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Abstract

Debugging process plays a crucial role in helping students pinpoint their specific learning weaknesses, allowing them to
modify their strategies for enhanced academic performance. Notably, changes in pupil dilation serve as an indicator of arousal
associated with confronting learning challenges. This physiological response acts as a “physiological footprint” that reflects
cognitive engagement, facilitating internally focused cognitive processes such as insight generation and mind-wandering. In
this study, we proposed that pupil dilation could be a valuable predictor of students’ metacognitive awareness throughout
the debugging process, specifically within an augmented reality (AR) learning environment. The findings revealed significant
differences in pupil dilation among students categorized by their varying levels of debugging, which represents a specific

dimension of the Metacognitive Awareness Inventory.
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Introduction

Virtual learning environments, particularly AR—based plat-
forms, encourage knowledge construction and innovation
development by fostering creative thinking and enabling
learners to explore and interact with concepts in real-time
(Chiu et al., 2024). This aligns with multimedia learning the-
ory, which suggests that well-structured AR applications can
enhance learners’ innovation capacities (Ceken & Taskin,
2022). Beyond conceptual learning, AR could also play a cru-
cial role in metacognition, which refers to “thinking about
one’s thinking”—a cognitive process where individuals moni-
tor, regulate, and reflect on their learning strategies.
Metacognition consists of two primary dimensions: metacog-
nitive knowledge and metacognitive regulation. Metacognitive
knowledge involves awareness of one’s cognitive abilities, the
complexity of tasks, and appropriate learning strategies, such
as chunking information to aid memory (Flavell, 1979).
Metacognitive regulation, on the other hand, involves actively
monitoring and directing cognitive processes, such as recog-
nizing an ineffective learning strategy and adjusting it accord-
ingly (Nelson, 1990). Magno (2010) asserts that metacognitive
engagement requires awareness of all cognitive processes,
including declarative, procedural, and conditional knowledge,
as well as executive functions like information management
and strategic adjustment. For instance, when using AR for

argument preparation in a debate, students monitor their com-
prehension, organize information, plan their argument, test
different presentation strategies, and evaluate their reasoning.
This dynamic interaction between cognition and metacogni-
tion reflects how higher-order thinking tasks encourage the
strategic application of learning techniques. Building on the
role of metacognition in AR-based learning, debugging strate-
gies play a crucial role in identifying and correcting errors in
both understanding and performance. The concept of debug-
ging—is a process, where learners reassess and modify their
understanding or strategy upon realizing a discrepancy
between expected and actual outcomes (Schraw & Graham,
1997). Given novices lack of established schemas and relevant
debugging experience (Van Gog et al., 2010), they must han-
dle multiple types of information in their working memory
while debugging. In the debugging process, students must
explore various potential strategies, select the most effective
approach, and implement it to move toward their goal. If stu-
dents lack adequate support and rely on trial-and-error, which
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consumes considerable cognitive resources, they may face
elevated extraneous cognitive load (Van Merrienboer &
Sweller, 2005). Put differently, students with a higher level of
expertise deal with fewer interacting elements (linked to the
task’s complexity) and consequently experience a reduced
intrinsic cognitive load (Seufert, 2018). In many educational
contexts, instructional content has largely emphasized two
types of knowledge: declarative and procedural. Declarative
knowledge refers to “know-what”—such as facts, concepts,
and definitions—while procedural knowledge involves
“know-how,” encompassing skills like driving, swimming, or
problem-solving (Anderson, 1982). Improving outcomes for
both types of knowledge requires examining how students’
learning behaviors connect to their metacognitive debugging
strategies—the deliberate processes of identifying and
addressing comprehension breakdowns (Chi et al., 1989).
When engaging with declarative knowledge, these strategies
often trigger error detection and activate working memory and
conflict-monitoring systems (Metcalfe, 2009). In contrast,
when applied to procedural knowledge, debugging supports
error correction through rule-based reasoning and mental sim-
ulation (VanLehn, 1999). Given the cognitive demands associ-
ated with both the detection and correction of errors, it is
feasible that these cognitive processes could be analyzed
through pupil dilation (PD) measurements. Research indicates
that pupil size scales with the attentional load (Robison &
Brewer, 2022), workload (Kim & Yang, 2020; Yang & Kim,
2019), and even the value of information (Ariel & Castel,
2014). In addition, evidence suggests that the cognitive effort
during encoding can be reliably indexed by the mean pupil
size (Kahneman & Beatty, 1966; Mohanty et al., 2024).
Notably, a larger pupil size during encoding is correlated with
higher accuracy in recalling information (Papesh et al., 2012).
Metacognitive monitoring, through physiological responses,
reveals self-regulation patterns (Jarveld et al., 2019). PD
changes indicate arousal levels linked to learning challenges
(D’Mello et al., 2014) and serve as a “physiological footprint”
of cognitive engagement (Pijeira-Diaz et al., 2018). Pupil size,
influenced by locus coeruleus-norepinephrine (LC-NA) activ-
ity, reflects attention shifts (Bouret & Sara, 2005), while PD
changes support internally focused thought like insight and
mind-wandering (Franklin et al., 2013). Although many stud-
ies have explored the relationship between pupil size and
memory, fewer have examined how pupil size relates to meta-
cognitive debugging during learning in AR. Thus, in this
study, PD has been utilized as an index of debugging strategy
applied by a student based on different knowledge types within
the learning contents.

