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Abstract. In this digital learning era, Augmented Reality (AR) has become a
significant driver of innovative user experience. However, the ergonomic impli-
cations of AR, particularly regarding the postural fatigue dynamics, have not
been comprehensively addressed. This study investigates the correlation between
prolonged AR engagement and the onset of postural fatigue, characterized by a
backward shift in the center of mass (COM). Employing motion capture tech-
nology alongside cognitive load assessment tools such as the NASA Task Load
Index and HoloLens eye-tracking, we seek to quantify the relationship between
user posture, engagement duration, and perceived workload. We hypothesize that
an observable rearward displacement of COM signifies escalating fatigue lev-
els. The methodology integrates ergonomic analysis, biomechanics, and predic-
tive modeling. Preliminary findings indicate a decline in postural stability with
increased AR exposure, reinforcing the need for ergonomics interventions. This
study underscores the necessity of ergonomic consideration in the design and use
of AR systems to safeguard user well-being in educational settings.

Keywords: Augmented Reality - Motion Capture - Predictive Analysis - Data
Analysis

1 Introduction

The ascent of AR as a cornerstone of modern technological advancement is rooted in
its rich history of development. From its early inception as a novel concept in the 1960s
to its sophisticated implementation in contemporary devices [1], AR has consistently
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expanded the horizons of user interaction. Despite its prolific growth, the intersection of
AR and ergonomics [2] and workload remains a nascent area of inquiry. The implica-
tions of AR on society are manifold. In educational settings, AR presents opportunities
for immersive learning [3] but also poses possible workload effects during prolonged
use [4]. In healthcare, AR can transform patient care yet may also contribute to profes-
sional fatigue if ergonomic risks are not mitigated. The entertainment industry, mean-
while, thrives on the allure of AR’s immersive experiences but seldom acknowledges
the potential for user discomfort and strain. It is within this broader societal context that
our research acquires its urgent relevance.

Our hypothesis posits that prolonged engagement with AR technology induces
fatigue and tiredness in users, a phenomenon that can be observed and quantified through
motion capture data. We theorize that as users interact with AR over extended periods,
there will be discernible changes in their physical movements and postures, indicative
of increasing fatigue levels. Our study aims to thoroughly test this hypothesis, seeking
to establish a clear link to the ergonomic behavior of AR exposure.

Our approach to studying fatigue dynamics in AR involves drawing from deep inter-
disciplinary knowledge. We apply biomechanical principles to analyze the subtle nuances
of human movement within AR environments. Through motion capture technology, we
glean high-fidelity data that reveal the intricacies of human posture as users engage with
AR. Concurrently, physical load informs our use of the NASA TLX [5], allowing us to
map the workload placed on users during AR tasks [6]. The inclusion of eye-tracking data
from HoloLens devices adds a layer of depth to our understanding of user engagement,
enabling us to correlate visual attention to direction with postural changes.

Our initial findings show the trend toward decreased postural stability during AR
learning. This study enables us to quantify the dynamics of fatigue experienced during
AR learning by utilizing motion capture data. Through this approach, our objective is
to concentrate on significantly enhancing user comfort and safety in the development of
upcoming AR learning settings.

