
1 

A generative deep learning approach for global species distribution 1 

prediction 2 

 3 

 4 

 5 Yujing Yan1*, Bin Shao2*, Charles C. Davis1 6 

 7 

 8 

 9 1 Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 10 Harvard University, Cambridge MA 02138, USA 11 2 Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138, 12 USA  13  14  15  16 

*Corresponding authors: 17 Yujing Yan: yjyan7@gmail.com 18 Bin Shao: shaobinlx@gmail.com 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2024. ; https://doi.org/10.1101/2024.12.10.627845doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.10.627845
http://creativecommons.org/licenses/by-nc/4.0/


2 

Abstract 27 Anthropogenic pressures on biodiversity necessitate efficient and highly scalable methods 28 to predict global species distributions. Current species distribution models (SDMs) face 29 limitations with large-scale datasets, complex interspecies interactions, and data quality. 30 Here, we introduce EcoVAE, a framework of autoencoder-based generative models trained 31 separately on nearly 124 million georeferenced occurrences from taxa including plants, 32 butterflies and mammals, to predict their global distributions at both genus and species 33 levels. EcoVAE achieves high precision and speed, captures underlying distribution 34 patterns through unsupervised learning, and reveals interspecies interactions via in silico 35 perturbation analyses. Additionally, it evaluates global sampling efforts and interpolates 36 distributions without relying on environmental variables, offering new applications for 37 biodiversity exploration and monitoring.  38  39 
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Main 52 Anthropogenic pressures have intensified the need for efficient and scalable methods to 53 predict species distributions for attaining a comprehensive picture of biodiversity. Over the 54 past two decades, species distribution modeling (SDM) has become an essential tool for 55 this purpose 1–3,typically using  species occurrence data and environmental variables to 56 predict distributions through statistical and machine learning (ML) algorithms 4–7. While 57 the mobilization of vast amounts of specimen records and the rapid accumulation of 58 observational data have greatly promoted the development of  SDMs 8–10, several 59 challenges still persist. 60 First, current SDMs struggle to handle large-scale datasets in our big data era 8–12, 61 especially for modeling species assemblages.  Traditional methods can only address these 62 tasks through computationally intensive “stacking methods” that have limited scalability. 63 Second, most SDMs overlook complex interspecies interactions, limiting their ecological 64 relevance and utility in modeling community dynamics 13–16. Third, the accuracy of current 65 techniques depends heavily on input data quality and resolution 17,18. Although platforms 66 like GBIF and eBird provide valuable datasets for exploration, these are often biased by 67 varying observation efforts across taxonomic groups and regions 19–21. Finally, reliance on 68 environmental variables introduces additional issues, including collinearity and limited 69 availability in certain regions, further constraining model accuracy and applicability22. 70 Generative models are a type of deep learning model that captures complex and nonlinear 71 relationships between input variables. They have been widely adopted in various fields, 72 including natural language processing 23, image generation 24, data capturing 25, and 73 biomedicine 26. Among these models, autoencoders are designed to compress and 74 reconstruct data in an unsupervised way, making it effective for data denoising, 75 interpolation, and handling randomly missing data 27.  76 Here, we present for the first time an autoencoder-based framework, named Ecological 77 Variational Autoencoder (EcoVAE), to predict species distributions for the first time using 78 large-scale, unstructured, and sparse occurrence data. To demonstrate the effectiveness of 79 our framework, we trained a customized EcoVAE on a massive global dataset including 80 
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nearly 34 million georeferenced vouchered occurrences from the GBIF platform spanning 81 13,125 plant genera and 127,281 species. EcoVAE learns the patterns of global plant 82 distributions without any dependency on environmental variables. It efficiently processes 83 this large-scale dataset with fast computational times, accommodates varying rates of 84 missing data and biases, and enables the study of complex interactions within 85 communities. Remarkably, EcoVAE can accurately reconstruct full plant distributions 86 across all genera using as little as 20% of randomly selected occurrence records. We 87 further demonstrate the broad applicability of EcoVAE by applying it to 68 million 88 occurrence records of butterflies and 22 million records of mammals at both the genus and 89 species levels. Additionally, our model predictions offer an unsupervised approach to 90 assess collection completeness across different taxa on a global scale. These results 91 demonstrate the unprecedented capacity of deep learning methods to decode and predict 92 biodiversity patterns at global scales.  93 EcoVAE applies a unique masked approach to model the global species distributions using 94 well-curated occurrences data based on vouchered specimen records at the rank of genus 95 or species (Fig. 1a). We treat genera as the unit of inference in the modeling process due to 96 their computational efficiency and biological relevance. Genera represent coherent, 97 morphologically similar, and often monophyletic groups of species, providing a practical 98 compromise between taxonomic detail and manageable computational demands. The input 99 data was grouped into grids of 0.1’, where plant observations within each grid were 100 summarized into vectors. The richness of genera per grid varied widely, ranging from 101 101 to 103 (Supplementary Fig. 1a). Our model consists of an encoder that learns a low-102 dimensional representation of the input data and a decoder that reconstructs the presence 103 of genera per grid. For model training, we randomly masked 50% of the genera presence 104 data and the model was trained to predict these masked genera based on the remaining 105 observed data (Fig. 1b). This process allows the model to interpolate sparse observations 106 and estimate the true, unobserved plant distributions.   107 We evaluated the performance of our model in three randomly selected regions in North 108 America, Europe, and Asia, and applied the remaining global data for training (Fig. 1c, 109 Supplementary Table 1). Our model demonstrated a 10-fold increase in computational 110 
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speed compared to popular traditional SDMs, including logistic regression and random 111 forest, when predicting the distribution of a single genus using all other genera as input 112 (Fig. 1d).  This difference is even greater when predicting distributions of multiple genera 113 (Fig. 1e).  114 We further assess the model's accuracy in prediction. Here, we calculated the predicted 115 genera counts per grid for the test regions and compared them to the actual observations. 116 The results demonstrated very high Pearson correlation coefficients of 0.98, 0.99 and 0.99 117 for test regions in North America, Europe, and Asia, respectively. At the species level, our 118 model achieves correlation coefficients of 0.95, 0.98, and 0.98 across the three regions 119 (Supplementary Fig. 2). We also calculated the total number of genera present in each grid 120 and observed high correlations between the model’s predictions and the actual data (Fig. 121 1f).  122 Next, we used the Area Under the Receiver Operating Characteristic (AUROC) curve to 123 evaluate EcoVAE’s accuracy in modeling the distribution of each genus. For the masked 124 genera, the mean AUROC was 0.82 for North America, 0.83 for Europe, 0.85 for Asia, which 125 demonstrates the robust performance of our model to infer missing information from 126 incomplete datasets (Fig. 1g). For example, Lonicera has a localized distribution in North 127 America and our model correctly predicted this pattern despite this genus being masked in 128 the input, with an overlap rate of 0.90 (Methods). Similar performance was observed for 129 

