
Measuring Cognitive Workload in Augmented
Reality Learning Environments Through Pupil

Area Analysis

Siddarth Mohanty1, Jung Hyup Kim1(B), Varun Pulipati2, Fang Wang3,
Sara Mostowfi1, Danielle Oprean4, Yi Wang1, and Kangwon Seo1

1 Department of Industrial and Systems Engineering, University of Missouri, Columbia,
Mo 65211, USA

{smdqv,kijung,sara.mostowfi,yiwang,seoka}@missouri.edu
2 Department of Electrical Engineering and Computer Science, University of Missouri,

Columbia, Mo 65211, USA
vpccn@umsystem.edu

3 Department of Engineering and Information Technology, University of Missouri, Columbia,
Mo 65211, USA

wangfan@missouri.edu
4 School of Information Science and Learning Technologies, University of Missouri, Columbia,

Mo 65211, USA
opreand@missouri.edu

Abstract. In the digital learning landscape, Augmented Reality (AR) is revolu-
tionizing instructionalmethodologies. This study shifts focus to explore the impact
of AR-based lectures on pupil dilation as a biomarker of mental demand. By ana-
lyzing pupil dilationwith cognitive load assessment tools like theNASATaskLoad
Index, we aim to understand the cognitive implications of prolonged exposure to
AR in educational settings. We hypothesize that variations in pupil size can be
indicative of cognitive load, correlating with the mental demands imposed by AR
lectures. Preliminary findings suggest a significant relationship between increased
pupil dilation andheightenedmentalworkloadduringARengagements. This study
highlights the new way to measure cognitive workload in AR environments using
pupil dilation data.
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1 Introduction

Augmented Reality (AR) has emerged as a transformative tool in educational tech-
nology, offering immersive and interactive learning experiences. Despite its growing
adoption, understanding the cognitive impact of AR on students remains a critical area
of exploration. This study focuses on measuring and analyzing the cognitive load in
biomechanics AR lectures.
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Prior studies onAR-based learning havemostly focused on its effectiveness, learning
outcomes, and user experience, which has led to a lack of knowledge about the cognitive
load it imposes on learners. This study seeks to fill this gap using pupil dilation analysis
and comparing mental workload in AR settings. To assess mental demand, we used the
NASA Task Load Index (NASA TLX).

We propose that there may be a relationship between changes in pupil size and per-
ceivedmental effort, as determined through a combinationof objective physiological data
and subjective cognitive evaluations. The results of our research aim to provide a com-
prehensive understanding of the cognitive demands placed on individuals participating
in augmented reality (AR) learning settings.

The research problem is twofold: firstly, to measure and quantify the cognitive load
experienced by students using eye-tracking technology within AR educational settings,
and secondly, to investigate the correlation between pupil area and cognitive load, assess-
ing mental exertion in these settings. By achieving these objectives, this study seeks to
provide actionable insights for educators and developers in AR-based learning, enhanc-
ing both the effectiveness and efficiency of the learning process. The significance of this
research project lies in its potential to bring about transformative advancements in the
field of educational technology, particularly in the context of AR-based learning.

This research emphasizes the key elements of assessing and analyzing cognitive load
among students in AR educational environments. Developing a technique for gauging
mental demand in AR-driven learning presents a new strategy for understanding and
enhancing student education. It will help educators customize their teaching methods to
boost engagement and productivity, ultimately enhancing the effectiveness of the learn-
ing experience. Through an assessment of the mental demand on student learning, we
will identify factors that either hinder or facilitate learning outcomes and task execution
efficiency in AR settings. Such insights empower researchers to develop interventions
that significantly improve learner achievement and overall performance.

