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Abstract—The lack of measured data is a common issue
plaguing the synthetic aperture radar (SAR) automatic target
recognition (ATR) community. For deep learning approaches
such as convolutional neural networks (CNNs), a large amount of
data is needed to achieve desirable recognition rates. Several solu-
tions to synthetically generating SAR data have been proposed,
including using radar signature simulators and generative AI
(GenAI). Radar signature simulators are expensive, proprietary,
and rely on the ability to correctly model target shape, pose,
radar cross section (RCS), and background clutter. Generative
adversarial networks (GANs) have been applied to the problem
of synthetically generating SAR data but suffer from convergence
issues and often have worse generative performance compared to
denoising diffusion probabilistic models (DDPMs). In this paper,
we propose a conditional DDPM for synthetically generating
SAR data. We show the benefit of using conditional DDPMs to
generate synthetic SAR data by both GenAI and ATR metrics.
Moreover, we show that diffusion-generated data improves ATR
performance and permits realistic dataset variability.

Index Terms—Synthetic aperture radar, automatic target
recognition, generative AI, denoising diffusion probabilistic mod-
els.

I. INTRODUCTION

Synthetic aperture radar (SAR) is an active sensing platform

that allows for high-resolution imaging through virtual aper-

ture synthesis. By emitting microwave signals and analyzing

the returned echoes, SAR systems create detailed images of

surfaces, regardless of lighting conditions. SAR maintains dis-

tinct advantages over optical systems, allowing for operation

under unfavorable operating conditions such as poor weather,

smoke, and dust. Moreover, SAR allows for the extraction of

target pose, shape, and scattering characteristics. These desir-

able qualities lend use to multiple military and surveillance

applications, such as detecting and tracking vehicles, ships,

and other objects.

Classifying target class within SAR images, or SAR au-

tomatic target recognition (ATR), has been widely studied

in the past few decades. More recently, deep learning has

been used in ATR, using state-of-the-art computer vision

classification networks to classify between target classes [1],

[2]. To perform well on the classification task, deep learning

models require large datasets with targets in various positions

This work was supported by the National Science Foundation SWIFT
under Grant 114237, Office of Naval Research N0014-22-1-2147, and Army
Research Office W911NF-23-1-0088.

and backgrounds. However, SAR data is scarce due to the

nature of employed use and collection time; requiring the user

to radiate large amounts of electromagnetic energy to collect

a single frame of a target at a given azimuth, elevation, and

position. Given this limitation, SAR dataset collections can

have a target class at only a few azimuth angles and a single

target pose.

To remedy dataset scarcity, several solutions to synthetically

generate SAR data have been proposed. These approaches can

be grouped into two groups: using electromagnetic software

and CAD models to generate scattering signatures and using

generative AI (GenAI) to generate similar images to the

training set. Radar signature simulators such as Xpatch [3],

allow for the production of synthetic SAR images through

electromagnetic simulations on CAD models of targets. These

simulators are often expensive and proprietary, prohibiting

open research. Moreover, dataset fidelity depends on the

ability to correctly model target shape and pose using CAD,

estimate the background clutter, and estimate the radar cross

section (RCS) of the target [4]–[6]. Modeling assumptions can

result in poor ATR performance when training on synthetic

signatures and testing on measured data.

GenAI models such as generative adversarial networks

(GANs) [7]–[9], have been used in the task of generating

synthetic SAR image datasets. Conditional GANs (cGANs)

use a conditional generator G and a discriminator with clas-

sification (DwC) to generate labeled SAR data. Generator

G is conditioned on class embeddings, which guide it to

generate SAR images corresponding to a predefined target

class. The discriminator DwC classifies whether the data,

generated by G or the original dataset, belongs to one of

the target classes. After classifying the target class, the DwC
distinguishes between whether the data was produced by G
or is part of the original dataset. The DwC ensures that

the generated SAR images are indistinguishable from real

images and are correctly labeled. While GANs can produce

faithful synthetic images, it is well documented that they suffer

from numerous issues such as mode collapse, instability, and

non-convergence, requiring much more involved techniques to

produce high-quality images [10].

