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Abstract—This paper performs a classification task on data 
obtained from the Autism Brain Imaging Data Exchange 
(ABIDE) repository. In real-world case analysis, the number of 
autism spectrum disorder (ASD) patients is much smaller than 
typically developed people. To address this issue, this paper 
proposes the utilization of pairwise robust support vector 
machine (PRSVM) algorithms to classify autism spectrum 
disorder (ASD) patients. In this project's experiments, the 
correlation matrix derived from functional magnetic resonance 
imaging (fMRI) data was employed as a classification feature. A 
comprehensive evaluation was conducted to compare the 
classification performance of PRSVM with various machine 
learning methods. The comparative analysis encompassed 
various aspects, including different data dimensions, 
imbalanced ratios, and sample sizes, providing valuable insights 
into the relative performance of the algorithms under different 
experimental conditions. The experimental results demonstrate 
that PRSVM can detect autistic patients more accurately when 
the data is imbalanced. Moreover, the results indicate that 
PRSVM outperforms or achieves comparable performance to 
other conventional classification methods in a variety of 
situations. Furthermore, our approach can be further improved 
by augmenting the training set with either exclusively normal 
person samples or by incorporating patient samples and normal 
people samples in a proportionate manner. This augmentation 
strategy holds promising application value, as it contributes to 
improving the performance and robustness of our method. 

Keywords— fMRI, ASD classification, pairwise robust support 
vector machine, imbalanced data 

I. INTRODUCTION 

A. Functional magnetic resonance imaging  
functional magnetic resonance imaging (fMRI) is a non-

invasive neuroimaging technique that measures neuronal 
activity by detecting changes in blood oxygenation level 
dependent (BOLD) signal. This technique is based on the 
principle that changes in neural activity within the brain are 
accompanied by corresponding changes in local blood flow 
and oxygenation level. The BOLD signal is derived from the 
differences in magnetic properties between oxygenated and 
deoxygenated blood. fMRI provides a way to indirectly 
measure brain activity and has emerged as a prevalent 
technique to investigate functional connectivity, brain 
networks, and activation patterns [1]. 

In 1980, Roy and Sherrington [2] found that regional 
cerebral blood flow could serve as an indicator of neuronal 
viability in the corresponding brain area. The pioneering work 
by Ogawa et al. [1] in 1990 introduced the concept of BOLD, 
which subsequently enabled the realization of the fMRI 
imaging technique. In 1991, researchers achieved a 
groundbreaking milestone by demonstrating the first-ever 
visualization of both brain structure and function using fMRI 

[3]. The underlying principle for fMRI brain imaging is that 
the increase of local neuronal activity often leads to increased 
oxygen demand. The oxygen in oxyhemoglobin will produce 
a paramagnetic molecule called deoxyhemoglobin. During the 
examination, accumulated deoxyhemoglobin can act as a local 
contrast agent to enhance local signal intensity. Thus, natural 
contrast agents can target task-relevant brain regions and 
visualize them with fMRI. 

fMRI has a profound impact on the field of cognitive 
neuroscience. Since its discovery in 1990, fMRI has rapidly 
developed into one of the most commonly used techniques in 
the discipline. Especially in the field of treatment of mental 
illness, fMRI has become an auxiliary diagnostic tool. So far, 
fMRI has been used to discover the abnormal brain 
functionality associated with a wide range of mental diseases 
[4]-[6]. In traditional classification studies involving fMRI 
data, the most commonly utilized machine learning techniques 
are support vector machines (SVM) and kernel SVM [7],[8].  
SVM is a well-known supervised learning algorithm for 
handling high-dimensional data and has proven to be 
particularly effective in the realm of fMRI analysis. Kernel 
SVM extends the capabilities of SVM by employing various 
types of kernel functions, such as linear, polynomial, and 
radial basis function (RBF), which can capture non-linear 
relationships and improve classification performance. 

However, in real-life scenarios, the number of patients 
with a condition of interest, such as ASD, is often much 
smaller than the number of normal people. Dealing with 
imbalanced fMRI datasets poses a challenge for traditional 
classification methods, as they always tend to overfocus on the 
majority class. As a result, identifying an effective classifier 
for imbalanced fMRI datasets has become an important 
research area for scholars. In recent years, a variety of machine 
learning algorithms have been used to deal with imbalanced 
fMRI data classification [9],[10], these algorithms are on the 
basis of oversampling and synthetic minority oversampling 
technique, which generates some samples that are not 
informative and increased likelihood of overfitting. To 
address this issue, this paper proposes the utilization of 
pairwise robust support vector machine (PRSVM) algorithms 
to classify ASD patients. 