To measure cognitive workload in the AR learning environment, we implemented
pupil dilation analysis. This physiological response reflects different cognitive states,
such asmentalworkload anddemand.Toparticipants’ subjectivemental demandwith the
pupil dilation data, we gathered information using the NASA-TLX, a tool for evaluating
perceived workload. Research has shown that pupil size tends to increase with the level
of cognitive effort [1, 2]. When a task requires more mental demands, such as increased
attention, memory, or problem-solving, the pupils may dilate in response to the increased
demand for processing resources [3]. Because of this relationship, pupillometry can be
used as an objective measure to gauge mental workload. In studies where NASA-TLX
is used, pupil dilation measurements can serve as a corroborating physiological marker
to support subjective mental demand ratings [4]. While NASA-TLX relies on subjective
self-report measures of workload across six dimensions (including mental demand),
pupillometry can provide complementary objective data. The combination of subjective
ratings with physiological data can enhance the understanding of the actual workload
experienced by individuals [5]. Objective measures like pupil dilation can help calibrate
the subjective ratings given in the NASA-TLX.

In this study, we hypothesize that there would be a significant difference in eye
tracking pupil areawhen participants are engaged in learning or problem-solving lectures
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in AR environments. Specifically, we expect to observe a larger pupil dilation during
problem-solving tasks compared to the learning tasks, indicative of increased cognitive
workload during the experiment. Our hypothesis is based on the premise that more
complex cognitive processing is required for problem-solving activities,whichwill result
in higher cognitive workload ratings on the NASA TLX questionnaire.

2 Literature Review

This literature review embarks on an exploration of pivotal research discoveries con-
cerning the measurement of cognitive workload in various applications, with particular
attention given to eye tracking, pupil area, and their impact on student performance. Cog-
nitive load theory, as initially propounded by Sweller, Van Merrienboer [6], underscores
the paramount importance of overseeing cognitive demands to optimize the learning pro-
cess. In the area of educational technology, the consideration of cognitive load becomes
pivotal, as digital tools and AR applications can either facilitate or impede learning, con-
tingent upon the cognitive resources they consume. Eye tracking technology has gained
prominence within cognitive load research, offering insights into the precise areas to
which learners direct their visual attention during tasks [7–9]. Previous studies showed
that eye tracking serves as a valuable tool for capturing cognitive load by tracking gaze
patterns and fixation durations [10–14]. In the context of AR-based learning, eye track-
ing elucidates how cognitive load fluctuates in response to changing visual stimuli and
interactive elements. Pupil dilation could serve as a physiological marker intricately
linked to cognitive load [15]. The study done by Ahern and Beatty [16] demonstrated
that cognitive tasks demanding heightened mental effort correspond to increased pupil
dilation. This implies that pupil area can function as a real-time indicator of cognitive
engagement during AR learning experiences. Numerous research endeavors have delved
into the intricate relationship between cognitive load and student performance. A met-
analysis conducted by Sweller [17] underscored that elevated cognitive load can act as
an impediment to the achievement of learning outcomes, ultimately resulting in reduced
performance. This accentuates the pivotal role of optimizing cognitive load within AR-
based educational settings to augment student accomplishments. AR’s potential in the
realm of education is vast, providing opportunities for interactive 3D visualizations and
simulations. AR has the potential to enrich spatial comprehension, critical thinking,
and problem-solving skills [18]. While Augmented Reality (AR) has been increasingly
integrated into educational settings, offering promising avenues for enhanced learning
experiences, a specific aspect of its impact remains underexplored – the analysis of pupil
size as an indicator of cognitive load in AR learning environments. Previous studies have
delved into the general effects of AR on learning outcomes and student engagement.
For example, research on the application of AR in educational settings has examined its
influence on student motivation and performance, as seen in studies done by Braarud
[19]. Similarly, the study “ARLearningEnvironment IntegratedwithEIA InquiryModel:
Enhancing Scientific Literacy and Reducing Cognitive Load of Students” has under-
scored the potential of AR in improving scientific literacy and reducing cognitive load,
highlighting the EIA (Experience–Inquiry–Application) model’s effectiveness in this
domain.
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However, these studies have not specifically focused on using pupil size as a metric
for cognitive load in AR learning environments. This gap presents a unique opportunity
for our research. Our study aims to fill this lacuna by leveraging pupillometry – the study
of pupil size variation – as a novel approach to gauge cognitive workload in AR-based
educational settings. By focusing on the correlation between pupil size and cognitive
load, our research endeavors to provide new insights into the physiological responses
of learners engaged in AR experiences. This approach is pioneering in its attempt to
objectively measure the cognitive impact of AR on learners, a dimension that has been
relatively overlooked in existing literature. By doing so, our study not only contributes to
the broader understanding ofAR’s educational implications but also opens newpathways
for assessing and optimizing cognitive engagement in digital learning environments.

