
Predicting and Accelerating Nanomaterial Synthesis Using Machine
Learning Featurization
Christopher C. Price,* Yansong Li, Guanyu Zhou, Rehan Younas, Spencer S. Zeng, Tim H. Scanlon,
Jason M. Munro,* and Christopher L. Hinkle*

Cite This: Nano Lett. 2024, 24, 14862−14867 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Materials synthesis optimization is constrained by serial feedback
processes that rely on manual tools and intuition across multiple siloed modes of
characterization. We automate and generalize feature extraction of reflection high-
energy electron diffraction (RHEED) data with machine learning to establish
quantitatively predictive relationships in small sets (∼10) of expert-labeled data,
saving significant time on subsequently grown samples. These predictive
relationships are evaluated in a representative material system (W1−xVxSe2 on
c-plane sapphire (0001)) with two aims: 1) predicting grain alignment of the
deposited film using pregrowth substrate data and 2) estimating vanadium dopant
concentration using in situ RHEED as a proxy for ex situ methods (e.g., X-ray
photoelectron spectroscopy). Both tasks are accomplished using the same materials-agnostic features, avoiding specific system
retraining and leading to a potential 80% time saving over a 100-sample synthesis campaign. These predictions provide guidance to
avoid doomed trials, reduce follow-on characterization, and improve control resolution for materials synthesis.
KEYWORDS: Machine Learning, Epitaxial Growth, 2D Materials, Electron Diffraction, Synthesis Control

Differentiated and substantial performance requirements
for emerging electronics applications and the deceler-

ation of Moore’s law in silicon are driving demand for
advanced materials discovery, optimization, and scale-up.1

Engineering and development of materials platforms are
difficult and time-consuming; lab-to-production timelines
currently take 10 years or longer, and time to market is the
primary barrier to commercialization.2 Significant progress has
been made by leveraging ab initio physical simulations
(DFT)3,4 and subsequent machine learning (interatomic
potentials;5−7 generative models8,9) to efficiently identify and
screen stable and synthesizable material candidates in the first
stage of advanced materials development. However, the
theoretical assumptions of DFT, including the absence of
constraints relevant to real-world synthesis, result in a large
time and effort barrier to the realization of materials after
promising targets are identified.10 Although computational
capabilities for design have taken off, synthesis recipe design,
process optimization, and iterative improvement of material
quality relies on a relatively slow, manual, and intuition-guided
experimental approach. To address this bottleneck, recent
efforts in both software and hardware have made advance-
ments toward fully autonomous synthesis and optimization
within the laboratory.11−14 Advanced tools in machine learning
and artificial intelligence have proven incredibly useful at
targeting both the interpretation of experimental data and the
subsequent decision making required as part of feedback loop-
based solutions, including Bayesian optimization approaches

for accelerating searches in chemical spaces.15−19 Early
versions of these autonomous systems have emphasized the
importance and challenges of effective and rapid materials
characterization, especially when available data sets are small
and the target properties require multiple tools to assess.
Synthesis optimization is difficult because each trial is time-

consuming to conduct and evaluate, especially when nanoscale
properties need to be interrogated. While ultrahigh vacuum
techniques such as molecular beam epitaxy (MBE) have highly
controlled synthesis environments, the preparation, processing,
and subsequent characterization of a single sample takes
multiple days.20 Synthesis recipes are highly sensitive, varying
across equipment installations and requiring recalibration after
tool maintenance, which can extend over weeks. Due to the
expense in time and resources consumed per run, it is critical
to maximize the information gained and chance of success for
each trial in both manual and autonomously driven settings.
In-situ characterization captures large volumes of abstract data
with high granularity, yet these data cannot be analyzed with
conventional methods in time to impact a trial in progress. An
example is reflection high energy electron diffraction
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(RHEED), frequently used to qualitatively monitor MBE
growth21 by providing information on the surface structure of a
sample. RHEED images contain a fingerprint of the material
surface at a point in time that can take 15 min to manually
extract for a single image, while processes can change in
seconds and data is generated 10 to 100 times per second.
Recent work has shown that machine learning can process
RHEED data,22−28 but these early demonstrations required
manual tuning of hyperparameters, fitting to specific materials
systems or camera settings and delivering results after the run
completed. While providing significant postrun insights, these
attributes hinder the general predictive capacity to modify or
reduce the number of trials in synthesis optimization, since
they require significant system-specific data to be acquired up
front.
In this work, we develop and demonstrate fully automated