B. Autism spectrum disorder classification 
Autism was discovered and named by Kanner [11] in 1943, 

and it is recognized as a special type of developmental 
disorder by the World Health Organization and the American 
Psychiatric Association. The current consensus is that deficits 
in social and verbal communication skills and repetitive 
stereotyped behaviors manifested before the age of three are 
the defining characteristics of children with autism. 
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Autism Brain Imaging Data Exchange (ABIDE) [12] is a 
data-sharing initiative designed to advance research on autism 
spectrum disorder (ASD). The project collects and shares 
neuroimaging data from multiple authoritative institutions, 
and these datasets contain multiple modalities of data 
including structural MRI, functional MRI, magnetic 
resonance spectroscopy, and magnetic resonance diffusion 
tensor imaging. This initiative currently has two large-scale 
collections: ABIDE I and ABIDE II, of which ABIDE 
collected 1112 datasets, of which 539 were from autistic 
patients, 573 were from typical controls, and ABIDE II 
collected 1114 datasets, of which 521 from autistic patients, 
593 from typical controls. 

With the open sharing of ABIDE data, many analyzes of 
ABIDE have emerged, and various machine learning 
algorithms such as empirical bayes, logistic regression, and 
SVM [13]-[15] are used to classify ASD patients. The 
experimental results of many articles show that when all 
samples are used for classification, machine learning 
algorithms usually only achieve an accuracy rate of 60% to 
70% [14]. The machine learning algorithm can only achieve 
reliable accuracy when the total sample size is less than 100 
[16]. With the rise and development of neural networks, more 
deep learning algorithms are used to improve the accuracy of 
ABIDE data classification [17]-[19]. 

In this paper, we use the pairwise robust support vector 
machine [20] to explore the classification accuracy when the 
classification labels are imbalanced for the data from ABIDE 
I. In essence, our aim is to identify patients with ASD in a 
large number of typical controls. The goal is to employ robust 
and accurate classification models that can mitigate the 
inherent imbalance in the data. 

II. METHODOLOGY 

A. Principal component analysis 
We know that if there is a strong linear correlation between 

certain dimensions in the data, the information provided by the 
sample on these two dimensions will be repeated to a certain 
extent. So we hope that the dimensions of the input are 
orthogonal. In addition, the dimension of the correlation 
matrix is too large. In order to reduce the calculation amount 
of data processing, we choose to use principal component 
analysis (PCA) to reduce the dimensionality of the data. 

Supposed a data of 𝑛𝑛  observations X � �𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�� 
with 𝑥𝑥� ∈ ℝ�, the original data can be regarded as a matrix 
with 𝑛𝑛 rows and 𝑝𝑝 columns. Assume that the mean of each 
dimension of the original data is 0, we let this matrix multiply 
an 𝑝𝑝 𝑝 𝑝𝑝  orthogonal transformation matrix 𝑊𝑊 , where 𝑊𝑊 
consists of column vectors �W�, W�, … , W�� . Then the 
original data is transformed into a new coordinate system. To 
fix the values of the data, each column vector ‖W�‖ � 1, the 
matrix after dimensionality reduction is T � XW , each 
column vector in 𝑇𝑇 is �t�, t�, … , t��. In order to compute the 
transformation matrix 𝑊𝑊, we need to compute the eigenvalues 
and eigenvectors of the covariance matrix C � �

� XX�, 

the eigenvectors could be combined into a change matrix 𝑊𝑊 

 from left to right in the order of eigenvalues from large to 
small. Here, we can only keep the eigenvectors with big 
eigenvalues to reduce the dimensionality. If W′ is used to 
represent the change matrix after discarding the eigenvectors 

with smaller eigenvalues, where W′ consists of column 
vectors �W�′, W�′, … , W�′�  and k � p . T′ � XW′ is the 
data after dimensionality reduction to 𝑘𝑘 dimension. 

B. Pairwise robust support vector machine 
For Pairwise robust support vector machine (PRSVM) 

algorithm handles the task of imbalanced data classification 
by using the robust support vector classifiers (RSVC) loss [21]  

LRSVC�𝑦𝑦𝑓𝑓�𝑥𝑥�� � σ� �1 � exp��1 � 𝑦𝑦𝑓𝑓�𝑥𝑥���
�

σ� �� 

 in a pairwise learning framework. Here, σ is a tunable 
parameter. 

