Chapter 1

The Complexity of Manipulative Actions
in Single-Peaked Societies

Edith Hemaspaandra - Lane A. Hemaspaandra - Jorg Rothe™

Anna and Belle, who now have become so aware of their role as guides in this
book that they can even refer to the book’s content, meet on what will be a
very exciting day for them. Let’s listen in on their conversation.

“I have two pieces of wonderful news,” says Belle.

“Tell me, tell me,” says Anna.

“First, as shown in the previous chapter, many types of manipulative
attacks on elections are computationally intractable. Like wow!”

“I'm glad that you’re excited by that, but it isn’t doing much for me.
What is the second piece of good news?”

“Today is the annual charity Pumpkin Pie Taste-Off! You remember
it well, I'm sure. Tables and tables of pumpkin pies are set out, and
are compared based on their taste, competing for the coveted honor of
being chosen as a best-tasting pumpkin pie.”

“Like wow! That is my favorite event of the entire fall season. I love
pumpkin pie, at least when it tastes just right. But it is hard to get it
just right. As everyone knows, the key is getting the sweetness level to
be exactly right.”

“Absolutely. Everyone I’ve ever met agrees that the way to judge
pumpkin pies is by their level of sweetness. We seem to be in perfect
agreement, as we usually are.”

Anna and Belle rush down to the Pumpkin Pie Taste-Off, a yearly charity
event of their town (see Figure 1.1). They find that there are 26 amateur and
professional bakers competing in this year’s contest. Each baker has brought
a large, fresh-baked pumpkin pie, so that people can taste the 26 pies and
then cast their votes—by a strict, linear ordering of the 26, of course! By a
remarkable coincidence, it turns out that this year the 26 bakers have the last
names Adams, Brown, Chavez, Dylan, ..., Young, Zimmerman. By an even
more amazing coincidence, it turns out that Adams baked the least sweet pie,
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Fig. 1.1 Anna, Belle, Chris, and Edgar at the annual charity Pumpkin Pie Taste-Off

Brown baked the second least sweet pie, and so on through the alphabet up
to Zimmerman, who baked the sweetest of all the pies.

It sounds as if this contest might be a run-away for Zimmerman, but let
us listen in some more. By now, Anna, Belle, all their friends and family, and
many others have tasted all the pies and voted.

Anna, Belle, Chris, and Edgar all say, simultaneously, “Well, that was
an easy decision. My vote was based on the most important thing about
pumpkin pies, their level of sweetness.”

“That is great,” says Anna. “Clearly we all gave our top spot for
Zimmerman, whose pies are the sweetest; yummy! So my vote was
Zimmerman > Young > --- > Dylan > Chavez > Brown > Adams, of
course—the only reasonable vote.”

“Now hold on a minute,” says Belle. “When I said that what matters
about pumpkin pies is their level of sweetness, I obviously meant that
the sweetness level had to be not too sweet and not too tart. Among
these 26 entrants, King’s pie is the one that best matches, to my taste,
that point of perfect balance. And to my taste, if one has to miss that
point of perfect balance, it is better to miss on the side of being overly
sweet, although not by too much. That is why, after tasting all the
pies, my own vote put King first, Larsen second, Martinez third, Norton
fourth, and Juarez fifth.”

“Taste must run in families,” says Edgar, Belle’s sister. “Like Belle,
King’s pie to me is the ideal one. But big sis is wrong about which ones
come right after that. To my taste, if one has to miss the perfect balance
point, it is better to miss on the side of being a bit less sweet, although
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not by too much. That is why the top spots on my ballot went to, in
this order, King, Juarez, Iverson, Heck, Larsen, and Gilchrist.”

“You’ve all got it wrong,” says Edgar’s friend Chris. “It is Thi-
bodeaux’s pie that gets the sweetness just right. I gave it the top spot
in my vote.”

“Well, this is a fine mess,” comments Belle. “Even though we all are
rating pie based on their sweetness, we each have differing views on what
the ideal level of sweetness is. And we also have different views as to
how our liking for pies drops off as they diverge from our ideal sweetness
point in one direction or the other, although for each of us, clearly
between two pies that are sweeter than our ideal sweetness point, we’ll
prefer the one that is the less sweet of the two, and similarly, between
two pies that are less sweet than our ideal sweetness point, we’ll prefer
the one that is the sweeter of the two.”

Everyone answers, “Certainly, there is no doubt about that.”

After short pause, in which they all think about this, Belle, who is
very smart, exclaims, “Oh no! My first piece of wonderful news was that
many types of manipulative actions on elections are computationally
intractable. But our discussion of pies now has me very worried as to
whether that is truly so. My worry is this: The intractability proofs
were based on constructions that allowed arbitrary collections of voters.
But we’ve just seen here that some electorates may cast only certain
patterns of votes. For example, does anyone here think that someone
might cast a vote that put Zimmerman first and Adams second?”

Everyone replies in unison, “Impossible! Unthinkable! No one with
the ability to taste food could possibly cast such a bizarre vote.”

“So,” continues Belle, “perhaps the complexity of manipulative actions
on elections that have restrictions on what votes can be cast—or on what
collections of votes can be cast—might be far lower than the complexity
is regarding the case where there are no restrictions on what votes can
be cast? Perhaps those intractability results that so raised my spirits
may turn to dust in this case, leaving the elections open to perfect
polynomial-time attack algorithms? These delicious pieces of pie are
costing me quite a bit of my peace of mind!”

Belle and her friends (whose preferences are graphically displayed as Fig-
ure 1.2) have touched upon a tremendously important point. As Belle realized,
it is possible that if the collections of votes that can be cast are restricted,
the complexity of manipulative attack problems may change. In this chapter,
we will explore this for the case of the most famous and important restriction
on electorate behavior. This restriction is known as single-peaked electorates,
and it essentially is just the type of situation that Belle and her friends have
innocently stumbled upon as they discussed the nature of their preferences

regarding pumpkin pies.
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Fig. 1.2 Preferences regarding sweetness of pumpkin pie

We will see that single-peakedness often does lower the complexity of
attacks on elections, just as Belle feared it would. However, we’ll see that
sometimes single-peakedness does not change the complexity of attacks on
elections. And we will even see that, although this might seem so obviously
“impossible” that Belle above did not even imagine that it could happen, there
are cases where looking at the special case of single-peakedness increases the
complexity of attacks on elections.

Our study of single-peaked elections will be structured as follows. Sec-
tion 1.1 will more formally define single-peaked electorates, will discuss and
further motivate them, and will mention how the study of single-peakedness
is integrated into the key manipulative-action problems that were introduced
in the previous chapter. Sections 1.2, 1.3, and 1.4 will cover some examples of
control, manipulation, and bribery in the context of single-peaked electorates.
Finally, Section 1.5 will hear from Helena, who has very surprising preferences
regarding pumpkin pie. This will lead us to more generally consider what
happens in electorates that are nearly single-peaked. That is, they may contain
a few “maverick” voters who vote in ways potentially having nothing to do
with the single-peakedness of the setting, e.g., voters who judge pumpkin
pies based on the crust or the color of the filling. We will see that in some
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cases, the presence of even one such maverick can make the complexity of
manipulative action problems jump back up to intractability.

1.1 Single-Peaked Electorates

We will now more formally define single-peaked electorates (for both voting
by preferences and voting by approval vectors—recall these notions from
Section ?77?), will discuss single-peakedness and further motivate it, and will ex-
plain how single-peakedness can be integrated into the key manipulative-action
problems that were presented in Section ?7 to model control, manipulation,
and bribery scenarios.

Black [3, 4] introduced the notion of single-peaked preferences in order to
model societies that are heavily focused on a single issue, such as the level
of sweetness in the Pumpkin Pie Taste-Off described above. Clearly, in the
political world there often is a dominant issue on which the electorate is
heavily focused and on which voter preferences are naturally single-peaked,
be it level of taxation, breadth of the social welfare network, or degree of
participation in an overseas military action. Even when there is no one salient
issue, political parties as well as politicians themselves can often be linearly
ordered according to their position on a left-right spectrum, where left-wing
(right-wing) parties/politicians take a more liberal (conservative) position.
Thus it is not at all surprising that single-peakedness is one of the key concepts
of political science, and is central in the study of elections. Gailmard, Patty, and
Penn, who studied Arrow’s impossibility theorem (see Theorem ?? on page ?7)
in the context of single-peaked electorates, described single-peakedness as
“the canonical setting for models of political institutions” [21].

