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Abstract—This paper performs a classification task on data
obtained from the Autism Brain Imaging Data Exchange
(ABIDE) repository. In real-world case analysis, the number of
autism spectrum disorder (ASD) patients is much smaller than
typically developed people. To address this issue, this paper
proposes the utilization of pairwise robust support vector
machine (PRSVM) algorithms to classify autism spectrum
disorder (ASD) patients. In this project's experiments, the
correlation matrix derived from functional magnetic resonance
imaging (fMRI) data was employed as a classification feature. A
comprehensive evaluation was conducted to compare the
classification performance of PRSVM with various machine
learning methods. The comparative analysis encompassed
various aspects, including different data dimensions,
imbalanced ratios, and sample sizes, providing valuable insights
into the relative performance of the algorithms under different
experimental conditions. The experimental results demonstrate
that PRSVM can detect autistic patients more accurately when
the data is imbalanced. Moreover, the results indicate that
PRSVM outperforms or achieves comparable performance to
other conventional classification methods in a variety of
situations. Furthermore, our approach can be further improved
by augmenting the training set with either exclusively normal
person samples or by incorporating patient samples and normal
people samples in a proportionate manner. This augmentation
strategy holds promising application value, as it contributes to
improving the performance and robustness of our method.

Keywords— fMRI, ASD classification, pairwise robust support
vector machine, imbalanced data

I. INTRODUCTION

A. Functional magnetic resonance imaging

functional magnetic resonance imaging (fMRI) is a non-
invasive neuroimaging technique that measures neuronal
activity by detecting changes in blood oxygenation level
dependent (BOLD) signal. This technique is based on the
principle that changes in neural activity within the brain are
accompanied by corresponding changes in local blood flow
and oxygenation level. The BOLD signal is derived from the
differences in magnetic properties between oxygenated and
deoxygenated blood. fMRI provides a way to indirectly
measure brain activity and has emerged as a prevalent
technique to investigate functional connectivity, brain
networks, and activation patterns [1].

In 1980, Roy and Sherrington [2] found that regional
cerebral blood flow could serve as an indicator of neuronal
viability in the corresponding brain area. The pioneering work
by Ogawa et al. [1] in 1990 introduced the concept of BOLD,
which subsequently enabled the realization of the fMRI
imaging technique. In 1991, researchers achieved a
groundbreaking milestone by demonstrating the first-ever
visualization of both brain structure and function using fMRI
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[3]. The underlying principle for fMRI brain imaging is that
the increase of local neuronal activity often leads to increased
oxygen demand. The oxygen in oxyhemoglobin will produce
a paramagnetic molecule called deoxyhemoglobin. During the
examination, accumulated deoxyhemoglobin can act as a local
contrast agent to enhance local signal intensity. Thus, natural
contrast agents can target task-relevant brain regions and
visualize them with fMRI.

fMRI has a profound impact on the field of cognitive
neuroscience. Since its discovery in 1990, fMRI has rapidly
developed into one of the most commonly used techniques in
the discipline. Especially in the field of treatment of mental
illness, fMRI has become an auxiliary diagnostic tool. So far,
fMRI has been used to discover the abnormal brain
functionality associated with a wide range of mental diseases
[4]-[6]. In traditional classification studies involving fMRI
data, the most commonly utilized machine learning techniques
are support vector machines (SVM) and kernel SVM [7],[8].
SVM is a well-known supervised learning algorithm for
handling high-dimensional data and has proven to be
particularly effective in the realm of fMRI analysis. Kernel
SVM extends the capabilities of SVM by employing various
types of kernel functions, such as linear, polynomial, and
radial basis function (RBF), which can capture non-linear
relationships and improve classification performance.

However, in real-life scenarios, the number of patients
with a condition of interest, such as ASD, is often much
smaller than the number of normal people. Dealing with
imbalanced fMRI datasets poses a challenge for traditional
classification methods, as they always tend to overfocus on the
majority class. As a result, identifying an effective classifier
for imbalanced fMRI datasets has become an important
research area for scholars. In recent years, a variety of machine
learning algorithms have been used to deal with imbalanced
fMRI data classification [9],[10], these algorithms are on the
basis of oversampling and synthetic minority oversampling
technique, which generates some samples that are not
informative and increased likelihood of overfitting. To
address this issue, this paper proposes the utilization of
pairwise robust support vector machine (PRSVM) algorithms
to classify ASD patients.

