

A generative deep learning approach for global species distribution prediction

Yujing Yan^{1*}, Bin Shao^{2*}, Charles C. Davis¹

10 ¹Department of Organismic and Evolutionary Biology, Harvard University Herbaria
11 Harvard University, Cambridge MA 02138, USA

12 ²Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138,
13 USA

17 *Corresponding authors:

18 Yujing Yan: yjyan7@gmail.com
19 Bin Shao: shaobinx@gmail.com

27 **Abstract**

28 Anthropogenic pressures on biodiversity necessitate efficient and highly scalable methods
29 to predict global species distributions. Current species distribution models (SDMs) face
30 limitations with large-scale datasets, complex interspecies interactions, and data quality.
31 Here, we introduce EcoVAE, a framework of autoencoder-based generative models trained
32 separately on nearly 124 million georeferenced occurrences from taxa including plants,
33 butterflies and mammals, to predict their global distributions at both genus and species
34 levels. EcoVAE achieves high precision and speed, captures underlying distribution
35 patterns through unsupervised learning, and reveals interspecies interactions via *in silico*
36 perturbation analyses. Additionally, it evaluates global sampling efforts and interpolates
37 distributions without relying on environmental variables, offering new applications for
38 biodiversity exploration and monitoring.

39

40

41

42

43

44

45

46

47

48

49

50

51

52 **Main**

53 Anthropogenic pressures have intensified the need for efficient and scalable methods to
54 predict species distributions for attaining a comprehensive picture of biodiversity. Over the
55 past two decades, species distribution modeling (SDM) has become an essential tool for
56 this purpose ¹⁻³, typically using species occurrence data and environmental variables to
57 predict distributions through statistical and machine learning (ML) algorithms ⁴⁻⁷. While
58 the mobilization of vast amounts of specimen records and the rapid accumulation of
59 observational data have greatly promoted the development of SDMs ⁸⁻¹⁰, several
60 challenges still persist.

61 First, current SDMs struggle to handle large-scale datasets in our big data era ⁸⁻¹²,
62 especially for modeling species assemblages. Traditional methods can only address these
63 tasks through computationally intensive “stacking methods” that have limited scalability.
64 Second, most SDMs overlook complex interspecies interactions, limiting their ecological
65 relevance and utility in modeling community dynamics ¹³⁻¹⁶. Third, the accuracy of current
66 techniques depends heavily on input data quality and resolution ^{17,18}. Although platforms
67 like GBIF and eBird provide valuable datasets for exploration, these are often biased by
68 varying observation efforts across taxonomic groups and regions ¹⁹⁻²¹. Finally, reliance on
69 environmental variables introduces additional issues, including collinearity and limited
70 availability in certain regions, further constraining model accuracy and applicability²².

71 Generative models are a type of deep learning model that captures complex and nonlinear
72 relationships between input variables. They have been widely adopted in various fields,
73 including natural language processing ²³, image generation ²⁴, data capturing ²⁵, and
74 biomedicine ²⁶. Among these models, autoencoders are designed to compress and
75 reconstruct data in an unsupervised way, making it effective for data denoising,
76 interpolation, and handling randomly missing data ²⁷.

77 Here, we present for the first time an autoencoder-based framework, named Ecological
78 Variational Autoencoder (EcoVAE), to predict species distributions for the first time using
79 large-scale, unstructured, and sparse occurrence data. To demonstrate the effectiveness of
80 our framework, we trained a customized EcoVAE on a massive global dataset including

81 nearly 34 million georeferenced vouchered occurrences from the GBIF platform spanning
82 13,125 plant genera and 127,281 species. EcoVAE learns the patterns of global plant
83 distributions without any dependency on environmental variables. It efficiently processes
84 this large-scale dataset with fast computational times, accommodates varying rates of
85 missing data and biases, and enables the study of complex interactions within
86 communities. Remarkably, EcoVAE can accurately reconstruct full plant distributions
87 across all genera using as little as 20% of randomly selected occurrence records. We
88 further demonstrate the broad applicability of EcoVAE by applying it to 68 million
89 occurrence records of butterflies and 22 million records of mammals at both the genus and
90 species levels. Additionally, our model predictions offer an unsupervised approach to
91 assess collection completeness across different taxa on a global scale. These results
92 demonstrate the unprecedented capacity of deep learning methods to decode and predict
93 biodiversity patterns at global scales.

