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20:2 L. A. Hemaspaandra et al.

1 Introduction

We show that every NP set of low ambiguity belongs to broad collections of restricted counting
classes.

We now describe the two types of complexity classes just mentioned. For any set S C N*, the
restricted counting class RCg [9] is defined by RCs = {L | (3f € #P)(Vx € Z)[(x ¢ L =
fx) =0)A(x e L = f(x) € S)]}, where #P is Valiant’s [48] counting version of NP (see
Section 2). In other words, a set L is in RCg exactly if there is a nondeterministic polynomial-time
Turing machine (NPTM) that on each string not in L has zero accepting paths and on each string
in L has a number of accepting paths that belongs to the set S. For example, although this is an
extreme case, NP = RCy+.

In the 1970s, Valiant [47] started the study of ambiguity-limited versions of NP by introducing
the class UP, unambiguous polynomial time, which in the preceding notation is simply RCyy;.
(The ambiguity (limit) of an NPTM refers to an upper bound on how many accepting paths it has
as a function of the input’s length. An NP language falls within a given level of ambiguity if it is
accepted by some NPTM that happens to satisfy that ambiguity limit.) More generally, for each
function f : N — N* or f : N — R2!, UP_¢(y,) denotes the class of languages L for which there is
an NPTM N such that, for each x, if x ¢ L then N on input x has no accepting paths, and if x € L
then 1 < #acen(x) < | f(|x])] (where #accy(x) denotes the number of accepting computation
paths of N on input x). (Since, for all N and x, #accy(x) € N, the class UP <f(y) just defined would
be unchanged if | f(|x|)] were replaced by f(|x|).)

Ambiguity-limited nondeterministic classes whose ambiguity limits range from completely un-
ambiguous (UP <y, i.e., UP) to polynomial ambiguity (the class FewP of Allender and Rubinstein [3])
have been defined and studied.

In this article, we show that many ambiguity-limited counting classes—including ones based
on types of logarithmic ambiguity, loglog ambiguity, and logloglog ambiguity—are contained in
various collections of restricted counting classes. We do so primarily through two general theorems
(Theorems 4.6 and 4.10) that help make clear how, as the size of the “holes” allowed in the sets
underpinning the restricted counting classes becomes smaller, one can handle more ambiguity.
Building on and generalizing earlier framings [9], we will quantify a set’s lack of large holes as
its “nongappiness.” Our basic notion capturing this (see Definition 4.5) is that a nonempty set is F-
nongappy if for each element m in the set there exists an m” > m such that m” also is in the set and
satisfies [m’| < F(|m|). Table 1 summarizes our results about the containment of ambiguity-limited
counting classes in restricted counting classes.

Only for polynomial ambiguity was a result of this sort previously known. In particular, Beigel
et al. [6], strengthening Cai and Hemachandra’s [16] result FewP C &P, proved that FewP C
RCyy,35,...}, and Borchert et al. [9] noted that FewP C RCy for each nonempty set T € N* that has
an easily presented (formally, P-printable [30], whose definition will be given in Section 2) subset
V that is (n + O(1))-nongappy (i.e., for some k, the set V never has more than k adjacent, empty
lengths; that is, for each collection of k + 1 adjacent lengths, V will always contain at least one
string whose length is one of those k + 1 lengths).

Our proof approach in the present article connects somewhat interestingly to the history just
mentioned. We will describe in Section 4 the approach that we will call the iterative constant-
setting technique. However, briefly put, that refers to a process of sequentially setting a series of
constants—first ¢, then ¢y, then cy, ..., and then ¢,;,—in such a way that, for each 0 < j < m, the
summation ¥o<p<; ce (é) falls in a certain “yes” or “no” target set, as required by the needs of the
setting. For RCg classes, the “no” target set will be {0} and the “yes” target set will be S. In this
work, we will typically put sets into restricted counting classes by building Turing machines that
guess (for each 0 < ¢ < j) cardinality-¢ sets of accepting paths of another NPTM and then amplify
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Table 1. Summary of Containment Results

IfT C N* X, then Y

X Y Reference
has an (n + O(1))-nongappy, P-printable subset FewP C RCt [9]
has an O(n)-nongappy, P-printable subset UP<0o(ogn) € RCT Theorem 4.9

has an O(nlog n)-nongappy, P-printable subset UP<0(\/10E) C RCt

c/2 .
forany ¢ € N* has an n?""” -nongappy, P-printable UP<0 lglogn € RCT Theorem 4.11
subset <OM+=3
k

for any k € N* has an n°€™" nongappy.

> UP CRC Theorem 4.21
P-printable subset SO+ frogrrsmery logloglog n T

<max(1, Llog*(n)—log*;log*(nﬂl)—l I

has a 2"-nongappy, P-printable subset S C RCr, where Theorem 4.21

A =4+ mingeg, |s|22(|s|)
is infinite UP<p1) €RCr Corollary 4.4

Note: Theorem 4.21 also gives a slightly stronger form of the 2" -nongappiness result than the version stated here.

each such successful accepting-path-set guess by—via splitting/cloning of the path—creating from
it ¢, accepting paths.

A technically novel aspect of the proofs of the two main theorems (Theorems 4.6 and 4.10, each
in effect a metatheorem) is that those proofs each provide, in a unified way for a broad class of
functions, an analysis of value-growth in the context of iterated functions.

Cai and Hemachandra’s [16] FewP C @P result was proven (as was an even more general result
about a class known as “Few”) by the iterative constant-setting technique. Beigel et al. [6], while
generously noting that “this result can also be obtained by a close inspection of Cai and Hemachan-
dra’s proof,” proved the far stronger result FewP C RCy; 35 .} simply and directly rather than by
iterative constant-setting. The even more general result of Borchert et al. [9], noted earlier, for
its proof resurrected the iterative constant-setting technique, using it to understand one particu-
lar level of ambiguity. This present article is, in effect, an immersion into the far richer world of
possibilities that the iterative constant-setting technique can offer, if one puts in the work to ana-
lyze and bound the growth rates of certain constants central to the method. In particular, as noted
earlier, we use the iterative constant-setting method to obtain a broad range of results (see Ta-
ble 1) regarding how ambiguity-limited nondeterminism is not more powerful than appropriately
nongappy restricted counting classes.

Each of our results has immediate consequences regarding the power of the primes as a
restricted-counting acceptance type. The result of Borchert et al. [9] implies that if the set of primes
has an (n+ O(1))-nongappy, P-printable subset, then FewP C RCprivrs. However, it is a long-open
research issue whether there exists any infinite, P-printable subset of the primes, much less an (n+
O(1))-nongappy one. Our results lower the bar on what one must assume about how nongappy hy-
pothetical infinite, P-printable subsets of the primes are in order to imply that some superconstant-
ambiguity-limited nondeterministic version of NP is contained in RCprpvps. We prove that even
infinite, P-printable sets of primes with merely exponential upper bounds on the size of their
gaps would yield such a result. We also prove—by exploring the relationship between density
and nongappiness—that the Lenstra-Pomerance-Wagstaff Conjecture [43, 49] (regarding the as-
ymptotic density of the Mersenne primes) implies that UP<o(1)110glogn © RCprivEs. The Lenstra-
Pomerance-Wagstaff Conjecture is characterized in Wikipedia [51] as being “widely accepted,” the
fact that it disagrees with a different conjecture (Gillies’ Conjecture [26]) notwithstanding.
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2 Definitions

N = {0,1,2,...}. N* = {1,2,...}. Each positive natural number, other than 1, is prime or
composite. A prime number is a number that has no positive divisors other than 1 and itself.
PRIMES = {i € N | iisaprime} = {2,3,5,7,11,...}. A composite number is one that has at
least one positive divisor other than 1 and itself; COMPOSITES = {i € N | iis a composite
number} = {4,6,8,9,10,12,...}. R is the set of all real numbers, R* = {x € R | x > 0}, and
R ={x€eR | x> 1}.

All logarithms in this article—including those involved in log, loglog, and logloglog, those
invoked by the definitions of log[i] and log” in the next paragraph, and also those in the definition
of our new log® which appears later—are base 2. Additionally, each call of the log function in
this article, log(-), is implicitly a shorthand for log(max(1,-)). We do this so that formulas such
as logloglog(-) do not cause domain problems on small inputs. (Admittedly, this is also distorting
log in the domain-valid open interval (0,1). However, that interval never comes into play in our
work except incidentally when iterated logs drop something into it, and also in the definitions of
log* and log®, but in those cases we will argue that the max happens not to change what those
evaluate to there.)

For any function f, we use fI™ to denote function iteration: fl°(«) = a and inductively, for
eachn € N, fI"*(a) = f(fI"l(a)). For each real number a > 0, log*(c) (“(base 2) log star of ”) is
the smallest natural number k such that log!*!(a) < 1. Although the logarithm of 0 is not defined,
note that log™(0) is well defined, namely it is 0 since log[o](O) =0.!

As mentioned earlier, for any NPTM N and any string x, #accy(x) will denote the number of
accepting computation paths of N on input x. #P [48] is the counting version of NP: 4P = {f : ¥* —
N | (3NPTM N)(Vx € 2")[#accn(x) = f(x)]}. ®P (“Parity P”) is the class of sets L such that there
isafunction f € #P such that, for each string x, itholds that x € L & f(x) =1 (mod 2) [27, 42].

We will use O in its standard sense—namely, if f and g are functions (from whose do-
main negative numbers are typically excluded), then we say f(n) = O(g(n)) exactly if there
exist positive integers ¢ and ny such that (Vn > ng)[f(n) < cg(n)]. We sometimes will
also, interchangeably, speak of or write a O expression as representing a set of functions
(e.g., writing f(n) € O(g(n))) [12, 13], which in fact is what the “big O” notation truly
represents.

The notions RCs, UP, and UP <y are as defined in Section 1. For each k > 1, Watanabe [50]
implicitly and Beigel [5] explicitly studied the constant-ambiguity classes RCyy 23 .k} Which,
following the notation of Lange and Rossmanith [39], we will usually denote UP .. We extend
the definition of UP<f(y) to classes of functions as follows. For classes ¥ of functions mapping N
to N* or N to R=!, we define UP.# = Ufes UP<f(n)- We mention that the class UP<o() is easily
seen to be equal to |Jgen+ UP <k, which is a good thing since that latter definition of the notion
is how UP (1) was defined in the literature more than a quarter of a century ago [35]. UP<o()
can be (informally) described as the class of all sets acceptable by NPTMs with constant-bounded
ambiguity. Other related classes will also be of interest to us. For example, UP<p(ogn) captures
the class of all sets acceptable by NPTMs with logarithmically bounded ambiguity. Allender and
Rubinstein [3] introduced and studied FewP, the polynomial-ambiguity NP languages, which can
be defined by FewP = {L | (3 polynomial f)[L € UP<f(n)l}.

