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Abstract—In this paper, we investigate the efficacy of the
divide and conquer approach for implementing distributed lo-
gistic regression and distributed support vector machine (SVM)
algorithms for classification of large-scale datasets. This approach
is designed to handle datasets that exceed the capacity of a single
processor, necessitating the partitioning of data into multiple
subsets. Logistic regression or SVM is then applied to each
subset, yielding individual local classifiers. Subsequently, a global
classifier is derived by aggregating these local classifiers to
make the final decision. We propose three strategies for the
aggregation stage: voting based on predicted labels, averaging of
real-valued predictions, and averaging of posterior probabilities.
Our analysis reveals that for distributed logistic regression,
probability averaging is the most robust approach and is there-
fore recommended. Conversely, in the context of distributed
SVM, probability averaging requires additional modeling but
has a minimal impact on the performance. Therefore, functional
averaging is recommended instead.

Index Terms—distributed machine learning, logistic regression,
support vector machine, divide and conquer

I. INTRODUCTION

Due to the rapid advancements in information technology,
data collection has become significantly more accessible, lead-
ing to the ubiquity of large-scale datasets. To address the chal-
lenges posed by big data processing, various technologies and
approaches have been proposed, including the utilization of
GPUs or computer clusters, quantum computing, and parallel
and distributed systems. Among these approaches, distributed
machine learning via the divide and conquer approach has
emerged as a simple yet highly effective approach for pre-
dictive analytics. Moreover, it provides an added benefit of
safeguarding data privacy and confidentiality.

In the context of distributed machine learning, the divide
and conquer approach is executed as follows: when confronted
with a big dataset that exceeds the processing capability of a
single machine, the data is initially partitioned into multiple
subsets, each suitable for analysis by a single machine. This
step may be omitted if the data has already been collected
by different entities, with each subset naturally residing in
distinct locations, or if merging them would be impermissible
due to privacy or confidentiality concerns. Subsequently, each
subset is independently modeled using a pre-specified machine
learning method. Finally, the outcomes from all subsets are

aggregated. Averaging is the most commonly employed strat-
egy for combining the local outcomes, especially in parameter
estimation and regression analysis scenarios. This method,
though simple, has been proven empirically effective and
theoretically optimal for a variety of learning tasks; see for
example the M-estimation [1], kernel ridge regression [2],
[3], kernel spectral regression [4], bias corrected regularization
kernel network [5], [6] and minimum error entropy [7], [8].

In this paper, we focus on the divide and conquer approach
for distributed binary classification. Unlike the parameter
estimation and regression problems, where each local model’s
output directly represents the quantity of interest or the predic-
tion of the target value, leading to a natural global estimation
through averaging local outputs, classification models typically
produce real values that serve as a basis for inferring class
labels. Although averaging local outputs remains a valid means
of combining local models, alternative methods have been
proposed. In a prior study [9], a voting strategy was proposed
and compared with averaging. The results there showed that
these two strategies are comparable for most applications while
averaging could be more robust in some scenarios.

Many classification algorithms can predict the posterior
probabilities. For instance, the functional output of logistic
regression and the posterior probability are linked via one-to-
one logit mapping. This allows us to propose a new strategy
for distributed logistic regression that averages the posterior
probabilities. One goal of this paper is to study its effectiveness
and compare it with other strategies.

Support vector machine is another effective and widely
used classification algorithm. It was motivated by maximizing
the margin between classes. Therefore, its functional output
has natural geometric interpretations, allowing the distributed
support vector machine via voting and functional output
averaging to be well defined. It is not directly related to
the posterior probabilities, preventing the direct use of the
posterior probability averaging. Thanks to the Platt’s approach
[10] that fits a post-training model to transform the functional
output to posterior probability, we are able to define distributed
support vector machine via the probability averaging strategy
using the transformed model. Exploring the effectiveness of
distributed support vector machine for large scale classification
is the second goal of this paper.
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II. DISTRIBUTED LOGISTIC REGRESSION