We assume that the label of autistic patients is 1 and the 
label of typical controls is �1. In the classification of autism 
spectrum disorder, the binary classifier 𝑓𝑓 should provide with 
a result of sign �𝑓𝑓�𝑥𝑥�������� ��������� � 1 and 

sign �𝑓𝑓�𝑥𝑥������� ��������� � �1. For each pair of observations 
�𝑥𝑥�,𝑦𝑦��and �𝑥𝑥�,𝑦𝑦��, if 𝑥𝑥� represents an autistic patient and 𝑥𝑥�   
represents a typical control, a  good real-valued 𝑓𝑓 will produce 
the result such that f�𝑥𝑥�� � f�𝑥𝑥�� � 0 ; on the contrary, if 
𝑥𝑥� represents a typical control and 𝑥𝑥�   represents an autistic 
patient, it should be f�𝑥𝑥�� � f�𝑥𝑥�� � 0; when both 𝑥𝑥� 
and 𝑥𝑥� represent an autistic patient or a typical control 
simultaneously, we have no expectations. We let 𝑦𝑦�� �
�𝑦𝑦� � 𝑦𝑦��/2 and write up the notation  

𝑦𝑦�� � � 1, 𝑖𝑖𝑖𝑖 𝑦𝑦� � 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦� �  �1;
�1, 𝑖𝑖𝑖𝑖 𝑦𝑦� � �1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦� � 1,  

if the algorithm has good performance, we can image that 
we will get 𝑦𝑦�� �𝑓𝑓�𝑥𝑥�� � 𝑓𝑓�𝑥𝑥��� � 0. 

The pairwise loss could be written as  

 
L �𝑓𝑓, �𝑥𝑥� ,𝑦𝑦��, �𝑥𝑥� ,𝑦𝑦��� �  
  

σ�

⎝
⎜
⎛1 � exp

⎝
⎜
⎛�1 � 𝑦𝑦�� �𝑓𝑓�𝑥𝑥�� � 𝑓𝑓�𝑥𝑥�����

�

σ�
⎠
⎟
⎞

⎠
⎟
⎞ . 

 

This loss is calculated by pairing a sample from the 
minority class with a sample from the majority class, ensuring 
that both classes make equal contributions during model 
training. 

To compare with support vector machines, here we focus 
on linear classifiers f�𝑥𝑥� � 𝑤𝑤�x � b  with w ∈ ℝ�  and b ∈
ℝ.Then the optimization problem is 

𝑚𝑚𝑚𝑚𝑚𝑚� � � σ� �1 � exp�
�1 � 𝑦𝑦��𝑤𝑤��𝑥𝑥� � 𝑥𝑥����

�

σ� ��
�:�����

�

���
. 
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For b ∈  ℝ, let ℰ��𝑏𝑏� represent the false positive rate (FPR), 
and ℰ��𝑏𝑏�  represent the false negative rate (FNR) of the 
classifier 𝑤𝑤��x � b. Let’s define  

ℇ�𝑏𝑏� � 𝑚𝑚𝑎𝑎𝑥𝑥�ℰ��𝑏𝑏�,ℰ��𝑏𝑏�� 
and the intercept is estimated by 

b� � min�∈ℝ ℇ �𝑏𝑏� 
When the sample sizes of autistic patients and typical 

controls are imbalanced, PRSVM combines the observations 
of the minority class and the majority class into pairs and then 
enters the model. This method can effectively balance the 
influence of the two classes. 

C. Experiments and results 
In this research, the data sets are extracted from two 

regions-of-interests (ROI) atlas: Harvard-Oxford (HO) [22] 
and Eickhoff-Zilles (EZ) [23]. In the experiments of this paper, 
we set the label of autistic patients to 1 and typical controls 
label to �1.  

SVM, AdaBoost and Naive Bayes (NB) are used for 
comparison with PRSVM. PRSVM demonstrates low 
sensitivity to the choice of the parameter σ, hence  σ was set 
to 1 across all experiments. All other methods are 
implemented in R using standard packages. Specifically, for 
SVM, the train function from the caret package was utilized. 
To ensure a fair comparison, the method svmlinear was 
employed to generate linear classifiers, with all other 
parameters maintained at their default settings. For AdaBoost, 
the boosting function from the adabag package was used. The 
number of iterations is fixed at 200. Naive Bayes was 
implemented using  the naiveBayes function from the e1071 
package with default parameters.  