ISince the definition of log*(-) allows values on the interval [0, 1), one might worry that the fact that we have globally
redefined log(+) to implicitly be log(max(1, -)) might be changing what log*(-) evaluates to. However, it is easy to see that,
with or without the max, what this evaluates to in the range [0, 1) is 0, and so our implicit max is not changing the value
of log™.
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The UP<f(,) classes, which will be central to this article’s study, capture ambiguity-bounded
versions of NP. They are also motivated by the fact that they completely characterize the existence
of ambiguity-bounded (complexity-theoretic) one-way functions.?

PROPOSITION 2.1. Let f be any function mapping from N to N*. P # UP ¢y, if and only if there
exists an f(n)-to-one one-way function.

We say a function f is nondecreasing if n < n’ implies f(n) < f(n’). Proposition 2.1 holds
even if f is not nondecreasing, and holds even if f is not a computable function. To the best of
our knowledge, Proposition 2.1 has not been stated before for the generic case of any function
f : N — N*. However, many concrete special cases are well known, and the proposition follows
from the same argument as is used for those (see for example [33, Proof of Theorem 2.5] for a tuto-
rial presentation of that type of argument). In particular, the proposition’s special cases are known
already for UP (due to [29, 37]), UP < (for each k € N*) and UP¢(y) (in [5, 35]), FewP (in [3]), and
(since the following is another name for NP) UPS ) (folklore, see [33, Theorem 2.5, Part 1]). The
proposition holds not just for single functions f but also for classes that are collections of functions
(ﬂgu UPSO(log n))-

We pause from our presentation of definitions to discuss whether there even are sets that fall
in such classes as UP<; or UP<o(1og n) Yet are not also obviously even in UP. In terms of directly
defined, highly concrete, natural examples, to the best of our knowledge, none are yet known. But
the lack of currently known concrete sets does not mean that the study is without value. Ambiguity
is a natural resource, and complexity tries to better understand the relationships between different
model and resource restrictions, such as between limited ambiguity and restricted counting classes.

However, we in fact will now give three different types of indirect constructions that put sets
into, for example, such limited ambiguity classes as UP <((1og n)- In each of our three construction
types, there is no obvious argument that the sets constructed belong to UP. Thus, the approaches
are providing candidates sets for, for example, UP <g(10g n) — UP.

One type is implicit in the proofs underpinning Proposition 2.1 and the results in the para-
graph that follows it. Using logarithmic ambiguity as our example, each O(logn)-to-1 honest,
polynomial-time computable function f implicitly (from the construction underpinning Propo-
sition 2.1) defines a set Ly that is in UP<p(og n). (Additionally, Ly has the property that if Ly € P,
then f is polynomial-time invertible.) We see no obvious way of showing that Ly will be in UP.
Similar claims hold for the other density bounds. So low-ambiguity sets are in fact closely tied, via
Proposition 2.1, to whether low-injectivity (complexity-theoretic) one-way functions exist.

The second type of construction of sets in, for example, UP < g(10g n) comes from looking at down-
ward disjunctive reducibility cones—that is, taking an “or” of a collection of queries to a UP set.

Namely, the class Rf)(log n)- at(UP) is clearly contained in UP<o(1og n) (and so is RI())(log n)_T(UP), since
that equals R? (UP)). Briefly, a set L is in R (UP) if there is a UP set Ay, such that

O(log n)-dtt O(log n)-dtt
on input x we can in polynomial time compute a list of O(log |x|) strings such that x € L exactly

2 A (possibly nontotal) function g is said to be a one-way function exactly if (a) ¢ is polynomial-time computable, (b) g is
honest (i.e., there exists a polynomial g such that, for each y in the range of g, there exists a string x such that g(x) = y
and |x| < g(|y|), simply put, each string y mapped to by g is mapped to by some string x that is not much longer than
y), and (c) g is not polynomial-time invertible (i.e., there exists no (possibly nontotal) polynomial-time function A such
that for each y in the range of g, it holds that h(y) is defined and g(h(y)) is defined and g(h(y)) = y) [29]. For each
f N — N7 and each (possibly nontotal) function g : =* — X*, we say that g is f(n)-to-1 exactly if, for each y € 3,
[[{x | g(x) =y}l <f(lyl). When g is a one-way function, the function f is sometimes referred to as an ambiguity limit
on the function g, and the special case of f(n) = 11is the case of unambiguous one-way functions. (This is a different notion
of ambiguity than that used for NPTMs, although Proposition 2.1 shows that the notions are closely connected.)
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20:6 L. A. Hemaspaandra et al.

if at least one string in our list belongs to Ar. The class R%(log
cept instead of nonadaptive queries the machine can ask O(log n) sequential (i.e., adaptive) oracle
queries to Ar, but must accept exactly if at least one belongs to Ay . To make this a bit more concrete,
note that from each UP set, A, we get the following simple example of such an Rl(’) (log n) 4 (UP) set,
which by the preceding comment will also belong to UP <10 n): At-Least-One-of-Short-Listy =
{1, L, L, ..., I) | k <log(Xi<i<k i) A {L1, I, Is, . . . It JNA # O} —that s, the set of all lists of po-
tential instances of A such that at least one member of the list belongs to A and the number of items
in the list is quite small relative to the size of the list’s encoding. If A in fact belongs to UP N coUP
then At-Least-One-of-Short-List 4 in fact is itself in UP N coUP (since PYPN°UP = UP N coUP); so
for this example to have any possible chance of escaping UP, we need A to be a set in UP — coUP.?

There exists a third approach to placing sets within bounded-ambiguity classes, which comes
from Theorem 5 of an article by Allender and Rubinstein [3]. That approach—which Allender and
Rubinstein do for the case of FewP but which, with the natural adjustment of changing the degree
of sparseness, would also apply to our classes—however creates, via prefix sets, sparse sets in FewP
(or our other bounded-ambiguity classes). And that is a higher hurdle than merely putting some
sets interestingly in our classes. In fact, the preceding one-way functions approach completely
characterizes whether the classes collapse to P, and the Allender—Rubinstein approach completely
characterizes whether the sparse sets in the class collapse to the sparse sets in P. In both cases, the
issue of whether the constructed sets are in UP is an open one; we see no obvious argument that
the sets will be in UP, but that is not a guarantee.

Returning to definitions, a set L is said to be P-printable [30] exactly if there is a deterministic
polynomial-time Turing machine such that, for each n € N, the machine when given as input the
string 1" prints (in some natural coding, such as printing each of the strings of L in lexicographical
order, inserting the character # after each) exactly the set of all strings in L of length less than or
equal to n.

Notions of whether a set has large empty expanses between one element and the next will be
central to our work in this article. Borchert et al. [9] defined and used such a notion, in a way that
is tightly connected to our work. We present here the notion they called “nongappy,” but here, we
will call it “nongappyyale” to distinguish their value-centered definition from the length-centered
definitions that will be our norm in this article.

n)_T(UP) is defined the same way ex-

Definition 2.2 ([9]). A set S € N7 is said to be nongappyvyae if S # 0 and (Ik > 0)(Vm €
S)@m’ € S)[m’ >m Am'/m < k].

This says that the gaps between one element of the set and the next greater one are, as to the
values of the numbers, bounded by a multiplicative constant. Note that if we view the natural num-
bers as naturally coded in binary, that is equivalent to saying that the gaps between one element
of the set and the next greater one are, as to the lengths of the two strings, bounded by an additive
constant. In other words, a nonempty set S € N* is said to be nongappyvame by this definition if
the gaps in the lengths of elements of S are bounded by an additive constant, and thus we have the
following result that clearly holds. Note that throughout this article, for strings x, we use |x| to
refer to the number of characters in the string x but, as one can see in the following proposition,
for natural numbers m, we use |m| to refer to the length of the binary representation of m.

$Most complexity theorists probably suspect that UP # coUP (equivalently, UP — coUP # 0), although likely with less
conviction than they suspect its famous ambiguity-unbounded analogue, NP # coNP. Both of those results in fact are
known to hold with probability one relative to a random oracle (respectively by Hemaspaandra and Zimand [36] and by
the seminal work of Bennett and Gill [7]), although that is not known to be determinative of whether they hold in the
unrelativized world.
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PROPOSITION 2.3. A setS C N* is nongappyvame if and only if S # 0 and (3k > 0)(Ym € S)(3m’ €
S)m’ > m A |m’| < |m|+k].

In Section 4, we define other notions of nongappiness that allow larger gaps than the above
does. We will always focus on lengths, and so we will consistently use the term nongappy in our
definitions to speak of gaps quantified in terms of the lengths of the strings involved. We now
introduce a new notation for the notion nongappyyaie, and show that our definition does in fact
refer to the same notion as that of Borchert et al. [9].

Definition 2.4. A set S C N* is (n + O(1))-nongappy if S # @ and (3f € O(1))(Ym € S)(Tm’ €
S)m” > m A |m’| < |m[+ f(Im])].

The issue of sets having nongappy (in various strengths of that notion), P-printable subsets will
be very important to our work. Let us give a simple example that helps illustrate some of these
notions, and does so by giving a nongappy, P-printable subset of SAT (naturally encoded). It is not
known whether all (n + O(1))-nongappy NP-complete sets have (n + O(1))-nongappy, P-printable
subsets (or even have any infinite, P-printable subset at all). (We mention in passing that it is
not hard to see there are NP-complete sets that are not (n + O(1))-nongappy. Those sets trivially
cannot have (n+O(1))-nongappy subsets, which is why in this example, to be fair, we focus only on
(n + O(1))-nongappy NP-complete sets.) However, in its natural encoding, SAT clearly does have
(n+ O(1))-nongappy, P-printable subsets—for example, {“v”, “v V v”,“v V v V v, ...}, where v is
some fixed variable name. We thus have an example where SAT has a simplicity property (namely,
having a (n + O(1))-nongappy, P-printable subset) that is not currently known to hold for all
(n + O(1))-nongappy NP-complete sets.