B. Autism spectrum disorder classification

Autism was discovered and named by Kanner [11] in 1943,
and it is recognized as a special type of developmental
disorder by the World Health Organization and the American
Psychiatric Association. The current consensus is that deficits
in social and verbal communication skills and repetitive
stereotyped behaviors manifested before the age of three are
the defining characteristics of children with autism.
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Autism Brain Imaging Data Exchange (ABIDE) [12] is a
data-sharing initiative designed to advance research on autism
spectrum disorder (ASD). The project collects and shares
neuroimaging data from multiple authoritative institutions,
and these datasets contain multiple modalities of data
including structural MRI, functional MRI, magnetic
resonance spectroscopy, and magnetic resonance diffusion
tensor imaging. This initiative currently has two large-scale
collections: ABIDE I and ABIDE II, of which ABIDE
collected 1112 datasets, of which 539 were from autistic
patients, 573 were from typical controls, and ABIDE II
collected 1114 datasets, of which 521 from autistic patients,
593 from typical controls.

With the open sharing of ABIDE data, many analyzes of
ABIDE have emerged, and various machine learning
algorithms such as empirical bayes, logistic regression, and
SVM [13]-[15] are used to classify ASD patients. The
experimental results of many articles show that when all
samples are used for classification, machine learning
algorithms usually only achieve an accuracy rate of 60% to
70% [14]. The machine learning algorithm can only achieve
reliable accuracy when the total sample size is less than 100
[16]. With the rise and development of neural networks, more
deep learning algorithms are used to improve the accuracy of
ABIDE data classification [17]-[19].

In this paper, we use the pairwise robust support vector
machine [20] to explore the classification accuracy when the
classification labels are imbalanced for the data from ABIDE
L. In essence, our aim is to identify patients with ASD in a
large number of typical controls. The goal is to employ robust
and accurate classification models that can mitigate the
inherent imbalance in the data.

II. METHODOLOGY

A. Principal component analysis

We know that if there is a strong linear correlation between
certain dimensions in the data, the information provided by the
sample on these two dimensions will be repeated to a certain
extent. So we hope that the dimensions of the input are
orthogonal. In addition, the dimension of the correlation
matrix is too large. In order to reduce the calculation amount
of data processing, we choose to use principal component
analysis (PCA) to reduce the dimensionality of the data.

Supposed a data of n observations X = {x, x5, ..., Xy}
with x; € RP, the original data can be regarded as a matrix
with n rows and p columns. Assume that the mean of each
dimension of the original data is 0, we let this matrix multiply
an p *p orthogonal transformation matrix W, where W
consists of column vectors {W;,W,, ..., Wp} . Then the
original data is transformed into a new coordinate system. To
fix the values of the data, each column vector ||W;|| = 1, the
matrix after dimensionality reduction is T = XW , each
column vector in T is {ty, t;, ..., t,}. In order to compute the
transformation matrix W, we need to compute the eigenvalues

. . . 1
and eigenvectors of the covariance matrix C = ;XXT,

the eigenvectors could be combined into a change matrix W

from left to right in the order of eigenvalues from large to
small. Here, we can only keep the eigenvectors with big
eigenvalues to reduce the dimensionality. If W' is used to
represent the change matrix after discarding the eigenvectors
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with smaller eigenvalues, where W' consists of column
vectors {W; ,W, ,...,W }and k<p. T =XW is the
data after dimensionality reduction to k dimension.

B. Pairwise robust support vector machine

For Pairwise robust support vector machine (PRSVM)
algorithm handles the task of imbalanced data classification
by using the robust support vector classifiers (RSVC) loss [21]

(1-yf):

Lesve(vf(x)) = 62| 1 —exp =

in a pairwise learning framework. Here, ois a tunable
parameter.