Lamium in Europe (0.89) and for Rhus in Asia (0.80), which exhibit more scattered 130 distribution patterns (Fig. 1i). It is important to note that the three regions we selected 131 randomly differ substantially in plant distributions, area size, and genera counts per grid 132 (Supplementary Fig. 1b-d, Supplementary Table 1). Nevertheless, our model performed 133 equally well across them, which highlights the wide applicability of EcoVAE to diverse 134 geographic contexts. Herbarium specimen records represent a sparse sampling of actual 135 plant distributions, and data completeness varies significantly across regions 28,29. To 136 address this inherent limitation, we analyzed the impact of data sparsity on our model's 137 performance. We tested our model using only 1%, 5%, 10%, 20%, and 30% of the input 138 genera, and evaluated its performance based on the AUROC for the remaining genera. With 139 only 1% of the input data, the model's performance was relatively low and the mean 140 
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AUROC was 0.56. However, increasing the input to only 5% improved the mean AUROC to 141 0.68. The mean AUROC further rose to 0.77 when we used 20% of the input data, close to 142 the performance seen with 50% (AUROC of 0.81). These results demonstrate that our 143 trained model can effectively use as little as 20% of the available data to reconstruct the full 144 generic distribution with high precision (Fig. 1h). 145 We extended our modeling framework to other major clades with high conservation values, 146 i.e., butterflies and mammals, and evaluated its performance using a similar approach with 147 three test regions (Supplementary Table 2). For butterflies, we found that our model 148 achieves high accuracy in predicting the number of genera per grid, with the Pearson’s 149 correlation coefficients of 0.96, 0.99, 0.80 for genera counts per grid for the test regions 150 (Supplementary Fig. 3). The AUROC scores for genus-level predictions were 0.79, 0.84, and 151 0.75 for these regions. At the species level, the model achieved comparable results for 152 North America and Europe, but the AUROC decreased to 0.68 for Asia, which may reflect its 153 incompleteness of vouchered occurrences at the species level. For mammals, the model 154 performed best in the test region of North America at both genus and species levels 155 (Supplementary Fig. 4). In contrast, the sparser data in Asia posed challenges for 156 reconstructing full species distributions. Overall, our results demonstrate that EcoVAE 157 generalizes effectively across diverse taxa and geographies. 158 One important application of species modeling is interpolating occurrences where data 159 were lacking. We assume that the prediction error of EcoVAE reflects the completeness of 160 the occurrence records: if the records are incomplete, the model will struggle to 161 reconstruct the input data effectively. We estimated the prediction error globally 162 (Methods) and found that regions with high prediction error overlap with known 163 "darkspots" of biodiversity collection 30,31. For example, the highest prediction errors for 164 plants were observed in South Asia, Southeast Asia, the Middle East, and Central Africa. 165 South America showed higher prediction errors compared to North America (Fig. 2b). 166 Notably, despite generally sparse records from high-latitude regions, the prediction error 167 remained low, suggesting that the occurrence records in these areas are nearly complete, 168 which allows the model to reflect true species distributions (Fig. 2b) more accurately. For 169 butterflies, the highest prediction errors were observed in South America and parts of 170 
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Southeast Asia (Supplementary Fig. 5). Interestingly, Middle Africa exhibited low 171 prediction errors, in contrast to the patterns observed for plants. For mammals, the 172 prediction error was generally smaller, likely due to the low genus diversity. However, 173 regions in South America and Central Asia displayed comparatively high prediction errors, 174 highlighting the need for further investigation efforts in these regions. 175 We then assessed the interpolation power of EcoVAE on i.) a region in southeastern North 176 America with relatively incomplete herbarium records but rich observation data from 177 iNaturalist, and ii.) a region in South Asia with sparse online occurrence records of both 178 kinds (Fig. 2a).  We applied the same model structure to train a full global model based on 179 all available plant voucher records and generated the new predictions in this test region 180 (Methods). In North America, we calculated an overlap index for each genus with 181 iNaturalist observations, defined as the ratio of predictions that are absent from input data 182 but present in the iNaturalist data. We found that our model performed best for genera 183 with a moderate number of observations, while abundant data results in diminishing 184 returns from interpolation (Supplementary Fig. 6). Using the genus Sassafras as an 185 example, we found that the new predictions largely overlap with the iNaturalist data (Fig. 186 2b).  