Logistic regression is one of the most popular binary
classification approaches developed in the classical statistics
context. It is motivated from maximum likelihood estimation
(MLE). Given the paired data D = {(xi, yi), i = 1, . . . , n},
where xi ∈ Rp represents a p-dimensional feature vector and
yi ∈ {0, 1} is the binary response. Assume yi following a
Bernoulli distribution with πi = Pr(yi = 1|xi) satisfying a
generalized linear model:

log

(
πi

1− πi

)
= x⊤

i β, or πi =
ex

⊤
i β

1 + ex
⊤
i β

.

The log-likelihood is given by

ℓ(β) =
n∑

i=1

(
yix

⊤
i β − log(1 + ex

⊤
i β)

)
and the MLE estimator β̂ can be obtained by maximizing ℓ
using the Newton-Raphson method, the iterative reweighted
least square algorithm, or their variants [11], [12]. The pre-
diction of the label for a new data point x is given as ŷ = 1
if x⊤β̂ > 0 or equivalently π̂ > 0.5 and ŷ = 0 otherwise.

Assume there exists a true model parameter β∗. It can be
proved that the MLE estimator β̂ is asymptotically normal
with mean β∗ and covariance I−1(β) = O( 1n ), where I(β) is
the Fisher information

I(β) = −E
[
∂2ℓ

∂β2

]
= O (n) .

This implies that β̂ converges to β∗ in probability.
When D is big, we can use the divide and conquer approach

to implement distributed logistic regression. First, we partition
D randomly into m distinct subsets D =

⋃m
j=1 Dj . The

optimal performance is usually achieved when all subsets are
of equal size nj = n

m . Next, we apply logistic regression to
each subset Dj to obtain a local estimator β̂j . Finally, we
combine these estimators together to produce a final model.
There are several strategies for this purpose. In [9] voting and
parameter averaging methods were proposed. For each x to be
classified, the voting strategy first predicts a label ŷj(x) using
each local estimator β̂j and then ŷ is defined as

ŷ =


1 if

∑
j:ŷj(x)=1

nj >
∑

j:yj(x)=0

nj ;

0 if
∑

j:ŷj(x)=1

nj <
∑

j:yj(x)=0

nj .

In case all subsets are of equal size, this is simply the majority
voting, that is, ŷ = 1 if more than m

2 local estimators predict
the output as 1 and ŷ = 0 otherwise.

The parameter averaging strategy produces a final model

β̄ =
n∑

j=1

nj

n
β̂j

and the classification is determined by ŷ(x) = 1 if x⊤β̄ > 0
and ŷ(x) = 0 otherwise. Note that

x⊤β̄ =
n∑

j=1

nj

n

(
x⊤β̂j

)
.

So the parameter averaging is equivalent to functional output
averaging. If m increases slower than n as n → ∞ so that
nj → ∞ is guaranteed and therefore each local estimator β̂j

is asymptotically normal, then β̄ is also asymptotically normal
and the covariance is

n∑
j=1

n2
j

n2
I−1
j (β) = O

 n∑
j=1

nj

n2

 = O

(
1

n

)
.

In this paper we propose another strategy by averaging the
posterior probabilities. This approach first predicts π̂j(x) by
each local estimator β̂j and then predicts the new data point
with ŷ(x) = 1 if

π̄(x) =
n∑

j=1

nj

n
π̂j(x) > 0.5.

Since each β̂j is consistent, by the Delta method [13], [14],
every estimation π̂j(x) converges to the true value of π(x).
Therefore, π̄(x) → π(x) and the probability averaging strategy
is consistent.