Mental Demand refers to the amount of mental and perceptual activity required by
a task. This can include aspects like thinking, decision making, calculating, remember-
ing, looking, searching, and any other mental activities. NASA-TLX has been used for
evaluating the mental exertion and cognitive involvement needed to execute a task, as
perceived by the individuals themselves [20–22]. The rating is typically on a scale from
low to high. For instance, a task might be considered to have low mental demand if
it is simple, straightforward, and requires minimal thought or concentration [23]. Con-
versely, a taskwith highmental demandmight be complex, challenging, involve intricate
decision-making, or require sustained attention and concentration. Understanding the
mental demand of a task is crucial for evaluating the potential for cognitive overload,
which can occur when the demands of a task exceed an individual’s cognitive capacity.
It is also important for the design of systems and tasks, especially in ensuring that they
are within the capabilities of the user, thereby increasing safety and efficiency. It is used
not only in research but also in the design and evaluation of products, in the workplace,
and in the assessment of training programs. In a typical NASA-TLX assessment, after
completing a task, a participant is asked to reflect on themental demand it required and to
provide a rating. This score is then combined with the ratings from the other five dimen-
sions (Physical Demand, Temporal Demand, Performance, Effort, and Frustration) to
calculate an overall workload score Braarud [19]. The outcomes of the mental demand
assessment can inform changes to task design, indicate the need for additional training
or resources, or suggest modifications to improve user interaction and reduce the poten-
tial for errors. By assessing mental demand and the other subscales, the NASA-TLX
provides a comprehensive view of workload that can inform improvements in system
design.

3 Methodology

3.1 Experimental Design

Twelve participants (average age = 20.6) from University of Missouri were recruited.
Theywere requested to complete a questionnaire encompassing general inquiries regard-
ing their age, gender, academic status, and prior experience with AR. The flowchart
shown in Fig. 1. Outlines the procedural steps for a study where participants begin
by giving informed consent and providing demographic information via a question-
naire. They then proceed to the setup and calibration of eye-tracking equipment and the
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Microsoft HoloLens 2 device. The experiment is conducted in two parts, with a manda-
tory four-hour gap between them to prevent data interference. Upon completion of each
experiment, participants fill out the NASA-TLX form to assess their mental workload.
Only after both experiments are completed do participants move on to the data analysis
phase. We will explain more details of the data analysis phase in the next section. After
that, we conducted a statistical analysis with the experimental data and NASA-TLX
forms, aiming to establish a relationship between the measured pupil dilation and the
subjective workload reported by the participants. This structured approach ensures a
systematic collection and analysis of data pertinent to understanding cognitive load in
AR learning environments.

Fig. 1. Schematic flowchart diagram of the experimental setup.

After the experiment was explained, participants were equipped with the Microsoft
HoloLens 2 headset, followed by the placement of the Dikablis Eye tracker over their
eyes (refer to Fig. 2.), and a powering device was slung across their body (see Fig. 3).
After the eye tracker and HoloLens 2 devices were properly placed on the participant,
the calibration of both devices had been proceeded to collect accurate eye data.

Two experiments (lecture 1 and lecture 2) were conducted with a minimum time
gap of 4 h and maximum 48 h in between. The lecture 1 is a basics Biomechanics
and Ergonomics AR learning session while the AR learning in the lecture 2 is more
challenging compared to the first lecture, as the participant must make use of the first
session’s knowledge to solve problems in Biomechanics and Ergonomics [24]. In each
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Fig. 2. Dikablis eye tracker & HoloLens and Eye tracker placement.

