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Abstract—The lack of measured data is a common issue
plaguing the synthetic aperture radar (SAR) automatic target
recognition (ATR) community. For deep learning approaches
such as convolutional neural networks (CNNs), a large amount of
data is needed to achieve desirable recognition rates. Several solu-
tions to synthetically generating SAR data have been proposed,
including using radar signature simulators and generative Al
(GenAl). Radar signature simulators are expensive, proprietary,
and rely on the ability to correctly model target shape, pose,
radar cross section (RCS), and background clutter. Generative
adversarial networks (GANs) have been applied to the problem
of synthetically generating SAR data but suffer from convergence
issues and often have worse generative performance compared to
denoising diffusion probabilistic models (DDPMs). In this paper,
we propose a conditional DDPM for synthetically generating
SAR data. We show the benefit of using conditional DDPMs to
generate synthetic SAR data by both GenAl and ATR metrics.
Moreover, we show that diffusion-generated data improves ATR
performance and permits realistic dataset variability.

Index Terms—Synthetic aperture radar, automatic target
recognition, generative Al, denoising diffusion probabilistic mod-
els.

I. INTRODUCTION

Synthetic aperture radar (SAR) is an active sensing platform
that allows for high-resolution imaging through virtual aper-
ture synthesis. By emitting microwave signals and analyzing
the returned echoes, SAR systems create detailed images of
surfaces, regardless of lighting conditions. SAR maintains dis-
tinct advantages over optical systems, allowing for operation
under unfavorable operating conditions such as poor weather,
smoke, and dust. Moreover, SAR allows for the extraction of
target pose, shape, and scattering characteristics. These desir-
able qualities lend use to multiple military and surveillance
applications, such as detecting and tracking vehicles, ships,
and other objects.

Classifying target class within SAR images, or SAR au-
tomatic target recognition (ATR), has been widely studied
in the past few decades. More recently, deep learning has
been used in ATR, using state-of-the-art computer vision
classification networks to classify between target classes [1],
[2]. To perform well on the classification task, deep learning
models require large datasets with targets in various positions
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and backgrounds. However, SAR data is scarce due to the
nature of employed use and collection time; requiring the user
to radiate large amounts of electromagnetic energy to collect
a single frame of a target at a given azimuth, elevation, and
position. Given this limitation, SAR dataset collections can
have a target class at only a few azimuth angles and a single
target pose.

To remedy dataset scarcity, several solutions to synthetically
generate SAR data have been proposed. These approaches can
be grouped into two groups: using electromagnetic software
and CAD models to generate scattering signatures and using
generative Al (GenAl) to generate similar images to the
training set. Radar signature simulators such as Xpatch [3],
allow for the production of synthetic SAR images through
electromagnetic simulations on CAD models of targets. These
simulators are often expensive and proprietary, prohibiting
open research. Moreover, dataset fidelity depends on the
ability to correctly model target shape and pose using CAD,
estimate the background clutter, and estimate the radar cross
section (RCS) of the target [4]-[6]. Modeling assumptions can
result in poor ATR performance when training on synthetic
signatures and testing on measured data.

GenAl models such as generative adversarial networks
(GANSs) [7]-[9], have been used in the task of generating
synthetic SAR image datasets. Conditional GANs (cGANs)
use a conditional generator G and a discriminator with clas-
sification (DwC') to generate labeled SAR data. Generator
G is conditioned on class embeddings, which guide it to
generate SAR images corresponding to a predefined target
class. The discriminator DwC' classifies whether the data,
generated by G or the original dataset, belongs to one of
the target classes. After classifying the target class, the DwC'
distinguishes between whether the data was produced by G
or is part of the original dataset. The DwC ensures that
the generated SAR images are indistinguishable from real
images and are correctly labeled. While GANs can produce
faithful synthetic images, it is well documented that they suffer
from numerous issues such as mode collapse, instability, and
non-convergence, requiring much more involved techniques to
produce high-quality images [10].

