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Abstract

Ribose is the defining sugar in ribonucleic acid (RNA), which is often proposed to have carried the genetic
information and catalyzed the biological reactions of the first life on Earth. Thus, abiological processes that
yield ribose under prebiotic conditions have been studied for decades. However, aqueous environments required
for the formation of ribose from materials available in quantity under geologically reasonable models, where the
ribose formed is not immediately destroyed, remain unclear. This is due in large part to the challenge of analysis
of carbohydrates formed under a wide range of aqueous conditions. Thus, the formation of ribose on prebiotic
Earth has sometimes been questioned. We investigated the quantitative effects of pH, temperature, cation, and
the concentrations of formaldehyde and glycolaldehyde on the synthesis of diverse sugars, including ribose. The
results suggest a range of conditions that produce ribose and that ribose could have formed in constrained
aquifers on prebiotic Earth. Key Words: Ribose—Sugar—Carbohydrate—Formose reaction—Formaldehyde—

Pentose. Astrobiology 24, 489-497.

1. Introduction

CARBOHYDRATES ARE INDISPENSABLE parts of biomole-
cules that support bioinformation storage, gene expres-
sion, and metabolism on modern Earth. Thus, the origins and
availabilities of sugars on prebiotic Earth have been inves-
tigated for some time by those interested in the origin of life
(Shapiro, 1988; Larralde et al., 1995; Ricardo et al., 2004,
Lambert et al., 2010; Kim et al,, 2011; Haas et al., 2020).
This investigation has extended to the search for carbo-
hydrates in meteorites and extraterrestrial environments
(Cooper et al., 2001; Furukawa et al., 2019). These studies
continue in various laboratories (Sagi et al., 2012; Roche
et al., 2023).

Among different carbohydrate molecules, much research
has focused on ribose because this molecule is the sole sugar
in RNA, and RNA is seen as a likely primordial informa-
tional molecule and biological catalyst (Weiner and Mai-
zels, 1987; Joyce, 1989; Orgel, 2004). Further, quantitative
studies in the laboratory have shown that borate offers a

mechanism to manage the “tar paradox™ in allowing con-
trolled maturation of simple carbohydrates (formaldehyde
and trace glycolaldehyde) to give pentose carbohydrates
(Kim et al., 2011).

This geological model includes the emission SO, from a
mantle that has a quartz-fayalite-magnetite (QFM) fugac-
ity. This allows these carbohydrates to be delivered as their
bisulfite addition products, which are stable against for-
ward reactions. These represent organic mineral feedstocks
(Kawai et al., 2019). This model also identifies geological
environments where (i) ribose, borate, diamidophosphate,
and nucleobase may be converted to nucleoside phosphates;
(i1) nucleosides may be converted to nucleoside triphos-
phates; and (iii) polyribonucleic acid may be formed from
triphosphates over basalt, which was also abundant in the
Hadean (Kim and Benner, 2017; Benner et al., 2019; Kim
and Kim, 2019; Jerome et al., 2022). This laboratory work is
complemented by evidence that meteorites contain ribose
(Furukawa et al., 2019). This observation suggests that the
natural world has a way of making ribose while avoiding the

]Departmem of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan.
“Foundation for Applied Molecular Evolution, Alachua, Florida, USA.

3Firebird Biomolecular Sciences LLC, Alachua, Florida, USA.

489



Downloaded by UNIVERSITY OF FLORIDA from www .liebertpub.com at 10/22/25. For personal use only.

490

LR

“tar paradox,”” the unconstrained devolution of carbohy-
drates at higher pH values to give complex mixtures.

Missing from this research thread are analyses relevant to
the question: How do these carbonyl compounds chemically
evolve in the absence of borate and at pH values that are
more neutral than the highly alkaline conditions used in many
laboratory experiments, largely because higher pH environ-
ments allow enolization chemistry to proceed at convenient
rates? The second point is important, since any constrained
Hadean aquifer in contact with a Hadean atmosphere rich in
CO; cannot have a very high pH, even if it is eroding alkaline
basalt.

This analysis must start with simple chemistry. Processes
that **fix”” formaldehyde (HCHO) molecules by aldol reac-
tions with enolizable carbohydrates in alkaline solution are
well known (Breslow, 1959; Shapiro, 1988; Cleaves, 2008).
In particular, such aldol reactions are central to the formose
processes, where a broad spectrum of sugars are formed
from pure HCHO molecules in the presence of calcium
hydroxide.