Fig. 3. Powering unit for the Eye Tracker hung across the body.

learning sessions the participant will be asked to complete multiple modules (7 in first
lecture and 8 in second lecture).

Fig. 4. Experimental setup describing the layout.

We set up a table with an indoor location sensor to trace the participant’s location
during AR learning [25]. This table also functioned as a navigational tool for transi-
tioning between different AR scenes (see Fig. 4 and 5). We used the Q-Track NFER
system for accurate indoor positioning. The NFER system plays a vital role in gathering
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important information about the participants’ movements, facilitating an examination of
their interaction with the AR material and their movement within the educational area.

Fig. 5. AR environment setup showing the instructor dictating a biomechanics module.

Our custom-built client program was configured to promptly receive positional data
via the locator receiver as soon as participants moved the table to a marked location

Fig. 6. Participant with the laptop along with the location tracking equipped table.
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(see Fig. 6). Upon identifying the specific area, the program initiated the Windows
Device Portal to execute the corresponding AR application and project the scene onto
the HoloLens device.

Following each augmented reality (AR) learning scene, participants are required to
answer a quiz question related to the material they just studied. They also need to assess
and rate their confidence in their answer. Subsequently, they view a feedback screen.
Once they have reviewed this screen, they can proceed to the next location to engage
with the following AR scene. During the time when participants are engaging with the
AR scene and answering the quiz, their eye pupil movements are tracked and monitored
in real time (refer to Fig. 7). After completion of the lecture, the eye tracker data was
saved in the DLAB eye tracking software in a CSV file.

Fig. 7. Dikablis eye tracking software interface showing the eye pupil.

3.2 Data Analysis for Pupil Eye Tracking

Once the participant data was gathered, multiple steps were undertaken to cleanse the
data for statistical analysis, aiming to uncover its relationship with the NASA TLX
Mental Demand parameter. Utilizing the Dikablis scene view camera footage, the eye
tracking dataset was segmented into learning and solving phases for each AR scene (7
modules for lecture 1 and 8 modules for lecture 2).

Given the variation in pupil size among individuals, which can range from 800 to
2500 square millimeters, we collected data on the initial size of each participant’s pupils
before exposing them to the visual stimuli created for this experiment. This baseline
measurement acts as a reference for tracking changes in pupil size in response to the AR
learning experience.

After that, we applied normalization to the pupil area data using Eq. 1 [26], where
Pnorm represents the normalized pupil area, Pi denotes each data point of the pupil area
(i= 1, …, n), min(P) is the smallest pupil area observed in the participant’s entire set of
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data points, and max(P) signifies the largest pupil area from that same set of data

Pnorm = Pi −min(P)
max(P)−min(P)

(1)

4 Results

4.1 Pupil Dilation Analysis

Upon examining the changes in pupil dilation among participants, we identified a signif-
icant pattern between the variations in pupil dilation from baseline to problem-solving
phases and the mental demand. Table 1 presents the variations in pupil size from the
baseline phase (B) to the problem-solving phase (S), labeled as ‘B-S-1’ to ‘B-S-7’. For
instance, ‘B-S-1’ signifies the difference in pupil area between phases B and S for AR
scene 1. These values represent the normalized difference in pupil size when participants
were engaged in specific AR scene, compared to their initial pupil size. This data is piv-
otal as it suggests a quantifiable link between physiological responses and cognitive load.
The last column, titled ‘Mental Demand’, shows a subjective rating of the mental effort
as reported by participants, with values ranging from 20 to 80. These values reflect the
cognitive demand of the tasks, with higher numbers indicating more demanding tasks.
The variation in pupil dilation across tasks—from as low as 0.0010 to as high as 0.2846.
By comparing the pupil dilation data with the self-reported mental demand, we were
able to find the validity of using pupillometric data as an objective metric for cognitive
workload in AR learning environments.