We propose the use of denoising diffusion probabilistic
models (DDPMs) to generate SAR data. DDPMs achieve
better generative results than GANs, have improved training
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Fig. 1: Forward and reverse diffusion trajectories for SAR image generation.

stability, and promote better sample diversity [11]. Section II
outlines the conditional DDPM architecture used for generat-
ing SAR images, conditioned on both target class and azimuth
angle. Section III outlines the dataset used, training details,
and evaluation criteria for the generated samples. Finally,
we evaluate the diffusion-generated samples in Section IV,
showing generative results and ATR accuracy.

II. DIFFUSION MODEL

Diffusion models have received a large amount of attention
in recent years, given their excellent generative capabilities.
DDPMs learn the latent structure of data by adding Gaussian
noise to the original base images in a process known as the
forward trajectory. This process involves gradually corrupting
the data with Gaussian noise over several time steps, creating
a sequence of noisy images. Subsequently, a neural network
is trained to denoise each image at each time step, a process
referred to as the reverse trajectory [12]. During sampling, the
reverse trajectory is used to generate new data. Starting from
a randomly sampled noisy image, the neural network (trained
on the reverse trajectory) iteratively removes the noise step-
by-step, gradually transforming the noisy image back into a
realistic image. Together, the forward and reverse trajectories
form a Markov chain, as illustrated in Fig. 1.

A. Diffusion Process

Assume we have a collection of SAR images x with label
embeddings y.jass and ya.,, where the embeddings correspond
to target class and target azimuth, respectively. Let our col-
lection of images and label embeddings be modeled by some
distribution of data q(x(o), Yelass, Yaz), Where q(x(o)) denotes
the original, clean images.

The forward diffusion trajectory transforms the original
distribution ¢(x(?)) into a standard Gaussian distribution over
a series of steps 1" by applying a sequence of Gaussian
transitions

¢ (xOD) = A (x0T B, a) ()

where (3; are the variances of the noise added at each step.
The resulting process after 1" steps is

q (X(O), .. ,X(T)) =q (X(O)) I_TI q (X(t)|x(t_1)) . ©Q
t=1

In practice, we do not need to apply g repeatedly to sample
from () ~ ¢(x®|x(?)), we instead express ¢(x®[x(?)) as
a Gaussian distribution [11]. With oy = 1 — ; and &, =
HZ:O g, we have

¢xVx) = Vax© + eI —ay, e~ N(0,I).  (3)

In the reverse diffusion trajectory, the model learns to
reconstruct the data from the noisy distribution back to the
original distribution (denoising) by estimating

Do (x(t_1)|x(t)) =N (x(t_l);,ug(x(t),t),Ee(x(t)ﬂf)) , 4

where mean fg(x(Y),¢) and diagonal covariance matrix
Yo (x®) 1) are parameterized by a neural network. The reverse
process begins from

P (X(T)> =N (x(T); 0, I) , )

and aims to recover x(9) from x(7) through learned reverse
transitions.

We train a model so that the distribution p(x(?)) learns
the true data distribution ¢(x(?)). To do so, we train a model
eo(x 1) to predict € from Eq. 3, with the objective function

L = Eyrfs 1) gy [l = o8] (6)

During the sampling process, the posterior mean jy(x(®), %) is
provided from ey(x®), 1),
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Instead of learning Zg(x(?, t), we instead fix the covariance
as a constant 5,1, where (3, is the posterior variance [13]
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B. Framework

U-Net [14] is employed to model noise at each reverse
timestep in the diffusion process. It consists of downsampling
and upsampling blocks that encode images into compressed
representations and reconstruct them. Residual blocks with
linear attention refine feature maps after convolution, enhanc-
ing key features [15]. The bottleneck block applies general
attention to capture long-range dependencies essential for
high-quality reconstructions. We use dimension multipliers of



(1x, 2x, 4x, 8x) to progressively increase the channels at
deeper layers. Sinusoidal positional embeddings encode the
timestep ¢, while class and azimuth angle information are
encoded via multi-layer perceptrons (MLPs).