187 For regions like South Asia, both georeferenced vouchered and observational datasets are 188 sparser. We selected genera that showed significant expansion in our model's new 189 predictions. For example, the Desmodium genus in the Fabaceae family only have 190 vouchered specimens in the eastern Himalayan/Nepal region in GBIF, but our model 191 predicts its much wider distribution across western and southern India (Fig. 2d), which 192 aligns better with field surveys and floristic investigations 32,33. Similarly, for Melicope in 193 Rutaceae, the original observations were localized in southern India, but our new 194 predictions included occurrences in Myanmar and lowlands of Nepal, which is also 195 confirmed by third-party observations (Fig. 2d) 34,35. For Adonis, our new predictions 196 suggested a broad distribution across the Himalayan region, consistent with various local 197 floras and checklists describing the widespread nature of the genus from Pakistan to 198 temperate regions in China (Fig. 2d) 36. These results highlight the power of our model to 199 uncover plant distribution patterns in regions where observational data are limited. 200 
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Another important aspect of distribution modeling is understanding the community 201 response to changing distributions of organisms within it. Here, we interrogated our full 202 global model to study genus-to-genus interactions. We selected a test region in Australia 203 with abundant occurrences data and a good representation of major biomes 204 (Supplementary Fig. 7, Supplementary Table 1). We conducted in silico perturbation 205 analysis, where each grid cell in the region was artificially altered by introducing a genus to 206 areas where it was previously absent. By comparing the perturbed predictions to 207 unperturbed models (Fig. 2e), we assessed the invasive potential of one genus on others’ 208 distributions. We focused on statistically significant interactions for downstream analysis 209 (Methods, Supplementary Fig. 8).  210 Examination of our genus network revealed that genera with high out-degree (those 211 influencing others significantly) tend to have low in-degree (being influenced by others), 212 suggesting asymmetric interactions 37 (Fig. 2f). Genera with broader ranges tend to interact 213 with a larger number of genera (Supplementary Fig. 9). We revealed that certain families, 214 including Poaceae, Cyperaceae, and Amaranthaceae, are more sensitive to disturbance in 215 the study region (Fig. 2g). These families were significantly influenced by members from 216 Poaceae, Asteraceae, and Fabaceae, which are globally well-represented in naturalized and 217 invasive floras (Supplementary Fig. 10) 38. Thus, our model reveals patterns of genus 218 interactions, providing insights into community dynamics that may not be directly 219 observable in the original co-occurrence records. 220 In this work, we present EcoVAE, a generative deep learning framework for modeling 221 global plant distributions with high precision and speed. EcoVAE evaluates global sampling 222 efforts, interpolates distributions, and reveals interspecies interactions via in silico 223 perturbation analyses, offering novel applications for biodiversity exploration and 224 monitoring. It demonstrates that species distributions can be reconstructed using co-225 occurrence information alone, even with incomplete data, capturing ecological patterns 226 often missed by traditional approaches. EcoVAE complements current SDMs by providing a 227 scalable framework for global analyses that can guide more targeted ecological studies. For 228 instance, it can identify under-sampled regions or unexpected patterns, directing SDM 229 efforts and field surveys to areas most in need of investigation. Furthermore, while we have 230 
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demonstrated the high performance of EcoVAE on taxa such as plants, butterflies, and 231 mammals, it can be easily extended to other taxa including birds and invertebrates. We 232 envision that EcoVAE will advance biodiversity investigations, especially in under-sampled 233 regions with limited environmental data, and ultimately support global biodiversity 234 monitoring efforts aligned with the Convention on Biological Diversity 39. Future 235 integration of additional data, such as geographic or climate variables, could potentially 236 improve performance and reveal insights into organism distributions and environmental 237 change. 238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254 
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Methods 255 

