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Abstract

Near-term ecological forecasting can be used to improve operational resource

management in freshwater ecosystems. Here, we developed a framework that

uses water temperature forecasting as a tool to predict the migrations of Atlantic

salmon (Salmo salar) and European eel (Anguilla anguilla) between freshwater

and the sea. We used historical observations of lake water temperature and fish

migrations from an internationally important long-term monitoring site (the

Burrishoole catchment, Ireland) to generate daily probabilistic predictions

(0%–100%) of when relatively large numbers of fish migrate. For this, we pro-

duced daily lake water temperature forecasts that extended up to 34 days into

the future using Forecasting Lake and Reservoir Ecosystems (FLARE), an

open-source ensemble-based forecasting system. We used this system to forecast

lake water temperature conditions associated with percentile-based fish migra-

tions. Two metrics, P66 and P95, were used to indicate days with migrations in

excess of 66% and 95%, respectively, of the historical daily fish counts. The

results were first validated against water temperature observations, with an

overall root mean squared error (RMSE) of 0.97!C. Our forecasts outperformed

two other possible water temperature forecasting approaches, using site clima-

tology (1.36!C) and site persistence (1.19!C). The predictions for fish migrations

performed better for the P66 metric than for the more extreme P95 metric based

on the continuous ranked probability score (CRPS), and the best results were

obtained for the salmon downstream migration. This forecasting approach with

quantified uncertainty levels has the potential to assist decision making, espe-

cially in the face of increased risks for these species. We conclude by discussing

the scalability of the framework to other settings as a tool aimed at supporting

management practices in real time.

Received: 25 September 2024 Revised: 8 May 2025 Accepted: 21 May 2025

DOI: 10.1002/ecs2.70335

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
© 2025 The Author(s). Ecosphere published by Wiley Periodicals LLC on behalf of The Ecological Society of America.

Ecosphere. 2025;16:e70335. https://onlinelibrary.wiley.com/r/ecs2 1 of 21
https://doi.org/10.1002/ecs2.70335

https://orcid.org/0009-0001-4507-0139
https://orcid.org/0000-0003-1282-7825
https://orcid.org/0000-0001-8835-4476
mailto:ricardo.marroquinpaiz@dkit.ie
http://creativecommons.org/licenses/by/4.0/
https://onlinelibrary.wiley.com/r/ecs2
https://doi.org/10.1002/ecs2.70335
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecs2.70335&domain=pdf&date_stamp=2025-07-22


KEYWORD S
diadromous fish, ecological forecasting, lake modeling, probabilistic prediction, water
management

INTRODUCTION

The biota of freshwater ecosystems is responding to an
increasing range of human and climatic pressures (Priya
et al., 2023), resulting in changes in behavior and ecology
(Mishra et al., 2021; Staudinger et al., 2021). Such changes
represent a challenge for environmental management
because they are often unforeseen and straightforward
mitigation or conservation measures cannot always be
applied (Abbass et al., 2022; IPCC et al., 2023). Basing
management actions on past conditions is becoming less
reliable (Diffenbaugh, 2020; Nissan et al., 2019), especially
as ecosystem dynamics become more variable, leaving
managers with limited time to react (Foley et al., 2015).
However, anticipating some of these alterations in ecosys-
tem function is becoming possible through the application
of near-term ecological forecasting systems (Bradford
et al., 2020; Dietze et al., 2018). These types of systems gen-
erate forecasts (i.e., predictions of future environmental
conditions with quantified uncertainty; Lewis et al., 2022)
in operational time frames (e.g., monthly, weekly, daily, or
sub-daily) and generally integrate data into workflows in
near real time (i.e., as new data are collected through the
use of automated sensors, wireless data transfer, and
cyberinfrastructure), allowing for quick iterative genera-
tion of information (Carey et al., 2022).

Recent deployments of near-term ecological forecast-
ing systems for predicting specific environmental vari-
ables, including water temperature, have successfully
supported water management in a range of applications
(e.g., drinking water supply, hydropower, and agriculture)
(Kim & Ahn, 2022; Lofton et al., 2023; Saeed et al., 2024;
Zwart et al., 2023). Water temperature is a key controller
of many processes in the freshwater environment
(Bonacina et al., 2023; Maberly et al., 2020) and one of the
most monitored parameters in lakes and reservoirs world-
wide (Peñas et al., 2023; Piccolroaz et al., 2024). This
makes it a useful parameter for forecasting change in
aquatic systems (Gumpinger et al., 2010; St-Hilaire
et al., 2021). For example, water column mixing (turn-
over), the occurrence of algal blooms, and the sediment
nutrient release in lakes/reservoirs are often associated
with water temperature changes (Cai et al., 2023; Liu
et al., 2023; Yin et al., 2023) and hence have been the
focus of near-term forecasting in aquatic systems
(e.g., Rousso et al., 2020; Schaeffer et al., 2024; Thomas
et al., 2020). To date, however, there has been less focus

on forecasting the dynamics of other, equally important,
components of freshwater ecology, such as the biology of
fishes (Slingsby et al., 2023).

Fishes are an important component of freshwater eco-
systems globally (Tamario et al., 2019), and migratory spe-
cies are of intrinsic social, cultural, and economic value to
many societies (Gende et al., 2002; Oke et al., 2020). The
life cycle timing (phenology) of fish migrating from fresh-
waters to the sea and vice versa (i.e., diadromous fish) has
a direct impact on aquatic food webs (Dias et al., 2019;
Ouellet et al., 2022), nutrient cycling (Oke &
Hendry, 2019; Weaver et al., 2018), aquaculture (Ouellet
et al., 2022; Vladic & Petersson, 2016), and hydropower
(Carter et al., 2023; Knott et al., 2023). In general, diadro-
mous fish migrations are driven by a combination of envi-
ronmental factors, including temperature, flow conditions,
photoperiod, and moonlight exposure (Lin, 2017; Sparks
et al., 2019; Valiente et al., 2011). In particular, water tem-
perature influences the metabolism and other physiologi-
cal processes of fish directly (Seebacher & Post, 2015),
resulting in pronounced effects on the timing and extent
of migrations (Riley et al., 2012; Zydlewski et al., 2014). It,
therefore, has potential as an explanatory variable on
which to build a near-term migration forecast, especially
in the face of an increasingly variable climate, which can
induce shifts in the phenology of (but not limited to) diad-
romous fish (Legrand et al., 2021; Lowerre-Barbieri
et al., 2019; Rinaldo et al., 2024).