We now formally define this notion both for electorates whose preferences
are linear rankings and for electorates using approval vectors.

Definition 1.1 (single-peaked preferences). Let C be a set of candidates.

1. A list V of votes over C, each vote in V being a linear order >;, is said
to be single-peaked if there exists a linear order L over C' (which we will
refer to as the societal axis) such that for each triple of candidates, a, b,
and ¢, if aLbLc or cLbLa, then for each 7 it holds that a >; b implies
b>; c

2. A list V of approval vectors over C is said to be single-peaked if there
exists a linear order L over C' such that for each triple of candidates, a, b,
and ¢, if a Lb L ¢ then whenever a vote in V approves of a and ¢, it must
also approve of b.
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Anna wants to know, “What does this mean, actually?”

“It means,” explains Edgar, “that whenever you take any three can-
didates who are ordered consistently with the societal axis (like, for
example, Adams, King, Larsen or Larsen, King, Adams in Figure 1.2),
then in each individual vote, whenever the middle candidate of the
three is ranked below one candidate, it must be ranked above the other
candidate.”

“I still don’t get it!”

“Rule of thumb: ‘Never rank the middle candidate last!” For example,
among Adams, King, and Larsen in their societal order of Figure 1.2, if
one of us were to put Larsen first, Adams second, and King last, then
we wouldn’t be single-peaked with respect to this societal axis. This
is because if you prefer, say, Larsen to King, just as you and Chris do
in Figure 1.2, Definition 1.1 requires you to prefer King to Adams. On
the other hand, it is absolutely fine to prefer King to both Adams and
Larsen, as Belle and I do; that doesn’t contradict Definition 1.1. And
remember, that applies to all triples of candidates, not just to Adams,
King, and Larsen, and it also applies to each of us voters.”

“Another way to put it is,” Belle adds, “that for each of us, with
respect to the societal axis, our preference-based utilities rise to a peak
and then fall, or just rise, or just fall. That is why it is called single-
peaked. For example, Anna, your preferences in Figure 1.2 ‘just rise.”

“If we aren’t single-peaked with respect to some given societal axis
(like the alphabetical order of Figure 1.2), does this mean we cannot be
single-peaked at all with our preferences?”

“No,” Belle replies, “there might be another societal axis for which
our preferences indeed are single-peaked. All that matters is that there
exists at least one such axis. Actually, I wonder how difficult it is to
find out whether a given list of votes, as linear rankings, in fact are
single-peaked. After all, there are m! ways to order m candidates on a
societal axis, and that is a huge number of possible axes to check!”

“That’s easy!” Edgar claims. “Give me your list of votes and I'll tell
you whether they are single-peaked in no time at all.”

Edgar is right that this is an easy problem in the sense that it can be solved
efficiently (though not “in no time at all,” as he claims, but rather in polynomial
time—recall the foundations of complexity theory outlined in Section ?7?).
Indeed, Bartholdi and Trick [1] show that, given a list of linear rankings over
the candidates, it can be decided in polynomial time whether they are single-
peaked, and that when they are, one can also find one societal axis—in fact,
even (in implicit form) all societal axes—witnessing the single-peakedness.
They show this by transforming this problem in polynomial time into the
problem of determining whether a matrix has the so-called “consecutive
ones property.” The result then follows from the work from Fulkerson and
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Gross [20, Sections 5 and 6] and Booth and Lueker [6, Theorem 6]. Doignon
and Falmagne [9] (see also the work of Escoffier, Lang, and Oztiirk [13],
Fitzsimmons and Lackner [19], and Elkind, Lackner, and Peters [11]) give a
direct (and faster) polynomial-time algorithm for this problem.

“But what about a given list of approval vectors?” Anna then asks.
“What does single-peakedness mean in that case?”

“As a rule of thumb, this simply means: ‘Never leave a gap in your
approvals!” Of course, this again refers to a societal axis that works
for the complete list of approval vectors. When a voter goes along the
societal axis, say from left to right, and approves of a first candidate, the
voter may then keep approving of further candidates, but as soon as the
voter next disapproves of anyone, the voter can’t go back to approving.
That is, there is just a single peak consisting of a contiguous (possibly
empty) interval of approved candidates. Pretty simple!”

“One could also say,” Belle adds, “that with respect to the societal
axis, we each rise to a peak where we approve and then fall back to
disapproval, or we always approve, or never approve. But all this talk
makes me wonder how difficult it is to find out whether a given list of
approval vectors in fact is single-peaked.”

“That’s easy, too!” Edgar exclaims. “Give me your list of approval
vectors, and I'll tell you whether they are single-peaked in no time at
all.”

Again, Edgar is right. As pointed out by Faliszewski et al. [17, Section 2],
the work of Fulkerson and Gross [20, Sections 5 and 6] and Booth and
Lueker [6, Theorem 6] shows that, given a list of approval vectors, it can
be decided in polynomial time (in fact, in a certain natural sense even in
linear time) whether they are single-peaked, and if so, one can also find one
societal axis—in fact, even (in implicit form) all societal axes—witnessing the
single-peakedness. In effect, testing whether a given list of approval vectors
is single-peaked is the same as testing whether a matrix whose columns are
those approval vectors has the consecutive ones property.

In the following sections we will study problems modeling control, manipu-
lation, and bribery scenarios—recall these notions from the previous chapter,
in particular from Sections 77?7, 7?7, and ??—when restricted to single-peaked
electorates. In each of these restricted problem variants, it is important to note
that a societal axis L witnessing the single-peakedness of the given electorate
is part of the problem instance. (So inputs that don’t contain a valid such
axis are not “Yes” instances of the given problem.) Also, it is important
to note that the electorates both before and after the manipulative action
must be single-peaked with respect to that same—i.e., the given—societal
axis L. For example, in the single-peaked restrictions of control problems
such as constructive control by adding voters (CCAV, as defined on page 77
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in Section ??), we require that the entire list of votes, including even votes
of any unregistered voters, be single-peaked with respect to L. That strong
requirement itself immediately ensures single-peakedness both before and after
this control action. We will denote the single-peaked restriction of CCAV by
SP-CCAV, etc. For manipulation problems (where votes are being specified)
and bribery problems (where votes are being outright changed), we similarly
require that both the initial vote set and the final vote set be single-peaked
with respect to the axis L that was provided as part of the problem’s input.

1.2 Control of Single-Peaked Electorates

Let us recall Belle’s insightful comment.

“Perhaps the complexity of manipulative actions on elections that have
restrictions on what votes can be cast—or on what collections of votes
can be cast—might be far lower than the complexity is regarding the
case where there are no restrictions on what votes can be cast? Perhaps
those intractability results that so raised my spirits may turn to dust in
this case, leaving the elections open to perfect polynomial-time attack
algorithms? These delicious pieces of pie are costing me quite a bit of
my peace of mind!”"—DBelle

Let us start right in, with a theorem showing precisely this, for an important
voting system, and what is probably the most important type of control. To
make clear why the following theorem really is showing a case where single-
peakedness reduces complexity (unless P = NP), it is important to keep
in mind that constructive control by adding voters for approval voting is
NP-complete (see Table ?? on page 7?7 in Section ?7).

Theorem 1.1 (Faliszewski et al. [17]). For the single-peaked case, ap-
proval voting is vulnerable to constructive control by adding voters.

The above result holds in both the nonunique-winner model and the unique-
winner model, and holds both in the standard model of input, in which each
vote appears on a distinct ballot, and in the so-called “succinct” input model,
in which the input is a list of the distinct preference orders cast by at least
one voter and each such preference order is paired with a nonnegative integer
coded in binary that indicates how many voters cast that preference as their
vote.