While at first glance Definition 2.4 might seem to be different from the definition of Borchert
et al. [9], it is easy to see that both definitions are equivalent.

PROPOSITION 2.5. A set S is (n + O(1))-nongappy if and only if it is nongappyvaiye-

Proor. Both directions follow immediately from Proposition 2.3. In particular, if S is (n + O(1))-
nongappy, then there is some function f as in Definition 2.4. Since f € O(1), clearly there exists a
constant k > 0 such that (Vm € N*)[ f(|m]) < k]. Conversely, if S is nongappyvalue, then there is a
constant k as in Proposition 2.3, and since the constant function k is of course O(1), we then have
that S is (n + O(1))-nongappy. a

Finally, the end of the fifth paragraph of Section 1 gave an on-the-fly, quite simple characteri-
zation of the (n + O(1))-nongappy sets as being the class of all sets S € N* such that, for some
k > 0, S never has more than k adjacent lengths containing no strings (k = 0 was not excluded, but
w.l.o.g. we may assume k > 0, since if it holds for k = 0 it holds for k = 1). For completeness, we
briefly explain why that indeed is a correct characterization of that notion. In particular, in light of
Proposition 2.5, we need only show that, for each set S € N*, the just-mentioned characterization
holds exactly if the right-hand side of Proposition 2.3 holds. If the former holds with k set to k’,
then the right-hand side of Proposition 2.3 clearly holds with k set to k’+1. If the right-hand side of
Proposition 2.3 holds with k (recall, k > 0 there) set to k’, then the characterization from Section 1
clearly holds with k set to max(k’ — 1, min,es(|m|)).

3 Related Work

The most closely related work has already largely been covered in the preceding sections, but
we now briefly mention that work and its relationship to our work. In particular, the most
closely related works are those of Cai and Hemachandra [16], Hemaspaandra and Rothe [34],
and Borchert et al. [9], which introduced and studied the iterative constant-setting technique as
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a tool for exploring containments of counting classes. The former two (and also the important
related work of Borchert and Stephan [10]) differ from the present article in that they are not
about restricted counting classes, and unlike the present article, the work of Borchert et al. [9],
as to containment of ambiguity-limited classes, addresses only FewP. (It is known that FewP is
contained in the class known as SPP and is indeed so-called SPP-low [21, 22, 38]; however, that
does not make our containments in restricted counting classes uninteresting, as it seems unlikely
that SPP is contained in any restricted counting class, since SPP’s “no” case involves potentially
exponential numbers of accepting paths, not zero such paths.) The important work of Cox and
Pay [20]—along with many other interesting results on counting classes—draws on the result of
Borchert et al. [9] that appears as our Theorem 4.1 to establish that FewP C RCyar_; | sen+) (note
that the right-hand side is the restricted counting class defined by the Mersenne numbers), a
result that itself implies FewP € RCyy 55 3.

“RC” (restricted counting) classes [9] are central to this work. The literature’s earlier “CP”
classes [15] might at first seem similar, but they do not restrict rejection to the case of having
zero accepting paths. Leaf languages [11], a different framework, do have flexibility to express
“RC” classes, and so are an alternate notation one could use, although in some sense they would
be overkill as a framework here due to their extreme descriptive power. The class RC(y 35 ) first
appeared in the literature under the name ModZ,P [6]. Ambiguity-limited classes are also quite
central to this work, and among those we study (see Section 2) are ones defined, or given their
notation that we use, in several works [3, 5, 39, 47, 50].

The counting classes studied in this article are all language classes, although each is or can be
defined via #P functions. (For example, FewP is the class of all sets L such that, for some polynomial
p and some #P function f, we have that for each x € X* it holds that (a) x ¢ L = f(x) =0, and
(byx e L = 1 < f(x) < p(|x]). Note that there is a restriction in play there, namely, that the
#P function underpinning L will on no input x take on any value strictly greater than p(|x|).) The
direct study of counting classes of functions, and the properties and interrelations of those classes,
is an active research area, although we mention that to the best of our knowledge the results of
the present article do not follow from any currently known results in that area. As a pointer to
some of the interesting current research in that area, we mention the work of Antonopoulos et
al. [4] and Chalki [18]. Finally, interesting but fundamentally different in flavor from our work is
the broad stream of work focused on completely classifying the complexity of various families of
counting problems see, e.g., [14].

P-printability is due to Hartmanis and Yesha [30]. Allender [2] established a sufficient condition,
which we will discuss later, for the existence of infinite, P-printable subsets of the primes. As
discussed in the text right after Corollary 4.2 and in footnote 5, none of the results of Ford, Maynard,
Tao, and others [23, 24, 40] about “infinitely often” lower bounds on gaps in the primes, nor any
possible future bounds, can possibly be strong enough to be the sole obstacle to a FewP C RCprimes
construction.

4 Gaps, Ambiguity, and Iterative Constant-Setting

What is the power of NPTMs whose number of accepting paths is 0 for each string not in the set
and is a prime for each string in the set? In particular, does that class, RCprivgs, contain FewP
or, for that matter, any interesting ambiguity-limited nondeterministic class? That is the question
that motivated this work.

Why might one hope that RCpgyyes might contain some ambiguity-limited classes? Well, we
clearly have that NP € RCcomposiTes, S0 having the composites as our acceptance targets allows
us to capture all of NP. Why? For any NP machine N, we can make a new machine N’ that mimics
N, except it clones each accepting path into four accepting paths, and so when N has zero accepting
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paths, N’ has zero accepting paths, and when N has at least one accepting path, N” has a composite
number of accepting paths.*

On the other hand, why might one suspect that interesting ambiguity-limited nondeterministic
classes such as FewP might not be contained in RCpgyps? Well, it is not even clear that FewP is
contained in the class of sets that are accepted by NPTMs that accept via having a prime num-
ber of accepting paths, and reject by having a nonprime number of accepting paths (rather than
being restricted to rejecting only by having zero accepting paths, as is RCpgrpvgs)- That is, even a
seemingly vastly more flexible counting class does not seem to in any obvious way contain FewP.

This led us to revisit the issue of identifying the sets S C N* that satisfy FewP C RCg, studied
previously by, for example, Borchert et al. [9] and Cox and Pay [20]. In particular, Borchert et al.
showed, by the iterative constant-setting technique, the following theorem.

TaEOREM 4.1 ([9, THEOREM 3.4]). IfT C N* has an (n+ O(1))-nongappy, P-printable subset, then
FewP C RCr.

From this, we immediately have the following corollary.

CoroLLARY 4.2. IfPRIMES contains an (n + O(1))-nongappy, P-printable subset, then FewP C
RCprimes-

Does PRIMES contain an (n + O(1))-nongappy, P-printable subset? The Bertrand—-Chebyshev
Theorem [19] states that for each natural number k > 3, there exists a prime p such that k < p <
2k — 2. Thus, PRIMES clearly has an (n + O(1))-nongappy subset.” Indeed, since—with p; denoting
the ith prime—(Ye > 0)(AN)(Vn > N)[pp+1—pn < (pn)%”] [46], it certainly holds that represented
in binary there are primes at all but a finite number of bit lengths. Unfortunately, to the best of our
knowledge, it remains an open research issue whether there exists any infinite, P-printable subset
of the primes, much less one that in addition is (n + O(1))-nongappy.

In fact, the best sufficient condition we know of for the existence of an infinite, P-printable set
of primes is a relatively strong hypothesis of Allender [2, Corollary 32 and the comment following
it] about the probabilistic complexity class RP [25] and the existence of secure extenders. However,
that result does not promise that the infinite, P-printable set of primes is (n+O(1))-nongappy—not
even now, when it is known that primality is not merely in the class RP but even is in the class P [1].

So the natural question to ask is: Can we at least lower the bar for what strength of advance—
regarding the existence of P-printable sets of primes and the nongappiness of such sets—would
suffice to allow RCpprivgs to contain some interesting ambiguity-limited class?

In particular, the notion of nongappiness used in Theorem 4.1 means that our length gaps be-
tween adjacent elements of our P-printable set must be bounded by an additive constant. Can we

4One should not think that the fact that NP € RCcomposiTes (equivalently, NP = RCconmposiTes) holds means that coNP €
RCpriMes; the latter in fact would immediately imply that NP = coNP, since for each S € N7 it holds that RCs € NP.
As to whether the fact that NP € RCcomposiTes holds means that coNP € RCy—composiTes holds, the latter is not even
well defined, since the RC classes are defined only for sets S satisfying S C N*. But even if one removes 0, and asks about
coNP C RCy+_ composiTEs: for the same reason just mentioned that containment would imply NP = coNP.

5 We mention in passing that it follows from the fact that PRIMES clearly does have an (n + O(1))-nongappy subset that
none of the powerful results by Ford, Maynard, Tao, and others [23, 24, 40] about “infinitely often” lower bounds for gaps in
the primes, or in fact any results purely about lower bounds on gaps in the primes, can possibly prevent there from being a
set of primes whose gaps are small enough that the set could, if sufficiently accessible, be used in a Cai-Hemachandra-type
iterative constant-setting construction seeking to show that FewP C RCprimgs. (In fact—keeping in mind that the difference
between the value of a number and its coded length is exponential—the best such gaps known are almost exponentially too
weak to preclude a Cai-Hemachandra-type iterative constant-setting construction.) Rather, the only obstacle will be the
issue of whether there is such a set that in addition is computationally easily accessible/thin-able—that is, whether there
is such an (n + O(1))-nongappy subset of the primes that is P-printable.
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weaken that to allow larger gaps (e.g., gaps of multiplicative constants) and still have containment
for some interesting ambiguity-limited class?

We show that the answer is yes. More generally, we show that there is a tension and tradeoff
between gaps and ambiguity. As we increase the size of gaps we are willing to tolerate, we can
prove containment results for restrictive counting classes, but of increasingly small levels of am-
biguity. On the other hand, as we lower the size of the gaps we are willing to tolerate, we increase
the amount of ambiguity we can handle.

It is easy to see that the case of constant-ambiguity nondeterminism is so extreme that the iter-
ative constant-setting method works for all infinite sets regardless of how nongappy they are. (It
is even true that the containment UP < C RCt holds for some finite sets T, such as {1, 2,3, ...,k};
but our point here is that it holds for all infinite sets T € N*.)

THEOREM 4.3. For each infinite set T C N* and for each natural k > 1, UP.; C RCr.