and general pipelines using both supervised and unsupervised
machine learning models to rapidly extract physically
motivated and holistic quantitative fingerprints from RHEED
data. We show that these fingerprints can speed up the
synthesis feedback loop by constructing predictive models
from small data sets (∼10 samples) of labeled trials to provide
relevant feedback from ex situ analysis using only in situ inputs.
These predictive models are demonstrated in two stages of the
synthesis process for the target system, two-dimensional (2D)
V-doped WSe2 on Al2O3(0001) (sapphire): 1) evaluating the
probability of a substrate to produce grain-aligned film growth
and 2) estimating the composition of a dopant in the film
before ex situ X-ray photoelectron spectroscopy (XPS) is
conducted. For both objectives, the success of the predictive
models can save significant time and cost by avoiding doomed
trials and reducing the number of steps required to assess the
sample. By producing these empirically derived predictions for
near-real-time feedback, we show that the synthesis optimiza-
tion loop can be accelerated, leading to a higher throughput of
material samples with the target characteristics.
Precise doping control in 2D materials is a difficult but

necessary milestone to achieve for the next generation of
power- and space-efficient semiconductors.29 Vanadium
doping in WSe2 gives p-type doping with spin polarization,
making this system a candidate as a high-mobility dilute
magnetic semiconductor.30,31 It is crucial to control the dopant
concentration during codeposition of V and W to minimize
domain formation and phase separation, key challenges in this
material system. Illustrating the limitations of theoretical
prediction, reliably synthesizing theoretically stable, uniformly
distributed phases requires high-fidelity control of the kinetics
connecting the input procedure to the resulting material
composition and microstructure. End to end, each trial to map
out these relationships can consume over 24 combined hours
of tool and active operator time, even excluding the time
required for sample loading and equipment standby (Figure
1a). Here, we develop a general framework that can be used to
avoid doomed trials and map ex situ measurements to in situ
characterization in molecular beam epitaxy to save 80% of the
time over a 100 trial synthesis campaign.
The data workflow for automated generalized character-

ization analysis is listed in Figure 1b. The input RHEED
images are passed through a featurization pipeline, which
extracts, normalizes, and labels diffraction features categorized
in Figure 1d. Images are first cropped to remove artifacts from
the detector, and an image segmentation pipeline is composed
of two models: a U-Net architecture for RHEED proposed by

Liang et al.22 followed by a transformer-based segmentation
model32 tuned for performance on low-contrast medical
grayscale images.33 Output masks from this segmentation
pipeline are labeled to identify contiguous diffraction regions,
and comprehensive metrics are computed for each diffraction
feature (Figure 1d). A coordinate system using the specular
spot, identified by position relative to the other features, as the
origin is adopted to enable the comparison of diffraction
features across different patterns. The original RHEED pattern
in Figure 1c shows typically diffuse scattering features that
need to be consistently separated from the background,
highlighting the challenges of manual analysis and the need for
task-specific models. In the featurization scheme, no hyper-
parameters are input or adjusted across different patterns or
material systems to maximize the generalizability of the
workflow and enable real-time result generation without
operator intervention.
These automatically generated diffraction fingerprints are

correlated with qualitative labels on grain orientation and the
quantitative results of manual XPS analysis in an effort to 1)
predict whether a growth is likely to lead to aligned or
randomly oriented grains (textured growth) based on the
RHEED image of the substrate wafer before deposition starts
and 2) estimate the vanadium doping composition in a
deposited film using a RHEED snapshot as input. These tasks
were designed to solve real challenges encountered over a
three year period of aiming to synthesize high-quality samples.
The automated process takes 10 s to produce featurized

Figure 1. (a) Summary of experimental flows for sample preparation,
film growth, and characterization. At the beginning and end of MBE
deposition, in situ RHEED is collected and automatically finger-
printed. After synthesis, the sample is transferred for XPS character-
ization. (b) Summary of data analysis flows for synthesis and
characterization data. Labeled trials are iteratively updated in the
database, and correlation fitting is performed for the two tasks against
the input labels. Next-trial predictions are generated within 10 s. (c)
An image of a RHEED pattern of the as-grown film and (d) the color
mask representing featurized regions. Comprehensive metrics are
extracted for each diffraction feature to form a complete fingerprint
unbiased by user priors. Fingerprints are input into the empirical
correlation models; see Supporting Information (SI) section 1.
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RHEED data sets per frame and 10 s to generate predictions
from the correlative models derived from the task-specific
training samples, significantly shortening the feedback time
relative to traditional approaches; details are given in SI section
6 (Methods).
Given the critical role of crystallinity in material synthesis