We won’t include a full, formal proof of this theorem. Rather, using an
extended example we’ll convey the idea of the proof. In particular, in the
example we’ll show how the polynomial-time algorithm for this problem works.
In our example, we’ll use the nonunique-winner model and the succinct input
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model (although for better readability, in Figures 1.3 through 1.9 we’ll write
numbers in base 10 rather than in binary).

While Belle relaxes to restore her peace of mind, our guides in the following
extended example will be our emerging experts on single-peakedness, Anna
and Edgar.

“I think I do understand Theorem 1.1,” says Anna, “even though I'm
not sure why it actually holds. Do you have any idea, Edgar? Would
you please clarify this all for me?”

“Sure,” Edgar replies, “it’s easy. We can establish the theorem by
giving a polynomial-time algorithm solving the constructive-control-by-
adding-voters problem for approval voting in the single-peaked case.
Now, what’s the input to our algorithm?”

“I know, I know!” Anna exclaims. “According to the problem definition
of CCAV on page ?? in Section ??, we are given some votes (which are
approval vectors) over the candidates, including our preferred candidate p.
And we have some additional votes (again approval vectors). We know
that all votes are single-peaked with respect to the given societal axis—
also part of the input. And our goal will be to check whether we can
make p a winner by adding less than or equal to a certain number of
the additional votes; that number, the so-called addition limit, itself is
also given as part of the problem.”

Edgar says approvingly, “Exactly! We want to solve the problem
SP-CCAV for approval voting. Let’s assume that we are in the succinct
input model, so the input doesn’t explicitly list all the votes but only
has, written down in binary, how often each vote occurs that has been
cast at least once. This compact representation can only make it harder
for our algorithm to run in time polynomial in the input size, so if our
algorithm runs in polynomial time in the succinct case, it surely also
does so in the case of the standard input model.”

“But how does the algorithm work?”

Edgar replies, “I’ll give you an example. Let us look at Figure 1.3!”
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Fig. 1.3 Proving Theorem 1.1 by example: input to SP-CCAV

“What you see here,” Edgar explains, “are 18 candidates ordered
from left to right along our societal axis, F', E, D, C, B, and A to the
left of p, then p, and then a,b, ...,k to the right of p. The diagram
shows the number of approvals each candidate has from the already
registered voters (those in V'); for example, j has seven approvals but
p has only two. And as mentioned above, keep in mind that the input
must also give us the limit on how many votes we may add.”

“Why are some of the candidates called ‘dangerous,” while others are
‘to be ignored’?” interrupts Anna.

“Wait a minute, and I’ll answer that later. First, do you know why
the votes from W-—those that may be added (and each coming with
a number saying how often it occurs)—are all intervals? For example,
note the two votes approving of C', B, A, p, and a?”

“Of course, I know that!” says Anna, brimming with indignation.
“It is because they are single-peaked approval vectors. So they cannot
have gaps between their approvals!” She pauses to ponder for a second.
“But, which types of vote should we add to the election, especially if
two votes are incomparable? For example, if you look at the two votes
approving of C' through a versus the seven votes approving of p through
c in Figure 1.4: Both vote types approve of p, and that is great. But they
also approve of different other candidates. The former but not the latter
helps p relative to b and c; the latter but not the former helps p relative
to C, B, and A. If we have lots of such choices to make, I foresee a



1.2 Control of Single-Peaked Electorates

combinatorially explosive number of collections of votes that we need to
consider as possible choices for the set of votes we should add, and so I
would not be surprised if this whole thing ended up being NP-complete.
Or do you have some clever way of avoiding that combinatorial explosion,
by wisely deciding which should be added?”
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Fig. 1.4 Proving Theorem 1.1 by example: two incomparable votes

“You have identified the heart of the matter! But have no fear. We’ll
handle this—and avoid any combinatorial explosion—by a ‘smart greedy’
algorithm letting us make such choices in a decisive way that assures us
that if either of the choices can lead to success, then the choice we make
will lead to success,” says Edgar. “I’ll explain that algorithm later.”

“You always postpone answering my questions!” Anna is not amused.
“A minute ago you similarly avoided explaining to me why some of the
candidates are called ‘dangerous,” namely F', C, ¢, f, and j, while all
others are ‘to be ignored.” So please tell me now why you have labeled
them in these ways!”

“OK. First, each added vote of course will be an interval including p;
it would be insane to add votes whose interval does not include p. So
we drop all other votes. Figure 1.5 shows the result of doing so in our
example: The nine votes approving of only £ and D and the five votes

15
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approving of only a and b have been dropped. All remaining votes
include p.
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Fig. 1.5 Proving Theorem 1.1 by example: dropping all votes not approving of p

“That doesn’t tell me why, for instance, ¢ is a ‘dangerous’ candidate,”

says Anna.

“Well, if adding votes from (what remains of) W causes p to draw level
with ¢ in terms of approvals, then—since all remaining votes include p—p
must at least draw level with a and b. That is since, due to our interval
property, every vote that approves of p and ¢ also approves of a and b,
yet p as you can see starts this part of our algorithm with at least as
many approvals as a and b.”

“Agreed.”

“Thus c is a dangerous rival for p, and @ and b can safely be ignored.
Likewise, f is dangerous for p but d and e can safely be ignored. And
similarly, j is dangerous for p but g, h, and ¢ can safely be ignored.”

“Hey, why do you do that step by step? Just say j is dangerous for p,
and ignore a, b, ¢, d, e, f, g, h, and i! Figure 1.6 shows what I mean,
both for the candidates to the left and to the right of p. And while I'm
complaining, let me mention that although a and b started with fewer
approvals than p, e for example starts with more, and so the reasoning
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you applied above as to why a and b can be ignored seems to me to not
apply to e.”

number of
approvals from
voters in V for
candidates
that are

®m dangerous

to be ignored

O NWRARUITONO®
|

4| votesin W

7 that can be
— 3 added (with
—1 multiplicities)

Fig. 1.6 Proving Theorem 1.1 by example: Anna suggests to not go step by step

“The two points you just made are deeply intertwined, as both are
connected to the importance of this algorithm going step by step,” Edgar
says as, startled, he jumps over to Figure 1.7. “Let us consider your
suggestion that we say that j is the only dangerous candidate to the right
of p. Look what happens if we add, say, five of the seven votes approving
of p through c. Then the number of these votes in W is reduced to two,
and each of p, a, b, and ¢ get five more approvals. No doubt, p has now
drawn level with j, both having seven approvals now, but ¢ was riding
the wave and was boosted to even eight approvals! So if we don’t go
step by step, p might well draw level with 7 but still is not a winner.”

17
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Fig. 1.7 Proving Theorem 1.1 by example: What happens if we don’t go step by step?

“I see,” Anna concedes. “That means the first dangerous candidate to
the right of p is the leftmost candidate to the right of p that is approved
by more voters from V' than p, namely c in the figure, and the second
dangerous candidate to the right of p is the leftmost candidate to the
right of ¢ that is approved by more voters from V' than ¢, namely f,
and so on. And we can define this analogously for the candidates to the
left of p. So, as indicated in Figure 1.8, we indeed get the dangerous
candidates C' and F' to the left and ¢, f, and j to the right of p, and we
ignore all other candidates. And knowing this, I understand the right
answer to my second point above—the one where I pointed out that e
for example starts with more approvals than p. I now see that that is
true but, crucially, after we have made p tie or beat ¢ in approvals—Dby
adding only votes that approve of p but don’t approve of ¢ (and thus
also don’t approve of el)—at that point p will surely tie or beat all
candidates to ¢’s right that started with no more approvals than c. So f
indeed is the next dangerous candidate; e is not a worry at all!”
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Fig. 1.8 Proving Theorem 1.1 by example: Which votes can help in “smart greedy”?

“Exactly! Of course, what we have just been discussing is the notion
of dangerous candidate for p in the nonunique-winner model. But what
change do you think we’d want to make if we are in the unique-winner
model?”

“Then I’d say, when looking for the first dangerous candidate on for
example the right side of p, we take whichever candidate is the first to
have at least as many approvals as p, all else being the same.”