Theorem 4.3 should be compared with the discussion by Hemaspaandra and Rothe [34, p. 210] of
an NP-many-one-hardness result of Borchert and Stephan [10] and a UP < -1-truth-table-hardness
result. In particular, both of those results are in the unrestricted setting, and so neither implies
Theorem 4.3.

The proof of Theorem 4.3 is in Appendix A. However, we recommend that the reader read it, if
at all, only after reading the proof of Theorem 4.6, whose proof also uses (and within this article, is
the first presentation of) iterative constant-setting, and is a more interesting use of that approach.

COROLLARY 4.4. For each infinite set T C N*, UP-p(;) € RCr.

So constant-ambiguity nondeterminism can be done by the restrictive counting class based on
the primes (as Corollary 4.4 immediately yields UP<o(1) € RCprimvEs). However, what we are truly
interested in is whether we can achieve a containment for superconstant levels of ambiguity. We in
fact can do so, and we now present such results for a range of cases between constant ambiguity
(UP<o(1)) and polynomial ambiguity (FewP). Just as Corollary 4.2 follows from Theorem 4.1, so
also do each of our Theorems 4.9 and 4.21 (Parts 1 through 3) each have the obvious analogous
corollary regarding RCprimEs.-

We first define a broader notion of nongappiness.

Definition 4.5. Let F be any function mapping R* to R*. A set S € N* is F-nongappy if S # 0
and (Ym € S)(3m’ € S)[m’ > m A |m’| < F(Im|)].

This definition sets F’s domain and codomain to include real numbers, despite the fact that the
underlying F-nongappy set S is of the type S € N*. The codomain is set to include real numbers
because many notions of nongappiness we examine rely on noninteger values. Since we are often
iterating functions, we thus set F’s domain to be real numbers as well. Doing so does not cause
problems as to computability because F is a function that is never actually computed by the Turing
machines in our proofs; it is merely one that is mathematically reasoned about in the analysis of
the nongappiness of sets underpinning restricted counting classes.

®In two later definitions, 4.7 and 4.20, we apply Definition 4.5 to classes of functions. In each case, we will directly define
that, but in fact will do so as the natural lifting (namely, saying a set is #-nongappy exactly if there is an F € ¥ such that
the set is F-nongappy). The reason we do not directly define lifting as applying to all classes ¥ is in small part that we
need it only in those two definitions, and in large part because doing so could cause confusion, since an earlier definition
(Definition 2.4) that is connecting to earlier work is using as a syntactic notation an expression that itself would be caught
up by such a lifting (although the definition given in Definition 2.4 is consistent with the lifting reading, give or take the
fact that we have now broadened our focus to the reals rather than the naturals).
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The following theorem generalizes the iterative constant-setting technique that Borchert
et al. [9] used to prove Theorem 4.1.

THEOREM 4.6. Let F be a function mapping from R* toR* and let ny be a positive natural number
such that F restricted to the domain {t € R* | t > no} is nondecreasing and for allt > ny we have
(a) F(t) = t + 2 and (b) (V¢ € N*)[cF(t) > F(ct)]. Let j be a function, mapping from N to N*, that
is at most polynomial in the value of its input and is computable in time polynomial in the value of
its input. Suppose T € N* has an F-nongappy, P-printable subset S. Let A = 4 + |s|, where s is the
smallest element of S with |s| > no. If for some p € N*, FUWI(}) = O(nP), then UPjn) € RCr.

This theorem has a nice interpretation: a sufficient condition for an ambiguity-limited class
UP () to be contained in a particular restricted counting class is for there to be at least j(n)
elements that are reachable in polynomial time in an F-nongappy subset of the set that defines
the counting class, assuming that the nongappiness of the counting class and the ambiguity of the
UP _(n) class satisfy the conditions from the theorem statement.

ProoF oF THEOREM 4.6. Let F, j, ng, T, and S be as per the theorem statement. Suppose (3p’ €
NHO[FUMI(1) = O(n?")], and fix a value § € N* such that FU™I(1) = O(n?). We start our proof
by defining three sequences of constants that will be central in our iterative constant-setting ar-
gument, and giving bounds on their growth. Set ¢; to be the least element of S with |¢;| > ny. For
ne{2,3,...},givency,c, ..., Cph1, We set

bu= Y cf(’{f). (1)

1<f<n-1

With b, set, we define a,, to be the least element of S such that a,, > b,,. Finally, we setc¢,, = a, —b,,.
We now show that max; <, <) lac¢| and maxy<,<j(n) |c¢| are both at most polynomial in n. Take
any i € {2,3,...}. By construction and since S is F-nongappy, we have |¢;| < |a;| < F(|b;]). Using
our definition of b; from Equation (1), we get b; = 231 <f<i1 Ck (;C) < (i—1)(max;<k<i—1 ck)([zj:]) <

(max; <g<i_1 cx)(2%). Thus, we can bound the length of b; by |b;| < 2i + max;<g<;_1 |ck|. Since
this is true for all i € {2,3,...}, it follows that if max; </<j(n) |c¢| is at most polynomial in n, then
maXy<s<j(n) |be| is at most polynomial in n, and since for all i, a; = b; + ¢;, maxy</<j(n) |ac| is at
most polynomial in n.

We now show that max;<¢<jm) |c¢| is in fact polynomial in n via the following claim, which
we prove by induction: for all i € {2,3,...}, max;<;<;|c/| < (i = 1)FI0-VI(}). We showed in
the previous paragraph that for any i € {2,3,...}, |c;| < F(|b;]) and |b;| < 2i + max; <k <1 |ck|-
For each i € {2,3,...}, we have |b;| > |c;| = no. Since F restricted to {t € R* | t > ng} is
nondecreasing, for all i € {2,3,...,n},

lei| < F(|bi]) < F(2i + max |ckl). (2)
1<k <i-1

Recall that A = 4 + |c;|. For the base case of our induction, notice that substituting i = 2 into
Equation (2) gives |cz| < F(4+|cq]) = F(A). Additionally, by condition (a) and the fact that |¢;| > ny,
we have |¢;| < F(|c1|) < F(4 + |c1]) = F(A). Thus, max;<¢<s |c| < F(A), which is the claimed
inequality for i = 2. Suppose, for induction, that the claim holds for some i > 2. Since |c;| > nyo,
condition (a) and the fact that F restricted to {t € R* | t > n,} is nondecreasing give us FIi=1(}) =
FU=(4 4 |¢;]) = 2(i— 1)+ 4 +]|c;| = 2(i + 1). Plugging i + 1 into Equation (2) and using the fact that
all the inputs to F involved are greater than ng (and so are in the domain where F is nondecreasing),
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we have
lei+1| < F(2(i + 1) + max [cz|)
1<<i

< FQ2(i + 1) + (i — DHFE=UQ) (by the inductive hypothesis)
< F(FU=1Q) + (i — 1FI1 )

= FFU()

< ifFtil(). (by condition (b))

Since max; <¢<; |c¢| < (i — 1)FUI=YU(Q) < iFl(1), we have max;<p<is1 |c¢| < iFI(A), which is the
claimed inequality for i + 1. By induction, the claim holds.

Substituting i = j(n) into the inequality we just proved, we get max; <¢<j(n) lc¢| < j(n)FUMIQ).
Since FU™MI(2) = O(nf) and by hypothesis j(n) is at most polynomial in n, j(n)FU™I(2) is at most
polynomial in n. Hence, max; </<j(n) |c¢| is at most polynomial in n.

We now proceed to show that UP¢j,) € RCr. Let L be a language in UP (,), witnessed by an
NPTM N. To show L € RCr, we give a description of an NPTM N that, on each input x, has 0
accepting paths if x ¢ L, and has #accy(x) € T if x € L. On input x, our machine N computes j(|x|)
and then computes the constants cy, ¢z, . . ., ¢j(|x|) as described earlier. Note that this computation
relies on the P-printability of S, which ensures that the constants a; (which must be computed to
compute c;) are computable. Then N nondeterministically guesses an integer i € {1, 2,. .., j(|x])},
and nondeterministically guesses a cardinality-i set of paths of N(x). If all the paths guessed in
a cardinality-i set are accepting paths, then N branches into ¢; accepting paths; otherwise, that
branch of N rejects. Of course, if N(x) has fewer than i paths, then the subtree of N that guessed
i will have zero accepting paths, since we cannot guess i distinct paths of N(x). We claim that N
shows L € RCr.

Consider any input x. If x ¢ L, then clearly for all i € {1,2,...,j(|x|)}, each cardinality-i set of
paths of N guessed will have at least one rejecting path, and so N will have no accepting path. Sup-
pose x € L. Then N must have some number of accepting paths k. Since N witnesses L € UP i(n)s
we must have 1 < k < j(x|). Our machine N will have ¢; accepting paths for each accepting path
of N, ¢, additional accepting paths for each pair of accepting paths of N, ¢3 additional accepting
paths for each triple of accepting paths of N, and so on. Of course, for any cardinality-i set where
i > k, at least one of the paths must be rejecting, and so N will have no accepting paths from
guessing each i > k. Thus, we have #accy(x) = X1 <p<k cz(];). If k = 1, we have #accy(x) = ¢;. If
2 < k < j(|x|), then #acen(x) = ¢k + D1<r<k- c(e(’;) = ¢k + by = ag. In either case, #accy(x) € S,
and hence #accy(x) € T. To complete our proof for L € RCr, we need to check that N is
an NPTM.

Note that, by assumption, j(|x|) can be computed in time polynomial in |x|. Furthermore, the
value j(|x|) is at most polynomial in |x|, and so N’s simulation of each cardinality-i set of paths
of N can be done in time polynomial in |x|. Since S is P-printable and max; <; < i(lx) lai| is at most
polynomial in |x|, finding the constants a; can be done in time polynomial in |x|. Additionally,
since maxy <;<j(|x|) Ici| is at most polynomial in |x|, the addition and multiplication to compute
each ¢; can be done in time polynomial in |x|. All other operations done by N are also polynomial
time, and so N is an NPTM. 4

It is worth noting that in general iterative constant-setting proofs, it is sometimes useful to have
a nonzero constant ¢q in order to add a constant number ¢ ((’)) = ¢o of accepting paths. However,
when trying to show containment in a restricted counting class (as is the case here), we set ¢g = 0
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to ensure that #accy(x) = 0 if x ¢ L, and so we do not even have a ¢, but rather start iterative
constant-setting and its sums with the ¢; case (as in Equation (1)).