Table 1. Table shows the difference between the absolute value of the normalized pupil data
(baseline phase and problem-solving phase).

B-S-1 B-S-2 B-S-3 B-S-4 B-S-5 B-S-6 B-S-7 Mental Demand

0.2380 0.1380 0.2130 0.1990 0.2810 0.1560 0.1700 60

0.0950 0.1396 0.0130 0.0010 0.1190 0.2380 0.0100 50

0.0010 0.2180 0.0260 0.1250 0.0130 0.2140 0.2400 80

0.1990 0.1210 0.0060 0.1260 0.0690 0.0250 0.0220 30

0.1120 0.1160 0.0710 0.1660 0.1470 0.1210 0.1230 50

0.0801 0.0054 0.1046 0.0377 0.1065 0.0080 0.2891 50

0.2000 0.0960 0.0153 0.0780 0.1523 0.0779 0.0078 20

0.1281 0.0759 0.1849 0.1813 0.1311 0.0940 0.1167 50

0.1693 0.1520 0.2698 0.1988 0.0889 0.0248 0.0266 50

0.1775 0.1375 0.0689 0.2945 0.0885 0.0379 0.0893 40

0.2846 0.0725 0.0944 0.0390 0.0891 0.1021 0.0714 70

0.1189 0.0174 0.1848 0.0050 0.0988 0.1586 0.1096 50
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4.2 Relation Between Pupil Dilation and Mental Demand

According to the results (see Table 2), we could find the significant relation the pupil
dilation and mental demand in AR scenes 1, 2, 3, 5, and 6 in lecture 1.

Table 2. Table shows regression coefficients solving pupil dilation correlated with Mental
Demand in the lecture 1.

Term Estimate Std Error t Ratio Prob > |t|

Intercept 2.548576 10.84765 0.23 0.8236

B-S-1 132.8429 45.02071 2.95 0.0319

B-S-2 57.16934 41.72258 1.37 0.2289

B-S-3 72.32262 27.85889 2.6 0.0485

B-S-5 -154.746 45.48291 -3.4 0.0192

B-S-6 157.9889 36.44966 4.33 0.0075

Figure 8displays a linear trend illustrating the associationbetween the predictedmen-
tal workload and the actual measurements derived from pupil size. There’s an ascending
trend line depicted, indicating that higher predicted levels of mental workload correlate
with increased actual levels. The pink band surrounding the trend line signifies the con-
fidence interval, which provides an estimate of where the actual trend line might fall
with a certain level of confidence.

For lecture 1, The RMSE value is noted as 7.3448 (see Fig. 8), serving as an index of
the average discrepancy between the model’s predictions and the observed values—the
smaller this value, the more accurate the model is. An R-squared value of 0.90 signifies
a strong correlation, with the model accounting for 90% of the variance in actual mental
workload, which demonstrates an excellent model performance. A P-value of 0.0197
indicates a statistically meaningful correlation between the predicted and actual mental
workload, as it falls below the conventional threshold of 0.05.

However, therewas no significant relation between pupil dilation andmental demand
in lecture 2 (see Fig. 9). It was observed that the P-value is 0.3385, which is above the
conventional threshold of 0.05 for statistical significance. This P-value suggests that
the relationship observed between predicted and actual mental demand might not be
statistically significant.
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Fig. 8. Relation between the predicted mental load and pupil area for lecture 1.

Fig. 9. Relation between the predicted mental load and pupil area for lecture 2.

In terms of mental demand between lecture 1 and lecture 2, there was a notable
difference inmentalworkload between them, as illustrated in Fig. 10. Themental demand
of lecture 2 is significantly higher compared to lecture 1. This could imply that the pattern
of pupil dilation becomes more unpredictable with increased mental demand.
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Fig. 10. Mental Demand Comparison between Lecture 1 and Lecture 2.