“That’s right,” Edgar agrees. “If we want to make p a unique winner,
even having the same number of approvals as p already makes a candidate

a dangerous rival for p; we must ensure that p strictly beats this candidate.

That is, B too would be dangerous for p in the example of our figure.

Anna nods her agreement, and then suggests, “However, let’s stay in
the nonunique-winner model, which seems to be more natural. Now tell
me, how does your ‘smart greedy’ algorithm work? How does it find the
right votes from W to add?

“In the ‘smart greedy’ algorithm, we need to eat through all dangerous
rivals to the right of p, starting with the leftmost, c. To become a winner,
p in particular must draw level with ¢. However, only votes (i.e., intervals)
in W whose right endpoints fall into [p,c) can help.”

“I see. These are exactly the votes from W that still are shown in
Figure 1.8

“Let X be the set of these votes,” Edgar continues. “Now, the key
insight of the algorithm is that we will be choosing votes from X
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starting with those having the rightmost left endpoint. In our example of
Figure 1.9, we start by adding the voter—shown by a fat line—approving
of A through b. As shown in Figure 1.9, this is already enough for p
to draw level with ¢, so p’s first dangerous rival has been taken care
of. And the key point is that this has been achieved by an easy (in the
sense of polynomial time) yet perfectly safe strategy!”
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Fig. 1.9 Proving Theorem 1.1 by example: drawing level with the first dangerous rival

“Why?” asks Anna.

“Because if there is any way at all to choose votes to add such that p
draws level with his first dangerous rival (and eventually can become
a winner), our strategy of starting with those votes from X that have
the rightmost left endpoint will succeed, too. (And if there is no such
way, then of course this strategy cannot succeed either.) And among all
such choices, note that crucially our choice is at least as good regarding
how it leaves us relative to other dangerous candidates—most crucially
those to the left of p—since it is approving of as few of them as possible.
Briefly put, the extra candidates on the right that the ‘fat’ vote helped
do us no harm, and the extra candidates on the left that the nonfat
votes would have helped might do us harm. (By the way, before moving
on, I should mention that if we had two or more copies of the fat vote,
and p needed at that point two or more approvals relative to ¢, then
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we would in a single step have added as many copies of the fat vote
as needed, or if that is more than the number of copies that we had
available, then would have added all its copies—unless either of those
took us beyond our addition limit, in which case we’d have to admit
defeat. The reason I mention this is to make clear that we really are
handling the succinct case—and so we can’t add votes one at a time,
but rather add them drawing on the right ‘multiplicity’ of the given vote
to support our progress.)”

“Now that p’s first dangerous rival has been taken care of,” says Anna,
“what do we do next?”

“We iterate. That is, updating the approvals of all candidates and the
votes that may be added as in Figure 1.9, we apply the same procedure
to handle the next dangerous candidate, here f, as long as our allowed
number of votes to be added hasn’t been used up. If we run out of
dangerous candidates on the right-hand side of p, we reverse the societal
order, and we finish off the remaining dangerous candidates (which have
been mirrored from the left to the right of p to make the same procedure
applicable to them) in exactly the same way until we either succeed in
making p a winner and so can output ‘yes,” or reach the addition limit
without having achieved our goal. In the latter case, we know for sure
that no strategy whatsoever could possibly make p win by adding the
allowed number of votes from W, so we can safely output ‘no,’ i.e., that
success is not possible.”

That concludes our extended example sketching the polynomial-time algo-
rithm for constructive control by adding voters under approval voting when
one is dealing with a single-peaked electorate.

But Anna can be a tough person to convince of anything.

Anna: Thank you for that example. I do believe your polynomial-time
claim for constructive control by adding voters in the single-peaked
case. But I worry: Maybe that is the only control type where single-
peakedness helps, and maybe approval is the only voting system showing
this behavior.

Edgar: Have no fear, they are not alone!

The following result gives some examples of what Edgar is referring
to—other control cases that are NP-complete in the general case but have
polynomial-time algorithms for the case of single-peaked electorates. Recall
the definitions of these control problems from Section ?? starting on page 77.

Theorem 1.2 (Faliszewski et al. [17]).



22

1 The Complexity of Manipulative Actions in Single-Peaked Societies

1. For the single-peaked case, approval voting is vulnerable to constructive

control by deleting voters.

2. For the single-peaked case, plurality voting is vulnerable to constructive and

destructive control by adding candidates, by adding an unlimited number

of candidates, and by deleting candidates.

Having seen this theorem, which we mention holds in both the nonunique-
winner model and the unique-winner model, Anna has been convinced—but

perhaps a bit too convinced, as the following shows.

Anna: Wow. Those additional cases make it clear to me that restricting
our focus to single-peaked electorates lowers the complexity. I’ll bet that
this approach will undercut all existing NP-hardness result regarding
all election problems.

Edgar: Not so fast! In fact, for the devilishly complex system STV
(which is defined on page ?? in Section ??), Walsh [25] has noted that
even when restricted to single-peaked electorates, the possible winner
problem remains NP-complete and the necessary winner problem remains
coNP-complete (see Section ?? for the problem definitions); sometimes,
hard things stay hard even under single-peaked preferences.

1.3 Manipulation of Single-Peaked Electorates

Our guides Anna and Belle (the latter of whom has through resting recovered
her peace of mind) are chatting again, and the chat takes a shocking turn.

Anna: In our discussion of control, we saw that restricting our focus
to single-peaked electorates sometimes lowers the complexity. And Edgar
mentioned to me an example, regarding possible and necessary winners,
where restricting our focus to single-peaked electorates fails to lower
the complexity. Clearly, that covers all the possibilities, since restricting
ourselves to single-peaked electorates obviously cannot ever raise the
complexity.

Belle: T disagree. I claim that restricting ourselves to single-peaked
electorates can raise the complexity!

Anna: That’s clearly not possible. Anyone who knows the basics of
complexity knows that if a problem is easy, any easily identified restricted
case of it is also easy. In this case, since every single-peaked electorate
is an electorate, it follows that if the problem has a polynomial-time
algorithm for all electorates, then it has a polynomial-time algorithm
for single-peaked electorates.
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Belle: No, my dear friend. I understand what you're thinking, and
your error is a quite subtle one. The error is hidden in your words
“the problem” above. You are assuming that “the problem” is the same
in both cases. If that were true, your claim about subcases inheriting
polynomial-time algorithms would be fine. But the problems in question
do not differ merely on whether the electorate must be single-peaked.

Anna: I don’t see any other way in which they differ.

Belle: That is where the “subtle” comes in. Recall that in defining our
problems in the single-peaked context, we required that the electorates
be single-peaked (with respect to the given societal axis) even after the
manipulation.

Anna: Yes, that is natural, but what does it have to do with some
difference in the problems.

Belle: The difference is that for the single-peaked case of manipulation,
we are asking whether (the input is single-peaked with respect to the
societal axis L and) there is some set of votes by the manipulators under
which the election is still single-peaked with respect to the axis L and p
is a winner of the election. In contrast, the general-case is merely asking
whether there is some set of votes by the manipulators such that p is a
winner of the election.

Anna: Then the single-peaked case gives fewer options to the manip-
ulators as to what votes they can cast, and so the problem is a subcase,
and so as I said before it can only be simpler.

Belle: No. It is a different problem. The “subcases only reduce com-
plexity” argument line only refers to restrictions of the problem domain.
If the actions inside the problem can differ, even if they are more re-
strictive, that is a whole different issue. It is possible that for the less
restrictive set of actions a manipulation problem is computationally easy,
even though it would be computationally hard for a more restrictive
set of actions, such as being limited to manipulations that leave the
electorate single-peaked.

Anna: Huh?