Theorem 4.6 can be applied to get complexity-class containments. In particular, we now define
a notion of nongappiness based on a multiplicative-constant increase in lengths, and we show—as
Theorem 4.9—that this notion of nongappiness allows us to accept all sets of logarithmic ambiguity.

Definition 4.7. AsetS C N* is O(n)-nongappy if S # 0 and (3f € O(n))(Vm € S)(Im’ € S)[m’ >
m A m'[ < f(Im])].

As Fact 4.8, we note that one can view this definition in a form similar to the definition of
Borchert et al. [9] to see that O(n)-nongappy sets are, as to the increase in the lengths of consecu-
tive elements, bounded by a multiplicative constant. (In terms of values, this means that the gaps
between the values of one element of the set and the next are bounded by a polynomial increase.)

Fact 4.8. A set S C N7 is O(n)-nongappy if and only if there exists k € N* such that S is kn-
nongappy.

PROOF. As to the “only if” direction, suppose S is O(n)-nongappy. By definition of O(n)-
nongappy, S # 0 and there is a function f € O(n) such that (Vm € S)(3m’ € S)[m’ > m A |m’| <
f(Im])]. Since f is O(n), we can find constants kg and ny in N* such that (V¢ > ng)[ f(¢) < kot]. Let
k = max(f(1), f(2),..., f(ng), ko). Then for all n € N*, f(n) < kn. (Even though f has domain
R*, it is enough to have this bound just for the positive natural numbers since our definition of
nongappy only invokes the function on positive naturals.) It is easy to see that this k is such that
S is kn-nongappy. As to the “if” direction, kn is certainly O(n). a

TuEOREM 4.9. IfT C N* has an O(n)-nongappy, P-printable subset, then UP <o(ogn) € RCt.

Proor. Suppose T € N* has an O(n)-nongappy, P-printable subset. By the “only if” direction
of Fact 4.8, there exists a k € N* such that T has a kn-nongappy, P-printable subset. We can
assume k > 2 since if a set has a 1n-nongappy, P-printable subset, then it also has a 2n-nongappy,
P-printable subset. Let F : R* — R* be the function F(¢t) = kt. The function F satisfies the
conditions from Theorem 4.6 since for all t > 2, F(t) = kt > t + 2, (V¢ € NY)[cF(n) = ckn =
F(cn)], and F is nondecreasing on R*. Let A = 4 + |s|, where s is the smallest element of the kn-
nongappy, P-printable subset of T such that the conditions on F hold for all t > |s|, i.e., s is the
smallest element of the kn-nongappy, P-printable subset of T such that |s| > 2. For any function
g : N — R>! satisfying g(n) = O(log n), it is not hard to see (since for each natural n it holds that
log(n + 2) > 1) that there must exist some d € N* such that (Vn € N¥)[g(n) < dlog(n + 2)], and
hence UP<y(n) € UP<dlog(nt2) = UP<|dlog(n+2)]- Additionally, j(n) = [dlog(n + 2)] satisfies the
conditions from Theorem 4.6 since j(n) can be computed in time polynomial in n (e.g., by doing a
linear search for the largest i € N such that 2! < (n + 2)?) and has value at most polynomial in n.
Applying Theorem 4.6, to prove that UP ¢,y € RCr it suffices to show that there is some f € N*
such that FUMI(1) = O(nf). So it suffices to show that for some f € N* and for sufficiently
large n, FUMI(1) < nf. Note that FUMI(}) = k/(M ). So it is enough to show that there exists
B such that for sufficiently large n, K/™1 < n#, or (taking logs) equivalently that for large n,
dlog(n+2)|logk + logA < Plogn. The left-hand side of this inequality is at most dlog(n +
2)logk + logA < log(n)[2dlogk + log A] which, for all § > 2dlogk + log A, is at most fSlogn.
Thus, there exits a constant f such that FU™I(1) = O(nf). Hence, for any function g : N — R>!
satisfying g(n) = O(log n), we have that there exists a function j such that UP<4,) € UP<jn) C
RCr. a

For the iterative constant-setting approach used in Theorem 4.6 to be applicable, it is clear that
we need to consider UP classes that have at most polynomial ambiguity, because otherwise the

ACM Trans. Comput. Theory, Vol. 16, No. 4, Article 20. Publication date: November 2024.



20:14 L. A. Hemaspaandra et al.

constructed NPTMs could not guess large enough collections of paths within polynomial time.
Since in the statement of Theorem 4.6 we use the function j to denote the ambiguity of a particular
UP class, this requires j to be at most polynomial in the value of its input. Furthermore, since
our iterative constant-setting requires having a bound on the number of accepting paths the UP
machine could have had on a particular string, we also need to be able to compute the function j
in time polynomial in the value of its input. Thus, the limitations on the function j are natural and
seem difficult to remove. Theorem 4.6 is flexible enough to, by a proof similar to that of Theorem 4.9,
imply the result of Borchert et al. [9] stated in Theorem 4.1 where j reaches its polynomial bound.

Another limitation of Theorem 4.6 is that it requires that for all ¢ greater than or equal to a
fixed constant ng, (V¢ € N¥)[cF(t) > F(ct)]. It is possible to prove a similar result where for
all t greater than or equal to a fixed constant ng, (V¢ € RZ!)[cF(t) < F(ct)], which we now
do as Theorem 4.10. For each of the F-nongappy set classes that seemed most interesting to us,
one of these two conditions turned out to hold for F, and so one of the two results shown in
Theorems 4.6 and 4.10 was applicable in finding the ambiguity-limited class that is contained
in a restricted counting class associated with a set of natural numbers with some F-nongappy,
P-printable subset.

THEOREM 4.10. Let F be a function mapping fromR* toR* and let ny be a positive natural number
such that F restricted to the domain {t € R* | t > no} is nondecreasing and for all t > ny we have
(a) F(t) > t + 2 and (b) (V¢ € RZY)[cF(t) < F(ct)]. Let j be a function mapping from N to N* that
is computable in time polynomial in the value of its input and whose output is at most polynomial
in the value of its input. Suppose T C N* has an F-nongappy, P-printable subset S. Let A = 4 + |s|,
where s is the smallest element of S with |s| > ny. If for some 8, FU™I(j(n)A) = O(n?), then UP )
C RCr.

How does this theorem compare with our other metatheorem, Theorem 4.6? Since in both
metatheorems F is nondecreasing after a prefix, speaking informally and broadly, the functions F
where (after a prefix) (Vc € R=!)[cF(t) < F(ct)] holds grow faster than the functions F where (af-
ter a prefix) (Yc € N)[cF(t) > F(ct)] holds. (The examples we give of applying the two theorems
reflect this.) So, this second metatheorem is accommodating larger gaps in the sets of integers
that define our restricted counting class, but is also assuming a slightly stronger condition for
the containment of an ambiguity-limited class to follow. More specifically, since we have the ex-
tra factor of j(n) inside of the iterated application of F, we may need even more than j(|x|) ele-
ments to be reachable in polynomial time (exactly how many more will depend on the particular
function F).

Proor oF THEOREM 4.10. The proof follows almost identically to the proof of Theorem 4.6. Let
F, j, ng, T, and S be as per the theorem statement. Suppose (3’ € NH)[FUMI(j(n)A) = O(n#")], and
let f € N* be some specific, fixed f’ value instantiating that. We define the sequences of constants
an, by, and ¢, exactly as in the proof of Theorem 4.6. We now show that max,</<j(n) |a¢| and
maxi </<j(n) |c¢| are at most polynomial in n. For the same reasons as in the proof of Theorem 4.6,
if max; <o<j(n) |ce| is at most polynomial in n, then max,<;<j(n) |ac| is at most polynomial in n.

We prove that max;<¢<jm) |c¢| is at most polynomial in n by proving the following claim via
induction: for all i € {2,3,...}, max;</<; [c/| < FU=Y((i — 1)1). Notice that Equation (2) from the
proof of Theorem 4.6, which says that |¢;| < F(2i+maxj<r<;—1 |ck|) still holds, since deriving it did
not use any of the assumptions that are different in that theorem. Plugging in i = 2 gives us |cz| <
F(4 + |c1|) = F(4). Additionally, by condition (a) and the fact that |c;| > no, |c1] < F(|c1]) which,
since F restricted on {t € R* | t > ng} is nondecreasing, is at most F(1). Thus, maxj <<z |ck| <
F(A), which is the i = 2 case of our claim. Suppose now that the claim holds for some i > 2. Since
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A > 4, we have 2(i + 1) < 2(i + 1) + A — 4. Condition (a) implies 2(i + 1) < Fli=l(1) = E Fli=tl(),
Since it follows from condition (b) that for all £ € N*, ¢ > 1, and t > no, cFl(t) < Fl(ct), we
have 2(i + 1) < 7 Fli=1((i — 1)A). Plugging i + 1 into Equation (2), we have

leiv1] < F(2(i + 1) + max |ck])
1<k<i
< F(2(i + 1) + FU7((i = 1)2)) (by the inductive hypothesis)

<F (%F[”]((i 1))+ (G - 1)1))

_F (ﬁF[H]((i - 1))[))
< FlGip). (by condition (b))

Since max;<¢<;|c] < FUZU((i — 1)A) < Fl(id), we have max;<s<is1 |ce] < FU(id), which,
by induction, proves the claim. Plugging i = j(n) into the claim we just proved, we get that
max; </ <jn) lee| < FIH((j(n) = 1)A) < FUMI(j(n)2) = O(nf).

Consider any language L € UP ¢ (,) witnessed by machine N. Given N and the sequences of con-
stants we defined, we construct a machine N identically to the proof of Theorem 4.6. By the argu-
ments in the proof of that theorem, N accepts L in an RCr-like fashion, apart from the fact that we
have not yet shown N to be an NPTM. As to that final issue, since we showed that max,<; <) |a;|
and max; <;<j(n) |c;| are at most polynomial in n, the arguments in the proof of Theorem 4.6 for
why N is an NPTM still hold. Thus, L € RCr, which completes our proof. d

We now discuss some other notions of nongappiness and obtain complexity-class containments
regarding them using Theorem 4.10. Theorem 4.11 and its corollary, Corollary 4.13, were flawed
in some of the previous versions of this article; we thank an anonymous ACM TOCT referee for
spotting the problem.

