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Abstract

Anthropogenic pressures on biodiversity necessitate efficient and highly scalable methods
to predict global species distributions. Current species distribution models (SDMs) face
limitations with large-scale datasets, complex interspecies interactions, and data quality.
Here, we introduce EcoVAE, a framework of autoencoder-based generative models trained
separately on nearly 124 million georeferenced occurrences from taxa including plants,
butterflies and mammals, to predict their global distributions at both genus and species
levels. EcoVAE achieves high precision and speed, captures underlying distribution
patterns through unsupervised learning, and reveals interspecies interactions via in silico
perturbation analyses. Additionally, it evaluates global sampling efforts and interpolates
distributions without relying on environmental variables, offering new applications for

biodiversity exploration and monitoring.
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Main

Anthropogenic pressures have intensified the need for efficient and scalable methods to
predict species distributions for attaining a comprehensive picture of biodiversity. Over the
past two decades, species distribution modeling (SDM) has become an essential tool for
this purpose 1-3,typically using species occurrence data and environmental variables to
predict distributions through statistical and machine learning (ML) algorithms 4-7. While
the mobilization of vast amounts of specimen records and the rapid accumulation of
observational data have greatly promoted the development of SDMs 8-10, several

challenges still persist.

First, current SDMs struggle to handle large-scale datasets in our big data era 8-12,
especially for modeling species assemblages. Traditional methods can only address these
tasks through computationally intensive “stacking methods” that have limited scalability.
Second, most SDMs overlook complex interspecies interactions, limiting their ecological
relevance and utility in modeling community dynamics 13-16, Third, the accuracy of current
techniques depends heavily on input data quality and resolution 17.18, Although platforms
like GBIF and eBird provide valuable datasets for exploration, these are often biased by
varying observation efforts across taxonomic groups and regions 1°-21, Finally, reliance on
environmental variables introduces additional issues, including collinearity and limited

availability in certain regions, further constraining model accuracy and applicability?22.

Generative models are a type of deep learning model that captures complex and nonlinear
relationships between input variables. They have been widely adopted in various fields,
including natural language processing 23, image generation 24, data capturing 25, and
biomedicine 26. Among these models, autoencoders are designed to compress and
reconstruct data in an unsupervised way, making it effective for data denoising,

interpolation, and handling randomly missing data 27.

Here, we present for the first time an autoencoder-based framework, named Ecological
Variational Autoencoder (EcoVAE), to predict species distributions for the first time using
large-scale, unstructured, and sparse occurrence data. To demonstrate the effectiveness of

our framework, we trained a customized EcoVAE on a massive global dataset including
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81 nearly 34 million georeferenced vouchered occurrences from the GBIF platform spanning
82 13,125 plant genera and 127,281 species. EcCOVAE learns the patterns of global plant

83  distributions without any dependency on environmental variables. It efficiently processes
84  this large-scale dataset with fast computational times, accommodates varying rates of

85 missing data and biases, and enables the study of complex interactions within

86 communities. Remarkably, ECOVAE can accurately reconstruct full plant distributions

87  across all genera using as little as 20% of randomly selected occurrence records. We

88  further demonstrate the broad applicability of EcoVAE by applying it to 68 million

89  occurrence records of butterflies and 22 million records of mammals at both the genus and
90 species levels. Additionally, our model predictions offer an unsupervised approach to

91  assess collection completeness across different taxa on a global scale. These results

92 demonstrate the unprecedented capacity of deep learning methods to decode and predict

93 biodiversity patterns at global scales.

94  EcoVAE applies a unique masked approach to model the global species distributions using
95  well-curated occurrences data based on vouchered specimen records at the rank of genus
96  orspecies (Fig. 1a). We treat genera as the unit of inference in the modeling process due to
97 their computational efficiency and biological relevance. Genera represent coherent,
98 morphologically similar, and often monophyletic groups of species, providing a practical
99 compromise between taxonomic detail and manageable computational demands. The input
100 data was grouped into grids of 0.1’, where plant observations within each grid were
101  summarized into vectors. The richness of genera per grid varied widely, ranging from 10!
102  to 103 (Supplementary Fig. 1a). Our model consists of an encoder that learns a low-
103 dimensional representation of the input data and a decoder that reconstructs the presence
104  of genera per grid. For model training, we randomly masked 50% of the genera presence
105 data and the model was trained to predict these masked genera based on the remaining
106  observed data (Fig. 1b). This process allows the model to interpolate sparse observations

107  and estimate the true, unobserved plant distributions.