The noise schedule determines how much noise is added
at each step in the diffusion process. In [16], it was de-
termined that while the linear scheduling performs well for
high-resolution images, it is sub-optimal for lower-resolution
images. As SAR images are typically lower-resolution images,
we use a cosine noise schedule, defined by

- f®) t/T+s m\°
=2 f(t)= =, 9
Qg f(O) f( ) Ccos 1 + S 2 ( )
with 8; = 1— =%t This scheduler is designed to have a linear

at—1
drop-off of a; in the middle of the process while changing very

little near the extreme points of ¢ =0 and ¢ =T'. As in [16],
we use an offset value of s = 0.008 and clip 5; to be no larger
than 0.999 to facilitate accurate learning of € and to prevent
collapse at t =T

We implement classifier-free guidance to add the conditional
information for both target label and azimuth [17]. Classifier-
free guidance uses a single neural network to train an uncon-
ditional DDPM py(x) parameterized through score estimator
€9(x) together with a conditional model pg(X|Yclass; Yaz) Pa-
rameterized through €g(X|¥class, Yaz)- The unconditional and
conditional models are jointly trained, randomly setting the
embeddings Y jass, Yaz to the unconditional null embedding 0, @
with probability pg.p. The sampling process is given by
(10

€9 (X, Yeclass yaz) = (1 + w)eé (X, Yelass yaz) - we(x),

where w is the strength of the classifier-free guidance.

III. EXPERIMENT

A. Dataset Details

The Moving and Stationary Target Acquisition and Recog-
nition (MSTAR) dataset [18], collected by Sandia National
Laboratory, is utilized for both training and testing. The collec-
tion platform is an X-band SAR sensor in one-foot resolution
spotlight mode. The MSTAR training and testing datasets
consist of 3 classes, bmp2, btr70, and t72, captured at
azimuth angles of 0—360° and elevation angles of 17° and 15°
for the training and testing datasets respectively. The training
dataset comprises 1,622 samples of SAR images, while the test
dataset includes 1,351 samples, presenting a relatively small
dataset with limited variation in target poses.

In this study, a subset of the original training data is also
considered. Rather than using the complete set of azimuth
angles for each target, we assume that only specific subsets
of azimuth angles have been collected, mirroring real-world
operating conditions. The azimuth angle ranges 0 — 120°,
120—240°, and 240—360° correspond to the azimuth ranges of
bmp2, btr70, and t 72 respectively. Table I shows a detailed
overview of the datasets.

TABLE I: Training dataset details.

Dataset Target Azimuth Range Samples
Original Train bmp2 0 — 360° 698
btr70 0 — 360° 233
t72 0 — 360° 691
Subset bmp2 0 — 120° 239
btr70 120 — 240° 73
t72 240 — 360° 244
Test bmp2 0 — 360° 581
btr70 0 — 360° 194
t72 0 — 360° 576

B. Evaluation Criterion

A ResNet34 convolutional neural network (CNN) [19] is
trained to distinguish between the bmp2, btr70, and t72
classes, allowing for evaluation of generated datasets in the
task of ATR. On the original training and testing datasets,
ResNet34 achieves a 94.4% test accuracy using an Adam
optimizer with a learning rate of le-4 and a cross-entropy
loss function, making it well suited to evaluate the viability of
using GenAl data in ATR training. Each dataset is trained for
30 epochs and three passes each, averaging the test accuracy
between all passes.