THEOREM 4.11. For any number k € R* that can be expressed as k = 2°/* for some ¢ € N*, if
T C N* has an n*-nongappy, P-printable subset, then UP<O(1)+M C RCr.
s 2log k

PROOF. Let ¢ be an arbitrary positive natural number, and let k = 2¢/? (notice that k > V2). Sup-
pose T C N* is a set having an n*-nongappy, P-printable subset. We argue that UP
RCr.

Set F : R* — R to be F(t) = t*. F satisfies the conditions on the F in Theorem 4.10 because
F is nondecreasing on R* (since k > 0), and for all t > 4, we have (a) tF —t = t(tF"' = 1) >
4(4‘/5_1 — 1) > 2, which means F(t) > t + 2, and (b) (V¢ € R=1)[cF(t) = ctk < (ct)k = F(ct)]. Let
A = 4+ |s|, where s is the smallest element of the n*-nongappy, P-printable subset of T where the
conditions on F hold for all t > [s|, i.e., s is the smallest element of the n*-nongappy, P-printable

loglogn c
<O0(1)+ Slogk

subset such that |s| > 4. For every function ¢ : N — R>! satisfying g(n) = O(1) + IZ%izgkn,
there exists a d € N* such that g(n) < |d + lzﬁizgknj, and hence UP<4(,) C UPsLd+ 1§gli<;gknJ.7 The

loglogn
2logk

1 =1d+ IOgI#J satisfies the conditions on j of Theorem 4.10, since

loglogn
c

function j(n) = |d +

j(n) can be computed in time polynomial in the value n (since | | can be computed by doing

loglog n
2log k
redefined log(-) to mean log(max(1, -)). The same is true for similar expressions that appear in the proof of Theorem 4.21.

"Note that the expression d +

is not problematic despite the fact that 0 is a valid input since we have globally
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a linear search for the largest natural number i such that 22 < n) and j(n) has value at most
polynomial in the value n. Applying Theorem 4.10, to prove that UP ¢,y € RCr it suffices to show
that for some f € N* and for sufficiently large n, FU™(j(n)1) < nP. Plugging in FUM(j(n)1) =
(j(n)/l)kj(") and taking logarithms, we see that this is the same as showing that there exists f such
that for sufficiently large n, j(n)logk + loglog(j(n)A) < log  + loglog n. For large n, j(n)logk +
loglog(j(n)A) < 2j(n)logk < 2dlogk + loglogn.

Setting § = 229198k gives us the desired inequality. Thus, for any function g : N — R=! sat-
istying g(n) = O(1) + lozgli‘;gkn, we have shown that there exists a function j such that UP <y, C
UPj(n) S RCr (and so we have UP <4,y € RCr). d

Theorem 4.11 has an interesting consequence when applied to the Mersenne primes. In partic-
ular, as we now show, it can be used to prove that the Lenstra—Pomerance-Wagstaff Conjecture
implies that the (O(1) + log log n)-ambiguity sets in NP each belong to RCprimes.

A Mersenne prime is a prime of the form 25 — 1. We will use the Mersenne prime counting
function u(n) to denote the number of Mersenne primes with length less than or equal to n (when
represented in binary). The Lenstra-Pomerance-Wagstaff Conjecture [43, 49] (see also the work
of Caldwell [17]) asserts that there are infinitely many Mersenne primes, and that p(n) grows
asymptotically as e’ logn where y ~ 0.577 is the Euler—Mascheroni constant. (Note: We say that
f(n) grows asymptotically as g(n) when lim,_,«, f(n)/g(n) = 1.)

Having infinitely many Mersenne primes immediately yields an infinite P-printable subset of
the primes. In particular, on input 1” we can print all Mersenne primes of length less than or equal
to n in polynomial time by just checking (using a deterministic polynomial-time primality test [1])
each number of the form 25 — 1 whose length is less than or equal to n, and if it is prime then
printing it.

If the Lenstra-Pomerance-Wagstaft Conjecture holds, what can we also say about the gaps in
the Mersenne primes? We address that with the following result.

THEOREM 4.12. If the Lenstra—Pomerance—Wagstaff Conjecture holds, then for each € > 0 the
primes (indeed, even the Mersenne primes) have an n'*€-nongappy, P-printable subset.

Proor. Assuming the Lenstra-Pomerance-Wagstaff Conjecture, there must be an infinite num-
ber of Mersenne primes. For each i € N*, let M; denote the ith Mersenne prime.

The density assertion of the Lenstra-Pomerance-Wagstaff Conjecture implies that (V6 >
0)(AN(S) € N*)(Vn > N())[(1 — d)(e¥logn) < p(n) < (1 + 5)(e¥ logn)]. Suppose, by way of
seeking a contradiction, that for some € > 0 there are infinitely many n such that for two suc-
cessive Mersenne primes M, and Mp.1, |Muy1] > |[M,|'*€. Fix a § satisfying § < m, and

let M,, and M,,; be two consecutive Mersenne primes such that |M,| > max(N(J), 2726) and
[Mpi1] > |Myu|'€. We have p(|M,]) < (1 + 8)(e¥ log |M,]|), and since there are no Mersenne
primes between M, and M1, u(|Mp11]) < 1+ (1 + 8)(e¥ log |M,|).2 We also have that
H(IMpaa]) = (1 = 6)(e" log [Mpn1])
> (1-8)(e" log(IM,|'*€))
= (1= 8)(1 + )e" log |My]).

8This follows since there can be at most one Mersenne prime of each length, and so in particular M, is the sole Mersenne
prime of length |M,,41].

ACM Trans. Comput. Theory, Vol. 16, No. 4, Article 20. Publication date: November 2024.



Establishing Complexity-Class Containments via Iterative Constant-Setting 20:17

Now note that
1+ (1+6)(e¥ log |My]) — (1= 8)(1 + e)(e log |Mp])
=1+e"(log Mu)(1+6)—(1-08)(1+e€))

<1+ ¢ (log |My)) ((1 + ﬁ) - (1 - ﬁ) 1+ e))
= 1- ' (log [Ma]) )

For |M,,| > 27 we have 1 — e¥(log |[Mp|)(5) < 0, and thus for [M,| > 27 we also have 1+ (1+
d)(e¥ log |Mpl) < (1—=5)(1+€)(e log |M,|). This last inequality yields a contradiction as we have
also shown (1 —8)(1 + €)(e¥ log [M,]) < p(|Mu+1]) < 1+ (1 + 6)(e¥ log |Mp]).

So for any € > 0, there are only finitely many n such that the consecutive Mersenne primes M,
and M, have |[My11| > |M,|'*€. Let ny be the least integer such that for all n > ng, |Mp41| <
|M,|1*€. The set of Mersenne primes {M; | i > ny} is an n'*¢-nongappy, P-printable subset of the
primes. d

CoROLLARY 4.13. If the Lenstra—Pomerance—Wagstaff Conjecture holds, then UP<o(1)+loglogn S
RCprimes (indeed, UPSO(1)+log logn c RCMersennePRIMES)'

PROOF. Assume that the Lenstra-Pomerance-Wagstaff Conjecture holds. Since 2!/ > 1, by
Theorem 4.12 the Mersenne primes have an nzl/z-nongappy, P-printable subset. The conditions of

Theorem 4.11 are satisfied with k = 2'/2, and so we have UP <O(1)4 Joglogn_ € RCMersennePRIMES, and
- Zlog(zl/z)
hence UP<o(1)+loglogn & RCMersennePrivEs € RCprvES- d

We will soon turn to discussing more notions of nongappiness and what containment theorems
hold regarding them. However, to support one of those notions, we first define a function that will
arise naturally in Theorem 4.21.

Definition 4.14. For any « € R, & > 0, log®(a) is the largest natural number k such that
log®(ar) > k. We define log®(0) to be 0.

For ¢ > 1, taking k = 0 satisfies log[k](a) > k. Additionally, for all £ > log*(a), logm(a) <
log!° @)(¢) < 1 < ¢, and so no ¢ > log*(a) can be used as the k in the above definition. So there
is at least one, but only finitely many k such that log[k](a) > k, which means that log®(a) is well
defined. Notice that using the definition of log®(a) and the preceding, we get log®(a) < log"(a)
when a > 1. For a < 1, 0 is the only natural number for which the condition from the definition
holds, and so log®(a) = 0 if @ < 1. Thus, for @ < 1, log®(a) = log"(a). (Since Definition 4.14’s
first sentence allows values on the open interval (0, 1), one might worry that the fact that we have
globally redefined log(-) to implicitly be log(max(1, -)) might be changing what log®(a) evaluates
to. However, it is easy to see that, with or without the max, what this evaluates to in the range
(0,1) is 0, and so our implicit max is not changing the value of log®.)

We are using a “variant star” notation for log® because it in fact is related both definitionally
and in terms of value to log*. As to its definition, log® can alternatively be defined as the following,
which in form looks far closer to the definition of log* than does the version in Definition 4.14: “For
any @ € R, @ > 0, log®(a) is —1 plus the smallest natural number k such that log[k](a) < k. We
define log®(0) to be 0. As to the relationship of its values to those of log*, we have the following
theorem.
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THEOREM 4.15. For all & > 0, log"(«) — log*(log*(a) + 1) — 1 < log®(a) < log*(a).

ProoF. We have for all & > 0, log®(a) < log"(a), which follows from the discussion before this
theorem. Take any o > 0. From the definition of log®, it follows that log!'¢"(@)(q) < 2log”(@+1,

for if not, then we must have log[l‘)g@(“)l(a) > 2log®@+1 which (taking the logarithm of both
sides) implies that log[]°g®(a)+l](a) > log®(a) + 1, contradicting the fact that log®(«) is the greatest
number for which such an inequality holds. Notice that for any x, since log*(x) is the smallest
number of logarithms one needs to apply to x to obtain a result less than or equal to 1, we have
that for any k < log"(x), log*(x) = k + log"(log!*!(x)). Plugging in x = a and k = log®(a), we get
log"(ar) = log®(a) + log* (logt" @) < log®(ar) + log" (218" (@*1) < 1og®(ar) + log* (218" (@)+1) =
log®(a)+log*(log*(a)+1)+1, where the second inequality holds from the upper bound. Rearranging
gives us our lower bound. a

Theorem’s 4.15 upper bound leaves open the possibility that log®(a) and log" () might be the
same, or if not then at least that the former might be less than the latter by no more than some
global constant. However, we now will prove that this is not the case. That is, we will show as
Theorem 4.18 that there is an infinite collection 7~ of natural numbers such that for no constant
d’ does it hold, on every element of the collection, that 10g® is at most d” less than log™. In fact, we
will show a slightly stronger result than that.