and downstream device performance, identifying whether a
deposited film has aligned grains can avoid doomed efforts that
lead to low-quality samples and wasted time. In the case of 2D
chalcogenide growth, epitaxial alignment is particularly
susceptible to the surface topography of the sapphire
substrate.34 Surface reconstructions (1 × 1 Al-terminated or
( 31 × 31 )R9) supporting aligned growth are achieved by
thermal annealing, but significant variance in the results exists
due to coupling of the annealing procedure with the individual
wafer and furnace conditions. Figure 2 shows the classification
results based on the featurized RHEED data sets and an initial
label set from visual inspection which categorizes as-grown
films as either textured or aligned. Figure 2a shows examples of
strongly aligned (top) and strongly textured (bottom) WSe2
films, and Figure 2b,c gives the baseline classification results for
the deposited WSe2 films; details of the classification are given

in SI 6 (Methods). We restrict ourselves to small training data
sets to mimic the typical data availability in the early stages of a
synthesis effort and maximize the ability to provide guidance
for a subsequent trial. The confusion matrix in Figure 2b gives
a binary grain alignment prediction accuracy of 80%; further
details of the bagging procedure are given in SI 6 (Methods).
The classification probabilities for grain-aligned films are
plotted in Figure 2c along with the misclassification frequency
for each sample. The probability of classification serves as an
uncertainty metric and a quantitative approximation of the
degree of overall grain alignment. Some samples are always
misclassified when held out of the training set, including
canonically textured film 9; an explanation for this is given in
SI section 2. Overall, the RHEED features contain enough
signal to automatically match the expert-identified trends in the
labels with a small set of examples. Automating this task
removes operator bias from data analysis, and quantification
helps to set thresholds for films that meet the quality criteria
for subsequent device fabrication. However, additional
operator time, tool time, and resources could be saved by
avoiding low-quality film growth before it occurs.

Figure 2. (a) Segmented RHEED patterns for examples of aligned (top) and textured (bottom) WSe2 film growth. Labels in the bottom left
correspond to the sample number. (b) Confusion matrix and classification accuracy for a logistic regression model fit with bootstrap aggregation to
a set of 14 samples of featurized WSe2 patterns. (c) Probability of aligned growth predictions by sample (scatters) and frequency of misclassification
(bars) for the WSe2 RHEED data. (d) Segmented RHEED patterns for examples of sapphire substrates that led to aligned (top) and textured
(bottom) film growth. (e) Confusion matrix and classification accuracy for the same model structure in (b), fit to the substrate RHEED instead of
the film RHEED against the film labels. (f) Same as (c) for the sapphire substrate pattern classification task.

Nano Letters pubs.acs.org/NanoLett Letter

https://doi.org/10.1021/acs.nanolett.4c04500
Nano Lett. 2024, 24, 14862−14867

14864

https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.4c04500/suppl_file/nl4c04500_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.4c04500/suppl_file/nl4c04500_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.4c04500/suppl_file/nl4c04500_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.4c04500/suppl_file/nl4c04500_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.4c04500/suppl_file/nl4c04500_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04500?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04500?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04500?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04500?fig=fig2&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://doi.org/10.1021/acs.nanolett.4c04500?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Natural variance with substrates and precursors can lead to
unexpected growth outcomes, even if the same recipe is
programmatically followed. In this WSe2 system, deposition
alone consumed up to 8 h, and average all-in synthesis times
can range from 5 to 14 h for MBE.35 Using the same data
infrastructure and feature extraction as for the WSe2 films, we
perform an identical fitting procedure using the predeposition
sapphire RHEED patterns as inputs instead of the as-grown
films, with the results in Figure 2d−f. Figure 2d similarly shows
the different surface reconstructions of the sapphire that can
lead to aligned (top) or textured (bottom) growth. The logistic
regression classifier with bootstrap aggregation achieves an
accuracy near 80%, similar to the results from WSe2 RHEED,
although the most-misclassified samples differ from those using
the film RHEED. For the misclassified samples in Figure 2c,
the quantitative probability score is close to 50%, indicating
greater uncertainty of prediction. We show that the
quantitative classification probability for both data sets
correlates with qualitative assessment with a detailed view of
sample 12 in Figure S1; this sample is labeled as grain-aligned
but shows a lower classification probability for both the
substrate and the film. In the sapphire RHEED data for sample
12, several features of the ( 31 × 31 )R9 reconstruction are
missing compared to the aligned-producing substrate 7, and
the Kikuchi lines are better matched with the textured-
generating substrate of sample 9. In the as-deposited film, the
pattern is consistent with an aligned growth, but there are
identified small features that are signatures of the textured
films. This indicates that the classification probability contains
information about the quantified likelihood of grain alignment
in the deposited film that is conditional on the substrate. This
provides a new resource for deciding whether to proceed with
growth on a given substrate. If the likelihood of achieving high-
quality growth is deemed low, then operators have the option
to perform additional pregrowth treatment or switch to a
different substrate rather than proceeding with a likely doomed
trial.