Previous work on predicting or hindcasting diadromous
fish migrations (e.g., Battin et al., 2007; Durif & Elie, 2008;
Hobday et al., 2016; Jacox et al., 2020; Sykes et al., 2009;
Teichert, Benitez, et al., 2020) has centered on recreating
catchment flow conditions in specific settings with model-
ing approaches (e.g., statistical, process-based), often using
long-term climate projections and incorporating multiple
variables besides water temperature. However, most of
those predictions are measured on a seasonal to annual
scale, while management applications and conservation
measures for these species could benefit from near-term
forecasts (Roberts et al., 2023; Welch et al., 2019), which
could be deployed using a lower number of variables (King
et al., 2023; Teichert, Tétard, et al., 2020). Such an approach
could be particularly applicable in sites with limited moni-
toring and/or in settings where fish migrations could be
significantly impacted by human activities (e.g., dam and
turbine operations) (Barbarossa et al., 2020; Carter
et al., 2023).
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Here, we present a near-real-time framework that uses
water temperature as a determinant of diadromous fish
migrations. A daily automated ensemble-based forecasting
system was developed to provide probabilistic predictions of
fish migrations. This system was applied to Lough Feeagh
(Burrishoole catchment, western Ireland), a site with
long-term observation datasets of water temperature and
daily diadromous fish migrations. Historical data (January
2004 to November 2020) were used to determine the lake
temperature conditions associated with percentile-based
migration regimes of two diadromous species: Atlantic
salmon (Salmo salar) and European eel (Anguilla
anguilla). We then combined the ensemble lake tem-
perature forecasts and the percentile-based migration
conditions to generate daily probabilistic predictions of
future migrations, and we evaluated the prediction
skill against the most recent fish monitoring records
(November 2020 to November 2023).

Our study aimed to address the gap in near-real time
forecasting of daily fish migrations by building a forecast
for fish migration using a single explanatory variable that
is both readily available in near real time and relatively
straightforward to model (i.e., water temperature). We
assessed this approach by first evaluating the water tem-
perature forecasting system performance at our study site
and second by quantifying forecast performance for the
probabilistic predictions of the different fish migrations.
We discuss the implications of the results within a fresh-
water resource management context. We highlight the
potential benefits and limitations of the forecasting
framework for real-world operational applications and
how it might be a scalable tool in those settings.

METHODS

The framework of this study consisted of three main
phases graphically presented in Figure 1, which also out-
lines the study site monitoring arrangement.

Study site

Lough Feeagh is a monomictic lake located in the
Burrishoole catchment in western Ireland (53!560 N,
9!350 W). It is the largest water body (~3.95 km2) in a sys-
tem of lakes interconnected by river networks that dis-
charge into the Atlantic Ocean (Figure 2). It holds a
volume of ~6.0 × 107 m3, with mean and maximum
depths of 14.5 and 46.8 m, respectively. The Black and
the Glenamong rivers are its primary inflows, and the
Salmon Leap and the Mill Race water channels are its
outflows. The climate in the area is temperate oceanic,

with an average annual rainfall of 1700 mm year−1 and
mean air temperature of 11!C (2004–2023).

Atlantic salmon (S. salar) and European eel
(A. anguilla) fish species are endemic to the Burrishoole
catchment and are key constituents of its aquatic food web
(de Eyto et al., 2020). The migrations of these species to
and from freshwater and the ocean are well documented
(e.g., Byrne et al., 2003; de Eyto et al., 2022; Poole
et al., 2018; Reed et al., 2017; Sandlund et al., 2017). In
brief, salmon spawn in the Burrishoole catchment in win-
ter, and juveniles spend a little over two years in freshwa-
ter. They migrate to the Atlantic Ocean as smolts in late
spring, and after spending one winter at sea, they return to
freshwater in the summer as mature adults to spawn.
Current evidence supports the view that European eel
spawn as a single spawning stock in the Atlantic Ocean in
the area of the Sargasso Sea (Als et al., 2011). Juveniles
arrive off the Irish coast in autumn and enter estuaries
from November to February. As temperatures rise, many
commence active migration into freshwaters as elvers.
Once in freshwater, elvers grow into yellow eel, which
is the life stage in which they spend most of their life
(7–58 years in the west of Ireland). Eels mature only once
when they undergo a process known as silvering before
returning to the Atlantic Ocean to spawn, after which
they die.

Water temperature monitoring

As part of an Automatic Water Quality Monitoring
System (AWQMS) deployed in Feeagh, the water tem-
perature has been measured at 13 different depths (0.9,
2.5, 5, 8, 11, 14, 16, 18, 20, 22, 27, 32, and 42 m) at a high
frequency (2-min intervals) since 2004. The surface
water temperature (0.9 m) is measured via a Hach
Environmental Hydrolab Data Sonde X5 with an accu-
racy of ±0.1!C (UK OTT Hydrometry Ltd.; https://www.
otthydromet.com), while the other 12 depths are mea-
sured via platinum resistance thermometers with an
accuracy of ±0.2!C (UK Labfacility Ltd. PT100 1/10DIN
4 wire sensor; http://labfacility.com), enabling a com-
plete vertical profile reading. The sensors are cleaned
monthly, and the multiparameter probe is calibrated
once per month (de Eyto et al., 2016).

Water temperature data from the AWQMS that had
undergone appropriate quality assurance/quality con-
trol (QA/QC) were obtained from the Marine Institute
monitoring web services (http://marine.ie). Data from
2004 to 2023 were used in this study, together with the
volumetric percentage of lake water corresponding to
each depth (Marine Institute, 2017). Lake thermal
stratification in Feeagh was defined as the difference
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of >1!C between the surface (0.9 m) and bottom
(42 m) lake temperatures (Woolway et al., 2020).