108 We evaluated the performance of our model in three randomly selected regions in North
109  America, Europe, and Asia, and applied the remaining global data for training (Fig. 1c,

110  Supplementary Table 1). Our model demonstrated a 10-fold increase in computational
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111 speed compared to popular traditional SDMs, including logistic regression and random
112  forest, when predicting the distribution of a single genus using all other genera as input
113  (Fig. 1d). This difference is even greater when predicting distributions of multiple genera

114  (Fig. 1le).

115  We further assess the model's accuracy in prediction. Here, we calculated the predicted
116  genera counts per grid for the test regions and compared them to the actual observations.
117  The results demonstrated very high Pearson correlation coefficients of 0.98, 0.99 and 0.99
118  for test regions in North America, Europe, and Asia, respectively. At the species level, our
119  model achieves correlation coefficients of 0.95, 0.98, and 0.98 across the three regions

120  (Supplementary Fig. 2). We also calculated the total number of genera present in each grid
121  and observed high correlations between the model’s predictions and the actual data (Fig.

122 1f).

123  Next, we used the Area Under the Receiver Operating Characteristic (AUROC) curve to

124  evaluate EcoVAE’s accuracy in modeling the distribution of each genus. For the masked
125  genera, the mean AUROC was 0.82 for North America, 0.83 for Europe, 0.85 for Asia, which
126  demonstrates the robust performance of our model to infer missing information from

127  incomplete datasets (Fig. 1g). For example, Lonicera has a localized distribution in North
128 America and our model correctly predicted this pattern despite this genus being masked in
129  the input, with an overlap rate of 0.90 (Methods). Similar performance was observed for
130 Lamium in Europe (0.89) and for Rhus in Asia (0.80), which exhibit more scattered

131  distribution patterns (Fig. 1i). It is important to note that the three regions we selected
132  randomly differ substantially in plant distributions, area size, and genera counts per grid
133  (Supplementary Fig. 1b-d, Supplementary Table 1). Nevertheless, our model performed
134  equally well across them, which highlights the wide applicability of EcoVAE to diverse

135  geographic contexts. Herbarium specimen records represent a sparse sampling of actual
136  plant distributions, and data completeness varies significantly across regions 2829, To

137  address this inherent limitation, we analyzed the impact of data sparsity on our model's
138 performance. We tested our model using only 1%, 5%, 10%, 20%, and 30% of the input
139 genera, and evaluated its performance based on the AUROC for the remaining genera. With

140  only 1% of the input data, the model's performance was relatively low and the mean
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141 AUROC was 0.56. However, increasing the input to only 5% improved the mean AUROC to
142  0.68. The mean AUROC further rose to 0.77 when we used 20% of the input data, close to
143  the performance seen with 50% (AUROC of 0.81). These results demonstrate that our

144  trained model can effectively use as little as 20% of the available data to reconstruct the full

145  generic distribution with high precision (Fig. 1h).

146  We extended our modeling framework to other major clades with high conservation values,
147  i.e, butterflies and mammals, and evaluated its performance using a similar approach with
148  three testregions (Supplementary Table 2). For butterflies, we found that our model

149  achieves high accuracy in predicting the number of genera per grid, with the Pearson’s

150 correlation coefficients of 0.96, 0.99, 0.80 for genera counts per grid for the test regions
151  (Supplementary Fig. 3). The AUROC scores for genus-level predictions were 0.79, 0.84, and
152  0.75 for these regions. At the species level, the model achieved comparable results for

153  North America and Europe, but the AUROC decreased to 0.68 for Asia, which may reflect its
154  incompleteness of vouchered occurrences at the species level. For mammals, the model
155  performed best in the test region of North America at both genus and species levels

156  (Supplementary Fig. 4). In contrast, the sparser data in Asia posed challenges for

157  reconstructing full species distributions. Overall, our results demonstrate that EcoVAE

158  generalizes effectively across diverse taxa and geographies.