Methodology
Experiment Set Up

This research used an innovative location-based AR learning
platform (Guo & Kim, 2021; Yu et al., 2023). This dynamic
system harnesses the power of the Dikablis Glass 3, an

advanced eye-tracking device, in combination with the cut-
ting-edge Microsoft HoloLens 2 (see Figure 1). Throughout
the educational activities, this technology captures changes
in PD, providing valuable insights into students’ engagement
as they immerse themselves in an interactive learning
experience.

A total of twelve industrial engineering students engaged
in this intriguing research study. The AR learning modules
comprised two lectures (see Figure 2). Lecture | introduced
core biomechanics principles, focusing on how forces inter-
act with the human body. Lecture 2 emphasized calculating
those forces and moments to help students analyze human
motion scientifically (see Table 1).

To measure metacognitive awareness, students completed
the Metacognitive Awareness Inventory (MAI) (Schraw &
Dennison, 1994) at the start and end of the experiment, captur-
ing changes in their self-regulation and reflective thinking.

The learning content in each module was categorized by
knowledge type: declarative when defining concepts, and
procedural when demonstrating step-by-step calculations.
This classification helped students better understand and
engage with the material.

Data Preparation

In our study, we focused on Lecture 2 because the
Metacognitive Awareness Inventory (MAI) was given at the
start of Lecture 1 and again at the end of Lecture 2. The score
after Lecture 2 reflects students’ updated metacognitive
awareness after going through the full learning experience.
Students were divided into high and low-debugging groups
based on their MAI scores. A cutoff score of 92, representing
the average, was established to differentiate between the two
groups: those scoring above 92 were classified as high
debuggers. In contrast, students with scores below 92 were
classified as low debuggers.

Utilizing footage captured by the Dikablis Glass 3 scene
view camera (see Figure 3), we accurately segmented the
eye-tracking dataset into two distinct phases marked by the
timestamps recorded through the HoloLens device. These
phases were defined as the learning phase (L) and the solving
phase (S). For each AR module presented, we identified spe-
cific timestamps to indicate when students were fully
engaged in absorbing the lecture content (Learning phase),
and when they shifted their focus to tackling questions
(Solving phase) following the completion of each module.

This careful segmentation enables a deeper understanding
of student engagement and strategies employed during the
learning process. To better understand the dilation effect
induced by various debugging strategies, we measure the
pupils of the participants at the beginning of their learning—
prior to any exposure to virtual stimuli (3 s). This initial mea-
surement, known as the baseline (B), serves as a crucial
reference point, capturing the natural state of their pupil size
(P,) and setting the stage for comparison as they engage with
the AR environment. In addition, pupil area data was
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Figure |. Dikablis eye tracking with the HoloLens 2 device.

Metacognition Awareness

Lecture 1

Inventory Questionnaire

| Module 1 | @I Module 2 | Q| Module 3 |@ weeee

E@ Module2 |5 | Module3 |E=)

Lecture 2

[wouser | iy | s J ey ot |y s otates |

Metacognition Awareness
Inventory Questionnaire

|
Module 1 Q| Module 2 |@ Module3 | seees ‘

Figure 2. Overview of the experiment setup for lectures and modules in the AR environment.

normalized using Equation (1). Pnorm, is the normalized
pupil data forP, i =1, .., n).