Inception Score (IS) [20], Fréchet Inception Distance (FID)
[21], and Kernel Inception Distance (KID) [22] are popular
metrics for assessing generative image models, utilizing a
pre-trained Inception-v3 model to evaluate how closely the
generated images resemble the original dataset in terms of
diversity and fidelity. IS evaluates the clarity and diversity of
generated images by calculating the average Kullback-Leibler
(KL) divergence between the conditional label distribution
p(y|x) and the marginal label distribution p(y). FID assesses
the similarity between the distributions of real and generated
images, calculated using the Fréchet distance between two
multivariate Gaussian distributions, defined by the means and
covariances of the real and generated datasets. KID is an
unbiased estimator that measures the squared maximum mean
discrepancy (MMD) between Inception-v3 representations,
providing a more robust measure than FID, which is sensitive
to the number of samples.

Lower FID and KID scores typically indicate better sample
variety and quality while higher values of IS score tend to
have higher quality. Standard implementations of IS, FID, and
KID rely on a pre-trained Inception-v3 model that was trained
on natural images. To adapt these metrics to our dataset, we
trained an Inception-v3 model on the entire MSTAR dataset.
We scaled images from 128x128 to 299x299 and converted our
single-channel SAR images into 3-channel RGB images to fit
the Inception-v3 architecture. Using ATR accuracy, IS, FID,
and KID scores, allows us to measure the quality, variability,
and impact of diffusion-generated samples in ATR.

C. Training and Sampling Details

In the training process, azimuth angles are binned into
5° increments, given the minimal visual difference between



adjacent bins. Provided that the training dataset is small, it
is necessary to bin the azimuth angles to allow the model
to effectively learn the azimuth angle information without
overfitting on specific pose angles and to increase the amount
of data per azimuth embedding.

In classifier-free guidance, the probability of dropping the
conditional embeddings is set to pg,op = 0.5, balancing the
training between unconditional and conditional information.
The conditional DDPMs are trained for 250k iterations, with
a learning rate of le-4, and a batch size of 8. Each image
is normalized to be in the range of [—1, 1] and is resized to
128x128 before training the DDPM. During the sampling pro-
cedure, each class is sampled for azimuth angles of 0 — 360°,
generating images of targets at both seen and unseen azimuth
angles. To establish a baseline, we also train a conditional
deep convolutional GAN (cDCGAN) and a conditional self-
attention GAN (cSAGAN).

The cDCGAN architecture follows the design described in
[23], with the addition of class and azimuth conditioning in
both the generator and discriminator. The generator employs
convolutional blocks to progressively upsample the image,
increasing its spatial dimensions. Conversely, the discrimina-
tor utilizes convolutional blocks to downsample the image.
Additionally, the cSAGAN [24], is based on the DCGAN
architecture but incorporates self-attention layers to focus on
relevant spatial regions during generation and discrimination,
resulting in improved generative performance.

Both the cDCGAN and cSAGAN are trained using the
same dataset and conditional information (class labels and
azimuth angles) as the DDPM. The hyperparameters of the
GAN models were optimized with respect to IS, FID, and KID
to ensure stable training and high-quality image generation.
Through this optimization process, we identified that a batch
size of 64, a latent dimension of 100, and a learning rate of 2e-
3, trained over 1000 epochs, yielded the best generative results
for the MSTAR dataset. These GAN architectures serve as
benchmarks to evaluate the relative performance of the DDPM
in generating synthetic SAR images.

IV. RESULTS
A. Generative Results

In this section, we first evaluate how the number of
timesteps 1" in the diffusion process and the classifier-free
guidance weight w influence the quality and diversity of
the generated samples. These factors are quantified using
IS, FID, and KID which serve as our primary metrics for
assessing image quality and variation. We vary the number of
timesteps during the diffusion process and adjust the classifier-
free guidance strength to explore their impact on generative
performance.