We will evaluate the FPR and FNR simultaneously. A 
balanced FPR and FNR imply that the minority class has been 
equally addressed. Additionally, we evaluate the area under 
the receiver operating characteristic (ROC) curve (AUC), 
which is widely regarded as a balanced accuracy metric for 
imbalanced data classification problems. We randomly 
sampled 1/2 of positive cases and 1/2  of negative cases to 
create a training set, while the remaining cases were used as 
the test set. The number of repetitions for each experiment was 
20. All reported results are the average of these 20 repetitions. 

1) Experiment I: data with varying input dimensions  
In the first experiment, we randomly sampled 100 samples 
from the autistic patients and 500 samples from the typical 
controls, resulting in an imbalance ratio of 1:5. The PCA 
method was used to reduce the dimensionality, and we 
retained 10 and 50 principal components, respectively. The 
first 10 principal components could achieve greater than 90% 
cumulative contribution rate while the first 50 principal 
components could achieve greater than 95%. The results are 
shown in Table I and Table II.  

The results shows that when the imbalance ratio 
reaches 1:5, the average AUC of SVM, AdaBoost and Naive 
Bayes are close to 0.5, which means these models are 
ineffective in this case. PRSVM has the best performance on 
both 10-dimensional and 50-dimensional datasets. For some 
fixed sampled datasets, we achieve AUC close to 0.8 and 
accruary close to 80%.  
 

TABLE I.  CLASSIFICATION PERFORMANCE OF FOUR CLASSIFIERS ON 
ROI-HO  DATA SET WITH VARYING PRINCIPAL COMPONENTS 

Input 
dimension Method FNR FPR AUC 

10 

PRSVM 0.4440 
(0.0125) 

0.4205 
(0.0105) 

0.6037 
(0.0048) 

SVM 0.9120 
(0.0075) 

0.0455 
(0.0048) 

0.5213 
(0.0020) 

AdaBoost 0.7060 
(0.0063) 

0.2095 
(0.0049) 

0.5422 
(0.0035) 

NB 0.7440 
(0.0115) 

0.1640 
(0.0095) 

0.5460 
(0.0030) 

50 

PRSVM 0.5610 
(0.0093) 

0.2890 
(0.0085) 

0.6259 
(0.0050) 

SVM 0.6780 
(0.0076) 

0.1805 
(0.0058) 

0.5708 
(0.0035) 

AdaBoost 0.7590 
(0.0112) 

0.1405 
(0.0061) 

0.5503 
(0.0038) 

NB 0.7010 
(0.0199) 

0.1775 
(0.0141) 

0.5608 
(0.0039) 

TABLE II.  CLASSIFICATION PERFORMANCE OF FOUR CLASSIFIERS ON 
ROI-EZ  DATA SET WITH VARYING PRINCIPAL COMPONENTS 

Input 
dimension Method FNR FPR AUC 

10 

PRSVM 0.4070 
(0.0097) 

0.4920 
(0.0095) 

0.5831 
(0.0045) 

SVM 0.9520 
(0.0051) 

0.0295 
(0.0031) 

0.5093 
(0.0014) 

AdaBoost 0.7000 
(0.0070) 

0.2315 
(0.0042) 

0.5343 
(0.0036) 

NB 0.7490 
(0.0139) 

0.1715 
(0.0077) 

0.5398 
(0.0040) 

50 

PRSVM 0.5640 
(0.0087) 

0.2800 
(0.0062) 

0.6131 
(0.0050) 

SVM 0.6560 
(0.0082) 

0.1895 
(0.0047) 

0.5728 
(0.0038) 

AdaBoost 0.7780 
(0.0089) 

0.1465 
(0.0063) 

0.5378 
(0.0032) 

NB 0.7100 
(0.0197) 

0.1890 
(0.0144) 

0.5505 
(0.0037) 

 
2) Experiment II: data with varying imbalance ratios 
In real-world applications, collecting a large number of 

patient data for a medical institution is difficult. Here, we 
would like to investigate if our model could perform better by 
just adding samples from typical controls to its training data. 
We randomly sampled 100 from the autistic patients and 100, 
250, and 500 from the typical controls. In this experiment, we 
retained 10 principal components. The results are shown in 
Table III and IV. 