5 Discussion

This study aimed to find the newway to measure cognitive workload using pupil dilation
in an augmented reality (AR) learning environment. Our findings revealed a significant
relationship between predicted and actual mental demand, as indicated by the regression
results. The regression model (see Table 2), with an R-squared value of 0.90, suggests
a strong explanatory power of the model, with the predicted mental demand accounting
for a substantial portion of the variance in the actual mental demand measurements.
However, it was only shown in lecture 1. There was no significant relationship between
predicted and actual mental demand in lecture 2. A potential reason for this discrepancy
may lie in the differing levels of workload between the two lectures. Figure 10 illustrates
that the mental demand during lecture 2 was substantially higher compared to lecture
1. The AR learning session in lecture 2 posed greater challenges, requiring participants
to apply knowledge from the first session to address problems in biomechanics. This
increase in task complexity could significantly diminish the predictability of pupil dila-
tion responses. If the task is more demanding than expected, mental demand may rise,
leading to increased variability in pupil dilation as participants adapt to the real level of
difficulty.

The regression coefficients in the model of lecture 1 indicate the relationship each
predictor has with the dependent variable, mental demand. For instance, B-S-1, B-S-
3, and B-S-6 are notable for their significant positive relationship with mental demand,
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suggesting these conditions notably increase cognitiveworkload. In otherwords, the pos-
itive values of these coefficients suggest that an increase of the pupil dilation difference
between baseline phase and problem-solving phase is associated with a correspond-
ing rise in mental demand. While the effect of B-S-2 lacks statistical significance, its
inclusion resulted in the highest R-squared value compared to any other combination.
B-S-5 shows a notable negative correlation, signifying that as the pupil dilation differ-
ence between the baseline and problem-solving phases increases, there is a decrease in
mental demand. The statistical significance of the lecture 1 model is reinforced by the
P-value of 0.0197, suggesting that the predictors used in the model are indeed relevant
to estimating mental demand in an AR setting. Further investigation is necessary to
understand why certain AR scenes exhibit a positive relationship between pupil dilation
and mental demand, while others demonstrate a negative relationship.

Pupil dilation is widely recognized as an indicator of cognitive load, though finding
a strong linear regression model has proven difficult. However, in this study, we have
successfully found a strong linear regression pattern at a medium level of participant
workload. The model’s high predictive validity has practical implications for the devel-
opment of adaptiveAR systems. For instance, real-timemonitoring of pupil area could be
integrated into AR applications to assess learner engagement and cognitive load, thereby
allowing for dynamic adjustments to the complexity of the content. Such adaptability
could enhance learning efficiency and reduce cognitive overload, potentially leading to
better educational outcomes.

6 Conclusion

In this study, we exam the effects of AR-based lectures on pupil dilation, utilizing it
as an indicator of mental demand. By comparing pupil dilation measurements with
cognitive load evaluation methods such as the NASA Task Load Index, we find that
fluctuations in pupil size could reflect varying cognitive loads, aligning with the mental
demands of AR lectures. Initial results reveal a notable link between enlarged pupil
dilation and increased cognitive workload in AR settings. This study introduces an
innovative approach for assessing cognitive workload in AR environments through the
analysis of pupil dilation data. The regression model used in our study reliably identifies
pupil dilation as an indicator of cognitive workload in AR learning settings. Our results
emphasize the model’s effectiveness in detecting variations in mental demand.

As for limitations, our study did not account for how individual differences related to
stress and cognitive demand could affect pupil dilation. Some individuals might exhibit
more significant pupil dilation as a reaction to increased cognitive demand due to stress,
whereas others may not show a physiological response to the same level of demand.
This variability could arise from personal differences among learners or from external
factors not accounted for in our model. Future studies should aim to include additional
physiological or environmental variables to improve the predictive power of the model.
Moreover, it is essential to explore how these findings apply across a larger sample size
that includes diverse age groups. Further research is needed to refine AR learning envi-
ronments, ensuring they effectively balance educational engagement with the cognitive
demands placed on learners.
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