We propose the use of denoising diffusion probabilistic

models (DDPMs) to generate SAR data. DDPMs achieve

better generative results than GANs, have improved training



Fig. 1: Forward and reverse diffusion trajectories for SAR image generation.

stability, and promote better sample diversity [11]. Section II

outlines the conditional DDPM architecture used for generat-

ing SAR images, conditioned on both target class and azimuth

angle. Section III outlines the dataset used, training details,

and evaluation criteria for the generated samples. Finally,

we evaluate the diffusion-generated samples in Section IV,

showing generative results and ATR accuracy.

II. DIFFUSION MODEL

Diffusion models have received a large amount of attention

in recent years, given their excellent generative capabilities.

DDPMs learn the latent structure of data by adding Gaussian

noise to the original base images in a process known as the

forward trajectory. This process involves gradually corrupting

the data with Gaussian noise over several time steps, creating

a sequence of noisy images. Subsequently, a neural network

is trained to denoise each image at each time step, a process

referred to as the reverse trajectory [12]. During sampling, the

reverse trajectory is used to generate new data. Starting from

a randomly sampled noisy image, the neural network (trained

on the reverse trajectory) iteratively removes the noise step-

by-step, gradually transforming the noisy image back into a

realistic image. Together, the forward and reverse trajectories

form a Markov chain, as illustrated in Fig. 1.

A. Diffusion Process

Assume we have a collection of SAR images x with label

embeddings yclass and yaz, where the embeddings correspond

to target class and target azimuth, respectively. Let our col-

lection of images and label embeddings be modeled by some

distribution of data q(x(0),yclass,yaz), where q(x(0)) denotes

the original, clean images.

The forward diffusion trajectory transforms the original

distribution q(x(0)) into a standard Gaussian distribution over

a series of steps T by applying a sequence of Gaussian

transitions

q
(

x(t)|x(t−1)
)

= N
(

x(t);
√

1− βtx
(t−1), βtI

)

, (1)

where βt are the variances of the noise added at each step.

The resulting process after T steps is

q
(

x(0), . . . ,x(T )
)

= q
(

x(0)
)

T
∏

t=1

q
(

x(t)|x(t−1)
)

. (2)

In practice, we do not need to apply q repeatedly to sample

from x(t) ∼ q(x(t)|x(0)), we instead express q(x(t)|x(0)) as

a Gaussian distribution [11]. With αt = 1 − βt and ᾱt =
∏t

s=0 αs, we have

q(x(t)|x(0)) =
√
ᾱtx

(0) + ϵ
√
1− ᾱt, ϵ ∼ N (0, I). (3)

In the reverse diffusion trajectory, the model learns to

reconstruct the data from the noisy distribution back to the

original distribution (denoising) by estimating

pθ

(

x(t−1)|x(t)
)

= N
(

x(t−1);µθ(x
(t), t),Σθ(x

(t), t)
)

, (4)

where mean µθ(x
(t), t) and diagonal covariance matrix

Σθ(x
(t), t) are parameterized by a neural network. The reverse

process begins from

p
(

x(T )
)

= N
(

x(T );0, I
)

, (5)

and aims to recover x(0) from x(T ) through learned reverse

transitions.

We train a model so that the distribution p(x(0)) learns

the true data distribution q(x(0)). To do so, we train a model

ϵθ(x
(t), t) to predict ϵ from Eq. 3, with the objective function

L = Et∼[1,T ],x(0)∼q(x(0)),ϵ∼N (0,I)

[

||ϵ− ϵθ(x
(t), t)||2

]

. (6)

During the sampling process, the posterior mean µθ(x
(t), t) is

provided from ϵθ(x
(t), t),

µθ(x
(t), t) =

1√
αt

(

x(t) − 1− αt√
1− ᾱt

ϵθ(x
(t), t)

)

. (7)

Instead of learning Σθ(x
(t), t), we instead fix the covariance

as a constant β̃tI, where β̃t is the posterior variance [13]

β̃t =
1− ᾱt−1

1− ᾱt

βt. (8)