Although all three strategies are theoretically consistent, we
expect that probability averaging to be more robust than voting
and parameter averaging. In the voting strategy, there exists a
vulnerability to the amplification of the impact of weak local
models, particularly those yielding less confident decisions
with predicted probabilities π̂j close to 0.5. On the other
hand, in parameter averaging, it is important to note that the
decision is based on the sign of the weighted average of x⊤β̄j .
This means that local models giving abnormally large values
of x⊤β̂j may dominate the final model decision. It’s worth
highlighting that when each subset of data is relatively small
in size, linear separability becomes more probable. It is a well-
known fact that logistic regression can encounter convergence
issues when dealing with nearly separable data, leading to
abnormally large values of x⊤β̂j . Intuitively the probability
averaging strategy is resistant to both abnormalities.

Note further that the decision boundary generated by the
parameter averaging strategy is still a linear hyperplane in the
feature space while voting and posterior probability averaging
may lead to nonlinear decision boundaries although each
local classifier is linear. This might be beneficial if linear
classification is not optimal for the data under investigation.

III. DISTRIBUTED SUPPORT VECTOR CLASSIFICATION

Support Vector Machine (SVM) is inspired by the concept
of large margin classifiers. In the context of binary classifica-
tion, the hard margin SVM assumes that the two classes are
separable and seeks to maximize the geometric distance from
the two classes to the decision boundary. However, a more
versatile alternative to the hard margin SVM is the soft margin
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SVM. This variant allows for a trade-off between separability
and model complexity, making it a more effective and popular
choice in practice.

The soft margin SVM is a kernel based regularization
approach with the hinge loss. Let the labels be represented
as yi = 1 or yi = −1. The hinge loss takes the form

L(yi, f(xi)) = (1− yif(xi))+ = max(0, 1− yif(xi)).

Given a reproducing kernel K and the associated reproducing
kernel Hilbert space HK equipped with the norm ∥ · ∥K [15],
the SVM for binary classification solve the problem

f̂ = arg min
f∈HK

1

2
∥f∥2K + C

n∑
i=1

L(yi, f(xi)),

where C > 0 is the tuning parameter. The labels for new
data can be predicted according to the sign of f̂(x), i.e.
ŷ = sign(f(x)). SVM has shown great success in a variety
of applications and its consistency has theoretical guarantees;
see e.g. [16]–[21] and references therein. In particular, let

R(C) = Pr [y ̸= C(x)]

be the classification risk of a classifier C(x) and

E(f) = E [L(y, f(x))]

be the population hinge loss. It has been proved in [22], [23]
that the optimal classifier C∗ defined by

C∗(x) =

1 if Pr(y = 1|x) > 0.5;

−1 if Pr(y = −1|x) > 0.5

is a minimizer of both R and E . Although the minimizer of E
is not unique, all minimizers must have the same sign as C∗

and for all real-valued functions

R(sign(f))−R(C∗) ≤ E(f)− E(C∗).

Since SVM is consistent, we have E(f̂) → E(C∗) and
R(sign(f̂)) → R(C∗) as n → ∞, which guarantees
sign(f̂(x)) → C∗(x) for all x in the non-degenerate domain.

In distributed SVM, once each subset Dj is trained and pro-
duces a local decision function f̂j , voting strategy is naturally
defined according to the locally predicted labels sign(f̂j(x))
and the global prediction is consistent. The function averaging
strategy uses

f̄(x) =
m∑
j=1

nj

n
f̂j(x)

for the global decision.
The SVM output function f̂j(x) represents the geometric

distance or margin from x to the decision boundary. The lack
of probabilistic interpretation prevents probability averaging
from being naturally defined to implement distributed support
vector machine. To overcome this problem, we adopt the
Platt’s approach [10] to approximate probabilistic outputs by
fitting a post-training one-dimensional model