94 EcoVAE applies a unique masked approach to model the global species distributions using
95 well-curated occurrences data based on vouchered specimen records at the rank of genus
96 or species (Fig. 1a). We treat genera as the unit of inference in the modeling process due to
97 their computational efficiency and biological relevance. Genera represent coherent,
98 morphologically similar, and often monophyletic groups of species, providing a practical
99 compromise between taxonomic detail and manageable computational demands. The input
100 data was grouped into grids of 0.1', where plant observations within each grid were
101 summarized into vectors. The richness of genera per grid varied widely, ranging from 10^1
102 to 10^3 (Supplementary Fig. 1a). Our model consists of an encoder that learns a low-
103 dimensional representation of the input data and a decoder that reconstructs the presence
104 of genera per grid. For model training, we randomly masked 50% of the genera presence
105 data and the model was trained to predict these masked genera based on the remaining
106 observed data (Fig. 1b). This process allows the model to interpolate sparse observations
107 and estimate the true, unobserved plant distributions.

108 We evaluated the performance of our model in three randomly selected regions in North
109 America, Europe, and Asia, and applied the remaining global data for training (Fig. 1c,
110 Supplementary Table 1). Our model demonstrated a 10-fold increase in computational

111 speed compared to popular traditional SDMs, including logistic regression and random
112 forest, when predicting the distribution of a single genus using all other genera as input
113 (Fig. 1d). This difference is even greater when predicting distributions of multiple genera
114 (Fig. 1e).

115 We further assess the model's accuracy in prediction. Here, we calculated the predicted
116 genera counts per grid for the test regions and compared them to the actual observations.
117 The results demonstrated very high Pearson correlation coefficients of 0.98, 0.99 and 0.99
118 for test regions in North America, Europe, and Asia, respectively. At the species level, our
119 model achieves correlation coefficients of 0.95, 0.98, and 0.98 across the three regions
120 (Supplementary Fig. 2). We also calculated the total number of genera present in each grid
121 and observed high correlations between the model's predictions and the actual data (Fig.
122 1f).

123 Next, we used the Area Under the Receiver Operating Characteristic (AUROC) curve to
124 evaluate EcoVAE's accuracy in modeling the distribution of each genus. For the masked
125 genera, the mean AUROC was 0.82 for North America, 0.83 for Europe, 0.85 for Asia, which
126 demonstrates the robust performance of our model to infer missing information from
127 incomplete datasets (Fig. 1g). For example, *Lonicera* has a localized distribution in North
128 America and our model correctly predicted this pattern despite this genus being masked in
129 the input, with an overlap rate of 0.90 (Methods). Similar performance was observed for
130 *Lamium* in Europe (0.89) and for *Rhus* in Asia (0.80), which exhibit more scattered
131 distribution patterns (Fig. 1i). It is important to note that the three regions we selected
132 randomly differ substantially in plant distributions, area size, and genera counts per grid
133 (Supplementary Fig. 1b-d, Supplementary Table 1). Nevertheless, our model performed
134 equally well across them, which highlights the wide applicability of EcoVAE to diverse
135 geographic contexts. Herbarium specimen records represent a sparse sampling of actual
136 plant distributions, and data completeness varies significantly across regions^{28,29}. To
137 address this inherent limitation, we analyzed the impact of data sparsity on our model's
138 performance. We tested our model using only 1%, 5%, 10%, 20%, and 30% of the input
139 genera, and evaluated its performance based on the AUROC for the remaining genera. With
140 only 1% of the input data, the model's performance was relatively low and the mean

141 AUROC was 0.56. However, increasing the input to only 5% improved the mean AUROC to
142 0.68. The mean AUROC further rose to 0.77 when we used 20% of the input data, close to
143 the performance seen with 50% (AUROC of 0.81). These results demonstrate that our
144 trained model can effectively use as little as 20% of the available data to reconstruct the full
145 generic distribution with high precision (Fig. 1h).

146 We extended our modeling framework to other major clades with high conservation values,
147 i.e., butterflies and mammals, and evaluated its performance using a similar approach with
148 three test regions (Supplementary Table 2). For butterflies, we found that our model
149 achieves high accuracy in predicting the number of genera per grid, with the Pearson's
150 correlation coefficients of 0.96, 0.99, 0.80 for genera counts per grid for the test regions
151 (Supplementary Fig. 3). The AUROC scores for genus-level predictions were 0.79, 0.84, and
152 0.75 for these regions. At the species level, the model achieved comparable results for
153 North America and Europe, but the AUROC decreased to 0.68 for Asia, which may reflect its
154 incompleteness of vouchered occurrences at the species level. For mammals, the model
155 performed best in the test region of North America at both genus and species levels
156 (Supplementary Fig. 4). In contrast, the sparser data in Asia posed challenges for
157 reconstructing full species distributions. Overall, our results demonstrate that EcoVAE
158 generalizes effectively across diverse taxa and geographies.