B. Framework

U-Net [14] is employed to model noise at each reverse

timestep in the diffusion process. It consists of downsampling

and upsampling blocks that encode images into compressed

representations and reconstruct them. Residual blocks with

linear attention refine feature maps after convolution, enhanc-

ing key features [15]. The bottleneck block applies general

attention to capture long-range dependencies essential for

high-quality reconstructions. We use dimension multipliers of



(1x, 2x, 4x, 8x) to progressively increase the channels at

deeper layers. Sinusoidal positional embeddings encode the

timestep t, while class and azimuth angle information are

encoded via multi-layer perceptrons (MLPs).

The noise schedule determines how much noise is added

at each step in the diffusion process. In [16], it was de-

termined that while the linear scheduling performs well for

high-resolution images, it is sub-optimal for lower-resolution

images. As SAR images are typically lower-resolution images,

we use a cosine noise schedule, defined by

ᾱt =
f(t)

f(0)
, f(t) = cos

(

t/T + s

1 + s
· π
2

)2

, (9)

with βt = 1− ᾱt

ᾱt−1
. This scheduler is designed to have a linear

drop-off of ᾱt in the middle of the process while changing very

little near the extreme points of t = 0 and t = T . As in [16],

we use an offset value of s = 0.008 and clip βt to be no larger

than 0.999 to facilitate accurate learning of ϵ and to prevent

collapse at t = T .

We implement classifier-free guidance to add the conditional

information for both target label and azimuth [17]. Classifier-

free guidance uses a single neural network to train an uncon-

ditional DDPM pθ(x) parameterized through score estimator

ϵθ(x) together with a conditional model pθ(x|yclass,yaz) pa-

rameterized through ϵθ(x|yclass,yaz). The unconditional and

conditional models are jointly trained, randomly setting the

embeddings yclass,yaz to the unconditional null embedding ∅, ∅
with probability pdrop. The sampling process is given by

ϵ̃θ(x,yclass,yaz) = (1 + w)ϵθ(x,yclass,yaz)− wϵ(x), (10)

where w is the strength of the classifier-free guidance.

III. EXPERIMENT

A. Dataset Details

The Moving and Stationary Target Acquisition and Recog-

nition (MSTAR) dataset [18], collected by Sandia National

Laboratory, is utilized for both training and testing. The collec-

tion platform is an X-band SAR sensor in one-foot resolution

spotlight mode. The MSTAR training and testing datasets

consist of 3 classes, bmp2, btr70, and t72, captured at

azimuth angles of 0−360◦ and elevation angles of 17◦ and 15◦

for the training and testing datasets respectively. The training

dataset comprises 1,622 samples of SAR images, while the test

dataset includes 1,351 samples, presenting a relatively small

dataset with limited variation in target poses.

In this study, a subset of the original training data is also

considered. Rather than using the complete set of azimuth

angles for each target, we assume that only specific subsets

of azimuth angles have been collected, mirroring real-world

operating conditions. The azimuth angle ranges 0 − 120◦,

120−240◦, and 240−360◦ correspond to the azimuth ranges of

bmp2, btr70, and t72 respectively. Table I shows a detailed

overview of the datasets.

TABLE I: Training dataset details.

Dataset Target Azimuth Range Samples

Original Train bmp2 0− 360
◦ 698

btr70 0− 360
◦ 233

t72 0− 360
◦ 691

Subset bmp2 0− 120
◦ 239

btr70 120− 240
◦ 73

t72 240− 360
◦ 244

Test bmp2 0− 360
◦ 581

btr70 0− 360
◦ 194

t72 0− 360
◦ 576

B. Evaluation Criterion

A ResNet34 convolutional neural network (CNN) [19] is

trained to distinguish between the bmp2, btr70, and t72

classes, allowing for evaluation of generated datasets in the

task of ATR. On the original training and testing datasets,

ResNet34 achieves a 94.4% test accuracy using an Adam

optimizer with a learning rate of 1e-4 and a cross-entropy

loss function, making it well suited to evaluate the viability of

using GenAI data in ATR training. Each dataset is trained for

30 epochs and three passes each, averaging the test accuracy

between all passes.