Pr(yi = 1|xi) =
1

1 + eAj f̂j(xi)+Bj

TABLE I
DESCRIPTION OF DATA SETS AND CLASSIFICATION TASKS

Classification Task Abbreviation n p
Magic Gamma Telescope MGT 19,020 10
Wireless Localization {1,2} vs {3,4} WL 2,000 7
Student Evaluation {1,2} vs {3,4,5} SE 5,046 32
Wilt Wilt 4,889 5
Spambase Spam 4,601 57
Default of Credit Card Clients DCCC 30,000 23
APS Failure at Scania Trucks APS 60,000 170
Epileptic Seizure Recognition ESR 9,200 178
MNIST 5 vs 8 MNIST 12,017 786

with the predicted values f̂j(xi) for xi in subset Dj . After
the parameters Aj and Bj are estimated, Pr(y = 1|x) can
then be approximated locally using each triple (f̂j , Aj , Bj).
Then averaging these approximated probabilities defines the
posterior probability averaging model for distributed support
vector machines.

IV. EXPERIMENTS

In this section, we test the effectiveness of our distributed
classification strategies against a variety of data sets and com-
pare the results. For our study, we utilized eight different data
sets from the UC Irvine Machine Learning Repository (https://
archive.ics.uci.edu/ml/index) and the MNIST handwritten dig-
its recognition data (http://yann.lecun.com/exdb/mnist/). These
data sets were chosen for their diverse applications in various
fields, ensuring the consistency of our results.

1) The Magic Gamma Telescope dataset contains 10 image
parameters, produced by a Monte Carlo program. The
purpose is to differentiate between gamma (signal) and
hadron (background) in a Cherenkov gamma telescope.

2) The Wireless Indoor Localization dataset consists of
seven Wi-Fi signal strengths from smartphones in an
indoor space to experimentally determine if the signal
strength could determine the indoor location. With four
classes present, we perform binary classification by
combining classes: {1, 2} vs {3, 4}.

3) The Turkiye Student Evaluation dataset has student eval-
uation scores provided by students from Gazi University
in Ankara. It includes 28 course-specific questions and 4
additional attributes. The task is to predict the difficulty
level of the course based on these factors. We categorize
difficulty scores of {1, 2} as below-average and {3,
4, 5} as above-average for binary classification. Only
the 28 course-specific questions were considered due to
inconsistency in additional attributes.

4) The Wilt dataset, stemming from pansharpening Quick-
bird imagery, aims to predict whether a tree is diseased.
This data set is notably imbalanced with 74 instances
of the ‘diseased trees’ class and 4265 instances of the
‘other land cover’ class.

5) The Spam dataset aims to determine if an email is spam
or not based upon a variety of attributes of the email,
including word and character frequency.
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6) The Default of Credit Card Clients data set captures
customer default payments in Taiwan. The objective is
to determine the credibility of customers based on 23
attributes like gender, education, payment history, etc.

7) The APS (Air Pressure System) Failure at Scania Trucks
dataset consists of truck failures due to a specific com-
ponent of the APS system, with other data points being
failures unrelated to the APS. The goal is to diagnose
whether an issue was caused due to the APS based upon
170 other factors. This data set is heavily imbalanced
and has numerous missing values.

8) The Epileptic Seizure Recognition dataset contains EEG
readings of one-second brain activities. The purpose is
to differentiate individuals with epileptic seizures from
healthy individuals.

9) The MNIST data set contains images of handwritten
digits with each image consisting of 28 × 28 = 784
gray scale pixels. To perform binary classification, we
only considered digits 5 and 8.

A summary of these nine datasets and their binary classi-
fication tasks is presented in Table I. Each task is assigned
an abbreviation for the purpose of easy presentation of our
experiment results below.

In our study, we partitioned each dataset into 60% training
and 40% testing. The training data was further subdivided
into 11 batches for distributed classification. For logistic
regression, we used the LogisticRegression function
from Python’s sklearn library, excluding the default ℓ2
penalty. For SVM, we used sklearn’s SVC function. We
used the Gaussian kernel with bandwidth chosen via cross-
validation. Before classification, data were normalized using
the StandardScalar function from sklearn. Each ex-
periment was conducted 50 times, with results measured in
terms of classification accuracy and the area under the ROC
curve (AUC).