159 One important application of species modeling is interpolating occurrences where data
160 were lacking. We assume that the prediction error of EcoVAE reflects the completeness of
161 the occurrence records: if the records are incomplete, the model will struggle to
162 reconstruct the input data effectively. We estimated the prediction error globally
163 (Methods) and found that regions with high prediction error overlap with known
164 "darkspots" of biodiversity collection^{30,31}. For example, the highest prediction errors for
165 plants were observed in South Asia, Southeast Asia, the Middle East, and Central Africa.
166 South America showed higher prediction errors compared to North America (Fig. 2b).
167 Notably, despite generally sparse records from high-latitude regions, the prediction error
168 remained low, suggesting that the occurrence records in these areas are nearly complete,
169 which allows the model to reflect true species distributions (Fig. 2b) more accurately. For
170 butterflies, the highest prediction errors were observed in South America and parts of

171 Southeast Asia (Supplementary Fig. 5). Interestingly, Middle Africa exhibited low
172 prediction errors, in contrast to the patterns observed for plants. For mammals, the
173 prediction error was generally smaller, likely due to the low genus diversity. However,
174 regions in South America and Central Asia displayed comparatively high prediction errors,
175 highlighting the need for further investigation efforts in these regions.

176 We then assessed the interpolation power of EcoVAE on i.) a region in southeastern North
177 America with relatively incomplete herbarium records but rich observation data from
178 iNaturalist, and ii.) a region in South Asia with sparse online occurrence records of both
179 kinds (Fig. 2a). We applied the same model structure to train a full global model based on
180 all available plant voucher records and generated the new predictions in this test region
181 (Methods). In North America, we calculated an overlap index for each genus with
182 iNaturalist observations, defined as the ratio of predictions that are absent from input data
183 but present in the iNaturalist data. We found that our model performed best for genera
184 with a moderate number of observations, while abundant data results in diminishing
185 returns from interpolation (Supplementary Fig. 6). Using the genus *Sassafras* as an
186 example, we found that the new predictions largely overlap with the iNaturalist data (Fig.
187 2b).

188 For regions like South Asia, both georeferenced vouchered and observational datasets are
189 sparser. We selected genera that showed significant expansion in our model's new
190 predictions. For example, the *Desmodium* genus in the Fabaceae family only have
191 vouchered specimens in the eastern Himalayan/Nepal region in GBIF, but our model
192 predicts its much wider distribution across western and southern India (Fig. 2d), which
193 aligns better with field surveys and floristic investigations^{32,33}. Similarly, for *Melicope* in
194 Rutaceae, the original observations were localized in southern India, but our new
195 predictions included occurrences in Myanmar and lowlands of Nepal, which is also
196 confirmed by third-party observations (Fig. 2d)^{34,35}. For *Adonis*, our new predictions
197 suggested a broad distribution across the Himalayan region, consistent with various local
198 floras and checklists describing the widespread nature of the genus from Pakistan to
199 temperate regions in China (Fig. 2d)³⁶. These results highlight the power of our model to
200 uncover plant distribution patterns in regions where observational data are limited.

201 Another important aspect of distribution modeling is understanding the community
202 response to changing distributions of organisms within it. Here, we interrogated our full
203 global model to study genus-to-genus interactions. We selected a test region in Australia
204 with abundant occurrences data and a good representation of major biomes
205 (Supplementary Fig. 7, Supplementary Table 1). We conducted *in silico* perturbation
206 analysis, where each grid cell in the region was artificially altered by introducing a genus to
207 areas where it was previously absent. By comparing the perturbed predictions to
208 unperturbed models (Fig. 2e), we assessed the invasive potential of one genus on others'
209 distributions. We focused on statistically significant interactions for downstream analysis
210 (Methods, Supplementary Fig. 8).