Inception Score (IS) [20], Fréchet Inception Distance (FID)

[21], and Kernel Inception Distance (KID) [22] are popular

metrics for assessing generative image models, utilizing a

pre-trained Inception-v3 model to evaluate how closely the

generated images resemble the original dataset in terms of

diversity and fidelity. IS evaluates the clarity and diversity of

generated images by calculating the average Kullback–Leibler

(KL) divergence between the conditional label distribution

p(y|x) and the marginal label distribution p(y). FID assesses

the similarity between the distributions of real and generated

images, calculated using the Fréchet distance between two

multivariate Gaussian distributions, defined by the means and

covariances of the real and generated datasets. KID is an

unbiased estimator that measures the squared maximum mean

discrepancy (MMD) between Inception-v3 representations,

providing a more robust measure than FID, which is sensitive

to the number of samples.

Lower FID and KID scores typically indicate better sample

variety and quality while higher values of IS score tend to

have higher quality. Standard implementations of IS, FID, and

KID rely on a pre-trained Inception-v3 model that was trained

on natural images. To adapt these metrics to our dataset, we

trained an Inception-v3 model on the entire MSTAR dataset.

We scaled images from 128x128 to 299x299 and converted our

single-channel SAR images into 3-channel RGB images to fit

the Inception-v3 architecture. Using ATR accuracy, IS, FID,

and KID scores, allows us to measure the quality, variability,

and impact of diffusion-generated samples in ATR.

C. Training and Sampling Details

In the training process, azimuth angles are binned into

5◦ increments, given the minimal visual difference between



adjacent bins. Provided that the training dataset is small, it

is necessary to bin the azimuth angles to allow the model

to effectively learn the azimuth angle information without

overfitting on specific pose angles and to increase the amount

of data per azimuth embedding.

In classifier-free guidance, the probability of dropping the

conditional embeddings is set to pdrop = 0.5, balancing the

training between unconditional and conditional information.

The conditional DDPMs are trained for 250k iterations, with

a learning rate of 1e-4, and a batch size of 8. Each image

is normalized to be in the range of [−1, 1] and is resized to

128x128 before training the DDPM. During the sampling pro-

cedure, each class is sampled for azimuth angles of 0− 360◦,

generating images of targets at both seen and unseen azimuth

angles. To establish a baseline, we also train a conditional

deep convolutional GAN (cDCGAN) and a conditional self-

attention GAN (cSAGAN).

The cDCGAN architecture follows the design described in

[23], with the addition of class and azimuth conditioning in

both the generator and discriminator. The generator employs

convolutional blocks to progressively upsample the image,

increasing its spatial dimensions. Conversely, the discrimina-

tor utilizes convolutional blocks to downsample the image.

Additionally, the cSAGAN [24], is based on the DCGAN

architecture but incorporates self-attention layers to focus on

relevant spatial regions during generation and discrimination,

resulting in improved generative performance.

Both the cDCGAN and cSAGAN are trained using the

same dataset and conditional information (class labels and

azimuth angles) as the DDPM. The hyperparameters of the

GAN models were optimized with respect to IS, FID, and KID

to ensure stable training and high-quality image generation.

Through this optimization process, we identified that a batch

size of 64, a latent dimension of 100, and a learning rate of 2e-

3, trained over 1000 epochs, yielded the best generative results

for the MSTAR dataset. These GAN architectures serve as

benchmarks to evaluate the relative performance of the DDPM

in generating synthetic SAR images.

IV. RESULTS

A. Generative Results

In this section, we first evaluate how the number of

timesteps T in the diffusion process and the classifier-free

guidance weight w influence the quality and diversity of

the generated samples. These factors are quantified using

IS, FID, and KID which serve as our primary metrics for

assessing image quality and variation. We vary the number of

timesteps during the diffusion process and adjust the classifier-

free guidance strength to explore their impact on generative

performance.