Results for distributed logistic regression with all three
strategies are presented in Table II and Table III. As a refer-
ence, we also included the classification accuracy and AUC of
logistic regression trained from the training data without using
distributed strategies. We see that the classification accuracy
of all three strategies on eight tasks either have no essential
differences or the differences are not statistically significant.
Functional averaging showed significantly lower accuracy in
spam detection. Comparing the AUC, we see that functional
averaging showed surprisingly higher AUC than voting in
four tasks (the MGT signal detection, student evaluation, Wilt
diseased tree classification, and the default detection of credit
card clients), although they have similar classification accuracy
in these applications. This is probably caused by the amplified
values for misclassified data near the boundaries. In three
applications (the spam email detection, APS failure detection,
and the ESR diagnosis), functional average gives significantly
lower AUCs with large standard errors. Deeper exploration
shows that the local models face rank deficiency problems that
either prevents logistic regression from converging or produce
extremely large values. This drives the AUC lower when

TABLE II
CLASSIFICATION ACCURACY (IN PERCENTAGE) OF DISTRIBUTED

LOGISTIC REGRESSION

Task Distributed Logistic Regression LR
Voting Func. Ave. Prob. Ave.

MGT 79.12 (0.38) 79.11 (0.37) 79.11 (0.37) 79.10 (0.38)
WL 92.19 (0.78) 91.31 (1.31) 92.27 (0.69) 92.32 (0.68)
SE 63.90 (0.84) 64.07 (0.83) 64.09 (0.86) 64.31 (0.86)
Wilt 96.95 (0.31) 96.82 (0.39) 97.03 (0.32) 96.78 (0.32)
Spam 92.36 (0.58) 87.77 (2.17) 92.36 (0.57) 92.41 (0.49)
DCCC 81.00 (0.29) 80.99 (0.28) 80.99 (0.28) 81.04 (0.28)
APS 98.87 (0.09) 98.65 (0.13) 98.88 (0.09) 99.05 (0.09)
ESR 83.50 (0.43) 83.12 (0.92) 83.52 (0.43) 82.26 (0.41)
MNIST 96.22 (0.27) 95.96 (0.27) 96.23 (0.28) 94.00 (0.50)

TABLE III
AUC (IN PERCENTAGE) OF DISTRIBUTED LOGISTIC REGRESSION

Task Distributed Logistic Regression LR
Voting Func. Ave. Prob. Ave.

MGT 77.76 (0.46) 83.86 (0.37) 83.88 (0.37) 83.87 (0.37)
WL 96.89 (0.49) 97.60 (0.66) 98.02 (0.26) 98.06 (0.24)
SE 56.22 (0.91) 60.24 (0.86) 59.88 (0.95) 60.12 (0.98)
Wilt 91.08 (2.27) 97.74 (0.53) 97.77 (0.51) 97.68 (0.54)
Spam 97.16 (0.36) 93.13 (1.79) 97.30 (0.33) 97.09 (0.27)
DCCC 66.91 (0.35) 72.52 (0.39) 72.63 (0.39) 72.24 (0.38)
APS 98.36 (0.65) 85.04 (4.93) 99.11 (0.39) 96.11 (1.26)
ESR 89.38 (0.70) 51.02 (1.45) 90.01 (0.71) 52.42 (1.06)
MNIST 99.18 (0.10) 98.58 (0.29) 99.33 (0.07) 97.67 (0.30)

the misclassified data are predicted with large and unstable
function values. The probability averaging showed to be the
most robust in terms of both classification accuracy and AUC.

Results for distributed SVM are presented in Table IV and
Table V. Similarly, we included the performance of non-
distributed SVM as references. All three strategies showed
similar performance in terms of classification accuracy. Func-
tional averaging and probability averaging have similar AUCs
which are usually higher than or comparable to those for
voting except for the 5 vs 8 classification in MNIST data
where probability averaging showed lower AUC. A plausible
explanation is that the SVM tries to approximate the optimal
classifier C∗(x) and is unlikely to produce extremely large
values. Therefore, transforming function values to probabilities
does not help robustify the averaging decision.