211 Examination of our genus network revealed that genera with high out-degree (those
212 influencing others significantly) tend to have low in-degree (being influenced by others),
213 suggesting asymmetric interactions³⁷ (Fig. 2f). Genera with broader ranges tend to interact
214 with a larger number of genera (Supplementary Fig. 9). We revealed that certain families,
215 including Poaceae, Cyperaceae, and Amaranthaceae, are more sensitive to disturbance in
216 the study region (Fig. 2g). These families were significantly influenced by members from
217 Poaceae, Asteraceae, and Fabaceae, which are globally well-represented in naturalized and
218 invasive floras (Supplementary Fig. 10)³⁸. Thus, our model reveals patterns of genus
219 interactions, providing insights into community dynamics that may not be directly
220 observable in the original co-occurrence records.

221 In this work, we present EcoVAE, a generative deep learning framework for modeling
222 global plant distributions with high precision and speed. EcoVAE evaluates global sampling
223 efforts, interpolates distributions, and reveals interspecies interactions via *in silico*
224 perturbation analyses, offering novel applications for biodiversity exploration and
225 monitoring. It demonstrates that species distributions can be reconstructed using co-
226 occurrence information alone, even with incomplete data, capturing ecological patterns
227 often missed by traditional approaches. EcoVAE complements current SDMs by providing a
228 scalable framework for global analyses that can guide more targeted ecological studies. For
229 instance, it can identify under-sampled regions or unexpected patterns, directing SDM
230 efforts and field surveys to areas most in need of investigation. Furthermore, while we have

231 demonstrated the high performance of EcoVAE on taxa such as plants, butterflies, and
232 mammals, it can be easily extended to other taxa including birds and invertebrates. We
233 envision that EcoVAE will advance biodiversity investigations, especially in under-sampled
234 regions with limited environmental data, and ultimately support global biodiversity
235 monitoring efforts aligned with the Convention on Biological Diversity ³⁹. Future
236 integration of additional data, such as geographic or climate variables, could potentially
237 improve performance and reveal insights into organism distributions and environmental
238 change.

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255 **Methods**

256 **Data preprocessing**

257 We downloaded the world plant, butterfly and mammal distribution data from the GBIF
258 platform (Supplementary Note 1). We used the R package “CoordinateCleaner”⁴⁰ to remove
259 records located in the sea, on country or major area centroids, capitals, or in major
260 biodiversity facilities. We modeled the distribution both at the genus and species level. The
261 cleaned observation dataset includes 33.8 million observations of plant, 67.6 million
262 observations of butterfly and 21.9 million observations for mammal (Supplementary Table
263 2). The grid size was set to 0.1' x 0.1' and we summed all the observation data in each grid.
264 For any genus or species with more than one observation, we set the value to 1 (existence)
265 in contrast to 0 (non-existence). For plant observations, we only kept genera or species that
266 occurs in over 20 grid cells and grid cells with more than 5 different genera. The finalized
267 data contains 277,133 grids, while the three test regions include 11,292, 3,878 and 1,210
268 grids for North America, Europe, and Asia respectively. For butterfly and mammal
269 observations, we only kept genera or species that occur in more than 5 grid cells, and grid
270 cells with more than 1 genus or species.

271

272 **Model structure**

273 We developed an Ecological Variational Autoencoder (EcoVAE) model which aims to
274 reconstruct the full plant distribution based on partial observations. The core VAE
275 architecture comprises an encoder and a decoder.

276 1. Encoder function: the encoder is implemented as a sequential network with two
277 hidden layers of Gelu activated linear transformations (dimension: 128). The
278 encoder maps the input data (e.g., dimension: 13,125 for plant genera) into a latent
279 space characterized by mean (μ) and log variance ($\log(\sigma^2)$) parameters
280 (dimension: 32).

281
$$(\mu, \log \log (\sigma^2)) = f_{encoder}(x) = GELU(W_2(GELU(W_1x + b_1)) + b_2)$$

282 Where $W1, b1, W2, b2$ are the weights and biases of the two hidden layers, and
283 GELU denotes the Gaussian Error Linear Unit activation function.

284 2. Reparameterization: the latent representation is obtained through a
285 reparameterization step that ensures differentiability by sampling from a Gaussian
286 distribution parameterized by these μ and $\log(\sigma^2)$.

287
$$z = \mu + \sigma \odot \epsilon$$

288 where ϵ follows normal distribution, $\epsilon \sim N(0, I)$.

289 3. Decoder function: the decoder, mirroring the encoder's structure, reconstructs the
290 input data from the latent space, aiming to minimize reconstruction error. The
291 output dimension is equivalent to the input dimension (13,125), ensuring that the
292 reconstructed output mirrors the input feature set.