Belle: Let me try to give you a bit of intuition as to how this might
happen. Let us consider constructive size-3-coalitional unweighted manip-
ulation, and our model will be that votes are approval vectors. However,
our voting system won’t be approval voting. In fact, suppose our voting
system has the property that when the electorate isn’t single-peaked,
then it is easy to manipulate successfully. As an extreme example, con-
sider a voting system that when the electorate isn’t single-peaked makes
all candidates be winners, and thus makes the preferred candidate p
be a winner; and if the electorate is single-peaked this system chooses
some winner in some different and very complex-to-manipulate way. So
a coalition of three or more manipulators can achieve success—even if

23
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we for a moment jump out of the model where the societal axis is fixed
and given—simply by having each of the three ballots (which among
themselves form a “Condorcet-cycle”-like pattern) a > b > ¢, b > ¢ > a,
and ¢ > a > b (where a, b, and ¢ represent the names of the three lexi-
cographically smallest candidates) be cast by at least one manipulator.
And if the number of candidates is less than three, we in our election
system just have everyone always win. Note that there is no axis that
makes any vote collection with the just mentioned three votes be single-
peaked. Clearly, manipulation for this problem is in polynomial time
for the general case. But the single-peaked case can’t use this approach,
since it isn’t allowed to manipulate votes in such a way as to violate
single-peakedness; and in fact, the single-peaked case has no such easy,
obvious path to successful manipulation. Indeed, one can specify a voting
system of this sort in such a way that the manipulation problem for the
single-peaked case is NP-complete.

Anna: I certainly don’t see all the details, since you didn’t specify them,
but I do see the general flavor. Your example counterintuitively makes
single-peakedness’s more limited set of legal electorates a complexity-
increasing disadvantage, rather than a complexity-lowering advantage.
And I see that that isn’t paradoxical, because the single-peaked case
not only limits the set of legal inputs, but also limits the set of legal
manipulative actions the coalition can take. So we aren’t merely a
special case of a problem; we're a slightly different problem, since the
single-peakedness in some sense penetrates the problem to its very core.

Belle: Well put; I see a real future for you as a complexity theorist
when we grow up.

Anna: Heaven forfend! Anyway, I've always thought that your little
brother Edgar was the most likely of any of us to live that life.

Belle: Heaven forfend! He’s already insufferable enough as it is, and I
hear that complexity theorists are beyond insufferable.

Anna: I've heard that too.

The theorem that Belle was outlining is the following result. Its detailed
proof, which we won’t give here, is a bit twisty, especially regarding achieving
the NP-completeness part. But Belle’s description of the proof strategy is in
fact spot-on.

Theorem 1.3 (Faliszewski et al. [17]). There exists a voting system &,
whose votes are approval vectors, for which constructive size-3-coalition un-
weighted manipulation is in polynomial time for the general case but is NP-
complete in the single-peaked case.
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Anna: But now that I'm at least dabbling at thinking at things
complexity-theoretically, I'm wondering whether that strange complexi-
ty-raising behavior can ever happen for systems that I'm familiar with.
In particular, if you can show me any scoring protocol under which we
get this complexity-raising behavior, I’ll give you my next ten slices of
pumpkin pie.

Belle: I love pie but, alas and alack, I cannot show you an example.
But neither can anyone else, since no such example can exist!

Let us see what Belle—who despite her protestations seems well on her way
to becoming a complexity theorist—is referring to. Recall from Chapter 77
that for scoring protocols (defined in Section ??) there is a dichotomy theorem
(stated in Section ??) for the constructive coalitional weighted manipulation
problem. In particular, we mentioned there what in effect is the following
result.

Theorem 1.4 (Hemaspaandra and Hemaspaandra [22]). For each
m and each scoring protocol o = (aq,...,0uy), the constructive coalitional
weighted manipulation problem is NP-complete if ag > ay,, and is in P other-
wise.

For scoring protocols, there also is a dichotomy theorem for the constructive
coalitional weighted manipulation problem in the single-peaked case.

Theorem 1.5 (Brandt et al. [7]). Consider an m-candidate scoring pro-
tocol a = (a1, 2,...,apm).

L. If m>2 and ag > | (m-1))2) 42 and there exist integers i >1 and j > 1
such that i+j <m+1 and (a1 — ;) (a1 —aj) > (0 — 1) (0 —ajg1),
then the constructive coalitional weighted manipulation problem for the
single-peaked case is NP-complete.

2. Ifm>2and ag = Q| (m—1)/2]+2 and a1 > g > ayy and (g > Qup—1 0T ] —
Q> 2(ag — ), then the constructive coalitional weighted manipulation
problem for the single-peaked case is NP-complete.

3. In all other cases, the constructive coalitional weighted manipulation
problem for the single-peaked case is in P.

The above result, Theorem 1.5, truly is a dichotomy theorem; it proves that
every scoring protocol is either NP-complete or in P. In fact, this dichotomy
theorem even has a very easy-to-check condition that tells for a given scoring
protocol which case holds for it, thus making this theorem very easy to
apply to actual, natural protocols. For example, from the theorem we can
immediately see that for each m it holds that for the single-peaked case of
the constructive coalitional weighted manipulation problem, m-candidate
plurality and m-candidate veto are in P; and so is m-candidate Borda for
m < 4. The theorem also makes clear that m-candidate Borda is NP-complete
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for each m > 4. Given this theorem’s ease of application, one probably cannot
fairly complain about how very much more involved the theorem statement
is than the analogous and also easy-to-apply theorem for the general case,
Theorem 1.4. If anything, one should—while thanking the universe for the
fact that the characterization is easy to apply—blame the universe for making
the single-peaked case have such a complex-looking characterization. What
isn’t complex to observe is what Belle was commenting about: Every P case
from the general-case dichotomy of Theorem 1.4 clearly remains a P case in
the single-peaked dichotomy of Theorem 1.5. So, just as Belle claimed, in the
setting of scoring protocols and constructive coalitional weighted manipulation,
restricting attention to the single-peaked case never raises complexity. As
to the NP-complete cases from the general-case dichotomy of Theorem 1.4,
in the single-peaked dichotomy of Theorem 1.5 some of those cases remain
NP-complete and some fall to P.

Belle: I've now shown you why no example of the sort you requested
can exist.

Anna: True, but since you didn’t provide the requested example, I'm
still keeping those ten future slices of yummy pie.

Belle: Grrrrr!

Theorem 1.5 hides, underneath its complexity, a quite broad range of cases.
And some of those at first are surprising. For example, the behavior that
people typically expect for voting systems, viewed at each fixed number of
candidates, is that as one increases the number of candidates, the problem
either stays the same in complexity or increases in complexity. But let us
apply Theorem 1.5 to the case of 3-veto. Recall that the scoring vector for
3-veto is given by (1,...,1,0,0,0); for example, for m =5 candidates this is
(1,1,0,0,0) and for m = 6 candidates it is (1,1,1,0,0,0). We get the following
strange behavior, which was first noticed and proven by Faliszewski et al. [17].

Theorem 1.6 (Faliszewski et al. [17]). For the single-peaked case, the
constructive coalitional weighted manipulation problem for m-candidate 3-veto
is in P for m € {3,4,6,7,8,...}, and is NP-complete for m =5.

So this is a case where, between m =5 and m = 6, the complexity drops.
Let us get a sense of how this kind of unexpected behavior can arise. 3-veto for
m = 3 is in effect triviality, and so everyone always wins. 3-veto for m =4 is
just plurality (1-approval), and the single-peakedness is irrelevant since every
1-approval vote is trivially single-peaked. So these two cases are certainly in P.

The m =5 case is shown NP-hard by a standard type of reduction, which
we will now describe, again in the nonunique-winner model. (Membership
of the problem in NP is obvious, so we in fact have NP-completeness once
NP-hardness is shown.) To prove NP-hardness, we will give a reduction from
the NP-complete problem PARTITION, which has been defined on page 77 in
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Section ?7? as the set of all nonempty sequences (k1,...,ky,) of positive integers
summing up to an even number, 2K = 2?21 k;, that can be partitioned into
two subsequences, each summing up to the same value K. Suppose, we are
given an input (ki,...,k,) of PARTITION, and for concreteness let us say we
have n = 3 and we will consider two particular cases for illustration:

1. (k1,ka,k3) = (1,2,3), so K = 3. Since 142 = 3, this is a yes-instance of
PARTITION.

2. (k1,k2,k3) =(1,2,5), so K = 4. Note that this is a no-instance of PARTI-
TION.