2 Methodology

2.1 Experimental Design

In this study, a quasi-experimental design [7] was utilized to assess an Augmented Real-
ity (AR)-based interactive learning system, specifically tailored to augment engineer-
ing education [8—11]. This innovative system comprised fifteen 3D scenes, thoroughly
crafted in Unity. These scenes were split across two biomechanics lectures, with seven
scenes in the first lecture and eight in the second. Intriguingly, the lectures were dis-
played on Microsoft HoloLens 2, where scenes would dynamically pop up based on the
participant’s location, pre-configured with a naming convention numbered from 1 to 8§ to
facilitate easy navigation and association. They were presented on a semi-circular virtual
blackboard, forming part of an immersive learning environment. This environment was
organized into five distinct panels: Central, Left-central, Right-central, Left, and Right.
Each panel displayed unique information, contributing to a comprehensive educational
experience, encompassing teaching methodologies, problem-solving techniques, and
visual representation of concepts as shown in Fig. 1.
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Participants in the study were equipped with advanced technological tools, includ-
ing the Microsoft HoloLens 2 [12], Xsens Motion Capture sensors [13], D-lab Eye
Tracking (see Fig. 2), and a screen to display questionnaires. The experiment also fea-
tured Location Tracking, which was attached to the participants’ tables. These tables
are designated for placing laptops that contain experimental questionnaires. Prior to the
commencement of the experiment, participants underwent a thorough orientation ses-
sion, which involved a training module designed to acquaint them with the experiment’s
components and processes.

The AR system’s features were notably advanced. A 3D animated virtual instructor,
powered by the Xsens motion capture system and Murf Al, facilitated realistic move-
ments and natural-sounding voice synthesis. The Microsoft HoloLens 2, enhanced with
the Microsoft Mixed Reality Toolkit 3, enabled spatial interactions and eye-tracking,
capturing crucial data like user gaze points and interaction times with virtual objects.
Spatial navigation and AR scene activation were adeptly managed using the Q-Track
NFER system [14], which included a router, locator receiver, positioning sensor, and
software. This setup allowed the system to respond dynamically to the user’s real-time
location. In place of traditional paper-based methods, an online questionnaire system
was integrated into the AR environment, ensuring an uninterrupted user experience.
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The study’s participants consisted of 21 undergraduate engineering students. They
received comprehensive training on using the HoloLens and navigating the AR environ-
ment. Each Unity scene, corresponding to a specific lecture segment, was deployed as
an independent AR application. Participants navigated through these scenes, with the
system tracking their location and gestures (recognized via Xsens motion capture data)
used for system navigation and interaction.

2.2 Data Collection

This section details the collection of various types of data essential for the study. It
includes the process of capturing eye-tracking data using Microsoft HoloLens 2 to ana-
lyze participants’ visual engagement with the AR content, motion capture data using the
Xsens system, which played a pivotal role in collecting precise data on participants’ phys-
ical movements, and performance data from the post-assessment questionnaire providing
critical insights into the learning outcomes and effectiveness of the AR system.

3 Data Analysis

3.1 Postural Dynamics Analysis

The Analysis of Postural Dynamics provided a detailed insight into how participants
physically interacted with the AR modules. Through the detailed visualization of Center
of Mass (COM), which is a theoretical point where the total mass of the body is con-
centrated [15], and coordinates across various modules, we could discern the subtleties
of balance and stability affected by the AR experience [16, 17] (Fig. 3).

Utilizing the motion capture data, we plotted the deviations of the individual’s COM
positions (X, y, z) from the overall average for each module. Plots (see Fig. 4) illustrated
these deviations, showing a clear variance in participant postures across different mod-
ules. For instance, the deviations in the ‘COM pos x’ occasionally showed a substantial
divergence from the average, suggesting lateral shifts in balance that could indicate a
reaction [18] to the content or an ergonomic response to the AR environment. Addi-
tionally, we plotted the COM position against time for each axis (X, y, z) in a series of
line graphs. These plots revealed patterns over time, such as whether there was a trend
towards increased deviation, which might be associated with fatigue or discomfort as
the participants progressed through the modules.

To explore the link between physical demand and variations in the COM, the study
compared the deviations of the COM from a baseline posture for each module. This
baseline posture refers to the initial stance of the participant when they begin interacting
with the AR module. It supported a deeper analysis of postural dynamics, offering
quantifiable evidence of how the AR system impacted physical engagement. Variations
in COM deviations suggested that certain modules may impose more physical demands
on participants, leading to more pronounced postural adjustments.
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Fig. 4. Initial COM analysis Visualizations in three axes of moment.