293
$$\hat{x} = f_{decoder}(z) = GELU(W_4(GELU(W_3z + b_3)) + b_4)$$

294 Where $W3, b3, W4, b4$ are the corresponding weights and biases for the decoder
295 layers.

296 This mathematical framework enables the EcoVAE to compress high-dimensional data into
297 a lower-dimensional latent space and subsequently reconstruct the original data with
298 minimized reconstruction error.

299

300 **Model training and evaluation**

301 During the model training process, we used a unique masking strategy where 50% of input
302 data are randomly set to zero to simulate missing data scenarios. The model uses a
303 weighted reconstruction loss function that is based on mean squared error (MSE). A
304 weighting factor of 0.5 modifies the contribution of masked and unmasked genera to the
305 reconstruction loss, providing a balanced approach to learning from both visible and
306 obscured portions of the data. We used the Adam optimizer with a fixed learning rate of
307 0.001, and the models were trained for 15 epochs with a batch size of 512.

308 To evaluate the model's performance, we excluded data from three randomly selected
309 regions in Europe, North America, and China, during the training phase (Supplementary
310 Table 1). After model training, we conducted a masking procedure where we randomly
311 selected 50% of all genera or species from these regions and set their corresponding
312 observational data to zero. These masked data were then used as inputs to evaluate the
313 model's ability to reconstruct the observational data for the masked genera or species from
314 the unmasked genera. We quantitatively measured the model's performance using the Area
315 Under the Receiver Operating Characteristic (AUROC) and MSE metrics (Supplementary
316 Fig. 2). For each genus or species in the test regions, we selected an equal number of top
317 predicted grids as in the original data. We calculated the overlap rate as the fraction of
318 predictions that had a true occurrence record either within that grid or in neighboring
319 grids.

320

321 **Model benchmarking**

322 To evaluate the time efficiency of our EcoVAE model in processing large-scale input data,
323 we conducted a series of benchmarking experiments in comparison with two popular SDM
324 methods, i.e., random forest and logistic regression ¹⁸. We tested the model's performance
325 under varying input dimensions by randomly selecting genera from the input genus
326 presence matrix. For these experiments, we used a masking strategy where 80% of the
327 input columns were masked to simulate missing data. A binary mask was generated using a
328 probability threshold proportional to the desired masking percentage, ensuring that
329 columns in the input data were set to zero with the defined probability. We used the
330 training and test data split as previously described. A random genus with presence in at
331 least five grids was randomly chosen as the prediction target: the model should predict the
332 presence of this genus across all grids in the training and test data based on the masked
333 input matrix. We trained the random forest classifier using the
334 *sklearn.ensemble.RandomForestClassifier* function with default parameters. We trained the
335 logistic regression model with the *sklearn.linear_model.LogisticRegression* function with
336 the following parameters: max_iter=1000, solver='saga', penalty='l1'. Time measurements

337 were recorded from the start of data preparation to the completion of the prediction phase.
338 The time consumption was calculated over 10 iterations to benchmark the models' time
339 efficiency.

340

341 **Model application**

342 **-Data interpolation**

343 We trained the EcoVAE model as previously described on all available occurrence data for
344 interpolating unobserved plant distribution (full global model). To evaluate the model's
345 prediction error, we used the unmasked global data as input and applied a threshold to
346 binarize the output genus presence matrix, ensuring that the total number of occurrences
347 was doubled. For each grid, we then calculated the ratio of observed genera not
348 represented in the output matrix, which we defined as the prediction error. Based on the
349 global distribution of prediction error, we selected two regions to evaluate the
350 performance of data interpolation, i.e., North America and South Asia. For these regions, we
351 used a similar strategy to generate the binarized output for downstream analysis.

352 For the North America region, we used observation data collected from iNaturalist to verify
353 the accuracy of model prediction instead of traditional data splitting method. The ratio
354 between iNaturalist observational data and vouchered specimen data is 7:1 and we would
355 expect that iNaturalist data have a better geographic coverage than herbarium specimens
356 for many species. We calculated overlapping rate between predicted species occurrences
357 and actual observations to quantify the performance of our prediction. For each species, we
358 first extracted the observed and predicted occurrences based on the genus index. For both
359 datasets, we retained only the presence points. The observed points were buffered by 0.1
360 degrees to account for geographic uncertainties. We then converted the presence data into
361 spatial objects using the "sf" package in R ⁴¹. Overlap between predicted occurrences and
362 observed occurrences, as well as overlap between predicted and original input
363 occurrences, was calculated using spatial intersections ('st_intersects'). The key metric, the
364 overlapping rate, was calculated by dividing the number of predicted points that
365 overlapped with observed points but not with original input points by the total number of

366 predicted points. This rate reflects the proportion of new predicted occurrences that align
367 with observed data but were not part of the input data, providing a measure of prediction
368 accuracy and novelty. We also compared the predicted overlapping rate with the
369 overlapping rate calculated between the same number of randomly generated points in the
370 study area and observations.