Fish monitoring

Three fish migration datasets from 2004 to 2023 (matching
the water temperature monitoring data period) were used
in this study: (1) daily downstream (juvenile smolt) and
(2) daily upstream movements (adults) of Atlantic salmon;
and (3) daily downstream movements of maturing adult
European “silver” eel.

All fish moving into and out of the catchment were
counted at two sites, the Salmon Leap and the Mill Race,
the two water channels connecting freshwater Feeagh
with the downstream brackish lagoon, Lough Furnace,
which leads directly to the Atlantic Ocean through Clew
Bay (Figure 2). The daily counts were performed manu-
ally using permanent whole river upstream and down-
stream fish traps and are part of long-term monitoring

efforts that record the transition of fish migrations
between the freshwater and marine domains (de Eyto
et al., 2022; Long et al., 2023). The fish traps follow a
Wolf type trap design employing horizontal grids with
10-mm gaps on a 1:10 inclination (Poole et al., 2018;
Wolf, 1951). Trapping at the catchment involves a fish
fence and wolf trap on the Mill Race outflow installed in
1958 and a full flow controlled Wolf trap on the Salmon
Leap outflow installed in 1970 (see Poole et al., 2018 for
more details).

Water temperature forecasting

We deployed the Forecasting Lake And Reservoir
Ecosystems system (FLARE) to generate daily water tem-
perature forecasts in Feeagh for three years (1 November
2020 to 1 November 2023; 1095 days). FLARE is an
open-source system for lake and reservoir water quality
forecasting aimed at supporting management (Carey

F I GURE 1 Flow diagram of the forecasting framework structure. The framework contains three main phases indicated by dashed lines
(see key). The automated components of the framework are indicated by five iterative steps denoted in boldface alongside a continuous solid
yellow arrow. Illustration credit: Ricardo Paíz. FLARE, Forecasting Lake and Reservoir Ecosystems.
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et al., 2022; Thomas et al., 2020). By integrating real-time
monitoring, hydrodynamic modeling with data assimila-
tion, and an ensemble-based forecasting algorithm, FLARE
provides daily water quality forecasts for multiple lake/
reservoir depths with a forecast horizon of up to 35 days
with quantified uncertainty (Thomas et al., 2020, 2023;
Wander et al., 2024). To date, several FLARE-based fore-
casting systems have been deployed to provide predictions
of different water quality variables, for example, water tem-
perature, dissolved oxygen, and chlorophyll a (Carey
et al., 2022; Thomas et al., 2023; Wander et al., 2024;
Woelmer et al., 2022, 2024).

FLARE uses the General Lake Model (GLM)
(Hipsey et al., 2019), a widely used one-dimensional
(1-D) model, as the process model to generate

predictions for each ensemble member. GLM has been
previously applied to Feeagh in non-forecasting studies
(Bruce et al., 2018; Mesman et al., 2020). We used
the 31-member National Oceanic and Atmospheric
Administration Global Ensemble Forecasting System
(NOAA GEFS) (https://www.ncei.noaa.gov) (Hamill
et al., 2022) output for the grid cell that contains
Feeagh as the forcing weather forecast ensemble.
FLARE quantifies uncertainty by adding random noise
to each FLARE ensemble member (process uncer-
tainty), assigning one of the 31 members of the weather
forecast ensemble to each FLARE ensemble member
(driver uncertainty) and having different parameter
values for each FLARE ensemble member (see Wander
et al., 2024, for more details). FLARE uses data

F I GURE 2 Location of Lough Feeagh and the Burrishoole catchment in western Ireland, including main water bodies and topographic
elevation in meters above sea level (m asl). The monitoring sites for water temperature and fish are indicated by red and green dots, respectively.

ECOSPHERE 5 of 21

 21508925, 2025, 7, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.70335 by V

irginia Polytechnic Institute, W
iley O

nline Library on [21/10/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://www.ncei.noaa.gov/


assimilation (specifically the Ensemble Kalman Filter
with state augmentation) to calibrate the parameter
values and set the spread of the ensemble when each
forecast was initiated (day 0 of the forecast).

Configuration

FLARE was configured based on previous applications
of the system (Thomas et al., 2020, 2023; Wander
et al., 2024). First, we configured GLM for Feeagh with
the bathymetry used in previous model applications at
the site (Mesman et al., 2020). Second, we configured
FLARE-specific settings for water temperature forecast-
ing. The number of FLARE forecast ensemble members
was set to 248 to avoid erroneous data correlations that
can arise when using smaller ensembles (Wander
et al., 2024); so that each of the 31 weather forecast
ensemble members was used eight times to drive the
lake model, with each having slightly different process
noise, parameters, and initial conditions (following
Thomas et al., 2020). Details on the GLM configuration
and FLARE water temperature forecasting configura-
tion for Feeagh can be found in Appendix S1.

Infrastructure

To make FLARE functional in real time at Feeagh, we
developed an infrastructure that runs in the cloud and
interconnects the framework system with the extrac-
tion of field observations to generate forecasts (see
Figure 1).

For each day that a forecast is generated, first, we
extracted the most recent water temperature monitoring
data from a local data server using an R script (see
Appendix S1). This script was automatically run in a
public GitHub repository via a scheduled GitHub Action
(.yml file). These data were collated into daily mean
water temperature values for each monitoring sensor
and stored in a single target file in the same repository.
This target file was updated every time the action ran.
The FLARE workflow was then run in the same reposi-
tory using an R script with the “FLAREr” R package via
a scheduled GitHub Action (.yml file). The target file
with the new observations was acquired within the
workflow before a forecast generation, allowing FLARE
to perform data assimilation as specified in the configu-
ration. The resulting water temperature forecasts were
collated by several filters, including depth, ensemble
member, date, and forecast horizon, and were allocated
into columnar storage data format files (.parquet) (see
Appendix S1).

Evaluation

We evaluated the performance of the lake water temper-
ature forecasts against observations based on root mean
square error (RMSE; see Appendix S1). RMSE is com-
monly used to assess the accuracy of water temperature
predictions in many forecasting applications (Feigl
et al., 2021; Qiu et al., 2021), including other FLARE
deployments (Thomas et al., 2023; Wander et al., 2024).
The evaluation was carried out for the volume-averaged
lake water temperature calculated using the 13 monitor-
ing depths (hereafter referred to as average lake water
temperature) and for each monitored depth. RMSE
values were computed for all 1–34 forecast horizon days
over the entire forecasting period (excluding the time
from 1 January to 9 May 2021 when no observations
were available). The results were averaged for each fore-
cast horizon day and for FLARE (overall performance
calculated by aggregating all FLARE forecasts produced,
i.e., all average lake water temperature forecasts and all
individual depth forecasts).