HCHO is, however, not itself enolizable. Thus, conven-
tional chemistry offers no “polar’” mechanisms that allow
the formation of a C-C bond between two HCHO molecules
to give an enolizable species, such as glycolaldehyde; there
is no way to get the formose process started. This, in turn,
makes the initiation of the formose process very, very slow.
Thus, when pure HCHO is used on the original formose
process (Butlerov obtained it from diiodomethane), sin-
gle molecule exotic chemistry is required to get the pro-
cess started (Butlerow, 1861; Ricardo et al., 2006; Eckhardt
et al., 2018; Spacek et al.,, 2023). This may even involve
high-energy ionizing radiation.

Once enolizable species are present, subsequent steps that
give a rich diversity of carbohydrate products are much
faster. This combination of a very slow initiation step fol-
lowed by very much faster steps that give a more interesting
diversity of sugars makes quantitative analyses of the for-
mose process very difficult (Weiss et al., 1970; Tambawala
and Weiss, 1972; Weiss and John, 1974; Shigemasa et al.,
1977; Shapiro, 1988).

In a prebiotic context, this is not a problem. Formal-
dehyde was undoubtedly made by photochemical reaction
in the atmosphere of Hadean Earth (Pinto et al., 1980). This
number may be adjusted based on new ideas of solar energy
fluxes and atmospheric chemistry process. However, HCHO
formation is indisputable, even with a “*faint early Sun.”
HCHO formation exploits high-energy UV radiation. Thus,
the young Sun was perhaps only 70% as bright as it is now,
but it was a much larger source of nonthermal radiation,
including vacuum UV and X-rays, by factors of 10-100
(Zahnle, 2006).

Various estimates have been made for the amounts of
sugars that might have been made from the HCHO, perhaps
107 M in 10" years in a global ocean (Pinto et al., 1980).
Many of these estimates do not consider the discussion
above; they are based on an experiment that observed poly-
merization of pure HCHO in a highly alkaline solution
(Ponnamperuma, 1965). Thus, in highly alkaline solutions,
neither HCHO nor sugars can accumulate to any significant
amounts.

The modern solution to this conundrum takes into con-
sideration that the same photochemistry that produces
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HCHO also produces its two-carbon isomer, glycolalde-
hyde (HOCH,CHO). The amounts of glycolaldehyde
produced are small, perhaps one part per million (Harman
et al., 2013). However, since glycolaldehyde can enolize, it
can fix a molecule of HCHO. The resulting product, glyc-
eraldehyde, is also enolizable and, thus, can fix another
molecule of HCHO. Many have now studied the cascade of
reactions that follow and form specific sugars in alkaline
solutions (Shapiro, 1988; Ricardo er al., 2004; Kim et al.,
2011).

In the presence of borate minerals, 5-carbon sugars
(ribose isomers) are stopping points. Borate, in turn, was
very likely present on the Hadean surface. This was not
clear when borate was first introduced into prebiotic chem-
istry (Scorei, 2012). Indeed, Hazen et al. (2011) questioned
whether early Earth could have locales with sufficient borate
concentrations to be usefully productive (Grew et al., 2011).
Because of its high neutron cross section, boron is not
produced in stars but rather by spallation. Thus, its abun-
dance is low. While modern Earth has places (e.g., Death
Valley) with high borate concentrations, Grew et al. (2011)
argued that these concentrations could arise only by plate
tectonics, which was not sufficiently advanced in the
Hadean to provide the fractionation in the crust needed to
concentrate borate.

This objection was contradicted by noting that borate is
lithophilic and is concentrated in the crust. Further, as a
“bad’” mineral-forming element, it is concentrated in resid-
ual igneous melts. From there, it easily erodes, where it
fractionates in the hydrosphere. Thus, borate tourmalines
are known to have occurred in 3.5 Ga rocks, as established
by van Kranendonk, and are much older than the oldest
rocks disclosed by Grew et al. (2011). Completing the
rebuttal, borate was observed on the surface of Mars in
prebiotically useful concentrations, even though Mars has
never had significant plate tectonics (Gasda et al, 2017).
Thus, the issue is largely settled (Furukawa and Kakegawa,
2017; Morrison et al., 2018; Franco et al., 2023).

Recently, a quantitative analysis of sugar molecules in
meteorites that might have been formed by formose reaction
was reported (Furukawa er al., 2019). In this analysis, each
sugar is derivatized into an aldonitrile acetate and thus ap-
pears as a peak in gas chromatography—mass spectrometry
(GC-MS). These studies detected ribose in those meteorites.
This, in turn, suggests that laboratory processes whereby
large amounts of HCHO interact with trace amounts of
catalytic glycolaldehyde might have a natural correlate.
Ribose and other 5-carbon sugars may have been available
on Hadean Earth.