(Of course, just handling how to reduce from these very special instances of
PARTITION does not establish NP-hardness, since these two cases are quite
trivial. However, although we will use these cases as illustrations, we in fact
will be quietly giving the general case of this reduction.)

We construct an instance of the constructive coalitional weighted manipu-
lation problem from this PARTITION instance as follows. Our candidates are
Adams, Brown, Chavez, Dylan, and the preferred candidate Pearl that the
manipulators wish to make a winner. We also fix the following societal axis L:

Chavez L Adams L Pearl L Brown L Dylan.

There are two nonmanipulators with weight K each, Anna and Belle, and
Anna votes

Chavez > anna Adams > anna Pearl > anna Brown > anna Dylan,
while Belle votes
Dylan >pgejie Brown >peje Pearl >pgejle Adams >pejje Chavez.

As is sometimes the case for best friends, Anna and Belle have completely
opposite preferences.! Obviously, both votes are single-peaked with respect
to L, with Anna’s preference-based utility “just falling” and Belle’s preference-
based utility “just rising.” In addition, there are n manipulators where the ith
manipulator has weight k;; in our example with n = 3 manipulators, Chris
has weight k1, David weight ko, and Edgar weight k3. The manipulative boys
want to see Pearl win.? We will now show that they can reach their goal by
suitably setting their preferences if and only if (k1,...,ky) is a yes-instance
of PARTITION. In particular, they can ensure Pearl’s victory in the first case
((k1,k2,k3) = (1,2,3)), but not in the second ((k1,k2,k3) = (1,2,5)).

1 They are not voting here on who bakes the best pumpkin pie, but rather, let us say, on
which of the bakers is the most beautiful person—again, tastes differ.

2 Because Pearl promised them pumpkin pie for life if Pearl wins. But that bribe
notwithstanding, the computational problem here still is about manipulation; bribery
will be handled in the next section.
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Suppose there is a successful partition of (k1,...,ky), i.e., suppose we have a
set AC{L,...,n}suchthat 3, c g ki=>icq1  nyoaki=K (eg,1+2=3as
in our first case). Then all manipulators whose weight is in the set {k;|i € A}
(so Chris and David in our first case) can set their preferences to be

Pearl >; Adams >; Brown >; Chavez >; Dylan,

while all other manipulators (namely, Edgar in our first case) can choose the
preference order

Pearl >; Brown >; Adams >; Chavez >; Dylan.

Note that these manipulative votes are single-peaked with respect to L. Recall
that for m =5 candidates our scoring vector is (1,1,0,0,0). Thus, in the
election with both the manipulative and the nonmanipulative votes, Adams,
Brown, and Pearl each score 2K = 6 points, while Chavez and Dylan get only
K = 3 points each, so Pearl is a winner.

For the converse, suppose now that there is no partition of (ki,... k)
(such as in our second case). Can the manipulators, who are obliged to cast
single-peaked votes with respect to L, still make Pearl a winner? Seeking a
contradiction, let us assume that the answer is yes. Note that in each such
single-peaked vote, whenever Pearl scores a point, Adams or Brown does so
also. Thus, among the manipulative votes, Pearl’s score is bounded above by
the sum of the scores of Adams and Brown. Note that Pearl doesn’t get any
points from the nonmanipulators, but Adams and Brown receive K points
each from them (in our example, Adams gets K points from Anna and Brown
gets K points from Belle). Since we assumed that Pearl wins the election
whose voter set includes both the manipulators and the nonmanipulators, it
follows that among the manipulative votes alone, Pearl must score at least K
points more than Adams does and at least K points more than Brown does.
It follows that from the manipulative votes Pearl’s score is 2K, and Adams
and Brown score K points each. However, this implies that the weights of the
manipulators ranking Adams in their top two positions sum to K (and the
same applies to the manipulators ranking Brown in their top two positions),
that is, there is a partition of (k1,...,ky), a contradiction. This concludes
our informal proof that our reduction for the m =5 case is correct. Thus the
constructive coalitional weighted manipulation problem is NP-hard.

Anna: Wait a minute! What if we are in the unique-winner model?
Does this reduction apply to that case, too?

Belle: Almost. Just change the weights of the two nonmanipulators
from K to K —1.

Turning now to a discussion of the m > 5 cases in Theorem 1.6, we get the
at-first-surprising drop in complexity. However, we claim that that drop has a
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quite clear source. Let’s consider the m = 7 case, to see how it can possibly be
simpler than the m =5 case. Note that for m = 7 and 3-veto voting, each vote
cast is a 4-approval vote. So whichever candidate is the middle (i.e., fourth)
one among the 7 candidates, along the societal axis L, certainly must be
approved of by every voter, since the votes are single-peaked, and thus each
vote’s approved-of candidates must be contiguous within L. So that middle
candidate is always a winner. And each other candidate, a, is a winner exactly
if every voter approves of a. Since we can certainly make all the manipulators
approve of a, the only issue we need to look at to efficiently decide whether a
can be made a winner is whether all nonmanipulative voters approve of a. We
have just given a polynomial-time algorithm for the constructive coalitional
weighted manipulation problem for 7-candidate 3-veto, in the single-peaked
case. And the algorithm makes clear the type of effect at issue here—an
effect that clearly will hold for all m > 7 also. Namely, we have that one or
more candidates are forced to be approved of by every voter, and so the only
real issue in this problem is whether a given candidate is approved of by
all nonmanipulative voters. One can also argue that the m =6 case is in P,
though one has to be a bit more careful.

1.4 Bribery of Single-Peaked Electorates

In our study of control, we saw that some problems that are NP-complete in
the general case fall all the way down to polynomial time for the single-peaked
case. Where this behavior can be found depends on the exact setting: what
the manipulative action is and what the voting system is.

For bribery, we have similarly mixed behavior. Under the single-peaked
restriction, some NP-complete bribery cases fall from being NP-complete
to being in P, and some do not. Whether such a complexity drop occurs is
sensitive to both the type of bribery and the voting system.

Let us give some examples of these behaviors. For approval voting, the
following theorem gives three cases where types of bribery that are known
(some by Faliszewski, Hemaspaandra, and Hemaspaandra [14] and some by
Brandt et al. [7]) to be NP-complete in the general case fall into polynomial
time for the single-peaked case. Before looking at the theorem, recall the vari-
ous notions of bribery defined in Section 77 starting on page ?7; in particular,
the basic problem variant BRIBERY, which can be weighted (indicated by
5% in the problem name) and/or priced (indicated by $), and the notions of
negative and strongnegative bribery.

Theorem 1.7 (Brandt et al. [7]).

1. For the single-peaked case, approval-BRIBERY is in P.
2. For the single-peaked case, approval-NEGATIVE-BRIBERY s in P.
3. For the single-peaked case, approval-STRONGNEGATIVE-BRIBERY is in P.



30 1 The Complexity of Manipulative Actions in Single-Peaked Societies

Of course, that is just one voting system. Can we cast a wider net as
to understanding when bribery problems fall in polynomial time for the
single-peaked case? The answer is a “yes,” although as we’ll soon see, it is a
somewhat qualified “yes.”

Recall the notion of weak Condorcet winner from page 77 in Section ?7. In
particular, recall that a voting system is said to be weakCondorcet-consistent
if whenever there are candidates that tie-or-beat all other candidates in head-
on-head pairwise contests, the winner set is exactly the set of candidates
having that property. It turns out that for the single-peaked case we can in
one fell swoop capture the bribery complexity, under all eight standard types
of bribery, of all weakCondorcet-consistent voting systems. Five of the bribery
types are simple and three are complex.

Theorem 1.8 (Brandt et al. [7]). Let & be any voting system that is
weakCondorcet-consistent, or even that merely is always weakCondorcet-
consistent on single-peaked electorates.

1. For the single-peaked case, £-85-$BRIBERY, £-NEGATIVE-85-BRIBERY,
and E-NEGATIVE-§8-$BRIBERY are each NP-complete.

2. For the single-peaked case, £-BRIBERY, £-$BRIBERY, £-85-BRIBERY, £-
NEGATIVE-BRIBERY, and £-NEGATIVE-$BRIBERY are each in polynomial
time.