After improving the yield of films with the target grain
microstructure, we turn to optimization and control of film
composition by estimating the dopant concentration while the
sample remains in the growth chamber. Conventionally,
dopant concentrations are determined ex situ by character-
ization techniques such as XPS and energy-dispersive X-ray
spectroscopy (EDX) after the entire growth session is
complete, requiring time-consuming sample relocation. The
scattering factors of different elements create intensity
modulations and shifts in the RHEED pattern, but this
information is difficult to assess directly since it is tightly
convolved with other diffraction mechanisms.36−38 The
relationships among composition, tool parameters, and growth
recipe are nonlinear even for highly controlled synthesis
environments, and fully mapping design space requires
extensive trial and error. If compositional feedback can be
quickly generated and delivered from in situ inputs, then better
control can be exerted over compositional doping and process
refinement.
Figure 3 gives prediction results for V-doping composition

based on automatically generated RHEED features; predictions
are averaged from the output of two separate models fit on two
azimuthal angles collected for each model system (W1−xVxSe2)
sample. By labeling a small set of RHEED images with
composition from XPS analysis of the V 2p peak (Figure S3),
we show that substantial predictive capability can be uncovered
from a small initial data set. Due to the small number of
labeled samples, we apply linear regression with bagging to
look for correlations between the featurized RHEED and the
XPS quantification; details are given in SI 6 (Methods).
Interpolative test accuracy is strongest as shown by the blue
test predictions in Figure 3a, and aside from the composition
end point (x = 0.35) of the target range, there are no
substantially outlying predictions. This highlights the impor-
tance of combining data-driven practices with experiment
design to maximize the strength of the surrogate models: given
a set of labeled examples, the surrogate models provide
accurate interpolative estimates for new samples. The red

Figure 3. (a) Plot of predicted vs actual vanadium doping composition W1−xVxSe2 assessed by XPS measurement (x axis) and predicted from
RHEED features (y axis). Orange points show the predictions from a model fit to all 9 data points indicative of overall correlation; blue points show
the composition prediction for each data point from a model generated with that point withheld. Predictions are the average of models
independently fit to 0 and 30° data series. The black line is a visual guide to indicate zero absolute error between the XPS-derived composition and
the RHEED-predicted composition result. Error bars give the standard deviation of predictions for the individual estimators within the bagging
ensemble. MAE is the mean absolute error of x. (b) Monotonic improvement in prediction accuracy for composition with added training samples,
indicating avoidance of overfitting and tunability of desired prediction precision. (c) Predictions separately generated for the two independent
RHEED series collected on the same samples at two different azimuthal angles separated by 30° (dots and x’s). Averaging the prediction at each
labeled composition gives the orange points in (a).
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square in Figure 3a highlights a sample synthesized and
characterized by a different operator months after the initial
campaign that spanned multiple tool maintenance cycles,
demonstrating the persistence of the identified trend to factors
that affect the consistency of growth; details are given in Figure
S2. Figure 3b shows the prediction accuracy improving
monotonically with each additional labeled training point in
both the mean absolute error (MAE) and coefficient of
determination (R2), indicating that the correlation model is not
overfit. Figure 3c shows close agreement in predictions
generated independently from two high-symmetry azimuthal
angles, which acts as a physical sanity check and emphasizes
that the V-doping-correlated scattering changes are not an
artifact of data collection. A full accounting of features input
into the composition regression along with their Pearson
correlation coefficients for model interpretability is given in
Figure S4. The coefficients show that the first order features
contain the most correlated variance in the 0° azimuthal data,
while the second-order features contain more variance in the
30° series. The full width at half-maximum and feature axis
lengths have the greatest correlation magnitudes, indicating
that the shape of the internal diffraction intensity distribution
is most correlated with the compositional change. These data
properties are difficult to assess visually, even for experts
without automated tools. Individual metric analysis serves as
an entry point for deeper physics-based analysis, indicating
atomistic mechanisms that may be correlated with the target
property.
We demonstrate that machine learning models tailored for

RHEED data can extract high-fidelity feature sets that reveal
rich relationships across material systems, even in the limit of
small sets of labeled data. Predictions based on these
relationships can help avoid synthesis trials with high failure
probability, reduce the amount of ex situ characterization
required, and provide real-time feedback on properties
traditionally measured only ex situ. With research projects
needing hundreds of samples and material processing requiring
thousands, delivering these predictions with a dedicated data
infrastructure could save thousands of expert hours in
preparation and analysis. Our approach complements
intelligent experimental design algorithms for synthesis, such
as Bayesian optimization, by accelerating the acquisition
function and providing higher-quality inputs for adaptive
searching.
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