This inference provides strong motivation to now exp-
lore the “‘universe’ of products that emerge when HCHO
interacts with sub-stoichiometric glycolaldehyde, especi-
ally in different geological environments. Very detailed
studies have been done on these processes in the presence
of borate (Kim et al., 2011). This creates a need for a cor-
responding exploration in the absence of borate. This
exploration is more difficult, as product mixtures are more
complex when formose-type reaction processes are not
constrained by borate complexation. Here, we report results
of such exploration. We again rely on analyzing aldonitrile
acetate derivatives with GC-MS to manage the greater
complexity.
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2. Method

Formose-type reaction experiments in the absence of
borate were conducted in a PTFE bottle with HCHO (FA)
and glycolaldehyde (GA) using 15mL of 0.2 mol/L sodium
phosphate buffer (5.7 < pH <7.6) or pure water (pH 4.5).
The initial pH values were measured both at an ambient
temperature and at the initial reaction temperature, but they
were not different. These pH values were only different in
experiments without buffers. The experiments were con-
ducted with continuous stirring at fixed temperatures. For
comparison, several experiments were conducted with cal-
cium chloride (CaCl, 2H,Q) in pure water solvent.

Aliquots (1 mL) of the incubated solution were collected
at scheduled incubation times (10, 30, 60, 120, 180, 240,
360 min). Solutions were dried at 25°C under vacuum, dis-
solved in methanol, and then dried again. This dried sample
was derivatized into aldonitrile acetates as described in a
previous study (Furukawa er al., 2019).

The derivatized samples were analyzed by Shimadzu
GCMS-QP2010 with an Agilent DB-17ms fused silica col-
umn (60m, 0.250 mm, 0.25um). The temperature of the
injector was 250°C. The column flow, total flow, and split
ratio were 0.8 mL/min, 11.8 mL/min, and 10, respectively.
The temperature of the column oven was programmed as
follows: initial temperature of 50°C for 2 min, then ramp
up at 15°C/min to 120°C (hold 5 min), 4°C/min to 160°C,
3°C/min to 195°C (hold 15min), and 3°C/min to 240°C
(hold 10 min).

All chemicals for experiments were used as delivered by
suppliers without further purification. Water was prepared
by Millipore Milli-Q Integral (<5 ppb TOC and 18.2MQ
cm™'). Formaldehyde solution (37%; Wako), glycolalde-
hyde dimer (Sigma-Aldrich), NaH,PO, (Wako), Na,HPO,

(Wako), and CaCl, 2H,O were used as starting materials.
For standards of GC-MS analysis, D-ribose, D-arabinose,
D-xylose, D-lyxose, and DL-glyceraldehyde were from
Wako. Threose, erythrose, L-ribulose, and D-xylulose were
from Sigma-Aldrich. D-glucose (Wako), D-mannose (Kanto
Chemicals), and D-galactose (Kanto Chemicals) were
used as well. (35)-3,4-dihydroxy-2-(hydroxymethyl)butanal
(erythro  branched  pentose), (3R)-3,4-dihydroxy-2-
(hydroxymethyl)butanal (threo branched pentose), and 1,2,
4,5-tetrahydroxy-3-pentanone (pentane-3-one) were prepa-
red as described in a previous study (Kim ef al., 2011).

3. Results

Glyceraldehyde, tetroses (threose and erythrose), pentoses
(ribose, lyxose, arabinose, xylose), and hexoses (glucose,
mannose, and galactose) were formed in mixtures of form-
aldehyde and glycolaldehyde (Fig. 1). Apiose and pentane-
3-one were not detected. Other sugars, deoxy sugars, sugar
acids, and sugar alcohols were not investigated. Yields of
the investigated sugars differed depending on different mix-
ing ratios of aldehydes, different temperatures, and different
pH levels.

The product amounts of these sugars were increased
in the following order: glycolaldehyde, tetroses, branched-
pentoses (BP) (i.e., threo-BP and erythro-BP), keto-pentoses,
aldopentoses, and hexoses, whereas these sugars decreased
in the following order: glycolaldehyde, tetroses, and keto-
pentoses then other pentoses and hexoses (Fig. 2).