3.2 Slouching Scores Analysis

In this study, we implemented slouching scores as a quantitative method to assess fatigue
dynamics within AR environments. This metric was designed to evaluate the postural
changes experienced by participants engaged during the experiment (Eq. 1). The slouch-
ing score is a numerical indicator ranging from O to 100, which calculates the extent
of a participant’s postural deviation from an initial posture. If a slouching score is 100,
it means that no deviation from the initial posture, representing no physical fatigue,
whereas lower scores indicate higher physical fatigue.

abs(COM _pos_X — Global_Baseline)
Maximum_Deviation

Slouching score = 100 x (1 — ( ) (D
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The calculation of slouching scores was based on the establishment of an initial
posture. This baseline was derived from the average position of the COM in the x-
direction (‘COM pos x’) during the first 4 s of the beginning of AR learning lecture
represented by the dotted line in Fig. 5. We determined that within the first 4 s, participants
were stable across multiple observations, making this time frame suitable for establishing
a neutral or standard posture for each participant. Following the establishment of this
baseline, the analysis proceeded with the computation of the maximum deviation from
the baseline. This was achieved by isolating the maximum deviations in ‘COM pos x’,
representing the most significant shifts from the initial posture. To synthesize the data, we
computed the average slouching score for each 60-frame segment within each module.
This averaging was crucial to smooth out anomalies in individual frames, providing
a clearer picture of the overall postural dynamics throughout the AR interaction. By
focusing on these averages, the analysis could reveal broader patterns and trends that
might be obscured in a frame-by-frame examination. Figures 4 and 5 was a representation
of a single participant, while other participants followed a similar trend.

Trend of CoM pos x values over frames
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Fig. 5. Frame-by-Frame COM pos X Trajectory Across Modules

To confirm the relationship between these average scores and the physical demand
experienced by participants, we planned to compare them with the NASA TLX Physical
Demand (PD) values. The NASA TLX is a subjective assessment tool that measures the
perceived physical strain and workload experienced by an individual. Each subscale in
the NASA TLX, including the PD, is rated on a scale from 0 to 100, where 0 indicates
very low demand, and 100 indicates very high demand. This comparison is aimed at
establishing a correlation between the objective postural data (quantified by slouching
scores) and the subjective perception of workload and physical demand (as measured
by NASA TLX). For instance, a high slouching score, close to 100, would typically be
expected to correspond to a lower NASA TLX PD value, indicating minimal perceived
physical strain. This is because a slouching score of 100 signifies no deviation from
the baseline posture, implying an ergonomically sound and comfortable position for the
participant. Conversely, a lower slouching score, indicating a greater deviation from the
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baseline posture and potentially more ergonomic strain, would correspond to a higher
NASA TLX PD value. This correlation would suggest that as participants experience
more significant postural changes (as reflected in lower slouching scores), they also
perceive a higher level of physical demand and strain during their interaction with the
AR system.

4 Results

4.1 Slouching Scores

Our findings demonstrated a consistent trend across the participant group — a gradual
decline in slouching scores calculated by using COM pos X values across all modules.
According to our Hypothesis, this declining trajectory of scores suggests an escala-
tion in postural deviation, due to increasing fatigue and physical demand experienced
by participants as they engaged more extensively with the AR modules. For example,
observing a participant’s slouching score decrease from 100 in the first module to 70 in
the last module illustrates a significant 30-point reduction. This reduction aligns with a
corresponding 30% increase in perceived physical demand, as reflected in their NASA
TLX Physical Demand (PD) values. A critical observation from our analysis was the
alignment of data from 11 out of 16 participants with the hypothesized model. This
alignment indicates a notable correlation between the decrease in slouching scores and
an increase in physical demand over the progression of modules as shown in Table 1.

Table 1. Table showing Data of Average slouching scores across modules and NASA TLX PD
values of participants.