We assume that the label of autistic patients is 1 and the
label of typical controls is —1. In the classification of autism
spectrum disorder, the binary classifier f should provide with

sign (f(xautistic patient)) =1 and

sign ( f (xtypical Contml)) = —1. For each pair of observations

a result of

(x4, yi)and (x]-, yj), if x; represents an autistic patient and x;

represents a typical control, a good real-valued f will produce
the result such that f(x;) — f(x]-) > 0; on the contrary, if
x; represents a typical control and x; represents an autistic
patient, it should be f(x;) — f(x]-) < 0; when both x;

and x; represent an autistic patient or a typical control
simultaneously, we have no expectations. We let y; =
(yi — yi) /2 and write up the notation

1’

Vij = {_1

if the algorithm has good performance, we can image that
we will get y;; (f(xi) — f(xj)) > 0.

The pairwise loss could be written as

ifyi=landy; = —1;
ifyi=-landy; =1,

L(f, (xi, ¥i), (xj'yf)) -

2
+

(13 (£ = 1))

o2

2

o“| 1—exp

This loss is calculated by pairing a sample from the
minority class with a sample from the majority class, ensuring
that both classes make equal contributions during model
training.

To compare with support vector machines, here we focus
on linear classifiers f(x) =w'x+b with w€ RP and b €
R.Then the optimization problem is

2
$ (1 —yyw (x; = x]’))
m‘ﬁnz Z 0’| 1—exp > *

o

i=1 j:yj#y;



Forb € R, let £, (b) represent the false positive rate (FPR),
and €_(b) represent the false negative rate (FNR) of the
classifier wx + b. Let’s define

Eb) = max(£+ (b),E_ (b))
and the intercept is estimated by
b= min €(b)

When the sample sizes of autistic patients and typical
controls are imbalanced, PRSVM combines the observations
of the minority class and the majority class into pairs and then
enters the model. This method can effectively balance the
influence of the two classes.

C. Experiments and results

In this research, the data sets are extracted from two
regions-of-interests (ROI) atlas: Harvard-Oxford (HO) [22]
and Eickhoft-Zilles (EZ) [23]. In the experiments of this paper,
we set the label of autistic patients to 1 and typical controls
label to —1.

SVM, AdaBoost and Naive Bayes (NB) are used for
comparison with PRSVM. PRSVM demonstrates low
sensitivity to the choice of the parameter o, hence o was set
to 1 across all experiments. All other methods are
implemented in R using standard packages. Specifically, for
SVM, the train function from the caret package was utilized.
To ensure a fair comparison, the method svmlinear was
employed to generate linear classifiers, with all other
parameters maintained at their default settings. For AdaBoost,
the boosting function from the adabag package was used. The
number of iterations is fixed at 200. Naive Bayes was
implemented using the naiveBayes function from the e1071
package with default parameters.

We will evaluate the FPR and FNR simultaneously. A
balanced FPR and FNR imply that the minority class has been
equally addressed. Additionally, we evaluate the area under
the receiver operating characteristic (ROC) curve (AUC),
which is widely regarded as a balanced accuracy metric for
imbalanced data classification problems. We randomly
sampled 1/2 of positive cases and 1/2 of negative cases to
create a training set, while the remaining cases were used as
the test set. The number of repetitions for each experiment was
20. All reported results are the average of these 20 repetitions.

1) Experiment I: data with varying input dimensions

In the first experiment, we randomly sampled 100 samples
from the autistic patients and 500 samples from the typical
controls, resulting in an imbalance ratio of 1:5. The PCA
method was used to reduce the dimensionality, and we
retained 10 and 50 principal components, respectively. The
first 10 principal components could achieve greater than 90%
cumulative contribution rate while the first 50 principal
components could achieve greater than 95%. The results are
shown in Table I and Table II.