We compared the performance of FLARE to (1) site
persistence and (2) site climatology. Predictions based
on both persistence and climatology have been widely
used in environmental science as they are relatively easy
to generate (Murphy, 1992) and provide an important
baseline that enables the performance of new forecast-
ing systems to be contextualized (Bento et al., 2022;
Brown et al., 2018; Thomas et al., 2020; Yang, 2019;
Zachow et al., 2023). Persistence predictions were based
on the assumption that future water temperature condi-
tions will be the same as the recent past (Wilks, 2019),
that is, they would vary depending on the forecast hori-
zon. For example, a persistence forecast set with a
16-day forecast horizon and produced on date d will use
the observed water temperature on date d− 1 as a predic-
tion, extending that value over the next 16 days.
Climatology predictions were based on long-term average
conditions of lake water temperature so that the histori-
cal average of a specific day in a year is indicative of the
water temperature for the same day in the future. A cli-
matology forecast produced for 18 March 2021 will, for
example, be equal to the average water temperature of
Feeagh on that same day (18 March) in the historical
records (2004–2020).

Lastly, we generated a reliability diagram to evaluate
how well the uncertainty was characterized for the
water temperature forecasts (Thomas et al., 2020; Zwart
et al., 2023) by quantifying proportions of observations
within different confidence intervals (CIs) (10th, 25th,
50th, 75th, and 90th) for different forecast horizons
(1, 7, 14, 21, 28, and 34 days ahead). An ideally cali-
brated forecasting system would have 10% observations
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within the 10% forecast CI (the range containing the mid-
dle 10% of the ensemble distribution), 25% observations in
the 25% forecast CI (the range containing the middle 25%
values of the ensemble distribution), etc. If the percentage
of observations within its given CI is higher or lower, the
forecasting would be considered underconfident or
overconfident, respectively (Bröcker & Smith, 2007).

Historical analysis: Fish migrations and
water temperature

To relate the fish migrations with lake water temperature,
we consulted research on which water temperatures have
been linked to diadromous fish migrations. This indicated
that (1) ambient water temperatures and (2) cumulative
water temperature values have a strong role in triggering
the timing and extent of diadromous migrations
(e.g., Riley et al., 2012; Sparks et al., 2019; Sykes
et al., 2009; Zydlewski et al., 2005, 2014). Therefore, we
used both temperature metrics as hydrologic controls of
daily fish runs of Atlantic salmon and European eel migra-
tions. Note that daily fish runs refer to fish migrations
occurring in a day.

Cumulative lake water temperature is a function of the
start date chosen and is calculated by integrating the daily
average temperatures over time during an annual cycle,
starting from 0!C. In contrast to related metrics such as
degree days and growing degree days, cumulative water
temperature simply accumulates daily temperature magni-
tudes, rather than considering differences from a baseline
value (which can be a specific threshold or 0!C) or
between daily values. Zydlewski et al. (2005, 2014) defined
the start of cumulative temperatures on 1st January. By
contrast, Riley et al. (2012) defined the start using two
dates, 21 December (winter solstice) and 15 February, and
found a better correlation for the latter date which was
attributed to the proximity of their migrations to that time
(15 March). Similarly, Sykes et al. (2009) defined the start
on 9 March and found a strong correlation with salmon
smolt migrations (which started in April). Here, we
defined 1 March as the start of the cumulative tempera-
tures for Feeagh, as this date indicates the beginning of
spring in Ireland, the season when temperatures start to
rise and when salmonids start to manifest strong migra-
tory behavior (de Eyto et al., 2022).

Daily observed values of average lake water tempera-
ture in degrees Celsius and average lake cumulative tem-
perature in degrees Celsius-days were computed for
Feeagh. These were compared with datasets for all three
diadromous fish migrations, matching daily fish counts
from January 2004 to November 2020. Then, two
sub-datasets were created by extracting values based on

two daily fish count percentiles, respectively: 95th (P95)
and 66th (P66). These metrics were selected to represent
two different regimes for the number of fish going
through the traps each day for each species. P66 and P95,
therefore, indicate days when daily counts are in excess
of 66% and 95%, respectively, of the historical daily fish
count records. With these two metrics, we aimed to iden-
tify two distinct regimes where the number of fish
migrating was likely to be high (P66) and very high (P95;
indicative of extreme events). Both P66 and P95 indicate
meaningful regimes of migration intensities with implica-
tions for applied management that could require impor-
tant resources to ensure safe fish passage.

On each of these sub-datasets, we performed a sym-
metric outlier reduction (5% trim) on the driver data
(i.e., the lake water temperatures and cumulative lake
water temperatures) to focus on the central tendency of
the migrations (Benhadi-Marín, 2018; Osborne &
Overbay, 2004; Xu, Mazur, et al., 2020). Then, for each
sub-dataset, we extracted the minimum and maximum
values of the two water temperature metrics, respectively.
As a result, we obtained (1) a range of daily lake water
temperatures and (2) a range of daily lake cumulative
water temperatures for each fish migration regime. These
ranges were then used as the start and end points for the
specific lake water temperature conditions necessary for
the different fish migrations to occur, notwithstanding
that we recognize that other controlling factors, including
photoperiod, moon phase and water flow, also play a role
(Byrne et al., 2003; Sandlund et al., 2017).

Probabilistic forecasting of fish migrations

Using both the lake water temperature forecasts pro-
duced and the lake water temperature ranges established,
we generated daily probabilistic predictions for each fish
migration regime for the period 1 November 2020 to
1 November 2023. For the generation of each fish migra-
tion prediction, we used the nowcasted lake average
water temperature instead of using temperature observa-
tions from individual sensors. We used this approach for
simplicity and also to support future scaling to other lake
ecosystems.