Data preprocessing 256 We downloaded the world plant, butterfly and mammal distribution data from the GBIF 257 platform (Supplementary Note 1). We used the R package “CoordinateCleaner” 40 to remove 258 records located in the sea, on country or major area centroids, capitals, or in major 259 biodiversity facilities. We modeled the distribution both at the genus and species level. The 260 cleaned observation dataset includes 33.8 million observations of plant, 67.6 million 261 observations of butterfly and 21.9 million observations for mammal (Supplementary Table 262 2). The grid size was set to 0.1’ x 0.1’ and we summed all the observation data in each grid. 263 For any genus or species with more than one observation, we set the value to 1 (existence) 264 in contrast to 0 (non-existence). For plant observations, we only kept genera or species that 265 occurs in over 20 grid cells and grid cells with more than 5 different genera. The finalized 266 data contains 277,133 grids, while the three test regions include 11,292, 3,878 and 1,210 267 grids for North America, Europe, and Asia respectively. For butterfly and mammal 268 observations, we only kept genera or species that occur in more than 5 grid cells, and grid 269 cells with more than 1 genus or species. 270  271 

Model structure 272 We developed an Ecological Variational Autoencoder (EcoVAE) model which aims to 273 reconstruct the full plant distribution based on partial observations. The core VAE 274 architecture comprises an encoder and a decoder.  275 1. Encoder function: the encoder is implemented as a sequential network with two 276 hidden layers of Gelu activated linear transformations (dimension: 128). The 277 encoder maps the input data (e.g., dimension: 13,125 for plant genera) into a latent 278 space characterized by mean (𝜇) and log variance (𝑙𝑜𝑔 (𝜎ଶ)) parameters 279 (dimension: 32).  280 (𝜇,𝑙𝑜𝑔 𝑙𝑜𝑔 (𝜎ଶ) ) = 𝑓௘௡௖௢ௗ௘௥(𝑥) = 𝐺𝐸𝐿𝑈൫𝑊ଶ൫𝐺𝐸𝐿𝑈(𝑊ଵ𝑥 + 𝑏ଵ)൯ + 𝑏ଶ൯ 281 
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Where W1, b1, W2, b2 are the weights and biases of the two hidden layers, and 282 GELU denotes the Gaussian Error Linear Unit activation function. 283 2. Reparameterization: the latent representation is obtained through a 284 reparameterization step that ensures differentiability by sampling from a Gaussian 285 distribution parameterized by these 𝜇 and 𝑙𝑜𝑔 (𝜎ଶ).  286 𝑧 = 𝜇 + 𝜎 ⨀ 𝜖 287 where 𝜖 follows normal distribution, 𝜖 ~ 𝑁(0, 𝐼). 288 3. Decoder function: the decoder, mirroring the encoder's structure, reconstructs the 289 input data from the latent space, aiming to minimize reconstruction error. The 290 output dimension is equivalent to the input dimension (13,125), ensuring that the 291 reconstructed output mirrors the input feature set.  292 𝑥ො = 𝑓ௗ௘௖௢ௗ௘௥(𝑧) = 𝐺𝐸𝐿𝑈൫𝑊ସ൫𝐺𝐸𝐿𝑈(𝑊ଷ𝑧 + 𝑏ଷ)൯ + 𝑏ସ൯ 293 Where W3, b3, W4, b4 are the corresponding weights and biases for the decoder 294 layers. 295 This mathematical framework enables the EcoVAE to compress high-dimensional data into 296 a lower-dimensional latent space and subsequently reconstruct the original data with 297 minimized reconstruction error. 298  299 