371 For the South Asia region, we assessed the occurrence of each genus both before and after
372 data interpolation. We focused on genera that initially occurred in more than 5 grids and
373 whose distribution region has expanded most for downstream analysis. Due to the lack of
374 georeferenced observational data in this region, we compared our prediction with the
375 distribution described in plant atlas and related literature.

376

377 **-Simulation of genera interaction**

378 To simulate the impact of a specific genus i on all other genera within a targeted region, we
379 initially identified all grid cells lacking genus i . The observational data from these grids
380 were utilized as input for the model, and the corresponding reconstructed data served as
381 the background dataset ($x_{background}$). Then we introduced observations of genus i into
382 these grids and generated perturbed model outputs ($x_{perturb}$). By comparing the plant
383 distributions between $x_{background}$ and $x_{perturb}$, we were able to identify genera that
384 exhibited significant changes, thereby quantifying the ecological influence of genus i on the
385 plant community dynamics within the region.

386 To assess species interactions after species additions, we first fit linear regression models
387 to compare grid numbers of all genera before and after addition of a specific genus i .
388 Specifically, we used the 'lm' function in R to model the relationship between grid numbers
389 before and after addition of genus i . For each model, we calculated 99.99% confidence
390 intervals using the 'predict' function with the interval parameter of "prediction" and level
391 parameter of 0.9999. We defined the significant interaction between genus i and j if the
392 predicted grid number for genus j falls outside the bounds of the confidence intervals after
393 addition of genus i . In such circumstances, we identified j as an "outlier" and defined it as a
394 "sensitive genus". Z-scores were calculated for each genus by normalizing the residuals,

395 computed as the difference between actual and predicted values. We then performed
396 frequency analysis of the impactful and vulnerable genera based on all significant
397 interactions. To further explore genus interactions at the family level, we utilized the
398 “plantlist” package ⁴² to classify genera into families and analyzed the proportion of
399 sensitive genera within each family. We selected the most sensitive family based on the
400 following criteria: it includes more than 5 genera and at least 35% of the genera are
401 classified as “sensitive” (significantly impacted by at least one other genus).

402

403 **Author Contributions**

404 YY and SB conceptualized the study, conceived EcoVAE, collected and analyzed the data. YY
405 and SB wrote the manuscript with key contributions from CCD. All authors approved the
406 manuscript.

407

408 **Acknowledgements**

409 YY and SB were supported by Harvard University. CCD was supported by Harvard
410 University, LVMH Research, Dior Science, and National Science Foundation grants DEB-
411 1355064 and DEB-0544039.

412

413 **References**

- 414 1. Guisan, A. *et al.* Predicting species distributions for conservation decisions. *Ecology Letters* **16**, 1424–1435 (2013).
- 416 2. Franklin, J. Species distribution models in conservation biogeography: developments and
417 challenges. *Diversity and Distributions* **19**, 1217–1223 (2013).
- 418 3. Franklin, J. Species distribution modelling supports the study of past, present and future
419 biogeographies. *Journal of Biogeography* **50**, 1533–1545 (2023).
- 420 4. Elith*, J. *et al.* Novel methods improve prediction of species’ distributions from

421 occurrence data. *Ecography* **29**, 129–151 (2006).

422 5. Chollet Ramampiandra, E., Scheidegger, A., Wydler, J. & Schuwirth, N. A comparison of
423 machine learning and statistical species distribution models: Quantifying overfitting
424 supports model interpretation. *Ecological Modelling* **481**, 110353 (2023).

425 6. Franklin, J. Species distribution modeling. in *Mapping Species Distributions: spatial*
426 *inference and prediction* 3–20 (Cambridge University Press, Cambridge, United Kingdom
427 and New York, NY, USA, 2009).