159  One important application of species modeling is interpolating occurrences where data
160  were lacking. We assume that the prediction error of EcoVAE reflects the completeness of
161  the occurrence records: if the records are incomplete, the model will struggle to

162  reconstruct the input data effectively. We estimated the prediction error globally

163  (Methods) and found that regions with high prediction error overlap with known

164  "darkspots" of biodiversity collection 3931, For example, the highest prediction errors for
165 plants were observed in South Asia, Southeast Asia, the Middle East, and Central Africa.
166  South America showed higher prediction errors compared to North America (Fig. 2b).
167  Notably, despite generally sparse records from high-latitude regions, the prediction error
168 remained low, suggesting that the occurrence records in these areas are nearly complete,
169  which allows the model to reflect true species distributions (Fig. 2b) more accurately. For

170  butterflies, the highest prediction errors were observed in South America and parts of
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171 Southeast Asia (Supplementary Fig. 5). Interestingly, Middle Africa exhibited low

172  prediction errors, in contrast to the patterns observed for plants. For mammals, the

173  prediction error was generally smaller, likely due to the low genus diversity. However,
174  regions in South America and Central Asia displayed comparatively high prediction errors,

175  highlighting the need for further investigation efforts in these regions.

176  We then assessed the interpolation power of EcCoVAE on i.) a region in southeastern North
177  America with relatively incomplete herbarium records but rich observation data from
178  iNaturalist, and ii.) a region in South Asia with sparse online occurrence records of both
179  kinds (Fig. 2a). We applied the same model structure to train a full global model based on
180 all available plant voucher records and generated the new predictions in this test region
181  (Methods). In North America, we calculated an overlap index for each genus with

182  iNaturalist observations, defined as the ratio of predictions that are absent from input data
183  but present in the iNaturalist data. We found that our model performed best for genera
184  with a moderate number of observations, while abundant data results in diminishing

185 returns from interpolation (Supplementary Fig. 6). Using the genus Sassafras as an

186 example, we found that the new predictions largely overlap with the iNaturalist data (Fig.

187  2b).

188  For regions like South Asia, both georeferenced vouchered and observational datasets are
189  sparser. We selected genera that showed significant expansion in our model's new

190 predictions. For example, the Desmodium genus in the Fabaceae family only have

191  vouchered specimens in the eastern Himalayan/Nepal region in GBIF, but our model

192  predicts its much wider distribution across western and southern India (Fig. 2d), which
193  aligns better with field surveys and floristic investigations 3233, Similarly, for Melicope in
194  Rutaceae, the original observations were localized in southern India, but our new

195 predictions included occurrences in Myanmar and lowlands of Nepal, which is also

196  confirmed by third-party observations (Fig. 2d) 3435. For Adonis, our new predictions

197  suggested a broad distribution across the Himalayan region, consistent with various local
198 floras and checklists describing the widespread nature of the genus from Pakistan to

199 temperate regions in China (Fig. 2d) 3¢. These results highlight the power of our model to

200 uncover plant distribution patterns in regions where observational data are limited.
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201  Another important aspect of distribution modeling is understanding the community

202 response to changing distributions of organisms within it. Here, we interrogated our full
203 global model to study genus-to-genus interactions. We selected a test region in Australia
204  with abundant occurrences data and a good representation of major biomes

205 (Supplementary Fig. 7, Supplementary Table 1). We conducted in silico perturbation

206  analysis, where each grid cell in the region was artificially altered by introducing a genus to
207  areas where it was previously absent. By comparing the perturbed predictions to

208 unperturbed models (Fig. 2e), we assessed the invasive potential of one genus on others’
209 distributions. We focused on statistically significant interactions for downstream analysis

210  (Methods, Supplementary Fig. 8).

211 Examination of our genus network revealed that genera with high out-degree (those

212  influencing others significantly) tend to have low in-degree (being influenced by others),
213  suggesting asymmetric interactions 37 (Fig. 2f). Genera with broader ranges tend to interact
214  with a larger number of genera (Supplementary Fig. 9). We revealed that certain families,
215 including Poaceae, Cyperaceae, and Amaranthaceae, are more sensitive to disturbance in
216  the study region (Fig. 2g). These families were significantly influenced by members from
217  Poaceae, Asteraceae, and Fabaceae, which are globally well-represented in naturalized and
218 invasive floras (Supplementary Fig. 10) 38. Thus, our model reveals patterns of genus

219 interactions, providing insights into community dynamics that may not be directly

220 observable in the original co-occurrence records.