The results shows that when the imbalance ratio
reaches 1:5, the average AUC of SVM, AdaBoost and Naive
Bayes are close to 0.5, which means these models are
ineffective in this case. PRSVM has the best performance on
both 10-dimensional and 50-dimensional datasets. For some
fixed sampled datasets, we achieve AUC close to 0.8 and
accruary close to 80%.
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CLASSIFICATION PERFORMANCE OF FOUR CLASSIFIERS ON

ROI-HO DATA SET WITH VARYING PRINCIPAL COMPONENTS

Input Method FNR FPR AUC
dimension
0.4440 0.4205 0.6037
PRSVM | 00125 | (00105 | (0.0048)
0.9120 0.0455 0.5213
10 SvM 0.0075) | (0.0048) | (0.0020)
daBoost | 0-7060 0.2095 0.5422
(0.0063) | (0.0049) | (0.0035)
B 0.7440 0.1640 0.5460
00115 | (0.0095) | (0.0030)
0.5610 0.2890 0.6259
PRSVM | 0.0093) | (0.0085) | (0.0050)
0.6780 0.1805 0.5708
% SVM 0.0076) | (0.0058) | (0.0035)
daBoost | 0739 0.1405 0.5503
©0.0112) | (0.0061) | (0.0038)
B 0.7010 0.1775 0.5608
0.0199) | (0.0141) | (0.0039)
TABLE II. CLASSIFICATION PERFORMANCE OF FOUR CLASSIFIERS ON
ROI-EZ DATA SET WITH VARYING PRINCIPAL COMPONENTS
Input Method FNR FPR AUC
dimension

0.4070 0.4920 0.5831
PRSVM | 0.0097) | (0.0095) | (0.0045)

0.9520 0.0295 0.5093
10 SYM 0.0051) | (0.0031) | (0.0014)
daBoost | 0-7000 0.2315 0.5343
0.0070) | (0.0042) | (0.0036)

B 0.7490 0.1715 0.5398
0.0139) | (0.0077) | (0.0040)

0.5640 0.2800 0.6131
PRSVM | 0.0087) | (0.0062) | (0.0050)

0.6560 0.1895 0.5728
% SYM 0.0082) | (0.0047) | (0.0038)
duBoost | 07780 0.1465 0.5378
(0.0089) | (0.0063) | (0.0032)

B 0.7100 0.1890 0.5505
©.0197) | (0.0144) | (0.0037)

2) Experiment II: data with varying imbalance ratios

In real-world applications, collecting a large number of
patient data for a medical institution is difficult. Here, we
would like to investigate if our model could perform better by
just adding samples from typical controls to its training data.
We randomly sampled 100 from the autistic patients and 100,
250, and 500 from the typical controls. In this experiment, we
retained 10 principal components. The results are shown in

Table III and IV.

TABLE III. CLASSIFICATION PERFORMANCE OF FOUR CLASSIFIERS ON
ROI-HO DATA SET WITH VARYING IMBALANCE RATIOS
Input Method FNR FPR AUC