First, we calculated a daily value for forecasted lake
cumulative water temperatures from the daily forecasted
lake water temperatures (both collated by forecast horizon,
1–34 days ahead; and ensemble member, 1–248). Then, to
generate the probabilistic predictions for a specific fish
migration regime (e.g., P66 salmon downstream), we
assessed when both water temperature conditions were
met. For each day, the percentage of the 248 ensemble
members that (1) fell within the maximum–minimum
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range for the lake water temperature condition and (2) also
fell within the maximum–minimum range for the cumula-
tive lake water temperature condition represented the
daily probability of that fish migration regime occurring.
Consequently, we were able to obtain daily probabilistic
predictions, in the order of 0%–100%, for each forecast
horizon (i.e., 1- to 34-day-ahead probabilistic predictions
per fish migration regime). Our modeling approach, there-
fore, predicts fish migrations based solely on lake water
temperature variation. Similar to other models (e.g., Sykes
et al., 2009; Teichert, Tétard, et al., 2020), our forecasting
framework does not account for any fish stock number in
the catchment before and after a model prediction. An
illustrative example of a daily output of the forecasting
framework showing an average lake water tem-
perature forecast, an average cumulative lake water
temperature forecast, and probabilistic predictions for
the P66 and P95 regimes of the Atlantic Salmon down-
stream migration are presented in Figure 3.

Evaluation

We evaluated the performance of the probabilistic predic-
tions for the fish migrations against the most recent fish
monitoring data based on the continuous ranked probabil-
ity score (CRPS). CRPS measures both the precision and
accuracy of our probabilistic forecasts by comparing them
to observations (Bröcker, 2012; Taillardat et al., 2023). A
lower CRPS value indicates a higher performing forecast
with a smaller error margin (see Appendix S1 for more
details). The evaluation was carried out for all 1–34 fore-
cast horizon days over the entire forecasting period
(November 2020 to November 2023), and the results were
averaged for each forecast horizon day. Only the observed
daily fish runs equal to or exceeding historical P66 and
P95 runs were used for the P66 and P95 regime CRPS eval-
uations, respectively, and represented percentage values of
100% against the probabilistic predictions (the rest were
treated as 0%).

F I GURE 3 Illustrative example of a daily output of the forecasting framework containing (a) an average lake water temperature
forecast, (b) an average cumulative lake water temperature forecast, and (c) probabilistic predictions of the P66 and P95 regimes for the
Atlantic salmon downstream migration. The red and blue bands in panels (a) and (b) indicate the lake water temperature conditions
necessary for the P66 and P95 regimes to occur, respectively. The two black dots in panel (a) represent measured water temperature
observations used for data assimilation. The continuous gray lines around the ensemble mean (dotted black line) in panels (a) and
(b) denote the 95% CI uncertainty of the temperature forecasts. Illustration credit: Ricardo Paíz.
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RESULTS

Water temperature observations

The observed average lake temperatures in Feeagh
exhibited relatively stable dynamics during both the histori-
cal period (January 2004 to November 2020) and the fore-
casting period (November 2020 to November 2023), ranging
from 3.5 to 16.5!C (average of 10.7!C) (Figure 4). Peak tem-
peratures and thermal stratification were observed typically
from April to September (spring and summer). Conversely,
mixed lake conditions presenting the lowest water tempera-
tures prevailed from October to March (autumn and win-
ter) (see Appendix S2: Figure S1 for water temperature
measurements at each monitoring depth). Throughout the
forecasting period, the lake exhibited thermal stratification

44% of the time (486/1095 days) and mixed conditions 56%
of the time (609/1095 days).

Water temperature forecasts

The overall RMSE performance for all forecasts produced
using FLARE (for all 13 individual depths and the aver-
age lake water temperature aggregated across all 1- to
34-day-ahead horizons) over the three-year forecasting
period was 0.94!C. The climatology and persistence fore-
casts performed worse than FLARE, with overall values
of 1.36 and 1.19!C RMSE, respectively.

For the surface temperature only, the RMSE values of
the FLARE temperature forecasts consistently increased
as the forecast horizon became longer (indicating a

F I GURE 4 Measured average water temperature observations in Lough Feeagh and daily fish counts of Atlantic salmon downstream,
Atlantic salmon upstream, and European eel downstream migrations in the Burrishoole catchment. The observed data within the
forecasting period (black dashed box) in (a) is highlighted in greater detail in (b).
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decrease in performance), from 0.30 to 1.58!C
(Figure 5a). Climatology surface temperature forecasts,
with an RMSE of 1.41!C, were outperformed by FLARE
on the first 28 of 34 forecast horizon days. Persistence
forecasts for the surface temperature ranged from 0.34 to
1.96!C and were consistently outperformed by FLARE on
all forecast horizon days. The average lake water temper-
ature forecasts using FLARE performed slightly better
than the surface temperature forecasts, with RMSE
values ranging from 0.20 to 1.34!C (Figure 5b).
Climatology average lake water temperature forecasts,
with an RMSE of 1.10!C, were outperformed by FLARE
on the first 21 of 34 forecast horizon days. Persistence

forecasts for the average lake water temperature ranged
from 0.20 to 1.59!C and performed similarly to FLARE
on the first 21 forecast horizon days, but then, they were
outperformed by FLARE on days 21–34. Typically,
FLARE predictions produced during lake mixed condi-
tions were more accurate than those produced during
stratified conditions (Figure 5).

Moreover, forecast uncertainty was well characterized
by FLARE for all forecasts produced in Feeagh (forecasts
for average lake water temperature and each monitoring
depth). Relatively small variations in confidence from an
ideal forecast were observed, although these varied
depending on the forecast horizon length (Figure 6). On
short to intermediate forecast horizons (<21 days ahead),
FLARE predictions were mostly underconfident by up to
16%. In longer forecast horizons (>28 days ahead), the
uncertainty estimates fluctuated from more confidence
(up to −9%) to less confidence (up to 6%).