221  Inthis work, we present EcoVAE, a generative deep learning framework for modeling

222  global plant distributions with high precision and speed. EcoVAE evaluates global sampling
223  efforts, interpolates distributions, and reveals interspecies interactions via in silico

224  perturbation analyses, offering novel applications for biodiversity exploration and

225 monitoring. It demonstrates that species distributions can be reconstructed using co-

226  occurrence information alone, even with incomplete data, capturing ecological patterns
227  often missed by traditional approaches. ECOVAE complements current SDMs by providing a
228  scalable framework for global analyses that can guide more targeted ecological studies. For
229  instance, it can identify under-sampled regions or unexpected patterns, directing SDM

230 efforts and field surveys to areas most in need of investigation. Furthermore, while we have

8
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231 demonstrated the high performance of EcoVAE on taxa such as plants, butterflies, and

232 mammals, it can be easily extended to other taxa including birds and invertebrates. We
233  envision that EcoVAE will advance biodiversity investigations, especially in under-sampled
234  regions with limited environmental data, and ultimately support global biodiversity

235 monitoring efforts aligned with the Convention on Biological Diversity 3°. Future

236 integration of additional data, such as geographic or climate variables, could potentially
237  improve performance and reveal insights into organism distributions and environmental

238 change.
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

254
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255 Methods
256 Data preprocessing

257  We downloaded the world plant, butterfly and mammal distribution data from the GBIF
258  platform (Supplementary Note 1). We used the R package “CoordinateCleaner” 4% to remove
259 records located in the sea, on country or major area centroids, capitals, or in major

260 biodiversity facilities. We modeled the distribution both at the genus and species level. The
261 cleaned observation dataset includes 33.8 million observations of plant, 67.6 million

262  observations of butterfly and 21.9 million observations for mammal (Supplementary Table
263  2).The grid size was set to 0.1’ x 0.1’ and we summed all the observation data in each grid.
264  For any genus or species with more than one observation, we set the value to 1 (existence)
265 in contrast to 0 (non-existence). For plant observations, we only kept genera or species that
266  occursin over 20 grid cells and grid cells with more than 5 different genera. The finalized
267  data contains 277,133 grids, while the three test regions include 11,292, 3,878 and 1,210
268  grids for North America, Europe, and Asia respectively. For butterfly and mammal

269 observations, we only kept genera or species that occur in more than 5 grid cells, and grid

270  cells with more than 1 genus or species.
271
272  Model structure

273  We developed an Ecological Variational Autoencoder (EcoVAE) model which aims to
274  reconstruct the full plant distribution based on partial observations. The core VAE

275  architecture comprises an encoder and a decoder.

276 1. Encoder function: the encoder is implemented as a sequential network with two
277 hidden layers of Gelu activated linear transformations (dimension: 128). The

278 encoder maps the input data (e.g., dimension: 13,125 for plant genera) into a latent
279 space characterized by mean (u) and log variance (log (¢2)) parameters

280 (dimension: 32).

281 (wlog log (62)) = fencoaer(x) = GELU(W,(GELU(Wyx + b)) + by)

10
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282 Where W1, b1, W2, b2 are the weights and biases of the two hidden layers, and
283 GELU denotes the Gaussian Error Linear Unit activation function.

284 2. Reparameterization: the latent representation is obtained through a

285 reparameterization step that ensures differentiability by sampling from a Gaussian
286 distribution parameterized by these y and log (¢2).

287 z=u+oQ@e

288 where € follows normal distribution, € ~ N(0, I).

289 3. Decoder function: the decoder, mirroring the encoder's structure, reconstructs the
290 input data from the latent space, aiming to minimize reconstruction error. The

291 output dimension is equivalent to the input dimension (13,125), ensuring that the
292 reconstructed output mirrors the input feature set.