dimension
0.4110 0.4390 0.5969
PRSVM (0.0161) (0.0192) (0.0066)
SVM 0.3930 0.4420 0.5825
141 (0.0095) (0.0088) (0.0039)
: AdaBoost 0.4700 0.4320 0.5510
(0.0087) (0.0085) (0.0043)
NB 0.4900 0.4110 0.5505
(0.0199) (0.0195) (0.0052)
0.4660 0.3936 0.5892
PRSVM (0.0141) (0.0136) (0.0035)
SVM 0.9830 0.0076 0.5047
1:2.5 (0.0026) (0.0012) (0.0012)
o AdaBoost 0.7770 0.1592 0.5319
(0.0061) (0.0036) (0.0027)
NB 0.8390 0.1040 0.5285
(0.0062) (0.0047) (0.0023)
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0.5080 0.3470 0.6058 0.4730 0.3687 0.6195
PRSVM (0.0098) | (0.0075) | (0.0027) PRSVM 0.0116) | (0.0090) | (0.0023)
1.0000 0.0000 0.5000 0.9413 0.0300 0.5143
s SvM (0.0000) | (0.0000) | (0.0000) 25:150 SVM (0.0049) | (0.0026) | (0.0013)
' AdaBoost 0.9230 0.0480 0.5145 : AdaBoost 0.7147 0.2147 0.5353
(0.0020) | (0.0011) | (0.0009) (0.0038) | (0.0028) | (0.0022)
NB 0.9420 0.0200 0.5190 NB 0.7967 0.1190 0.5422
(0.0026) (0.0008) (0.0012) (0.0077) (0.0047) (0.0021)
0.3504 0.4522 0.6348
PRSVM
TABLEIV.  CLASSIFICATION PERFORMANCE OF FOUR CLASSIFIERS ON (0.0047) (0.0040) (0.0018)
ROI-EZ DATA SET WITH VARYING IMBALANCE RATIOS SVM 0.9820 0.0096 0.5042
— 125:250 (0.0020) | (0.0011) | (0.0005)
di nput Method FNR FPR AUC AdaBoost 0.7112 0.1984 0.5452
imension (0.0028) | (0.0022) | (0.0012)
PRSVM 0.4740 0.4540 0.5596 B 0.7690 0.1136 0.5452
(0.0156) | (0.0128) | (0.0059) (0.0026) | (0.0020) | (0.0009)
SVM 0.4040 0.4870 0.5545
1:1 (0.0104) (0.0102) (0.0036) TABLE VI CLASSIFICATION PERFORMANCE OF FOUR CLASSIFIERS ON
0.4810 0.4940 0.5195
AdaBoost (0'0095) (0'0099) (0'0042) ROI-EZ DATA SET WITH VARYING SAMPLE SIZES
0.4420 0.4970 0.5305 Input
NB 0.0162) | (0.0174) | (0.0035) dimension Method FNR FPR AUC
0.5390 0.3660 0.5688 0.5000 0.4110 0.5517
PRSVM 0.0127) | (0.0090) | (0.0042) PRSVM 0.0239) | (0.0226) | (0.0092)
SVM 0.9850 0.0072 0.5039 SVM 0.9000 0.0560 0.5220
125 0.003D) | (0.0016) | (0.0008) 25:50 0.0106) | (0.0057) | (0.0038)
- AdaBoost 0.7770 0.1672 0.5279 : AdaBoost 0.7020 0.2490 0.5245
(0.0064) (0.0039) (0.0032) (0.0180) (0.0110) (0.0067)
NB 0.8830 0.0976 0.5097 NB 0.7960 0.1640 0.5200
(0.0057) | (0.0047) | (0.0025) 0.0174) | (0.0099) | (0.0078)
0.4700 0.4078 0.6061 0.4467 0.4316 0.5963
PRSVM (0.0093) | (0.0089) | (0.0027) PRSVM (0.0096) | (0.0085) | (0.0021)
1.0000 0.0000 0.5000 0.9653 0.0163 0.5092
Lis SVM (0.0000) | (0.0000) | (0.0000) T5:150 SVM (0.0040) | (0.0018) | (0.0013)
: AdaBoost 0.9470 0.0446 0.5042 : AdaBoost 0.6960 0.2233 0.5403
(0.0023) (0.0012) (0.0009) (0.0044) (0.0025) (0.0027)
NB 0.9720 0.0148 0.5066 NB 0.7540 0.1667 0.5397
(0.0021) | (0.0008) | (0.0008) (0.0070) | (0.0053) | (0.0018)
0.4392 0.4040 0.6093
_ PRSVM 0.0067) | (0.0069) | (0.0016)
The results of Experiment II demonstrate that when SVM 0.9888 0.0088 0.5012
investigating the impact of an imbalance ratio, ranging from 125:250 (0.0018) (0.0014) (0.0002)
1:1 to 1:2.5 and further to 1:5, the FPR and FNR of PRSVM AdaBoost 0.7152 0.2188 0.5330
showed minimal variation compared to other methods with (gg?i? (g‘(l)(l)(l)z) (8(5)(3);(3))
poor performance. Additionally, the AUC of PRSVM NB (0.0039) (0.0026) (0.0009)

exhibited a slight increase.

3) Experiment I1I: data with varying sample size

We are interested in investigating whether we can enhance
the model's performance by augmenting the number of
samples in the training set while preserving a constant
imbalance ratio.

In the third experiment, we increased the sample size
proportionally while maintaining a fixed imbalance ratio of
1:2. Specifically, we randomly sampled 50, 150, and 250 data
from the positive class, and 100, 300, and 500 data from the
negative class, respectively. In this experiment, we retained 10
principal components. The results are shown in Table V and
Table VI.