Model training and evaluation 300 During the model training process, we used a unique masking strategy where 50% of input 301 data are randomly set to zero to simulate missing data scenarios. The model uses a 302 weighted reconstruction loss function that is based on mean squared error (MSE). A 303 weighting factor of 0.5 modifies the contribution of masked and unmasked genera to the 304 reconstruction loss, providing a balanced approach to learning from both visible and 305 obscured portions of the data. We used the Adam optimizer with a fixed learning rate of 306 0.001, and the models were trained for 15 epochs with a batch size of 512.  307 
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To evaluate the model's performance, we excluded data from three randomly selected 308 regions in Europe, North America, and China, during the training phase (Supplementary 309 Table 1). After model training, we conducted a masking procedure where we randomly 310 selected 50% of all genera or species from these regions and set their corresponding 311 observational data to zero. These masked data were then used as inputs to evaluate the 312 model's ability to reconstruct the observational data for the masked genera or species from 313 the unmasked genera. We quantitatively measured the model's performance using the Area 314 Under the Receiver Operating Characteristic (AUROC) and MSE metrics (Supplementary 315 Fig. 2). For each genus or species in the test regions, we selected an equal number of top 316 predicted grids as in the original data. We calculated the overlap rate as the fraction of 317 predictions that had a true occurrence record either within that grid or in neighboring 318 grids. 319  320 