TABLE III.  CLASSIFICATION PERFORMANCE OF FOUR CLASSIFIERS ON 
ROI-HO   DATA SET WITH VARYING IMBALANCE RATIOS 

Input 
dimension Method FNR FPR AUC 

1:1 

PRSVM 0.4110 
(0.0161) 

0.4390 
(0.0192) 

0.5969 
(0.0066) 

SVM 0.3930 
(0.0095) 

0.4420 
(0.0088) 

0.5825 
(0.0039) 

AdaBoost 0.4700 
(0.0087) 

0.4320 
(0.0085) 

0.5510 
(0.0043) 

NB 0.4900 
(0.0199) 

0.4110 
(0.0195) 

0.5505 
(0.0052) 

1:2.5 

PRSVM 0.4660 
(0.0141) 

0.3936 
(0.0136) 

0.5892 
(0.0035) 

SVM 0.9830 
(0.0026) 

0.0076 
(0.0012) 

0.5047 
(0.0012) 

AdaBoost 0.7770 
(0.0061) 

0.1592 
(0.0036) 

0.5319 
(0.0027) 

NB 0.8390 
(0.0062) 

0.1040 
(0.0047) 

0.5285 
(0.0023) 
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1:5 

PRSVM 0.5080 
(0.0098) 

0.3470 
(0.0075) 

0.6058 
(0.0027) 

SVM 1.0000 
(0.0000) 

0.0000 
(0.0000) 

0.5000 
(0.0000) 

AdaBoost 0.9230 
(0.0020) 

0.0480 
(0.0011) 

0.5145 
(0.0009) 

NB 0.9420 
(0.0026) 

0.0200 
(0.0008) 

0.5190 
(0.0012) 

TABLE IV.  CLASSIFICATION PERFORMANCE OF FOUR CLASSIFIERS ON 
ROI-EZ   DATA SET WITH VARYING IMBALANCE RATIOS 

Input 
dimension Method FNR FPR AUC 

1:1 

PRSVM 0.4740 
(0.0156) 

0.4540 
(0.0128) 

0.5596 
(0.0059) 

SVM 0.4040 
(0.0104) 

0.4870 
(0.0102) 

0.5545 
(0.0036) 

AdaBoost 0.4810 
(0.0095) 

0.4940 
(0.0099) 

0.5195 
(0.0042) 

NB 0.4420 
(0.0162) 

0.4970 
(0.0174) 

0.5305 
(0.0035) 

1:2.5 

PRSVM 0.5390 
(0.0127) 

0.3660 
(0.0090) 

0.5688 
(0.0042) 

SVM 0.9850 
(0.0031) 

0.0072 
(0.0016) 

0.5039 
(0.0008) 

AdaBoost 0.7770 
(0.0064) 

0.1672 
(0.0039) 

0.5279 
(0.0032) 

NB 0.8830 
(0.0057) 

0.0976 
(0.0047) 

0.5097 
(0.0025) 

1:5 

PRSVM 0.4700 
(0.0093) 

0.4078 
(0.0089) 

0.6061 
(0.0027) 

SVM 1.0000 
(0.0000) 

0.0000 
(0.0000) 

0.5000 
(0.0000) 

AdaBoost 0.9470 
(0.0023) 

0.0446 
(0.0012) 

0.5042 
(0.0009) 

NB 0.9720 
(0.0021) 

0.0148 
(0.0008) 

0.5066 
(0.0008) 

 

The results of Experiment II demonstrate that when 
investigating the impact of an imbalance ratio, ranging from 
1:1 to 1:2.5 and further to 1:5, the FPR and FNR of PRSVM 
showed minimal variation compared to other methods with 
poor performance. Additionally, the AUC of PRSVM 
exhibited a slight increase. 

3) Experiment III: data with varying sample size 
We are interested in investigating whether we can enhance 

the model's performance by augmenting the number of 
samples in the training set while preserving a constant 
imbalance ratio. 

In the third experiment, we increased the sample size 
proportionally while maintaining a fixed imbalance ratio of 
1:2. Specifically, we randomly sampled 50, 150, and 250 data 
from the positive class, and 100, 300, and 500 data from the 
negative class, respectively. In this experiment, we retained 10 
principal components. The results are shown in Table V and 
Table VI. 