TABLE V. CLASSIFICATION PERFORMANCE OF FOUR CLASSIFIERS ON
ROI-HO DATA SET WITH VARYING SAMPLE SIZES
Input Method FNR FPR AUC
dimension
0.4920 0.4540 0.5674
PRSVM (0.0215) (0.0207) (0.0091)
0.8580 0.0740 0.5340
25:50 SVM 0.0129) | (0.0055) | (0.0048)
' AdaBoost 0.7020 0.2310 0.5335
(0.0144) (0.0070) (0.0074)
NB 0.7600 0.1780 0.5310
(0.0173) (0.0163) (0.0044)
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We observed a significant decrease in performance for
SVM, AdaBoost, and Naive Bayes methods in detecting
patients. This finding further supports the notion, documented
in the literature, that machine learning algorithms may not
perform well when dealing with large sample sizes. However,
in the case of PRSVM, the AUC increases as the sample size
grows. This result indicates that PRSVM has the ability to
overcome this issue, showcasing its effectiveness in handling
larger datasets.

III. DISCUSSION AND CONCLUSION

The experimental results demonstrate that, in comparison
to other machine learning classifiers, PRSVM achieves a
lower FNR and higher AUC. These findings indicate that the
PRSVM model can more accurately detect patients from
imbalanced fMRI datasets. PRSVM demonstrates improved
performance as the number of samples from typical controls
increases, effectively addressing the challenge of the limited
availability of patient data in practical applications.
Furthermore, incorporating additional samples from both
patients and typical controls into the training set has resulted
in significant enhancements, overcoming the limitations of
previous machine learning algorithms that were
predominantly effective on small datasets. Consequently, we
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believe PRSVM holds great value for practical applications.
In our future work, we plan to optimize the model's parameters
and explore the utilization of kernel methods to achieve even
higher classification accuracy. Additionally, we aim to apply
this method to a broader range of fMRI data classification
tasks.

ACKNOWLEDGMENT

The work by Qiang Wu is partially supported by NSF
(DMS-2110826).

REFERENCES

[1] S. Ogawa, T.-M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic
resonance imaging with contrast dependent on blood oxygenation.”
proceedings of the National Academy of Sciences, vol. 87, no. 24, pp.
9868-9872, 1990.

[2] C.S.RoyandC.S. Sherrington, “On the regulation of the blood-supply
of the brain,” The Journal of physiology, vol. 11, no. 1-2, p. 85, 1890

[31 J. Belliveau, D. Kennedy, R. McKinstry, B. Buchbinder, R. Weisskoff,
M. Cohen, J. Vevea, T. Brady, and B. Rosen, “Functional mapping of
the human visual cortex by magnetic resonance imaging,” Science, vol.
254, no. 5032, pp. 716719, 1991.

[4] B. Sen, G. A. Bernstein, T. Xu, B. A. Mueller, M. W. Schreiner, K. R.
Cullen, and K. K. Parhi, “Classification of obsessive-compulsive
disorder from resting-state fmri,” in 2016 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC).IEEE, 2016, pp. 3606-3609.

[51 Q. Yu, E. B. Erhardt, J. Sui, Y. Du, H. He, D. Hjelm, M. S. Cetin,
S. Rachakonda, R. L. Miller, G. Pearlson et al., “Assessing dynamic
brain graphs of time-varying connectivity in fmri data: application to
healthy controls and patients with schizophrenia,” Neuroimage, vol.
107, pp. 345-355, 2015.

[6] X.-H.Zhao, P.-J. Wang, C.-B. Li, Z.-H. Hu, Q. Xi, W.-Y. Wu, and X.-
W. Tang, “Altered default mode network activity in patient with
anxiety disorders: an fmri study,” European journal of radiology, vol.
63, no.3, pp. 373-378, 2007.

[71 D.D. Cox and R. L. Savoy, “Functional magnetic resonance imaging
(fmri)“brain reading”: detecting and classifying distributed patterns of
fmri activity in human visual cortex,” Neuroimage, vol. 19, no. 2, pp.
261-270, 2003.

