing that the relative 
Frobenius distance Er . can provide a somewhat misleading idea of the quality of 
the approximations, in particular when comparing the relative errors of KNN and 
Nyström methods. Although Nyström methods that directly approximate Ls . seem 
to have worse errors compared to KNN and Nyström methods that approximate 
(I − Ls). have much smaller approximation errors, their performance can be similar 
in downstream tasks. 
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