Many important systems are weakCondorcet-consistent. For example, the
voting systems—each defined in Section ?7—Llull, maximin, Young, weak-
Dodgson (by weak we mean Dodgson altered so that the goal is to by
adjacent-exchanges make a candidate tie-or-beat each other candidate in
head-on-head contests), and weakBlack (with weak analogously interpreted)
are weakCondorcet-consistent [18, 7]. And as noted by Brandt et al. [7], the
voting systems of Kemeny, Schwartz, Llull, and two variants of Nanson are
weakCondorcet-consistent when restricted to single-peaked electorates. So
Theorem 1.8 applies to all the just-mentioned systems, and classifies all its
types of bribery.

Are any of the P results obtained in that way examples of complexity being
reduced due to single-peakedness? Absolutely. For example, for Llull elections,
bribery, $BRIBERY, 3-BRIBERY, and #3-$BRIBERY, are each NP-complete [16],
but by Theorem 1.8 each of these cases is in P for the single-peaked setting.
For Kemeny the drop is even more dramatic. Each of the eight standard
types of bribery is Pﬁlp-hard for Kemeny elections [7]. Yet by Theorem 1.8,

in the single-peaked case three of those PﬁIP—hardness bounds change to

NP-completeness results and five change to P results.

On the other hand, let us come back to our earlier comment about the “yes”
regarding the wider net being a qualified “yes.” What we meant by that is that
part of what is underpinning Theorem 1.8 is the fact that in single-peaked
electorates (with the voters voting by linear orders), there always is a weak
Condorcet winner, namely, a candidate who ties-or-beats each other candidate.



1.5 Do Nearly Single-Peaked Electorates Restore Intractability? 31

And that means that all the voting systems we are discussing here (and more
generally, all weakCondorcet-consistent voting systems) become the same as
each other for the case of single-peaked electorates, namely, the winner set
in that case for each is exactly the collection of all weak Condorcet winners.
On one hand, that might be viewed as disappointing, since the systems are
all becoming the same system, for the case that Theorem 1.8 is speaking
of. On the other hand, the more interesting and important points to focus
on are how very varied those systems are in the general case and how hard
their bribery problems often are in the general case, and yet despite that
how single-peakedness removes so many of those hardness results for those
systems.

1.5 Do Nearly Single-Peaked Electorates Restore
Intractability?

Let us return to the Pumpkin Pie Taste-Off. Although everyone seemed to be
in agreement that level of sweetness was what anyone who had the ability to
taste food uses to judge pumpkin pies, a surprising twist is about to occur.

“Did I just hear you say that no one with the ability to taste food
could possibly put Zimmerman first and Adams second, given that
Zimmerman makes the sweetest pumpkin pie, Adams makes the least
sweet, and the twenty-four other contestants’ pies fall between them in
sweetness,” says a quiet voice from off to the side, belonging to Helena.
“That in fact is exactly what I would have cast as my vote had I been
here in time to vote.”

“Impossible! Unthinkable! Have you no sense of taste?”

“I do,” replies Helena, “but I have celiac disease, and so energetically
avoid eating the protein known as gluten. And only the pies of Zimmer-
man and Adams are gluten-free, thanks to the ingredients in their crusts
being made respective of rice flour and amaranth flour. When I judge a
pie, the crust’s ingredient set is the issue that I use.”

Quick-witted Belle, who is still aware that she is helping guide us
through this book, immediately says, “You may just have made my day,
you wonderful maverick! As I mentioned earlier, I was overjoyed that
complexity might provide a shield against attacks on elections. Then
when pumpkin pie led us to discuss single-peaked elections, I became
worried that in that natural setting the protections might evaporate.
The past few sections of this book in large part showed my fears to be
well-grounded. We’ve seen that single-peakedness often does sidestep
existing complexity-theoretic protections against attacks on elections.
But you have opened my eyes to a new hope. Those sidestepping results
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were based on the assumption that the electorates in question are single-
peaked. However, it seems to me that pretty much no electorate will be
perfectly single-peaked. There will always be at least a few mavericks.
At this Taste-Off, although we all thought it obvious that every person
judges pumpkin pie based on the sweetness, we found that you judge
based on the crust. And in large political elections where almost everyone
is voting based on the candidates’ positions on some important spectrum—
perhaps liberal versus conservative—there surely will be a few people
who see things differently. Perhaps some people are libertarians and so
care about an aspect not even captured by that axis, and perhaps others
are influenced by issues such as a candidate’s religion or a candidate’s
charisma. It seems to me at least possible that for cases where there
are some mavericks amidst a largely single-peaked society, some of the
complexity-theoretic protections against manipulative attacks may still
hold. At the very least this is worth looking into ... although only after
I reward myself with another slice of King’s pumpkin pie!”

Belle makes an excellent point, and in this section we’ll see examples of
the type of behavior that she is imagining. Indeed, we’ll even see that in some
cases, the presence of a single maverick can jump a problem’s complexity
from P back up to NP-completeness!

On the other hand, we’ll also explore cases where manipulative-action prob-
lems remain polynomial-time solvable even if the electorate has a few mavericks.
Each such result is, of course, stronger than the analogous polynomial-time
claim for the single-peaked case. Such results are typically proven by showing
how we can efficiently handle the chaos added by mavericks.

Anna: Where did the term “maverick” come from?

Belle: Samuel Maverick, a colorful Texan who lived from 1803 to 1870,
refused to brand his cattle. You can see one of his unbranded cows in
Figure 1.10. Unbranded cattle came to be called “mavericks,” and the
term “maverick” also came to be applied to anyone who is individualistic
and unorthodox.

Faliszewski, Hemaspaandra, and Hemaspaandra [15] defined many notions
of nearness to single-peakedness, and studied the complexity-theoretic behavior
of control and manipulation for electorates of the given nearness types. In
this section, for clarity, we will limit ourselves to a sampling of results about
two of the more attractive nearness notions that they studied. (Additional
nearness measures and discussion of how hard it is to evaluate nearness to
single-peakedness of an electorate can be found in [8, 12, 15], and for the
complexity of consistency testing and axis-production for the (pure) single-
peaked case see [1, 5, 9, 13, 20] and the discussion in Section 2.2 of [17] and
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Fig. 1.10 A ruminating cow (left) and a maverick (right)

Section 4 of [15]. Briefly put, although for the single-peaked case this is easy,
for “nearly single-peaked” cases such issues can become hard.)

1.5.1 K-Maverick-Single- Peakedness

The first of the two nearness-to-single-peakedness notions that we will study
is the notion of a k-maverick-SP (for “k-maverick-single-peaked”) electorate.
As always, our problems will come with a societal axis, L, as part of the
input. And a collection of votes is said to be a k-maverick-SP electorate if
all but at most k of those votes are consistent with the societal axis. When
studying manipulative actions problems for the k-maverick-SP case, we require
both the input and the after-the-manipulative-action state to be k-maverick-
SP electorates. So one cannot in a manipulation problem make so many
manipulators be maverick-like that the total number is greater than k. For
control-by-adding-voters problems, the entire collection of input votes—both
the registered voters and the unregistered ones, viewed together as one big
collection—must be a k-maverick electorate.

The motivation for looking at nearly single-peaked electorates is quite
compelling. Often electorates are very heavily focused on some issue, such
as the sweetness of pumpkin pie in a pie contest, or the degree to which
candidates for political office want to redistribute wealth. However, as we saw
in the case of Helena, it is perhaps too much to hope that every single person
in any reasonably large society will have preferences that mesh with that axis.
Helena, due to a medical condition, cared not about sweetness but about the
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ingredients in the crust. In political elections, even if it seems there is a single
clear, salient axis/issue, it is possible that at least a few voters may refuse
to vote for the candidate whose position on the axis’s issue best matches the
voter’s, perhaps because the voter has biases, such as refusing to vote for any
candidate of a certain religion. Or perhaps the voter perceives differently than
others the positions of the candidates on the society’s most salient issue. Or
perhaps the voter simply doesn’t see as the most important issue the same
issue that almost everyone in the society sees as their vote-controlling issue.
The truth is, although single-peakedness is a very natural notion, probably
the right claim to make about it is that in many real-world settings electorates
are quite close to being single-peaked. Perfect and pure single-peakedness is
too much to hope for in the chaos, confusion, and noise of the real world.