In Fig. 2a, the impact of the number of timesteps T in

the diffusion process on generative quality in SAR images is

illustrated. Shorter processes, such as T = 5 and T = 25,

are more noisy compared to longer processes like T = 1000.

Shorter diffusion processes do not provide sufficient steps

for the neural network to accurately denoise the images,

(a)

(b)

Fig. 2: (a) Truth and diffusion generated images for T =
5, 10, 25, and 1000 with w = 3, (b) Histograms of

pixel densities for truth and diffusion generated images with

T = 1000 and w = 3.

leading to higher residual noise in the generated samples.

Conversely, longer processes allow for more gradual and

precise denoising, thereby improving image quality. Fig. 2b

displays histograms of the pixel densities for both the ground

truth images and those generated by the diffusion process

for T = 1000 timesteps. The diffusion-generated images

successfully replicate the distribution of the training set while

also introducing some variation in pixel intensity, resulting in

heavier tails in the pixel distributions.

The influence of classifier-free guidance strength on the

diffusion process is shown in Fig. 3. For w = 0, the

unconditional case is recovered, which reduces the quality



of the generated samples as it lacks the influence of class-

specific conditioning. As w increases, the model progressively

leverages more of the conditional information, enhancing

the fidelity of generated images to their target classes and

azimuth angles. However, excessive guidance strength, such

as w = 7, can introduce significant noise into the generated

images. Overly strong guidance leads to overfitting on the

guidance signal, causing the model to produce artifacts and

reducing the overall quality of the images, as illustrated in the

figure. Moreover, our experiments demonstrate that moderate

guidance strengths, such as w = 1 or w = 3, provide a good

balance between image fidelity and diversity. At these settings,

the generated images effectively capture the desired attributes

without introducing excessive noise.

Fig. 3: Impact of guidance strength w on generative results

for T = 1000.

The interplay between T and w is crucial for optimiz-

ing generative performance. Our results indicate that using

a higher number of timesteps in conjunction with a low

classifier-free guidance weight w yields the best performance

in terms of IS, FID, and KID, as shown in Table II. This

balance ensures that the diffusion process has enough steps

for accurate denoising while the guidance strength effectively

directs the generation process without overfitting on specific

targets or clutter attributes. Furthermore, we observe that

balanced DDPM models outperform both cDCGANs and

cSAGANs in generating synthetic SAR samples.

B. Classification Results

The classification results are provided in Table III. We

observe that ATR accuracy significantly degrades when we

only have a subset of the original training dataset, lower-

ing from 94.4% total accuracy to 34.6%. When diffusion-

generated samples are added to our initial subset, we observe

a 28.4% boost in ATR accuracy, raising it to 63.0%. This

improvement can be attributed to the increased diversity in the

training data and the diffusion model filling in missing azimuth

samples. The diffusion model effectively generates a wider

array of synthetic samples that mimic varying operational

conditions and target configurations, thereby enriching the

TABLE II: Performance metrics for varying models, timesteps

T , and strengths w.

Model T w IS (↑) FID (↓) KID (↓)

cDCGAN - - 1.193 ± 0.045 0.998 17.50
cSAGAN - - 1.283 ± 0.042 0.510 5.491

cDDPM 5 0 1.537 ± 0.025 1.177 14.69
5 1 1.407 ± 0.135 0.210 3.034
5 3 1.537 ± 0.069 3.411 116.0
5 5 1.522 ± 0.066 6.905 237.0
5 7 1.513 ± 0.058 11.12 356.0

25 0 1.645 ± 0.023 17.16 443.0
25 1 1.508 ± 0.119 1.791 52.96
25 3 1.544 ± 0.077 2.400 73.54
25 5 1.551 ± 0.066 2.846 93.24
25 7 1.579 ± 0.062 4.670 155.0

100 0 1.222 ± 0.031 0.744 19.89
100 1 1.397 ± 0.140 0.161 3.251
100 3 1.534 ± 0.102 2.167 67.43
100 5 1.544 ± 0.100 2.905 102.9
100 7 1.595 ± 0.103 8.235 279.8

1000 0 1.125 ± 0.019 2.123 44.11
1000 1 1.327 ± 0.152 0.004 0.259

1000 3 1.515 ± 0.116 1.560 45.09
1000 5 1.477 ± 0.117 0.940 19.62
1000 7 1.603 ± 0.136 6.106 207.2

data distribution. This added diversity strengthens the model’s

ability to generalize to new, unseen data during testing.