1 2 3 4 5 6 7 8 NASA TLX PD Approx
Difference
63 65 48 53 30 25 35 29 70 71
69 64 71 84 67 77 60 67 1 33
92 96 89 62 64 85 58 67 40 42
83 88 86 87 86 83 69 92 60 32
94 84 88 74 86 83 91 89 10 11
95 80 72 76 72 59 66 61 10 39
97 91 83 87 90 84 88 81 60 19
85 84 86 87 80 62 44 60 50 55
94 80 58 53 66 64 63 76 10 24
89 87 87 76 86 87 78 76 20 24
86 81 62 46 50 48 65 54 55 46
89 83 89 77 85 78 71 79 1 21

(continued)
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Table 1. (continued)

1 2 3 4 5 6 7 8 NASA TLX PD Approx
Difference

97 96 92 97 90 95 94 66 60 34

82 63 62 67 58 59 53 26 10 75

91 89 88 89 90 89 87 87 80 13

82 57 41 67 53 44 34 47 50 53

The data in Table 1 delineates the average slouching scores across eight modules
for selected participants, along their corresponding NASA Task Load Index Physical
Demand values. The ‘Approx Difference’ column calculates the deviation of the last mod-
ule’s slouching score from the maximum possible score of 100, providing an indicator
of the change in posture over the course of the modules.

4.2 Regression Model

The linear regression model allowed us to predict Physical Demand (PD) values for
each participant, based on their slouching scores across AR modules. This led us to
a comparison between the actual NASA TLX PD values and the predicted PD values
obtained from the regression model.

Table 2. Tabular chart showing Regression Coefficients for slouching scores by AR modules.

Slouching scores Regression Coefficients Std Error t Ratio Prob > Itl
Intercept —22.70897 50.14632 —0.45 0.6595
Module 1 —2.034923 0.752309 —2.70 0.0205*
Module 2 43616112 1.018101 4.28 0.0013*
Module 3 —2.883978 0.779677 —3.70 0.0035*
Module 4 1.3736066 0.502748 2.73 0.0195%*

Table 2 reveals that the slouching scores for the first four AR modules (1, 2, 3, 4) are
significantly correlated with the NASA TLX Physical Demand (PD) values. For modules
1 and 3, the negative coefficient suggests that increased physical demand leads to higher
postural deviation. Conversely, for modules 2 and 4, the high physical demand results
in lower postural deviation.

The scatter plot shown in Fig. 6 compares the actual NASA TLX Physical Demand
(PD) scores with the PD scores predicted by our regression model. Each point in the graph
corresponds to a pair of actual and predicted PD scores for an individual participant. R-
squared value is 0.64. It means that approximately 64 % of the variability in actual NASA
TLX PD scores can be explained by our linear regression model. Also, the P-value is
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0.0166. It implies that the model has a good predictive power and that the relationship
between the actual and predicted values is statistically significant.

Actual by Predicted Plot

80

NASA TLX PD Actual

0 20 40 60 80
NASA TLX PD Predicted RMSE=18.985 RSq=0.64
PValue=0.0166

Fig. 6. A Scatter plot comparing actual NASA TLX PD values against predicted PD values.

From all the above results we can understand this is a good fit model and demonstrates
robust performance. To support this analysis, we did correlation analysis between NASA
TLX PD values and the Predicted PD values. The result shows 0.8114 (see Table 3),
which is a high correlation between them. It suggests that the model’s estimates are
closely aligned with actual data. A correlation above 0.8 is considered indicative of a
strong relationship, meaning that the model’s predictions are likely to be consistent and
reliable.

Table 3. Correlation Matrix of Actual vs. Predicted Nasa TLX PD Scores.