Model benchmarking 321 To evaluate the time efficiency of our EcoVAE model in processing large-scale input data, 322 we conducted a series of benchmarking experiments in  comparison with two popular SDM 323 methods, i.e., random forest and logistic regression 18. We tested the model's performance 324 under varying input dimensions by randomly selecting genera from the input genus 325 presence matrix. For these experiments, we used a masking strategy where 80% of the 326 input columns were masked to simulate missing data. A binary mask was generated using a 327 probability threshold proportional to the desired masking percentage, ensuring that 328 columns in the input data were set to zero with the defined probability. We used the 329 training and test data split as previously described. A random genus with presence in at 330 least five grids was randomly chosen as the prediction target: the model should predict the 331 presence of this genus across all grids in the training and test data based on the masked 332 input matrix. We trained the random forest classifier using the 333 

sklearn.ensemble.RandomForestClassifier function with default parameters. We trained the 334 logistic regression model with the sklearn.linear_model. LogisticRegression function with 335 the following parameters: max_iter=1000, solver='saga', penalty='l1'. Time measurements 336 
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were recorded from the start of data preparation to the completion of the prediction phase. 337 The time consumption was calculated over 10 iterations to benchmark the models’ time 338 efficiency. 339 

 340 

Model application 341 

-Data interpolation  342 We trained the EcoVAE model as previously described on all available occurrence data for 343 interpolating unobserved plant distribution (full global model). To evaluate the model's 344 prediction error, we used the unmasked global data as input and applied a threshold to 345 binarize the output genus presence matrix, ensuring that the total number of occurrences 346 was doubled. For each grid, we then calculated the ratio of observed genera not 347 represented in the output matrix, which we defined as the prediction error. Based on the 348 global distribution of prediction error, we selected two regions to evaluate the 349 performance of data interpolation, i.e., North America and South Asia. For these regions, we 350 used a similar strategy to generate the binarized output for downstream analysis.   351 For the North America region, we used observation data collected from iNaturalist to verify 352 the accuracy of model prediction instead of traditional data splitting method. The ratio 353 between iNaturalist observational data and vouchered specimen data is 7:1 and we would 354 expect that iNaturalist data have a better geographic coverage than herbarium specimens 355 for many species. We calculated overlapping rate between predicted species occurrences 356 and actual observations to quantify the performance of our prediction. For each species, we 357 first extracted the observed and predicted occurrences based on the genus index. For both 358 datasets, we retained only the presence points. The observed points were buffered by 0.1 359 degrees to account for geographic uncertainties. We then converted the presence data into 360 spatial objects using the “sf” package in R 41. Overlap between predicted occurrences and 361 observed occurrences, as well as overlap between predicted and original input 362 occurrences, was calculated using spatial intersections (`st_intersects`). The key metric, the 363 overlapping rate, was calculated by dividing the number of predicted points that 364 overlapped with observed points but not with original input points by the total number of 365 
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predicted points. This rate reflects the proportion of new predicted occurrences that align 366 with observed data but were not part of the input data, providing a measure of prediction 367 accuracy and novelty. We also compared the predicted overlapping rate with the 368 overlapping rate calculated between the same number of randomly generated points in the 369 study area and observations. 370 For the South Asia region, we assessed the occurrence of each genus both before and after 371 data interpolation. We focused on genera that initially occurred in more than 5 grids and 372 whose distribution region has expanded most for downstream analysis. Due to the lack of 373 georeferenced observational data in this region, we compared our prediction with the 374 distribution described in plant atlas and related literature. 375  376 