TABLE V.  CLASSIFICATION PERFORMANCE OF FOUR CLASSIFIERS ON 
ROI-HO   DATA SET WITH VARYING SAMPLE SIZES 

Input 
dimension Method FNR FPR AUC 

25:50 

PRSVM 0.4920 
(0.0215) 

0.4540 
(0.0207) 

0.5674 
(0.0091) 

SVM 0.8580 
(0.0129) 

0.0740 
(0.0055) 

0.5340 
(0.0048) 

AdaBoost 0.7020 
(0.0144) 

0.2310 
(0.0070) 

0.5335 
(0.0074) 

NB 0.7600 
(0.0173) 

0.1780 
(0.0163) 

0.5310 
(0.0044) 

75:150 

PRSVM 0.4730 
(0.0116) 

0.3687 
(0.0090) 

0.6195 
(0.0023) 

SVM 0.9413 
(0.0049) 

0.0300 
(0.0026) 

0.5143 
(0.0013) 

AdaBoost 0.7147 
(0.0038) 

0.2147 
(0.0028) 

0.5353 
(0.0022) 

NB 0.7967 
(0.0077) 

0.1190 
(0.0047) 

0.5422 
(0.0021) 

125:250 

PRSVM 0.3504 
(0.0047) 

0.4522 
(0.0040) 

0.6348 
(0.0018) 

SVM 0.9820 
(0.0020) 

0.0096 
(0.0011) 

0.5042 
(0.0005) 

AdaBoost 0.7112 
(0.0028) 

0.1984 
(0.0022) 

0.5452 
(0.0012) 

NB 0.7690 
(0.0026) 

0.1136 
(0.0020) 

0.5452 
(0.0009) 

TABLE VI.  CLASSIFICATION PERFORMANCE OF FOUR CLASSIFIERS ON 
ROI-EZ   DATA SET WITH VARYING SAMPLE SIZES 

Input 
dimension Method FNR FPR AUC 

25:50 

PRSVM 0.5000 
(0.0239) 

0.4110 
(0.0226) 

0.5517 
(0.0092) 

SVM 0.9000 
(0.0106) 

0.0560 
(0.0057) 

0.5220 
(0.0038) 

AdaBoost 0.7020 
(0.0180) 

0.2490 
(0.0110) 

0.5245 
(0.0067) 

NB 0.7960 
(0.0174) 

0.1640 
(0.0099) 

0.5200 
(0.0078) 

75:150 

PRSVM 0.4467 
(0.0096) 

0.4316 
(0.0085) 

0.5963 
(0.0021) 

SVM 0.9653 
(0.0040) 

0.0163 
(0.0018) 

0.5092 
(0.0013) 

AdaBoost 0.6960 
(0.0044) 

0.2233 
(0.0025) 

0.5403 
(0.0027) 

NB 0.7540 
(0.0070) 

0.1667 
(0.0053) 

0.5397 
(0.0018) 

125:250 

PRSVM 0.4392 
(0.0067) 

0.4040 
(0.0069) 

0.6093 
(0.0016) 

SVM 0.9888 
(0.0018) 

0.0088 
(0.0014) 

0.5012 
(0.0002) 

AdaBoost 0.7152 
(0.0022) 

0.2188 
(0.0017) 

0.5330 
(0.0010) 

NB 0.8140 
(0.0039) 

0.1194 
(0.0026) 

0.5333 
(0.0009) 

 

We observed a significant decrease in performance for 
SVM, AdaBoost, and Naive Bayes methods in detecting 
patients. This finding further supports the notion, documented 
in the literature, that machine learning algorithms may not 
perform well when dealing with large sample sizes. However, 
in the case of PRSVM, the AUC increases as the sample size 
grows. This result indicates that PRSVM has the ability to 
overcome this issue, showcasing its effectiveness in handling 
larger datasets. 

III. DISCUSSION AND CONCLUSION 
The experimental results demonstrate that, in comparison 

to other machine learning classifiers, PRSVM achieves a 
lower FNR and higher AUC. These findings indicate that the 
PRSVM model can more accurately detect patients from 
imbalanced fMRI datasets. PRSVM demonstrates improved 
performance as the number of samples from typical controls 
increases, effectively addressing the challenge of the limited 
availability of patient data in practical applications. 
Furthermore, incorporating additional samples from both 
patients and typical controls into the training set has resulted 
in significant enhancements, overcoming the limitations of 
previous machine learning algorithms that were 
predominantly effective on small datasets. Consequently, we 
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believe PRSVM holds great value for practical applications. 
In our future work, we plan to optimize the model's parameters 
and explore the utilization of kernel methods to achieve even 
higher classification accuracy. Additionally, we aim to apply 
this method to a broader range of fMRI data classification 
tasks. 
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