First, we introduce some useful mathematical notions.

Definition 4.16 (see [28, 41, 45]). For each n € N, the nth tetration of 2 is defined inductively by

ny — 1 n=20
T 2™ s,

Here we are using the so-called “Rudy Rucker notation” for tetration introduced by Good-
stein [28] and popularized by Rucker [45].

2

It is easy to see that the nth tetration of 2, n € N, is exactly 22 where there are n 2s in the
tower (and, as a convention, we view a height zero tower of 2s as evaluating to the value 1). Since
tetration is injective, it has an inverse defined on towers of 2s.

Definition 4.17 (see [44]). Let 7 be the set {"2 | n € N}. The (base 2) superlogarithm, slog :
7 — N is the inverse operation to tetration. That is, for any N = "2, slog N = n.

It is easy to see that slog is increasing. While Definition 4.17 only defines slog for towers of 2s, we
can extend it to a function from R=! to the nonnegative real numbers as follows. First, we extend
tetration of 2 to a function 2 from the nonnegative real numbers to R>! via linear interpolation.’
Note that this extension is surjective and increasing, so it has an inverse sﬂlazg :R2! — R20 This
inverse agrees with slog on towers of 2s, so we may safely write slog in place of sl’;g.

With these notions in hand, we prove the following “infinitely often” superconstant separation
result between log® and log®.

THEOREM 4.18. Forn € N2 log*("2) — log®("2) > slog(%n).
ProoF. Notice that the function ¢ + slog t from R>! to R=! is increasing and surjective, and thus

has an inverse.!’ Let 5 : R*! — R>! be this inverse. We will use the following lemma.

9For any f : N — RZ!, the linear interpolation of f is the function f : R=* — R>! given by f(x) = (1—(x— |x))f(Lx))+
(x = [xDf(Lx]+1).

10That ¢ + slog ¢ from R=! to R=! is surjective follows from the basic facts from mathematical analysis that increasing,
surjective (real) functions are continuous, and that the range of an increasing, continuous function is an interval. The first
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LEMMA 4.19. For alln € N*, log*("2) — log®("2) = (s(n) — [s(n)]) + slog(s(n)).

PROOF OF LEMMA 4.19. From the definition of log®, we have log®("2) = max{k € N |
log*1("2) > k}. Since n > 1, "2 > 2, which means log!*/("2) > 1. This means that the max
in the previous equation is at least 1, and so we can let the max run over N* without changing
the value. Additionally, notice that log["]("Z) = 1, which, since n > 1, means that for all £ > n,
logm("z) < {.So any k in the set we are maxing over must be at most n, and thus log[k]("Z) = n-kg,
Hence, log®("2) = max{k € N* | "*2 > k} = max{k € N* | n—k > slogk} = max{k € N* |
k + slogk < n}.

Since s is increasing with inverse k + slog k, we get {k € N* | k+slogk <n} ={k e N* | k <
s5(n)}, and thus log®("2) = [s(n)].

On the other hand, we have log*("2) = n = s(n) + slog(s(n)), and thus log*("2) — log®("2) =
(s(n) — [s(n)]) + slog(s(n)). This concludes the proof of this lemma. d

Let us get a handle on the function s. Notice that for real numbers ¢ > 0 we have '2 > 2¢, since
the inequality holds when ¢ is a natural number, and taking linear interpolations of both sides
preserves the inequality. Changing variables, we get that for all t > 0, /22 > t. Applying slog
when defined, we get that for all t > 1, /2 > slogt.

From the definition of s as the inverse of ¢ + slog ¢, for each n € N* we have n = s(n) + slog(s(n)),
which, by the inequality just mentioned is less than or equal to %s(n), so s(n) > %n. Combining
this with Lemma 4.19 and using the fact that slog is increasing on its (now extended) domain R>!,
we get that for all n € N=2 we have log*("2) —log®("2) = (s(n)— | 5(n)]) +slog(s(n)) > slog(s(n)) >
slog(%n), thus establishing the theorem’s claim. The only reason the previous sentence, and the
theorem’s statement, exclude n = 1 and start at n = 2 is that slog is defined only on reals greater
than or equal to 1, and thus simply is not defined at %n whenn = 1. d

We now return to our study of nongappy sets, where the notion of log® will play an important
role.

Definition 4.20. A nonempty set S € N* is O(nlogn)-nongappy if (3f € O(nlogn))(Vm €
S)@m’ € S)[m’ > m A |m’| < f(Im])].

Definitions of n®sn" -nongappy for any constant k € N* and 2"”-nongappy are provided via Def-

inition 4.5, since n1°g m* and 2" are each a single function, not a collection of functions.'! Those
two notions, along with the notion defined in Definition 4.20, will be the focus of Theorem 4.21.
That theorem obtains the containments related to those three notions of nongappiness. As one
would expect, as the allowed gaps become larger, the corresponding UP classes become more re-
strictive in their ambiguity bounds.

THEOREM 4.21. Let T be a subset of N*.
(1) If T has an O(nlog n)-nongappy, P-printable subset, then UPS()(\/@) C RCr.

(2) For all k € N*, if T has an n(log">k—nongappy, P-printable subset, then

RCr."?

UPSO(l)Jr logloglogn <

1
[log(k+1)+1]
fact implies that our extension of slog is continuous, and hence that ¢ + slog ¢ is increasing and continuous. Since ¢ + slog ¢
on our domain attains a minimum value of 1 and is unbounded, its range is [1, o), which is exactly what it means for it to
be surjective onto R=1.
k
Note that n(°¢™" -nongappiness does not involve evaluating 0° even though it might at first seem to because Defini-
tion 4.5, which is used to define the notion, restricts the domain of “F” to R*, and because k is a positive natural number.
. . . . . o(1 S
12Some earlier versions of this work claimed that if T has an n(°g™”" )—nongappy (which is defined analogously to other
notions of nongappiness involving big-Os, e.g., Definition 2.4), P-printable subset, then UP_ 0(1)+1 logl () C RCr [32,
< 3

ACM Trans. Comput. Theory, Vol. 16, No. 4, Article 20. Publication date: November 2024.



20:20 L. A. Hemaspaandra et al.

(3) IfT has a 2"-nongappy, P-printable subset S, then UP _ C RCr (and so certainly

<max(1, | 227 )

alsoUP__ . ol g1y 1y S RCr), where A = 4 + mingegs, |s|>2(]s])-

Proor. We prove each of the three parts of the theorem separately.

(Part 1) Suppose T C N* has an O(nlog n)-nongappy, P-printable subset. It follows from the
definition of O(n log n)-nongappy that there is some k € N* such that T has a kn log n-nongappy,
P-printable subset. Set F : R — R* to be F(t) = ktlog t. The conditions from Theorem 4.10 are
satisfied by F(t) as for all t > 4, F(t) = ktlogt > t + 2 and (Ve € R>Y) [cF(t) = cktlogt <
cktlogct = F(ct)], and F is nondecreasing on {t € R* | t > 4}. Let A = 4 + |s|, where s is
the smallest element of the knlog n-nongappy, P-printable subset of T such that the conditions on
F hold for all t > |[s|, i.e., s is the smallest element of the knlog n-nongappy, P-printable subset
of T such that |s| > 4. For every function g : N — R>! satisfying g(n) = O(4/logn), it is easy
to see that there exists a number d such that (Vn € N)[g(n) < d(y/logn + 1)] . Thus, UP<y,) C
UPsd(\/@H) = UPsLd(\/loEH)J' The function j(n) = [d(y/logn + 1)] satisfies the conditions of
Theorem 4.10 as j(n) can be computed in time polynomial in the value n (since Ld(\/loE +1)] can
be computed by doing a linear search for the largest natural number i such that 2l < ndz), and j(n)
has value at most polynomial in the value n. Applying Theorem 4.10, to prove that UP ¢,y € RCr

it suffices to show that there is some f such that FU™I(j(n)1) = O(n#).
To this end, we show, via induction on ¢, that for all £ € Nt and real t > 1,

Fl@) < 0k tlog((€ - 1)k ). 3)

The base case £ = 1 is an equality since the right-hand side for ¢ = 1 is exactly the definition of
F(t). Assume that Equation (3) holds for some ¢ > 1. Then

FlU1) = kFY (1) log(F (1))
< k(01K t{log((£ — 1)k 0)]%) log(€1k t[log((£ — 1)k )]
= 0k tlog((€ — 1)k  (log(£1k ) + £loglog((€ — 1)1k 1))
< Ok log((€ — 1)1k 1)]¢ - log(£1kCt)
< (€+ DKt log(0k )T,

closing the induction.
Applying Equation (3) with £ = j(n) and t = j(n)A and using j(n)! < j(n)™, we get

FUONGi()2) < jny ™k Alog((n) k™ jma) . @)

Theorem 4.19, Part 3] [31, Theorem 4.23, Part 3], although those versions either pointed to or included a flawed proof. An
anonymous ACM TOCT referee both spotted the flaw and generously suggested a tighter inequality that, when used in the
proof, would improve the result. By further tightening that inequality into an identity, we were able to prove the stronger
result that appears here, namely part 2 of Theorem 4.21. The current result implies the old statement because if a set T has

an n(l°g ")O(l)-nongappy, P-printable subset, then there exists k € N* such that T has an n(1°8 ¥ -nongappy, P-printable

subset, and because UP c up o13] (n) for any constant C > 0. The latter holds because for any C

<0(1)+3 logl*l(n) <O(1)+Clo

there exists N such that C logm(n) > % logm(n) for all n > N, and so if a machine M witnesses L € UP<O(1)+1 ogll(n)’
< 3

then the machine M’ that, on inputs of length at most N, memorizes whether to accept or reject, and, on inputs of length

greater than N, simulates M, witnesses L € UP<O(1)+C10g[3](n).
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For sufficiently large n, we have j(n) < Cy/logn for some constant C € N* that depends on d. So
we have

j(n)j(n) < CC\/logn . (log n)C\/logn
< 2Clog C-flogn | zloglog n-Cyflogn

For sufficiently large n, loglogn < 4/logn, so for large n the second quantity in the multiplication
is at most n® The first quantity is at most n°¢€ since y/logn < log n. Letting C’ = Clog C + C for
convenience, for sufficiently large n, j(ny™ < n€ . Since k is a constant while j tends to infinity
with n, for large n, kK" < j(ny™ < n® . Finally, since C’ > C > 1, for all n, \flogn < n®". Plugging
everything into Equation (4), we get that for all sufficiently large n,

FUMIGi(m)2) < n* - CAylogn - [log(n*®” - CAvflog n)] Vieen
< CAn*® - [log(CAn*®)|“Viogn
— CAn3C . Zloglog(C/ln3C/)-C\/@.