293 £ = faecoqer(@) = GELU(W,(GELU(W3z + bs)) + b,)

294 Where W3, b3, W4, b4 are the corresponding weights and biases for the decoder
295 layers.

296  This mathematical framework enables the EcoVAE to compress high-dimensional data into
297 alower-dimensional latent space and subsequently reconstruct the original data with

298 minimized reconstruction error.
299
300 Model training and evaluation

301  During the model training process, we used a unique masking strategy where 50% of input
302 dataare randomly set to zero to simulate missing data scenarios. The model uses a

303  weighted reconstruction loss function that is based on mean squared error (MSE). A

304  weighting factor of 0.5 modifies the contribution of masked and unmasked genera to the
305 reconstruction loss, providing a balanced approach to learning from both visible and

306 obscured portions of the data. We used the Adam optimizer with a fixed learning rate of

307 0.001, and the models were trained for 15 epochs with a batch size of 512.

11
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308 To evaluate the model's performance, we excluded data from three randomly selected

309 regions in Europe, North America, and China, during the training phase (Supplementary
310 Table 1). After model training, we conducted a masking procedure where we randomly

311  selected 50% of all genera or species from these regions and set their corresponding

312  observational data to zero. These masked data were then used as inputs to evaluate the
313 model's ability to reconstruct the observational data for the masked genera or species from
314  the unmasked genera. We quantitatively measured the model's performance using the Area
315  Under the Receiver Operating Characteristic (AUROC) and MSE metrics (Supplementary
316  Fig. 2). For each genus or species in the test regions, we selected an equal number of top
317  predicted grids as in the original data. We calculated the overlap rate as the fraction of

318  predictions that had a true occurrence record either within that grid or in neighboring

319  grids.
320
321 Model benchmarking

322  To evaluate the time efficiency of our EcoVAE model in processing large-scale input data,
323  we conducted a series of benchmarking experiments in comparison with two popular SDM
324  methods, i.e., random forest and logistic regression 18, We tested the model's performance
325 under varying input dimensions by randomly selecting genera from the input genus

326  presence matrix. For these experiments, we used a masking strategy where 80% of the

327  input columns were masked to simulate missing data. A binary mask was generated using a
328 probability threshold proportional to the desired masking percentage, ensuring that

329 columns in the input data were set to zero with the defined probability. We used the

330 training and test data split as previously described. A random genus with presence in at
331 least five grids was randomly chosen as the prediction target: the model should predict the
332  presence of this genus across all grids in the training and test data based on the masked
333  input matrix. We trained the random forest classifier using the

334  sklearn.ensemble.RandomForestClassifier function with default parameters. We trained the
335 logistic regression model with the sklearn.linear_model. LogisticRegression function with

336 the following parameters: max_iter=1000, solver='saga’, penalty="'11". Time measurements

12
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337 were recorded from the start of data preparation to the completion of the prediction phase.
338 The time consumption was calculated over 10 iterations to benchmark the models’ time

339 efficiency.

340

341  Model application
342  -Datainterpolation

343  We trained the EcoVAE model as previously described on all available occurrence data for
344  interpolating unobserved plant distribution (full global model). To evaluate the model's
345  prediction error, we used the unmasked global data as input and applied a threshold to

346  binarize the output genus presence matrix, ensuring that the total number of occurrences
347  was doubled. For each grid, we then calculated the ratio of observed genera not

348 represented in the output matrix, which we defined as the prediction error. Based on the
349 global distribution of prediction error, we selected two regions to evaluate the

350 performance of data interpolation, i.e., North America and South Asia. For these regions, we

351  used a similar strategy to generate the binarized output for downstream analysis.

352  For the North America region, we used observation data collected from iNaturalist to verify
353 the accuracy of model prediction instead of traditional data splitting method. The ratio

354  between iNaturalist observational data and vouchered specimen data is 7:1 and we would
355  expect that iNaturalist data have a better geographic coverage than herbarium specimens
356 for many species. We calculated overlapping rate between predicted species occurrences
357 and actual observations to quantify the performance of our prediction. For each species, we
358 first extracted the observed and predicted occurrences based on the genus index. For both
359 datasets, we retained only the presence points. The observed points were buffered by 0.1
360 degrees to account for geographic uncertainties. We then converted the presence data into
361  spatial objects using the “sf” package in R 41. Overlap between predicted occurrences and
362 observed occurrences, as well as overlap between predicted and original input

363  occurrences, was calculated using spatial intersections ("st_intersects’). The key metric, the
364  overlapping rate, was calculated by dividing the number of predicted points that

365 overlapped with observed points but not with original input points by the total number of

13
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366  predicted points. This rate reflects the proportion of new predicted occurrences that align
367  with observed data but were not part of the input data, providing a measure of prediction
368 accuracy and novelty. We also compared the predicted overlapping rate with the

369 overlapping rate calculated between the same number of randomly generated points in the

370 study area and observations.