-Simulation of genera interaction  377 To simulate the impact of a specific genus i on all other genera within a targeted region, we 378 initially identified all grid cells lacking genus i. The observational data from these grids 379 were utilized as input for the model, and the corresponding reconstructed data served as 380 the background dataset (x_background). Then we introduced observations of genus i into 381 these grids and generated perturbed model outputs (x_perturb). By comparing the plant 382 distributions between x_background and x_perturb, we were able to identify genera that 383 exhibited significant changes, thereby quantifying the ecological influence of genus i on the 384 plant community dynamics within the region.  385 To assess species interactions after species additions, we first fit linear regression models 386 to compare grid numbers of all genera before and after addition of a specific genus i. 387 Specifically, we used the ‘lm’ function in R to model the relationship between grid numbers 388 before and after addition of genus i. For each model, we calculated 99.99% confidence 389 intervals using the ‘predict’ function with the interval parameter of "prediction" and level 390 parameter of 0.9999. We defined the significant interaction between genus i and j if the 391 predicted grid number for genus j falls outside the bounds of the confidence intervals after 392 addition of genus i. In such circumstances, we identified j as an “outlier” and defined it as a 393 “sensitive genus”. Z-scores were calculated for each genus by normalizing the residuals, 394 
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computed as the difference between actual and predicted values. We then performed 395 frequency analysis of the impactful and vulnerable genera based on all significant 396 interactions. To further explore genus interactions at the family level, we utilized the 397 “plantlist” package 42 to classify genera into families and analyzed the proportion of 398 sensitive genera within each family. We selected the most sensitive family based on the 399 following criteria: it includes more than 5 genera and at least 35% of the genera are 400 classified as “sensitive” (significantly impacted by at least one other genus).  401  402 
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Figure Legends 534 

Figure 1. Framework and evaluation of EcoVAE model performance. a, Schematic 535 representation of the model training and application pipeline. b, Overview of the model 536 evaluation process. c, Map showing the locations of the three testing regions. d, 537 Comparison of time consumption between two machine learning methods and EcoVAE 538 with the increase of input dimension. e, Comparison of time consumption between two 539 machine learning methods and EcoVAE with the increase of output dimension. f, 540 Correlation between observed genera counts per grid (or observed grid counts per genus, 541 upper panels) and predicted genera counts per grid (or predicted grid counts per genus, 542 lower panels) across the three testing regions, with high Pearson correlation values. The 543 black dashed lines indicate identity lines. g, Density plot showing the Area Under the 544 Receiver Operating Characteristic (AUROC) for three testing regions. h, Relationship 545 between the ratio of masked data and AUROC values. i, Comparison of the distribution of 546 observations (upper panels) and predictions (lower panels) for randomly selected genus 547 within each test region. 548  549 

Figure 2. Applications of EcoVAE model. a, Schematic illustration of the interpolation 550 process using EcoVAE. b, Global distribution of relative collection completeness, 551 represented by the value of prediction error of EcoVAE. Darker color represents lower 552 prediction error and higher completeness, while lighter color represents higher prediction 553 error and lower completeness. c, Comparison between original herbarium specimen 554 records and EcoVAE interpolation results of genus Sassafras in North America. d, 555 Interpolation results of three example genera in South Asia. Gray dots show the 556 distribution of all georeferenced vouchered occurrences in the study area. e, Schematic 557 illustration of studying community interactions using EcoVAE model. f, Relationship 558 between the number of outdegree and indegree for the genus-to-genus interactions. Each 559 dot represents a single genus. g, Log number of sensitive genera across the most sensitive 560 plant families identified by EcoVAE.  561  562 
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