Among pentoses, ketopentoses (i.e., ribulose and xylu-
lose) and branched aldopentoses (i.e., threo-BP and erythro-
BP) were formed in higher amounts than linear aldopentoses
(Fig. 2). The amounts of ketopentoses were subsequently

A B C
4500 250000 450000
[ [}
()] [72] W Q
@ ol o 7]
2 o =Y = o 2
2 s 8 z — - 2 S
73} o E 2 [} » o = 72} E Q
i S = @ om £ = @
2 P 8 >0 = 2 o L
= = a Sl @ £ 2 2
= = o ®
- o
(o)}
0 B 0 J : A 0 JLAA
27 28 29 30 30 31 32 33 34 55 56 57 58
800000 20000 30000
ST
® m
8 > 3 8 g o [ (%
2 2 £ 8 8 £ s 2 g 2 9
@ o = c = P ) 7] = 5] O
c = @ o o c =1 ©
2 = = © o ] b =) ®
c > - Q om ) = E o
: 5 g g5 & . I
| el AL
S
0 L s e e e L 0 Sy ey T 0 ——T —rT—r
27 28 29 30 30 31 32 33 34 55 56 57 58

Retention time (min)

Retention time (min)

Retention time (min)

FIG. 1. Gas chromatography—mass spectrometry single ion chromatograms (m/z =145) of product sugars. (A) Tetroses.
(B) Pentoses. (C) Hexoses. Upper panels represent commercial standards. These sugars were formed from 100 mM
formaldehyde and 10 mM glycolaldehyde incubated at 95°C in a sodium phosphate buffer (pH 7.6). See derivatization

methods to explain the m/z=145.
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FIG. 2. Effects of pH on the yields of sugars upon reacting 100 mM formaldehyde and 10 mM glycolaldehyde at 95°C.
The pH between 5.7 and 7.6 was buffered with sodium phosphate, while the experiment at pH 4.5 (at ~95°C) was not
adjusted with buffer. The pH values dropped by 0.1-0.3 and 1.3-1.5 after the experiments started at 7.6/6.5 and 5.7/4.5,

respectively.

decreased while that of branched and linear aldopentoses
remained constant for a while.

The maximum yield of ribose increased approximately
10 times with a change of pH from pH 5.7 to 7.6 (Fig. 2
and 3A). This is likely because the enolization of alde-
hydes increased with the increased pH. Thus, this study
shows for the first time (to our knowledge) the formation
of ribose from aldehyde solutions at neutral to moderately

The concentrations of glycolaldehyde substantially affec-
ted the formation of sugars. Increasing glycolaldehyde ten-
fold gave 10 times greater maximum concentration of ribose
when the amounts of glycolaldehyde in the starting solution
were less than that of formaldehyde (Fig. 3C, 3D).

The increase in reaction temperature provided minor
effects in the maximum yield of ribose, although the reac-
tion rate was substantially affected (Fig. 4). Lower con-

acidic pH. centrations of aldehydes provided lower concentrations of
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sugars. However, the concentrations in the starting materials
did not provide significant effects on the yield of ribose and
other sugars (Fig. 3C, 3D).

The presence of Ca®* significantly increased the yields of
sugars in the reaction (Fig. 5). Notably, the yields of bran-
ched aldopentoses decreased substantially compared to linear
aldopentoses when Ca** was added to the reaction (Fig. 5).

4. Discussion

The reaction orders from small sugars to larger sugars are
reasonable for the synthesis of these sugars by successive
aldol addition as described in a previous study (Kim et al.,
2011) (Fig. 6). Among pentoses, the amounts of ketopen-
toses were subsequently decreased while that of branched
and linear aldopentoses remained constant for a while.
Ketopentoses could be consumed by retroaldol reaction
forming smaller aldehydes.

The concentrations of glycolaldehyde substantially affec-
ted the formation of sugars. This would be because glyco-
laldehyde can enolize to react with other aldehydes, while
formaldehyde cannot enolize to react with each other to

S

Aldopenloses
(CH10s)
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form glycolaldehyde by aldol addition. The presence of
Ca”" significantly increased the yields of sugars in the
reaction (Fig. 5). Calcium has been investigated as an
effective catalyst for sugar synthesis in formose reaction
(Shigemasa et al., 1977). The ability of Ca®" to catalyze
aldol additions by catalyzing enolization has been discussed
(Kim er al., 2011). Another study pointed out the effect of
calcium to convert ketopentoses into aldopentoses by hyd-
ride shift (Appayee and Breslow, 2014). The results of
the present study, that is, preferential catalyzation of linear
aldopentose formation, are consistent with both of these
previous studies.