To further investigate the impact of diffusion-generated

samples on ATR, we randomly sampled 80%, 60%, and 20%

of the original dataset to create different training subsets

with random gaps in the azimuth range of each target class.

The results consistently show that the addition of diffusion-

generated samples enhances accuracy across all levels of

data reduction, indicating that diffusion-generated samples can

effectively compensate for the reduced amount of real data,

providing a valuable data augmentation strategy. The consis-

tent improvement across various dataset sizes highlights the

robustness of diffusion-generated samples in enhancing ATR

training. The diffusion model effectively enriches the training

set with diverse and realistic synthetic samples, improving the

model’s overall performance and generalization capability.

The inclusion of high-quality, diverse synthetic data helps

to alleviate the challenge of overfitting to a limited number

of samples and classes. This approach broadens the model’s

exposure to a wide range of target signatures and background

noise conditions, which is crucial in SAR applications where

even slight variations in angle, lighting, or environmental

context can cause notable changes in target appearance. While

both DDPM and GAN-based methods improve ATR accuracy,

DDPM models consistently surpass GANs in generating syn-

thetic samples. Additionally, when the dataset is limited to

20% or 60% of its original size, the integration of synthetic

data leads to significant gains in ATR accuracy. This im-

provement can be attributed to the generative models’ ability

to approximate missing portions of the training distribution.

However, in cases where the dataset is more complete, such

as 80% of the original size, low-quality synthetic data tends



TABLE III: ATR results for datasets.

Dataset Accuracy

Training Baseline 94.4%

Training Subset 34.6%
Training Subset + cDDPM (+28.4%) 63.0%
Training Subset + cDCGAN 60.8%
Training Subset + cSAGAN 60.2%

80% Random Sample 93.5%
80% Random Sample + cDDPM (+2.1%) 95.6%
80% Random Sample + cDCGAN 81.2%
80% Random Sample + cSAGAN 90.7%

60% Random Sample 49.3%
60% Random Sample + cDDPM (+39.8%) 89.1%
60% Random Sample + cDCGAN 78.6%
60% Random Sample + cSAGAN 79.8%

20% Random Sample 43.6%
20% Random Sample + cDDPM (+39.9%) 83.5%
20% Random Sample + cDCGAN 78.2%
20% Random Sample + cSAGAN 76.6%

to negatively impact ATR accuracy, underscoring that data

fidelity is more critical than approximating the training dis-

tribution.

The observed boost in ATR accuracy demonstrates the

potential of incorporating diffusion-generated data into the

ATR training process. Despite the MSTAR dataset presenting

a relatively easy classification problem and providing a strong

baseline, the presented improvement in accuracy highlights

the effectiveness of synthetic data in enhancing model perfor-

mance under constraints on measured data. The increase in

accuracy suggests that diffusion-generated samples introduce

valuable diversity, filling gaps and enriching the training set

with variations that might be absent in the original dataset.

V. CONCLUSION

In this work, we have demonstrated the effectiveness of

denoising diffusion probabilistic models (DDPMs) in gener-

ating high-quality SAR images, conditioned on target class

and azimuth angle. We showed that diffusion models enhance

the fidelity and diversity of SAR datasets, improving ATR

accuracy. Provided the extremely limited size of our training

dataset, this highlights the robustness of conditional DDPMs

in learning target properties in SAR images. These models

successfully generate SAR images that faithfully model the

measured background clutter and target scattering characteris-

tics while introducing variability.

In future work, we aim to examine the potential of diffusion

models in additional SAR problems. We plan to investigate

specific aspects of super-resolution to enhance image detail at

finer scales, apply target inpainting for reconstructing obscured

or incomplete SAR imagery, and explore the integration of

diffusion models in Video SAR for dynamic surveillance

applications.
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