371  For the South Asia region, we assessed the occurrence of each genus both before and after
372  data interpolation. We focused on genera that initially occurred in more than 5 grids and
373  whose distribution region has expanded most for downstream analysis. Due to the lack of
374  georeferenced observational data in this region, we compared our prediction with the

375  distribution described in plant atlas and related literature.
376
377  -Simulation of genera interaction

378 To simulate the impact of a specific genus i on all other genera within a targeted region, we
379 initially identified all grid cells lacking genus i. The observational data from these grids
380  were utilized as input for the model, and the corresponding reconstructed data served as
381  the background dataset (x_background). Then we introduced observations of genus i into
382  these grids and generated perturbed model outputs (x_perturb). By comparing the plant
383  distributions between x_background and x_perturb, we were able to identify genera that
384  exhibited significant changes, thereby quantifying the ecological influence of genus i on the

385  plant community dynamics within the region.

386  To assess species interactions after species additions, we first fit linear regression models
387  to compare grid numbers of all genera before and after addition of a specific genus i.

388  Specifically, we used the ‘Im’ function in R to model the relationship between grid numbers
389  before and after addition of genus i. For each model, we calculated 99.99% confidence

390 intervals using the ‘predict’ function with the interval parameter of "prediction” and level
391  parameter of 0.9999. We defined the significant interaction between genus i and j if the
392 predicted grid number for genus j falls outside the bounds of the confidence intervals after
393 addition of genus i. In such circumstances, we identified j as an “outlier” and defined it as a

394  “sensitive genus”. Z-scores were calculated for each genus by normalizing the residuals,
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395 computed as the difference between actual and predicted values. We then performed
396 frequency analysis of the impactful and vulnerable genera based on all significant

397 interactions. To further explore genus interactions at the family level, we utilized the
398 “plantlist” package 42 to classify genera into families and analyzed the proportion of
399 sensitive genera within each family. We selected the most sensitive family based on the
400 following criteria: it includes more than 5 genera and at least 35% of the genera are

401  classified as “sensitive” (significantly impacted by at least one other genus).
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534  Figure Legends

535 Figure 1. Framework and evaluation of ECOVAE model performance. a, Schematic
536 representation of the model training and application pipeline. b, Overview of the model
537  evaluation process. ¢, Map showing the locations of the three testing regions. d,

538  Comparison of time consumption between two machine learning methods and EcoVAE
539  with the increase of input dimension. e, Comparison of time consumption between two
540 machine learning methods and EcoVAE with the increase of output dimension. f,

541  Correlation between observed genera counts per grid (or observed grid counts per genus,
542  upper panels) and predicted genera counts per grid (or predicted grid counts per genus,
543 lower panels) across the three testing regions, with high Pearson correlation values. The
544  black dashed lines indicate identity lines. g, Density plot showing the Area Under the

545  Receiver Operating Characteristic (AUROC) for three testing regions. h, Relationship

546  between the ratio of masked data and AUROC values. i, Comparison of the distribution of
547  observations (upper panels) and predictions (lower panels) for randomly selected genus

548  within each test region.
549

550 Figure 2. Applications of EcoVAE model. a, Schematic illustration of the interpolation
551  process using EcoVAE. b, Global distribution of relative collection completeness,

552  represented by the value of prediction error of EcoVAE. Darker color represents lower
553  prediction error and higher completeness, while lighter color represents higher prediction
554  error and lower completeness. ¢, Comparison between original herbarium specimen

555  records and EcoVAE interpolation results of genus Sassafras in North America. d,

556  Interpolation results of three example genera in South Asia. Gray dots show the

557  distribution of all georeferenced vouchered occurrences in the study area. e, Schematic
558 illustration of studying community interactions using EcoVAE model. f, Relationship

559  between the number of outdegree and indegree for the genus-to-genus interactions. Each
560 dotrepresents a single genus. g, Log number of sensitive genera across the most sensitive

561  plant families identified by EcoVAE.

562
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