The pH of early Archean open oceans has been estimated
at near neutral to slightly acidic (i.e., pH 6.5-7). These
studies have shown that in this pH range ribose would have
been formed, although the rate of its formation should be
lower than that in higher pH ranges. Thus, this work fills in a
gap in this literature. To obtain reactions at rates that are
conveniently studied, most work in these areas has been
done at higher pH values.

Depending on the overall redox potential of the atmo-
sphere, the ratio of glycolaldehyde to formaldehyde formed
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FIG. 6. A selection of possible reactions between enolizable glycolaldehyde, formaldehyde, and subsequent products.
Note the possibility of the formation of ketones from aldehydes via an enediolate, called the Lobry de Bruyn/van Ekenstein
transformation. In detailed studies (Ricardo et al. 2006; Kim er al. 2011), these are not seen at higher pH values if HCHO is

present.
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in the Hadean atmosphere is ~ 107, here for an atmosphere
of 0.02 CH,/CO, (Harman et al., 2013); Harman et al. used a
one-dimensional model for these calculations, as detailed in
their paper. For convenience, we explored ~ 100 fold higher
ratios. This gave an experimental formation of ribose in yields
of ~3.5x 10~ molg;,/molg4 from the neutral glycolaldehyde-
formaldehyde solution (i.e., 100mM formaldehyde and
0.1 mM glycolaldehyde). This allowed us to measure the
yields of ribose as a function of glycolaldehyde/formaldehyde.

These results suggest that ribose forms ~3.5x
10~° molgy,/molga in neutral solutions with the 107> of
glycolaldehyde/formaldehyde in the absence of calcium.
Assuming a rainout rate of forma}dehsrde from the Hadean
atmosphere to the surface at 2.8 x 10° molecules em ™2 g7
(Pinto et al., 1980), the yield of ribose would have been
3.5%107° molg;,/molg,, corresponding to the formation
4% 10% mol/day of ribose in the neutral ocean. Of course,
this material would be more likely useful in constrained
aquifers in direct or indirect contact with the atmosphere.

The concentration of calcium in the Hadean ocean is not
clear. However, it is reasonable to assume that seafloor
weathering or submarine hydrothermal processes may have
supplied Ca®* into Hadean oceans through the alteration
of Ca-bearing silicates (i.e., plagioclase) into clays. The
dissolved Ca™ in the Hadean ocean would have further
promoted ribose synthesis, enhancing recycling of ketopen-
toses and branched aldopentoses to form smaller aldehydes
that have potential to rearrange to form linear aldopentoses,
including ribose (Fig. 5).

Other sources of glycolaldehyde and formaldehyde are
extraterrestrial delivery by carbonaceous chondrites and syn-
thesis by bolide impacts of iron-rich asteroids/meteorites
(Aponte et al., 2019; Masuda et al., 2021). Aldehydes pro-
vided by these processes may have formed large amounts of
additional sugars in local areas where the impact happened.

These sugars formed globally and locally would be con-
sumed by further reactions in the timescale of several days
(~90°C) to several weeks (~50°C); they are unlikely to
have accumulated for 107 years, as a previous study esti-
mated (Fig. 4). Environments rich in borate and boric acid
would contribute to the accumulation substantially because
borate increases the stability of ribose, binding to its diols
and preventing further reactions related to aldehyde (Prieur,
2001; Ricardo et al., 2004; Scorei and Cimpoiasu, 2006;
Furukawa et al., 2013).

Ribose formed by the reactions could be used for further
chemical evolution to form nucleotides. Borate is also known
to contribute to many steps in forming ribonucleotides abiot-
ically (Furukawa et al., 2015a; Kim et al., 2016; Becker ef al.,
2019; Hirakawa et al, 2022; Takabayashi et al., 2023).
However, formation of nucleobases and their precursors that
are needed to form ribonucleotides on Hadean Earth would
need other reduction mechanisms for nitrogen, such as im-
pacts of iron-rich asteroid/meteorites (Furukawa et al., 2014,
2015b; Benner et al., 2020; Peters et al., 2023) and deep-sea
hydrothermal systems (Summers and Chang, 1993).

Needless to say, this work focuses on RNA (not DNA) as
the first genetic molecule. DNA is also a topic of discussion
(Teichert et al., 2019). Likewise, we focus on HCHO and
glycolaldehyde as the feedstocks, since these could not not
have been formed in the Hadean atmosphere, and stabilized
as bisulfite addition products, which form organic minerals.

However, the literature contains an explosion of interesting
alternative ideas for prebiotic ribose and nucleoside for-
mation that rely on carbohydrate feedstocks with higher
molecular weights and formed off-planet (Eckhardt et al.,
2018; Kruse et al., 2020).
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