428 7. Zurell, D. *et al.* Benchmarking novel approaches for modelling species range dynamics.
429 *Global Change Biology* **22**, 2651–2664 (2016).

430 8. Franklin, J., Serra-Diaz, J. M., Syphard, A. D. & Regan, H. M. Big data for forecasting the
431 impacts of global change on plant communities. *Global Ecology and Biogeography* (2016)
432 doi:10.1111/geb.12501.

433 9. Runtu, R. K., Phinn, S., Xie, Z., Venter, O. & Watson, J. E. M. Opportunities for big data in
434 conservation and sustainability. *Nat Commun* **11**, 2003 (2020).

435 10. Di Cecco, G. J. *et al.* Observing the Observers: How Participants Contribute Data to
436 iNaturalist and Implications for Biodiversity Science. *BioScience* **71**, 1179–1188 (2021).

437 11. Davis, C. C. The herbarium of the future. *Trends in Ecology & Evolution* **38**, 412–423
438 (2023).

439 12. Hedrick, B. P. *et al.* Digitization and the Future of Natural History Collections.
440 *BioScience* **70**, 243–251 (2020).

441 13. Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species
442 distributions under climate change. *Global Ecology and Biogeography* **16**, 743–753
443 (2007).

444 14. Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and
445 abundance responses to climate change: why it is essential to include biotic interactions
446 across trophic levels. *Philosophical transactions of the Royal Society of London. Series B,*
447 *Biological sciences* **365**, 2025–2034 (2010).

448 15. Thuiller, W. *et al.* Navigating the integration of biotic interactions in biogeography.
449 *Journal of Biogeography* **51**, 550–559 (2024).

450 16. Wisz, M. S. *et al.* The role of biotic interactions in shaping distributions and realised
451 assemblages of species: Implications for species distribution modelling. *Biological*

452 *Reviews* **88**, 15–30 (2013).

453 17. Guisan, A. *et al.* Sensitivity of predictive species distribution models to change in
454 grain size. *Diversity and Distributions* **13**, 332–340 (2007).

455 18. Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J. & Elith, J. Predictive performance
456 of presence-only species distribution models: a benchmark study with reproducible
457 code. *Ecological Monographs* **92**, e01486 (2022).

458 19. Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database
459 and its effect on modeling species' geographic distributions. *Ecological Informatics* **19**,
460 10–15 (2014).

461 20. Garcia-Rosello, E., Gonzalez-Dacosta, J., Guisande, C. & Lobo, J. M. GBIF falls short of
462 providing a representative picture of the global distribution of insects. *Systematic
463 Entomology* **48**, 489–497 (2023).

464 21. Pender, J. E. *et al.* How sensitive are climatic niche inferences to distribution data
465 sampling? A comparison of Biota of North America Program (BONAP) and Global
466 Biodiversity Information Facility (GBIF) datasets. *Ecological Informatics* **54**, 100991
467 (2019).

468 22. Dormann, C. F. *et al.* Collinearity: A review of methods to deal with it and a
469 simulation study evaluating their performance. *Ecography* **36**, 027–046 (2013).

470 23. Ouyang, L. *et al.* Training language models to follow instructions with human
471 feedback. Preprint at <https://doi.org/10.48550/arXiv.2203.02155> (2022).

472 24. Ramesh, A. *et al.* Zero-Shot Text-to-Image Generation. Preprint at
473 <https://doi.org/10.48550/arXiv.2102.12092> (2021).

474 25. Weaver, W. N., Ruhfel, B. R., Lough, K. J. & Smith, S. A. Herbarium specimen label
475 transcription reimagined with large language models: Capabilities, productivity, and
476 risks. *American J of Botany* **110**, e16256 (2023).

477 26. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for
478 single-cell transcriptomics. *Nat Methods* **15**, 1053–1058 (2018).

479 27. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. Preprint at
480 <https://doi.org/10.48550/arXiv.1312.6114> (2022).

481 28. Daru, B. H. *et al.* Widespread sampling biases in herbaria revealed from large-
482 scale digitization. *New Phytol* **217**, 939–955 (2018).

483 29. Daru, B. H. & Rodriguez, J. Mass production of unvouchered records fails to
484 represent global biodiversity patterns. *Nat Ecol Evol* **7**, 816–831 (2023).

485 30. Daru, B. H. Predicting undetected native vascular plant diversity at a global scale.
486 *Proc. Natl. Acad. Sci. U.S.A.* **121**, e2319989121 (2024).