1.5.2 Swoon-Single- Peakedness

The second model of nearness to single-peakedness that we’ll study is the
notion of a swoon-SP (for “swoon-single-peaked”) electorate. In that we require
that, for each voter, if one removes the top choice of that voter from that
voter’s ballot and also from the societal axis L, then the resulting ballot is
consistent with the resulting axis. This models the case where each voter is
perfectly single-peaked along the societal axis, except the voter’s top choice
may be determined not due to the axis but because the voter has some perhaps
emotional, irrational reason to “swoon” for that person. Of course, the model
merely allows voters to swoon—it does not force all voters to swoon.

For example, perhaps almost everybody agrees that taxes are the most
important issue facing the country. Yet the swoon-SP model would allow
some (or all) voters to cast votes where all but the voter’s top candidates
were ordered in a single-peaked-like fashion, except the top spot in the voter’s
vote went, for example, to Scarlett Johansson or Arnold Schwarzenegger
(Figure 1.11) for some unfathomable swoon-related reason.

Let us now stop swooning and get back to the most salient current issue:
learning about the complexity of manipulative actions in nearly single-peaked
electorates.

Earlier in this chapter, a remarkably involved dichotomy condition was
given, as Theorem 1.5, telling which scoring protocols had their constructive
coalitional weighted manipulation complexity in P and for which that problem
was NP-complete. For the special case of 3-candidate elections, that theorem
simplifies to the following result, which was obtained earlier than Theorem 1.5.

Theorem 1.9 (Faliszewski et al. [17]). For each scoring protocol o =
(a1,a2,a3), the constructive coalitional weighted manipulation problem for
the single-peaked case is NP-complete if o —asz > 2(ag —ag) >0, and is in
P otherwise.
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In contrast, for the case of 1-maverick-SP societies, we have the following
dichotomy theorem.

Fig. 1.11 Beneficiaries of swooning

Theorem 1.10 (Faliszewski, Hemaspaandra, & Hemaspaandra [15]).
For each scoring protocol ¢ = (a1, e, v3), the constructive coalitional weighted
manipulation problem for 1-maverick-SP societies is NP-complete if ag > as,
and is in P otherwise.

Note that this characterization is quite different than the single-peaked
case’s characterization. For example, veto elections were NP-complete in the
general case, dropped to P in the single-peaked case, but are NP-complete
in the 1-maverick-SP case. In fact, since the characterization condition of
Theorem 1.10 is identical to the characterization condition of Theorem 1.4,
every 3-candidate scoring-protocol case that dropped from NP-completeness
to P due to single-peakedness is restored to NP-completeness for the case of
1-maverick-SP societies. Even a single maverick can result in a tremendous
difference in this problem’s complexity!

This type of behavior is not limited to the case of just three candidates,
or just to the case of 1-maverick-SP. For example, keeping our focus still on
veto elections, the following was shown by Faliszewski, Hemaspaandra, and
Hemaspaandra [15].

Theorem 1.11 (Faliszewski, Hemaspaandra, & Hemaspaandra [15]).
Let m > 0. For all k > 0, the constructive coalitional weighted manipulation
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problem for (m+ 3)-candidate veto elections for k-maverick-SP societies is
NP-complete if k > m, and is in P otherwise.

For example, for 10-maverick-SP societies, the constructive coalitional
weighted manipulation problem for m-candidate veto is in P for m € {0, 1,
2,13,14,15,...} and is NP-complete for m € {3,4,5,6,7,8,9,10,11,12}. In
contrast, veto is in P for any number of candidates for single-peaked societies,
and is NP-complete for any number of candidates in the general case. (This
behavior can be seen at smaller candidate cardinalities too. For 3-candidate
elections in 1-maverick-SP societies the constructive coalitional weighted
manipulation problem is NP-complete, but for 4-candidate elections in 1-
maverick-SP societies the constructive coalitional weighted manipulation
problem is in P.)

Again, we are seeing a type of behavior that is highly unexpected, namely,
we are seeing the complexity drop as the number of candidates increases from
12 to 13. However, fortified with what we learned from Theorem 1.6, we no
longer view this type of behavior as inherently precluded or impossible, and
so we don’t need to be too surprised by it.

That is a good thing, because the swoon-SP case of veto shows the same
type of behavior. We have NP-completeness for the 4-candidate case but
polynomial-time algorithms for the 5-candidate case.

Theorem 1.12 (Faliszewski, Hemaspaandra, & Hemaspaandra [15]).

For the swoon-SP case, the constructive coalitional weighted manipulation
problem for m-candidate veto is NP-complete for m € {3,4}, and is in P for
m > 5.

(For m < 3, every set of votes is swoon-SP with respect to any societal axis
L, so those cases are in fact the general case in disguise.)

So far in this section we have been looking only at manipulation. Does
control also show interesting, varied behavior for the nearly single-peaked
case? The answer is yes. For brevity, we will give a sense of what results hold
not by stating a number of theorems, but rather by giving Table 1.1, which
is a restriction to the cases we are interested in of a table from Faliszewski,
Hemaspaandra, and Hemaspaandra [15].

Although we won’t prove the results of this table, let us briefly mention
a key idea behind how one shows that a constant number of mavericks can
be tolerated (and for some cases one can even extend this to a logarithmic
number of mavericks, see [15]). That idea is from Faliszewski, Hemaspaandra,
and Hemaspaandra [15], and they call it “demaverickification.” Basically, this
process takes every maverick voter and shatters him or her into a collection of
votes, each of which votes for precisely one of the candidates that that voter
approved of (and note that these new votes are, crucially, not maverick votes).
Of course, there may be a number of mavericks in the pool of additional
votes, and we must decide which ones, if any, to add. When one wraps that
up together with the demaverickification process, one ends up with a so-
called polynomial-time disjunctive truth-table reduction (as was defined on



1.5 Do Nearly Single-Peaked Electorates Restore Intractability? 37

Table 1.1 Control complexity results comparison table (adapted from [15]) between two
types of nearly single-peaked electorates: the maverick-free single-peaked case and the
general case. The “t-approval” column holds for each ¢ > 2 unless otherwise noted; t = 1
is the “plurality” column. N/A means “not applicable” and NPC means “NP-complete.”

Control problem Complexity results for References
plurality  t-approval approval
CCAC and CCDC
general case NPC NPC (2, 10, 24, 23]
single-peaked P P (17, 15]
k-maverick-SP P for each P for each [15]
fixed k fixed k
swoon-SP NPC NPC N/A [15]
CCAV
general case P P for t <4 and NPC (2, 24, 23]
NPC for t > 4
single-peaked P P P (2, 17]
k-maverick-SP P P for each P for each [2, 15]
fixed k fixed k
swoon-SP P P N/A (2, 15]
CCDV
general case P P for t < 3, and NPC (2, 24, 23]
NPC for t >3
single-peaked P P P (2, 17]
k-maverick-SP P P for each P for each [2, 15]
fixed k fixed k
swoon-SP P P for t < 3 and N/A (2, 24, 15]

“2-approximable”
fort>3
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page 77?) from the k-maverick-SP case to the single-peaked case. That is, we
can turn one k-maverick-SP instance into a large—but not too large—mnumber
of maverick-free single-peaked instances, such that the original problem has
the answer “yes” if and only if at least one of our new instances has the answer
“yes.” This in some sense lets the k-maverick-SP case ride on the coattails
of the (maverick-free) single-peaked case, although with quite a bit of work
being done to make this possible. However, the bottom line is that this is
enough to cast many problems into P for the k-maverick-SP case.

“This has been fun,” says Belle to her friends, “but I think we now
deserve an extra treat. Let’s all go and have a yummy meal of ‘pumpkin-
pie surprise,” which of course is pumpkin pie surprisingly topped with
more pumpkin pie!” Belle’s friends’ eyes open wide with delight, and—
now with a better understanding of the complexity of manipulative
actions in single-peaked elections—they all happily race off to eat.
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