In Fig. 2a, the impact of the number of timesteps 7' in
the diffusion process on generative quality in SAR images is
illustrated. Shorter processes, such as 7' = 5 and T' = 25,
are more noisy compared to longer processes like 7" = 1000.
Shorter diffusion processes do not provide sufficient steps
for the neural network to accurately denoise the images,
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Fig. 2: (a) Truth and diffusion generated images for T' =
5, 10, 25, and 1000 with w = 3, (b) Histograms of
pixel densities for truth and diffusion generated images with
T = 1000 and w = 3.

leading to higher residual noise in the generated samples.
Conversely, longer processes allow for more gradual and
precise denoising, thereby improving image quality. Fig. 2b
displays histograms of the pixel densities for both the ground
truth images and those generated by the diffusion process
for T = 1000 timesteps. The diffusion-generated images
successfully replicate the distribution of the training set while
also introducing some variation in pixel intensity, resulting in
heavier tails in the pixel distributions.

The influence of classifier-free guidance strength on the
diffusion process is shown in Fig. 3. For w = 0, the
unconditional case is recovered, which reduces the quality



of the generated samples as it lacks the influence of class-
specific conditioning. As w increases, the model progressively
leverages more of the conditional information, enhancing
the fidelity of generated images to their target classes and
azimuth angles. However, excessive guidance strength, such
as w = 7, can introduce significant noise into the generated
images. Overly strong guidance leads to overfitting on the
guidance signal, causing the model to produce artifacts and
reducing the overall quality of the images, as illustrated in the
figure. Moreover, our experiments demonstrate that moderate
guidance strengths, such as w = 1 or w = 3, provide a good
balance between image fidelity and diversity. At these settings,
the generated images effectively capture the desired attributes
without introducing excessive noise.

w =1 w=3 w=>5

bmp2 w =0

Fig. 3: Impact of guidance strength w on generative results
for T = 1000.

The interplay between 7' and w is crucial for optimiz-
ing generative performance. Our results indicate that using
a higher number of timesteps in conjunction with a low
classifier-free guidance weight w yields the best performance
in terms of IS, FID, and KID, as shown in Table II. This
balance ensures that the diffusion process has enough steps
for accurate denoising while the guidance strength effectively
directs the generation process without overfitting on specific
targets or clutter attributes. Furthermore, we observe that
balanced DDPM models outperform both ¢cDCGANs and
cSAGANS in generating synthetic SAR samples.

B. Classification Results

The classification results are provided in Table III. We
observe that ATR accuracy significantly degrades when we
only have a subset of the original training dataset, lower-
ing from 94.4% total accuracy to 34.6%. When diffusion-
generated samples are added to our initial subset, we observe
a 28.4% boost in ATR accuracy, raising it to 63.0%. This
improvement can be attributed to the increased diversity in the
training data and the diffusion model filling in missing azimuth
samples. The diffusion model effectively generates a wider
array of synthetic samples that mimic varying operational
conditions and target configurations, thereby enriching the

TABLE II: Performance metrics for varying models, timesteps
T, and strengths w.

Model T w IS (1) FID () KID (})
cDCGAN - - 1.193 + 0.045 0.998 17.50
cSAGAN - - 1.283 £ 0.042 0.510 5.491
cDDPM 5 0 1.537 £ 0.025 1.177 14.69
5 1 1.407 £ 0.135 0.210 3.034
5 3 1.537 £ 0.069 3.411 116.0
5 5 1.522 £ 0.066 6.905 237.0
5 7 1.513 +£0.058 11.12 356.0
25 0  1.645 = 0.023 17.16 443.0
25 1 1.508 £ 0.119 1.791 52.96
25 3 1.544 £ 0.077 2.400 73.54
25 5 1551 £ 0.066 2.846 93.24
25 7 1.579 £ 0.062 4.670 155.0
100 0 1.222 +0.031 0.744 19.89
100 1 1.397 £ 0.140 0.161 3.251
100 3 1534 £0.102 2.167 67.43
100 5 1544 £ 0.100 2.905 102.9
100 7 1.595 £0.103 8.235 279.8
1000 0  1.125 +£0.019 2.123 44.11
1000 1 1.327 £ 0.152 0.004 0.259
1000 3 1.515+0.116 1.560 45.09
1000 5 1477 +£0.117 0.940 19.62
1000 7  1.603 = 0.136 6.106 207.2

data distribution. This added diversity strengthens the model’s
ability to generalize to new, unseen data during testing.