NASA TLX PD Predicted PD
NASA TLX PD 1.0000 0.8114
Predicted PD 0.8114 1.0000

5 Discussion

While AR’s potential for creating immersive and interactive experiences is widely rec-
ognized, there is a growing imperative to address the ergonomic challenges associated
with its prolonged use. The need for ergonomic consideration in AR design is crucial
to mitigate the risks of postural fatigue and ensure that advancements in AR contribute
positively to user well-being. Our analysis of motion capture data has provided pivotal
insights, affirming the connection between escalating physical demand and changes in
body posture.
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5.1 Regression Model

Table 2 indicates that modules 5 to 8 were omitted from the regression model, which only
comprises modules 1 to 4. Based on the results, the standard deviation values, ranging
between 10 and 15, reflect a higher consistency in participant responses, likely driven
by the introduction of new and engaging content. This consistency provides a more
reliable basis for linear regression analysis. However, in the latter modules (5 to 8), the
standard deviation increases between 17 and 20. This change indicates altered participant
learning behavior from understanding new learning material to applying previously
learned concepts in problem-solving. Additionally, participant fatigue becomes more
pronounced in these later modules, especially after extended engagement periods [19].
These factors contribute to larger variability in postural responses, making the data from
these modules less suitable for a linear regression model that seeks to capture consistent
patterns.

5.2 Relationship Between Slouching Score and NASA TLX PD

The relationship between slouching scores and NASA TLX PD values revealed a propor-
tional link. As users progressed through AR modules, a decrease in slouching scores was
associated with an increase in perceived physical demand, according to NASA TLX PD
values. This correlation highlights the slouching scores as a viable measure for assess-
ing the ergonomic impact of AR interfaces, emphasizing the importance of considering
physical demand in the design and assessment of AR experiences.

The linear regression analysis produced a combination of positive and negative coef-
ficients. Notably, Modules 1 and 3 exhibited negative coefficients, implying that higher
average slouching scores, indicative of more relaxed postures, were associated with
lower predicted physical demand values. In contrast, Modules 2 and 4, characterized by
positive coefficients, suggested an inverse relationship; higher average slouching scores
indicated an increase in the predicted physical demand. This pattern is attributed to the
content and complexity of these modules: Modules 1 and 3 were less challenging and
physically demanding, allowing participants to adopt more relaxed postures and perceive
lower physical demands. Conversely, Modules 2 and 4, involving new, complex infor-
mation and problem statements, required heightened attention from participants. This
increased engagement led to less relaxed postures, as detected by our motion capture
sensors, and a consequent rise in physical demand.

5.3 Explain the Correlation of Both Predicted and Actual NASA TLX PD

The correlation analysis between predicted and actual NASA TLX PD values demon-
strated a significant positive relationship, affirming the predictive strength of our regres-
sion model. A strong correlation indicates that the slouching scores are dependable
indicators of perceived physical demand in AR environments. This finding supports our
decision to focus on the first 4 modules of the lecture for more accurate prediction. Which
explains that the hypothesis of fatigue influence in AR environments can be observed
and influential.
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6 Conclusion

Our study embarked on a significant exploration into the ergonomic implications of Aug-
mented Reality (AR). The findings revealed critical insights into the effects of prolonged
AR engagement on user posture and fatigue, highlighting the necessity for ergonomic
considerations in AR systems. In our research, we successfully identified delicate phys-
ical demand variations in body movement within augmented reality (AR) settings. Our
results, especially those related to the ‘slouching scores’ obtained from motion capture
data, showed a clear change in postural stability associated with prolonged exposure to
AR.

Our analysis concluded a significant correlation between our slouching scores and
the NASA TLX Physical Demand (PD) values, suggesting that as participants reported
higher physical demand, their postural stability decreased accordingly. This correlation
underpins the importance of detecting user comfort and fatigue in the design of AR
systems, especially in educational and training contexts where prolonged use is common.
However, our research is not without limitations. The data was drawn from a small sample
size, and the study’s scope was confined to specific AR modules in an educational setting.
Future research should thus aim to expand the sample size and diversify the AR content
to further validate and generalize our findings. Also, the integration of machine learning
and advanced predictive models stands out as a promising avenue for enhancing real-
time analysis and intervention strategies in AR systems. Technologies could enable the
development of adaptive AR systems that dynamically adjust content presentation based
on real-time assessments of user fatigue and engagement.
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