Fish migration dynamics

The fish migrations during the historical period (January
2004 to November 2020) exhibited a day-sensitive pheno-
logical behavior with substantial differences in magni-
tudes and regime timings (Figure 4; Table 1). On average,
90 juvenile smolt Atlantic salmon moved downstream
per day during fish runs (median of 14), with a maximum
count of 2733 observed in a single day (7 May 2004). The
P66 and P95 numbers of salmon migrating downstream
were 39 and 431 fish, respectively. Salmon began to go
downstream around April, coinciding with rising lake
water temperatures (Figure 4). Their migratory behavior
decreased in mid-May and generally ceased after June.
The maximum count of adult salmon migrating upstream
was 92 individuals (18 July 2019), with an average of
7 fish (median of 3). The P66 and P95 for the daily
upstream migration of salmon were 6 and 27 fish. The
counts were more sporadic than daily counts of down-
stream migrating salmon. Salmon started to migrate
upstream in June, sometimes overlapping with the end of
the downstream migration movements. The fish runs
of salmon going upstream decreased usually around
October, but some counts extended till December.

In contrast to Atlantic salmon, the core of European eel
migrations took place when there was a decreasing trend
in lake water temperatures (Figure 4). The daily average
for the number of adult eel migrating was 18 individuals
(median of 5). The maximum count was 813 (17 September
2007). The P66 and P95 daily downstream migrations were
9 and 80 eels, respectively. Downstream migrations of eel
were recorded all year round. However, the highest num-
bers (in the order of the P95) were recorded between

F I GURE 5 Root mean square error (RMSE) of the (a) surface
lake water temperature (0.9 m) and (b) average lake water
temperature forecasts produced over the entire forecasting period.
Forecasting Lake and Reservoir Ecosystems (FLARE) (S) and
FLARE (M) represent FLARE RMSE values for forecasts produced
under stratified and mixed lake conditions, respectively.
Climatology and persistence indicate RMSE performance for
forecasts produced using their respective approaches.
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August and November. The P66 and P95 metrics
established for all three fish migrations were representative
of all annual cycles of the 17 years of the historical period
of this study (Appendix S2: Figure S2).

Water temperature conditions for fish
migrations

In general, all six fish migration regimes (P66 and P95 for
all three migrations) required the lake water temperatures
to be temperate to warm (8.8–15.9!C), with the ranges for
the P95 regimes generally being narrower than those for the
P66 regimes (Table 2). The widest ranges were for eel down-
stream, reflecting the longer period over which that migra-
tion occurred. The salmon upstream migration coincided
with the warmest lake water temperatures. By contrast,
colder temperatures were associated with the two down-
stream migrations, with lower range limits in the order of
9.0!C (Table 2). These low temperatures aligned with the
onset and end of winter, when eel migration terminated
and salmon downstream migration started, respectively.

The cumulative lake water temperature conditions
differed for the three different fish migrations. The
salmon downstream migration occurred over small and
well-constrained ranges of cumulative lake water temper-
atures for both regimes. By contrast, much larger and

broader ranges of cumulative lake water temperatures
were associated with the salmon upstream and eel down-
stream migrations (Table 2).

Probabilistic predictions of fish migrations

Using predictions of Atlantic salmon downstream migra-
tion for 2021 as an example, the P95 regime predictions
generally extended before and after the observed P95 fish
runs; however, the observed P66 fish runs were well cap-
tured by the forecasts (Figure 7; Appendix S2:
Figures S3–S8). Predictions for shorter horizons displayed
relatively large fluctuations in value before and after
observed fish run counts reflecting that not only the gen-
eral block of migrations could be captured but also a
degree of day-to-day variations. For instance, European
eel predictions for short horizons (<8 days ahead)
displayed much lower probabilities prior to observed
events than during events (Appendix S2: Figures S7–S8).
Another clear difference among the probabilistic predic-
tions for the different forecast horizons was the order of
percentage magnitude, which decreased on average with
the horizon (Appendix S2: Figure S9).

In general, the P66 regime probabilistic predictions
for all three fish migrations performed better, with lower
CRPS values, than those for the P95 regimes (Figure 8).

F I GURE 6 Reliability diagram for all lake water temperature forecasts produced by Forecasting Lake and Reservoir Ecosystems over
the entire forecasting period. The percentage of lake water temperature observations within different forecast CIs is indicated for different
forecast horizons. The continuous black dotted line represents ideal forecast confidence calibration (i.e., a forecasting system that perfectly
characterizes uncertainty; 1:1 relationship between forecast CI and the percentage of observations within it).
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The predictions for the salmon downstream migration
performed best, starting at a CRPS of 5% followed by a
generally linear trend (Figure 8a). However, the score
was still under 11% at the end of the forecast. The
upstream migration for salmon had the widest range of
CRPS values, increasing from 9% to 18% over the forecast.
The P66 predictions for eel performed more stably, with
CRPS starting at 8% but then remaining at about 12%
from 5 days ahead. By contrast, the performance of the
P95 regime predictions across the forecast horizon was
not as good. Higher CRPS values were obtained of up to
31% (Figure 8b). The predictions for eel were the best in
this regime, with a narrow CRPS range of values from
13% to 16%. The CRPS values for the two salmon migra-
tions increased steeply in very short horizons (<5 days
ahead) and then continuously decreased.

DISCUSSION

Accurate ecological forecasts and associated uncertainty
have the potential to aid management in an increasingly
uncertain world, including decisions on the allocation of
resources for fish monitoring programs. Our study shows
that the FLARE system accurately replicated lake tem-
perature dynamics in our study lake, which we used to
produce reasonable probabilistic predictions for three fish

migrations up to 34 days into the future, with the best
results being for the P66 regime of Atlantic salmon down-
stream migration (Figure 7; Appendix S2: Figure S3).
Enhancing decision making in freshwater management
with such forecasts has the potential to yield not only
environmental but also economic benefits as it can allow
more appropriate allocation of human and economic
resources (Baker et al., 2020; Franklin et al., 2024; Xu,
Yang, et al., 2020). A forecast of fish migration with asso-
ciated probability produced today for the subsequent 7-
to 10-day period, for example, could allow an operator to
plan resource allocation in advance. This could be partic-
ularly relevant for lakes and reservoirs that provide dif-
ferent services (e.g., navigation, drinking water supply,
flood control, hydropower, aquaculture), where more
informed daily or sub-daily scale operations could
enhance the protection of diadromous fish (Carter
et al., 2023; Harris et al., 2016; Norman et al., 2023).