[8] S.Song, Z. Zhan, Z. Long, J. Zhang, and L. Yao, “Comparative study
of svm methods combined with voxel selection for object category
classification on fmri data,” PloS one, vol. 6, no. 2, p. €17191, 2011.

[91 S.Wang, F. Duan, and M. Zhang, “Convolution-gru based on indepen-
dent component analysis for fmri analysis with small and imbalanced
samples,” Applied Sciences, vol. 10, no. 21, p. 7465, 2020.

[10] L. Shao, Y. You, H. Du, and D. Fu, “Classification of adhd with fmri
data and multi-objective optimization,” Computer Methods and
Programs in Biomedicine, vol. 196, p. 105676, 2020.

452

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on March 14,2025 at 02:43:35 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE 6th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability

[11] L. Kanner et al., “Autistic disturbances of affective contact,” Nervous
child, vol. 2, no. 3, pp. 217-250, 1943.

[12] C. Craddock, Y. Benhajali, C. Chu, F. Chouinard, A. Evans, A. Jakab,
B. S. Khundrakpam, J. D. Lewis, Q. Li, M. Milham et al., “The neuro
bureau preprocessing initiative: open sharing of preprocessed
neuroimaging data and derivatives,” Frontiers in Neuroinformatics, vol.
7,p.27,2013.

[13] S. Chen, J. Kang, and G. Wang, “An empirical bayes normalization
method for connectivity metrics in resting state fmri,” Frontiers in
neuroscience, vol. 9, p. 316, 2015.

[14] X. Yang, M. S. Islam, and A. A. Khaled, “Functional connectivity
magnetic resonance imaging classification of autism spectrum disorder
using the multisite abide dataset,” in 2019 IEEE EMBS International
Conference on Biomedical & Health Informatics (BHI). IEEE, 2019,
pp. 1-4.

[15] X.-a. Bi, Y. Wang, Q. Shu, Q. Sun, and Q. Xu, “Classification of
autism spectrum disorder using random support vector machine cluster,”
Frontiers in genetics, vol. 9, p. 18, 2018.

[16] M. R. Arbabshirani, S. Plis, J. Sui, and V. D. Calhoun, “Single subject"
prediction of brain disorders in neuroimaging: Promises and pitfalls,”
Neuroimage, vol. 145, pp. 137-165, 2017.

[17] X. Yang, P. T. Schrader, and N. Zhang, “A deep neural network study
of the abide repository on autism spectrum classification,” International
Journal of Advanced Computer Science and Applications, vol. 11, no.
4,2020.

[18] A. S. Heinsfeld, A. R. Franco, R. C. Craddock, A. Buchweitz, and
F. Meneguzzi, “Identification of autism spectrum disorder using deep
learning and the abide dataset,” Neurolmage: Clinical, vol. 17, pp. 16—
23,2018.

[19] L. Shao, C. Fu, Y. You, and D. Fu, “Classification of asd based on fmri
data with deep learning,” Cognitive Neurodynamics, vol. 15, no. 6, pp.
961-974, 2021.

[20] S. Liu and Q. Wu, “Pairwise learning for imbalanced data classifica-
tion,” in 2021 International Conference on Computational Science and
Computational Intelligence (CSCI). IEEE, 2021, pp. 186-189.

[21] Y. Feng, Y. Yang, X. Huang, S. Mehrkanoon, and J. A. Suykens,
“Robust support vector machines for classification with nonconvex and
smooth losses,” Neural computation, vol. 28, no. 6, pp. 1217-1247,
2016.

[22] S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E.
Behrens, H. Johansen-Berg, P. R. Bannister, M. De Luca, 1. Drobnjak,
D. E. Flitney et al., “Advances in functional and structural mr image
analysis and implementation as fsl,” Neuroimage, vol. 23, pp. S208—
S219, 2004.

[23] S. B. Eickhoff, K. E. Stephan, H. Mohlberg, C. Grefkes, G. R. Fink,
K. Amunts, and K. Zilles, “A new spm toolbox for combining

probabilistic cytoarchitectonic maps and functional imaging data,”
Neuroimage, vol. 25, no. 4, pp. 1325-1335, 2005