V. CONCLUSIONS AND DISCUSSIONS

In this paper we studied the divide and conquer ap-
proach in distributed binary classification. Three strategies for
combining local classifiers are proposed, each demonstrating
effectiveness with subtle variations in performance. When
logistic regression is used as the base classifier on each local
subset, functional averaging performs better than voting in
most situations, albeit not universally. Notably, probability
averaging is found most robust and consistently comparable to
or better than the other two strategies in almost all situations.
On the other hand, when SVM is used as the base classifier,
the difference between the three strategies seems negligible.
Probability averaging does not exhibit the same degree of
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TABLE IV
CLASSIFICATION ACCURACY (IN PERCENTAGE) OF DISTRIBUTED SVM

Task Distributed SVC SVC
Voting Func. Ave. Prob. Ave.

MGT 86.40 (0.29) 86.53 (0.29) 86.60 (0.28) 87.21 (0.28)
WL 97.33 (0.51) 97.45 (0.44) 97.34 (0.43) 98.00 (0.44)
SE 64.93 (0.78) 64.92 (0.77) 64.92 (0.80) 64.88 (0.70)
Wilt 97.59 (0.42) 97.47 (0.38) 96.96 (0.45) 98.66 (0.23)
Spam 91.13 (1.32) 91.56 (1.12) 91.54 (1.10) 93.01 (0.60)
DCCC 81.43 (0.28) 81.55 (0.26) 81.22 (0.26) 81.83 (0.26)
APS 98.67 (0.11) 98.89 (0.11) 98.74 (0.11) 99.30 (0.12)
ESR 95.96 (0.34) 96.05 (0.26) 95.77 (0.27) 97.60 (0.29)
MNIST 96.63 (0.58) 96.88 (0.58) 96.79 (0.75) 98.52 (0.58)

TABLE V
AUC (IN PERCENTAGE) OF DISTRIBUTED SVM

Task Distributed SVM SVM
Voting Func. Ave. Prob. Ave.

MGT 88.52 (0.39) 91.40 (0.32) 91.40 (0.32) 92.31 (0.29)
WL 99.37 (0.24) 99.69 (0.09) 99.68 (0.08) 99.79 (0.10)
SE 58.03 (1.03) 57.05 (1.17) 57.29 (1.33) 57.13 (1.62)
Wilt 94.53 (1.87) 99.17 (0.32) 99.32 (0.25) 99.14 (1.13)
Spam 95.21 (0.59) 96.59 (0.39) 96.43 (0.42) 97.28 (0.38)
DCCC 67.99 (0.61) 73.34 (0.48) 73.52 (0.52) 72.30 (0.48)
APS 94.58 (0.92) 99.10 (0.23) 99.10 (0.13) 98.76 (0.49)
ESR 97.96 (0.64) 99.29 (0.07) 99.27 (0.07) 99.52 (0.07)
MNIST 99.17 (0.16) 99.73 (0.06) 96.72 (0.05) 99.92 (0.11)

robustification observed in logistic regression. Considering
these findings, along with the additional modeling require-
ments imposed by probability averaging in distributed SVM,
we recommend probability averaging for distributed logistic
regression and functional averaging for distributed SVM.

It is worth considering the possibility of encountering
unrepresentative subsets when data is partitioned, which can
result in weak local classifiers. To address this concern, we
explored a solution involving the assignment of importance
weights to local classifiers based on their cross-validation
accuracy. We subsequently defined weighted averaging and
voting strategies for distributed classification. However, our
analysis indicated that such weighted approaches did not
yield significant improvements, as evidenced by a comparison
between the results in Table VI and Table II. This suggests
that distributed learning with random partition is stable and
unrepresentative subsets are uncommon in practice.

Future work may include theoretical investigations of op-
timal partition strategies for global convergence and more
applications of distributed approaches in real-world problems.
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