Although our example was for a catchment with a rela-
tively low degree of human intervention, the approach is
transferable to catchments where daily management of fish
migrations is considered crucial to their survival (Bolstad
et al., 2021; Ouellet et al., 2022). With informed fish migra-
tion regime forecasts, various mitigation measures can be
evaluated for improved conservation of diadromous fish.
Forecasts for relatively short horizons (e.g., <14 days
ahead) could enhance daily-scale actions, such as the oper-
ation of fish bypass structures in drinking water reservoirs
(Piper et al., 2013; Song et al., 2019), scheduling of dam
releasing in flood control (Katopodis & Williams, 2012;
Trancart et al., 2020), and periodic pumping and turbine
shutdowns in hydropower (Carter et al., 2023; Nyqvist
et al., 2017), all of which could enable safer passages for
fish. Forecasts for longer horizons (e.g., >14 days ahead)
could be more relevant for (but not limited to) the control
of nature-like fishways (Steffensen et al., 2013), planning of
fishing timing in aquaculture (Gargan et al., 2015;
Harringmeyer et al., 2021), and routine operation of fish
traps/racks in monitoring and research (Piper et al., 2020;
Ruokonen et al., 2022). In addition, having future predic-
tions of fish moving in and/or out of the systems could
enable the estimation of fish counts in situations and
periods where direct counting is not feasible due to restric-
tions on environmental factors (e.g., flow conditions) and
other limitations (e.g., staff, funds).

While many studies have simulated diadromous fish
migrations, there are few that have developed true fore-
casts with quantified uncertainty, especially on a daily
time scale. By using lake water temperature as a core vari-
able, our study expands the available pool of near-term
ecological forecasting tools for predicting fish migrations
(e.g., King et al., 2023; Teichert, Tétard, et al., 2020; two
previous frameworks that were developed using river

TAB L E 1 Average, median, maximum, P66, and P95 regime
fish run counts for the Atlantic salmon downstream, Atlantic
salmon upstream, and European eel downstream migrations in the
Burrishoole catchment during the historical period of this study,
January 2004 to November 2020 (n = 6150).

Metric

Atlantic salmon European
eel,

downstreamDownstream Upstream

Average fish
run count

90 7 18

Median fish
run count

14 3 5

Maximum fish
run count

2733 92 813

P66 fish run
count

39 6 9

P66 time
frame

April to July June to
December

January to
December

P95 fish run
count

431 27 80

P95 time
frame

April to May June to
September

August to
November

Note: The P66 and P95 time frames indicate the earliest and latest months in
a year when the P66 and P95 fish runs have been counted, respectively.
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TAB L E 2 Lake water temperature conditions established for the different regimes (P95 and P66) of the Atlantic salmon downstream,
Atlantic salmon upstream, and European eel downstream migrations in Lough Feeagh, Burrishoole catchment.

Metric

Atlantic salmon

European eel, downstreamDownstream Upstream

P95 P66 P95 P66 P95 P66

Lake water temperature (!C) 9.2–11.8 8.8–12.2 13.4–15.9 12.8–15.8 10.0–15.3 8.9–15.6
Cumulative lake water
temperature (!C-days)

423–679 354–720 1078–2122 1053–2475 2151–3132 1746–3247

F I GURE 7 Daily probabilistic predictions of Atlantic salmon downstream migration for different forecast horizons (1, 7, 14, 21, and
28 days ahead) against observed fish runs during 2021: (a) the P66 regime predictions and (b) the P95 regime predictions. The observed fish
run counts equal to or exceeding historical P66 and P95 fish run counts are highlighted in blue and red, respectively.
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hydrologic connectivity data). Importantly, our forecasting
framework is flexible. It can be adapted with site-specific
information to anticipate local fish migration regimes and
therefore inform decisions as to when mitigation measures
should be applied. An optimal approach to implement and
adapt it would be with a human-centered design to supply
context-dependent management needs (Carey et al., 2022;
Lofton et al., 2023). Mitigation measures for migrating fish
will differ between sites depending on many factors, for
example, management concerns, ecological status, infra-
structure, financial options, socioeconomic conditions, and
regulatory frameworks (Tamario et al., 2019). Although
we forecast two regimes in this study, P66 and P95, other
tailored solutions could be explored as appropriate. Such a
modeling framework could also allow scenario testing to
be undertaken for the upcoming management period. For
example, trade-offs between the requirements of different

stakeholders and sectors could be evaluated, aiming to
achieve sustainability in management practices and pro-
duction systems (Franklin et al., 2024).

Uncertainty in the predictions

Including uncertainty in forecasts and communicating that
uncertainty to stakeholders is a critical aspect of successful
ecological forecasting (Dietze et al., 2018; Lewis et al., 2022).
Our forecasts will have uncertainty related to both aspects
of the workflow: water temperature and fish migration. In
general, the water temperature forecasts performed very
well at our study site (with a low RMSE), although uncer-
tainty estimates tended to be slightly underconfident, espe-
cially in shorter horizons (Figure 6). This is likely due to
overfitting observations during data assimilation, a factor
that is relatively common in model-based forecasting frame-
works (Wander et al., 2024; Zwart et al., 2023). Water tem-
perature forecast uncertainty also increased for longer time
horizons (Figure 3), again a common feature of ecological
forecasting. A partitioning of uncertainty could be used in
future work to quantify the relative contribution of different
sources to total uncertainty so that key areas for improve-
ment could be identified (Wander et al., 2024). Previous
studies have reported that the ability of FLARE to repro-
duce water temperatures (i.e., model process) and the error
related to the meteorological driver data contributed most
to total uncertainty, especially in longer horizons (Thomas
et al., 2020). The results presented here performed similarly
to other deployments of FLARE for surface water tempera-
ture forecasting (Thomas et al., 2020, 2023; Wander
et al., 2024), which is reassuring, as this was the first appli-
cation of FLARE for forecasting volume-averaged lake
water temperature and cumulative water temperature.