Notice that for large n, log log(CAn3C/) = log(log(CA) + 3C"logn) < log(4C’"logn) = log(4C’) +
loglogn < 2loglogn < +/log n. Thus, we have that for large n,

FU(")](]'(n)A) < CAn3C' . lelogn-C\/logn
— CAn3c’+C'

Hence, there exists a § (namely, this constant 3C” + C) such that FVU™(j(n)1) = O(n?).

Thus, for any function g : N — R>! satisfying g(n) = O(\/@), there exists a function j such
that UP<y(,) € UP<j(n) € RCr.

(Part 2) Fix k € N*. Suppose T C N* has an n(l°e n) -nongappy, P-printable subset. Set
F : R* — R* to be F(t) = t{°g . The conditions from Theorem 4.10 are satisfied by F as
forallt > 4, F(t) 2 t+2and (Ve € RE[cF(t) = ct®8D" < (cr)lose)” = F(cr)], and F
is nondecreasing on {t € R* | t > 4}. Let A = 4 + |s|, where s is the smallest element of
the n(losm* -nongappy, P-printable subset of T such that the conditions on F hold for all ¢t > |s],
ie. s is the smallest element of the n(°sm" -nongappy, P-printable such that |s| > 4. For every
function g : N — R>! satisfying g(n) = O(1) + mlog loglog n, there exists d € N*

such that g(n) < d + W logloglogn and hence UP<4,) € UP_g4, e logloglogn =

. . _ 1 .
<+ ey logloglog n) - The function j(n) = [d + oy logloglog n| can be computed in

time polynomial in the value n since L%J can be computed by doing a linear search for
Mog(k+1)+1]i
the largest natural number i such that 22° < n (the ceiling can be hardcoded since k is

a constant). Additionally, j(n) has value at most polynomial in the value n. So j(n) satisfies the
conditions of Theorem 4.10. Applying Theorem 4.10, to prove that UP;,) € RCr it suffices to
show that for some § € N, FU™l(j(n)1) = O(n?).

We first show that for all £ € N* and ¢+ € R*, Flf(z) = ¢log?

)l
on ¢. Notice that for all ¢t € R*, Flll(t) = ¢(og Df — pllogt)+y ' so the claim holds for £ = 1.
Assume for induction that the identity holds for some ¢ > 1. Fix some t € R*, and let ¢’ =

1)l ’
pllog )X Using the inductive hypothesis, FI*1(t) = F(FIl(t)) = F(t') = t'(o8t )" We have

)(kn)fq

. We do so by induction
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(log t")k = ((log £)k+D' 1 log t)* = (log t)*k*1 and thus
(k+1)f -1 k(k+1)? k(k+ D) +(k+1)0 -1
F[€+1](t) — (t(log t) )(log t) _ t(log t) ) (5)
Using the binomial theorem,

kk+ 1)+ (k+1) —1=-1+ Z (f)k”u Z (f)k

0<i<tl 0<i<t

=-1+ Z (i f 1)ki + Z (f)ki (by reindexing)

1<i<l+1 0<i<t

IRHIE

=—1+k 41+

1<i<¢t

=k Z (ffl)ki
1<ze !

= (k+1)* -1,

which, when substituted back into Equation (5), gives us FI*1(t) = ¢(°g t)(k+l)m_l, completing the
induction.

We now use this identity to prove that there exists § such that FV™l(j(n)1) = O(n?). For conve-
nience, let t, = j(n)A. Notice that since for all n, j(n)A > 0 and j(n) € N*, we can apply the identity

. [j(n)] (log t”)(kﬂ)i(n),l '
we just proved to get FU™ (1) = 1, . To complete the proof, it suffices to show that

there is a constant § such that for sufficiently large n, the expression on the right-hand side is at
most n”. Taking the log of both sides twice, it suffices to show that there exists a constant 8 such
that for large enough n, (k + 1)/ loglog(t,) < loglogn + log f. Plugging in the definitions of j
and t,,

(k + 1™ loglog(ty) < (k + 1)4* Tkt P80 150100 (d)t + 1ogl3l(n))

d
[log(k + 1) + 1]

log(k+1) [3] d
= (k + 1)4 . 2Toer1 087 o100 [dl 4+ ——— 2 103 )
(e 1)7 - 21 oglog {dA + ooy s ()

It is easy to see that for large enough n, loglog(dA + W log[3](n)) <2 log[s](n) (asymptot-

ically, the leading-order term is log[s](n) on the left and 2 log[s](n) on the right). For convenience,

lete = 1 — —ogtk+D)

gtk Ve have that for sufficiently large n,

X log(k+1)
(k + 1Y™ log log(t,) < (k + 1) - (log log n) P&k - 210g15)(n),
=2(k + )% - (loglog n)'~¢ - log®!(n).

For large n, log[s](n) < (loglogn)/?, and so the preceding expression is bounded above by
C(loglog n)'~¢/? where C is a constant that depends on k and d. For all § > 1 and for sufficiently
large n, this quantity is at most loglogn + log f. Thus, there exists a  (namely, any f > 1) such
that FUM™I(j(n)A) = O(n?).

Putting everything together, we have showed that for every g : N — R>! satisfying g(n) =
o) + W log log log n, there exists a function j such that UP<y(,) € UP<jn) € RCy.

(Part 3) Suppose T C N* has a 2"-nongappy, P-printable subset S. Set F : R* — R* to be
F(t) = 2'. The conditions from Theorem 4.10 are satisfied by F(t) as for all t > 2, F(t) > t + 2
and (Ve € R [¢F(t) = ¢ - 2" < 2¢* = F(ct)], and F is nondecreasing on {t € R* | t > 2}.
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Let A be as defined in the theorem statement—that is, A = 4 + mingeg |5)>2(|s]). Notice that this is
equal to 4 + |s|, where s is the smallest element of S where the conditions on F hold, and so A is
as in Theorem 4.10. Let j : N — N* be j(n) = max(1, [A~! log®(n)]). Since log® can be computed
in polynomial time, the function j(n) can be computed in time at most polynomial in the value n
and also will have value at most polynomial in the value n. Applying Theorem 4.10, to show that

o®n C RCr it is enough to show that FU™I(j(n)1) = O(n). It suffices to show that for

<max(1, LT
all sufficiently large n, FUI(j(n)A) < n. Since log®(n) — oo as n — oo, for large enough n we
have 171 1og®(n) > 1 and hence j(n) = |1~ log®(n)]. Thus, for sufficiently large n,

) log®(n) , 105[10}5@(")](") Zlog[l"g@("}](n)
FUMI(jm)n) < 2% < 27 < 27 =n,
—— —— ——
Jj(n) Jj(n) log®(n)
which finishes the proof. d

5 Conclusion and Open Problems

This work applied and adapted the iterative constant-setting technique used by Cai and Hemachan-
dra [16] and Borchert et al. [9] to a more general setting. In particular, we generalized Borchert
et al.s notion of “nongappiness,” proved two flexible metatheorems that can be used to obtain con-
tainments of ambiguity-limited classes in restricted counting classes, and applied those theorems
to prove containments for some of the most natural ambiguity-limited classes. We also noted the
apparent tradeoff between the nongappiness of the targets used in iterative constant-setting and
the nondeterministic ambiguity of the classes one can capture using those targets. For example, be-
yond the containments we explicitly derived with Theorems 4.6 and 4.10, those two metatheorems
themselves seem to reflect a tradeoff between the ambiguity allowed in an ambiguity-limited class
and the smallness of gaps in a set of natural numbers defining a restricted counting class. One
open problem is to make explicit, in a smooth and complete fashion, this tradeoff between gaps
and ambiguity. Another open problem is to capture the relationship between log® and log* more
tightly than Theorems 4.15 and 4.18 do.

One last related open research direction is to further study nongappy, P-printable subsets of
the primes. We noted two sufficient conditions for showing the existence of P-printable subsets of
primes, namely the hypothesis about the probabilistic complexity class RP by Allender [2, Corol-
lary 32 and the comment following it] and the Lenstra-Pomerance-Wagstaff Conjecture [43, 49].
Furthermore, we proved that the Lenstra-Pomerance-Wagstaff Conjecture in fact implies that for
all € > 0, the primes have an n'*¢-nongappy, P-printable subset. While finding a P-printable sub-
set of the primes would itself be interesting, we have shown how it would also be a useful step
toward understanding the restricted counting class defined by the primes, namely if one could find
a suitably nongappy such set.

Appendix
A Deferred Proof of Theorem 4.3

We now briefly give the simple proof of Theorem 4.3. We assume that the reader has already read
the less simple proof of Theorem 4.6 and thus has seen that proof’s use of iterative constant-setting.

PROOF OF THEOREM 4.3. Let L be a language in UP ., witnessed by a machine N. To show L €
RCr, we give a description of a NPTM N that on every input x has #accy(x) € T if x € L and
#accy(x) =0ifx ¢ L.
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On input x, N nondeterministically guesses an integer i € {1,2,...,k}, then nondeterministi-
cally guesses a cardinality-i set of paths of N(x). If all the paths guessed in a cardinality-i set are
accepting paths, then N branches into c; accepting paths, where the constants c; are as defined in
the following. Note that unlike the proof of Theorem 4.6, these constants ci, . .., ¢, do not have
to be computed on the fly by N but rather are hard-coded into N, so we do not need T to be
P-printable.

Set ¢; to be the least element of T. Iteratively set, in this order, ¢y, cs, ..., ck, as follows. Given
i

€1, ..Cim1,8€t by = DicpciigCr (t’)' Then let a; be the least element of T such that a; > b;, and set
¢; = a; — b;. Our description of machine N is complete.

Similarly to the proof of Theorem 4.6, we have set c; to ensure that #accy(x) € T if N(x) accepts
and #accy(x) = 0 if N(x) rejects. It is clear from the construction—keeping in mind that N runs in
nondeterministic polynomial time and the c; each will be fixed constants—that N is an NPTM. U
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