487 31. Ondo, I. *et al.* Plant diversity darkspots for global collection priorities. *New*
488 *Phytologist* **244**, 719–733 (2024).

489 32. Joshi, B. R., Hakim, M. M. & Patel, I. C. The biological active compounds and biological
490 activities of Desmodium species from Indian region: a review. *Beni-Suef Univ J Basic Appl*
491 *Sci* **12**, 1 (2023).

492 33. Desmodium gangeticum (L.)DC. Species. *India Biodiversity Portal*
493 <https://indiabiodiversity.org/species/show/229507>.

494 34. Wood, K. R., Appelhans, M. S. & Wagner, W. L. Melicope oppenheimeri, section Pelea
495 (Rutaceae), a new species from West Maui, Hawaiian Islands: with notes on its ecology,
496 conservation, and phylogenetic placement. *PK* **69**, 51–64 (2016).

497 35. Hartley TG. On the Taxonomy and Biogeography of Euodia and *Melicope* (Rutaceae).
498 in *Allertonia* vol. 8(1) (National Tropical Botanical Garden, Lawa‘i, Kaua‘i, Hawai‘i,
499 2001).

500 36. Fu, D. Adonis, in *Flora of China* **6**: 389-391. (2001).

501 37. Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric Coevolutionary Networks
502 Facilitate Biodiversity Maintenance. *Science* **312**, 431–433 (2006).

503 38. Pyšek, P. *et al.* Naturalized alien flora of the world: species diversity, taxonomic and
504 phylogenetic patterns, geographic distribution and global hotspots of plant invasion.
505 *Preslia* **89**, 203–274 (2017).

506 39. Díaz, S. *et al.* Set ambitious goals for biodiversity and sustainability. *Science* **370**,
507 411–413 (2020).

508 40. Zizka, A. *et al.* CoordinateCleaner : Standardized cleaning of occurrence records from
509 biological collection databases. *Methods in Ecology and Evolution* **10**, 744–751 (2019).

510 41. Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data.
511 *The R Journal* **10**, 439 (2018).

512 42. Zhang, J. Plantlist: Looking Up the Status of Plant Scientific Names Based on The
513 Plant List Database. (2019). R package version

514 (4.3.3) <https://github.com/helixcn/plantlist/>

515

516 **Code Availability**

517 Our trained model and codes are available from GitHub:

518 <https://github.com/lingxusb/EcoVAE>

519

520 **Additional Information**

521 Supplementary information

522

523

524

525

526

527

528

529

530

531

532

533

534 **Figure Legends**

535 **Figure 1. Framework and evaluation of EcoVAE model performance.** **a**, Schematic
536 representation of the model training and application pipeline. **b**, Overview of the model
537 evaluation process. **c**, Map showing the locations of the three testing regions. **d**,
538 Comparison of time consumption between two machine learning methods and EcoVAE
539 with the increase of input dimension. **e**, Comparison of time consumption between two
540 machine learning methods and EcoVAE with the increase of output dimension. **f**,
541 Correlation between observed genera counts per grid (or observed grid counts per genus,
542 upper panels) and predicted genera counts per grid (or predicted grid counts per genus,
543 lower panels) across the three testing regions, with high Pearson correlation values. The
544 black dashed lines indicate identity lines. **g**, Density plot showing the Area Under the
545 Receiver Operating Characteristic (AUROC) for three testing regions. **h**, Relationship
546 between the ratio of masked data and AUROC values. **i**, Comparison of the distribution of
547 observations (upper panels) and predictions (lower panels) for randomly selected genus
548 within each test region.

549

550 **Figure 2. Applications of EcoVAE model.** **a**, Schematic illustration of the interpolation
551 process using EcoVAE. **b**, Global distribution of relative collection completeness,
552 represented by the value of prediction error of EcoVAE. Darker color represents lower
553 prediction error and higher completeness, while lighter color represents higher prediction
554 error and lower completeness. **c**, Comparison between original herbarium specimen
555 records and EcoVAE interpolation results of genus *Sassafras* in North America. **d**,
556 Interpolation results of three example genera in South Asia. Gray dots show the
557 distribution of all georeferenced vouchered occurrences in the study area. **e**, Schematic
558 illustration of studying community interactions using EcoVAE model. **f**, Relationship
559 between the number of outdegree and indegree for the genus-to-genus interactions. Each
560 dot represents a single genus. **g**, Log number of sensitive genera across the most sensitive
561 plant families identified by EcoVAE.

562