The uncertainty associated with our water tempera-
ture forecasts will feed into the fish migration forecasts,
while additional uncertainty will be related to how well
water temperature acts as a control of fish movements.
Although water temperature is a key driver of diadro-
mous fish migrations, we recognize that it is only one of
a suite of variables that act together (Sandlund
et al., 2017; Tamario et al., 2019; Teichert, Benitez,
et al., 2020). The degree to which a change in water tem-
peratures will trigger fish run events is difficult to quan-
tify even under completely controlled conditions (Sparks
et al., 2019) because of its intrinsic interactions with
other triggering variables (Zydlewski et al., 2014) and
because of the complexity of fish life histories, especially
for migratory species. Despite these complexities, our
framework was still able to (1) represent historical fish
migrations through the use of the P66 and P95 metrics,
as these accounted for events in all 17 years of migration

F I GURE 8 Continuous ranked probability score (CRPS) of the
(a) P66 and (b) P95 probabilistic predictions of Atlantic salmon
downstream, Atlantic salmon upstream, and European eel
downstream migrations produced over the entire forecasting period.
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data (Appendix S2: Figure S2), and (2) hindcast
migration extent and timing relatively well, especially for
the P66 regime. We do note that the temporal distribu-
tion of the probabilistic predictions for all three migra-
tions was somewhat restricted by the cumulative lake
water temperature condition. However, relying solely on
ambient lake water temperature as a condition would
have been problematic. Predictions for the salmon down-
stream migration, for example, would then have
extended not only from April to July for this site but also
included November to January, a period with no
observed fish runs. The use of a combination of both lake
water temperature metrics as conditions to trigger the
diadromous fish migrations was therefore more prudent.

The probabilistic predictions for all three fish migra-
tions based on P66 regimes performed best, again with a
decrease in performance for longer forecast horizons. By
contrast, a different pattern was observed for the more
extreme P95 regimes, where the performance of the
salmon migration predictions increased for longer hori-
zons. While this may appear counterintuitive, the
improved CRPS performance at longer horizons reflects a
reduction in overestimation, as the magnitude of the pre-
dictions decreased with the forecast horizon. This
occurred because the P95 daily probabilistic predictions
tended to overextend around P95 fish run observations
throughout the forecasting period (see Figure 7;
Appendix S2: Figures S3–S8), and higher probabilities are
penalized more on days with no observed P95 fish run
than lower probabilities in the CRPS metric. The absolute
magnitude difference between 0% (no observed P95 fish
run) and 55% (longer horizon daily probability) is smaller
than with 82% (shorter horizon daily probability), for
example, favoring the CRPS metric.

There were also differences in performance across our
selected migrations, with a lower performance for the
salmon upstream migration, especially for the P95
regimes. This may have reflected stochasticity in fish
migration dynamics (Baldursson, 1991; Lewy &
Nielsen, 2003). For instance, during the forecasting
period, a limited number of salmon upstream runs (five
in total) fell within the range of the historical P95 runs.
Consequently, there was a clear overestimation of our
P95 for salmon migrating upstream. For example, P95
events were predicted from June to September 2022 when
no P95 upstream runs were observed (Appendix S2:
Figure S6). It is likely that runs with very large numbers
migrating upstream are more controlled by factors other
than temperature (e.g., increased water flow enabling
catchment upstream accessibility) (Milner et al., 2012).
Moreover, adult salmon going upstream will have experi-
enced marine temperatures before migrating (Jonsson &
Jonsson, 2009). This may induce different phenotypical

responses than in fish undertaking downstream migra-
tion, which will have been regulated by temperatures in
the freshwater environment.

Scalability and further development

Our framework provides an initial step that can be built on
not only at our study site but also potentially at other sites. It
has several advantages that increase its potential to be scal-
able to other settings. First, a large number of lakes and res-
ervoirs globally already monitor water temperature with a
range of different methods (e.g., point measurements, pro-
filers, thermistor chains) (Piccolroaz et al., 2024). This
includes sites that are important for diadromous fish
(Ouellet et al., 2022; Tickner et al., 2020) andwhere available
data for fish runs could provide points of reference for testing
the framework (Nyqvist et al., 2017; Piper et al., 2020;
Teichert, Benitez, et al., 2020; Teichert, Tétard, et al., 2020).
Furthermore, data-poor sites could implement the necessary
water temperature monitoring relatively easily, as tempera-
ture is one of the initial and least resource-consuming
parameters included in monitoring programs (Peñas
et al., 2023). A critical point in other settings would be to
investigate site-specific temperature conditions for fish
migration at other sites. Indeed, by undertaking a compari-
son with other lakes with fish migration data, it could be
possible to identify general conditions so that the approach
could be applied even in locations which do not monitor fish
counts but have water temperaturemonitoring.

A second aspect that facilitates the application of the
framework at other sites is its use of cyberinfrastructure.
Having the framework set up in the cloud provides additional
flexibility and utility, especially as more advanced modeling
techniques and forecasting approaches emerge. For instance,
other lake water temperature models than GLM could be
tested within FLARE (Olsson et al., 2024), or other weather
forecast products could be used as driver data. Having the
framework online also allows remote management and trou-
bleshooting which may lead to lower maintenance efforts
than on more traditional systems (Fer et al., 2021;
Recknagel, 2023). Additionally, the forecasting framework
can operate iteratively and automatically. The production of
forecasts does not require manually triggered actions unless
wanted, rather it can work with scheduled actions in online
repositories. This feature is particularly relevant because,
once the system is set up and its accuracy assessed, its auto-
mation can facilitate the dissemination of both water temper-
ature and, in our framework example, fish migration
forecasts to operators and managers. This also enables fore-
casts to be easily reproduced, archived, and used in the future
for research and to facilitate collaboration (Carey et al., 2022;
Lofton et al., 2023).
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CONCLUSIONS

This study provides an investigative example of near-term
(daily-scale) ecological forecasting of freshwater species
(here, Atlantic salmon and European eel) using water tem-
perature as an environmental driver. Our example showed
that daily lake water temperature forecasts could be trans-
lated into fish migration predictions extending up to
34 days ahead. While such predictions and their associated
uncertainty would need to be put in context for local users,
we propose that a similar approach could assist ecological
forecasting and management applications at other sites,
where understanding the dynamics of fish migration has
management implications. It, therefore, has the potential
to contribute to adaptation in freshwater management in a
time of increasing global change.
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