To further investigate the impact of diffusion-generated
samples on ATR, we randomly sampled 80%, 60%, and 20%
of the original dataset to create different training subsets
with random gaps in the azimuth range of each target class.
The results consistently show that the addition of diffusion-
generated samples enhances accuracy across all levels of
data reduction, indicating that diffusion-generated samples can
effectively compensate for the reduced amount of real data,
providing a valuable data augmentation strategy. The consis-
tent improvement across various dataset sizes highlights the
robustness of diffusion-generated samples in enhancing ATR
training. The diffusion model effectively enriches the training
set with diverse and realistic synthetic samples, improving the
model’s overall performance and generalization capability.

The inclusion of high-quality, diverse synthetic data helps
to alleviate the challenge of overfitting to a limited number
of samples and classes. This approach broadens the model’s
exposure to a wide range of target signatures and background
noise conditions, which is crucial in SAR applications where
even slight variations in angle, lighting, or environmental
context can cause notable changes in target appearance. While
both DDPM and GAN-based methods improve ATR accuracy,
DDPM models consistently surpass GANs in generating syn-
thetic samples. Additionally, when the dataset is limited to
20% or 60% of its original size, the integration of synthetic
data leads to significant gains in ATR accuracy. This im-
provement can be attributed to the generative models’ ability
to approximate missing portions of the training distribution.
However, in cases where the dataset is more complete, such
as 80% of the original size, low-quality synthetic data tends



TABLE III: ATR results for datasets.

Dataset Accuracy
Training Baseline 94.4%
Training Subset 34.6%
Training Subset + cDDPM (+28.4%) 63.0%
Training Subset + cDCGAN 60.8%
Training Subset + cSAGAN 60.2%
80% Random Sample 93.5%
80% Random Sample + cDDPM (+2.1%) 95.6%
80% Random Sample + cDCGAN 81.2%
80% Random Sample + cSAGAN 90.7%
60% Random Sample 49.3%
60% Random Sample + cDDPM (+39.8%) 89.1%
60% Random Sample + cDCGAN 78.6%
60% Random Sample + cSAGAN 79.8%
20% Random Sample 43.6%
20% Random Sample + cDDPM (+39.9%) 83.5%
20% Random Sample + cDCGAN 78.2%
20% Random Sample + cSAGAN 76.6%

to negatively impact ATR accuracy, underscoring that data
fidelity is more critical than approximating the training dis-
tribution.

The observed boost in ATR accuracy demonstrates the
potential of incorporating diffusion-generated data into the
ATR training process. Despite the MSTAR dataset presenting
a relatively easy classification problem and providing a strong
baseline, the presented improvement in accuracy highlights
the effectiveness of synthetic data in enhancing model perfor-
mance under constraints on measured data. The increase in
accuracy suggests that diffusion-generated samples introduce
valuable diversity, filling gaps and enriching the training set
with variations that might be absent in the original dataset.

V. CONCLUSION

In this work, we have demonstrated the effectiveness of
denoising diffusion probabilistic models (DDPMs) in gener-
ating high-quality SAR images, conditioned on target class
and azimuth angle. We showed that diffusion models enhance
the fidelity and diversity of SAR datasets, improving ATR
accuracy. Provided the extremely limited size of our training
dataset, this highlights the robustness of conditional DDPMs
in learning target properties in SAR images. These models
successfully generate SAR images that faithfully model the
measured background clutter and target scattering characteris-
tics while introducing variability.

In future work, we aim to examine the potential of diffusion
models in additional SAR problems. We plan to investigate
specific aspects of super-resolution to enhance image detail at
finer scales, apply target inpainting for reconstructing obscured
or incomplete SAR imagery, and explore the integration of
diffusion models in Video SAR for dynamic surveillance
applications.
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