P, —min(P)
Pnorm;, = —————
" max(P)—min(P) ()
Then the left eye pupil area points during Learning in each
module were subtracted from the averaged left eye pupil area
during baseline (Kim et al., 2024). These values represent the
normalized difference in pupil size when participants were
engaged in different knowledge types of the learning con-
tent, compared to their initial pupil size.

Results

The differences in pupil size between the baseline phase (B)
and the learning phase (L), is denoted as “B-L-1” to “B-L-8,”.

For example, “B-L-1” denotes the pupil area difference
between AR module 1’s phases B and L. The findings (see
Table 2) indicated that the PD difference between baseline and
learning in Lecture 2 was significantly associated with debug-
ging strategy, showing a positive relationship in Module #4
and a negative relationship in Module #5.

Additionally, #-tests were employed to analyze the differ-
ences in PD between 2the High and Low-debugging groups
across various knowledge types.

Comparison Between High and Low-Debugging
Level in Module #4

In Module 4, the virtual instructor clarified the complex prob-
lem statement and provided essential supplementary informa-
tion needed for problem-solving. During this process, students
categorized as Low-debugging level showed noticeable PD, a




Proceedings of the Human Factors and Ergonomics Society Annual Meeting

Table 1. Learning Content from Lectures | and 2—Biomechanics.

Module (lecture I)

Learning content summary

I. What does biomechanics mean?

2. Example of force and moment

3. Explanation of static equilibrium

4. Example for Static Equilibrium

5. Acting forces and moments on the body
6. Calculation of force and moment

7. Important table and figures

Definition of biomechanics

Mechanical effects of applied forces and moments on objects
How forces/moments lead to static equilibrium

Example problems for static equilibrium

Human avatar lifting object; forces/moments explained
Summing forces/moments for static equilibrium

Use of the center of mass table and figure for calculations

Module (Lecture 2)

Learning content summary

. Review of lecture |

. 2D external single segment example

. Answer to the previous question

. Multilink problem explanation

. Forces and Moments acting on the lower arm and
corresponding calculations

. Upper arm calculations

. Back and L5/S1 calculations

8. Testing student’s knowledge

Ul A W N —

N o

Overview of previously covered topics
Posture-based biomechanical forces
Solution explanation and reasoning
Forces/moments for multiple segments

Explaining forces acting on the lower arm and calculating associated forces
and moments

Computing upper arm forces/moments

Force/moment calculations on the back

Asking students to solve a question

Knowledge Type

Learning Content

Pupil Dilation fluctuate in
response to different
knowledge type

Panel c

Panel a Panel b

3 In this section, | will show
' you how to calculate the
forcesand ...

Figure 3. Overview of the data processing steps.

clear indicator of their heightened cognitive effort as they
grappled with memorization and engaged deeply with the
problem at hand (see Table 3). This physiological response

could reflect their superior ability to allocate resources
effectively and manage cognitive load with ease (Sweller,
1988).
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Table 2. The Results of the Regression Model in Lecture 2.

Term Estimate Std error t Ratio Prob>|t|
Intercept 108.318 8.942 12.11 <.000 | **
B-L-2 -69.555 30.642 -2.27 0.063
B-L-4 -126.036 39.973 3.15 0.019%
B-L-5 123.764 46.554 -2.66 0.037%
B-L-6 -81.191 36.620 -2.22 0.068

#p < .05, %p < 01,

Table 3. The Comparison Between High and Low-debugging
Level in Module #4.

Knowledge type Level N Mean Std error  p-value

Declarative | L 2,880 0.221 0.002  <.0001%**
H 5,640 0.146  0.00I

Declarative 2 L 9,840 0228 0.001 <.0001%**
H 1,927 0.195 0.001

Procedural | L 720 0230 0.004 <.0001]%**
H 1,410  0.157  0.002

Procedural 2 L 2,880 0207 0.002 <.0001%**
H 5,640 0.184  0.00l

Note. N denotes the quantity of data points captured by the eye tracking
device at each time-window corresponding to different knowledge types.
*p < .05, *p < .0l.

Comparison Between High and Low-Debugging
Level in Module #5

Module #5 includes complex calculations and dynamics of
the forces and moments acting on various body segments.
The results indicate significant PD patterns among students
classified as high debugging. These learners showed a sig-
nificant increase in PD when they engaged with certain
pieces of declarative knowledge, clearly indicating their
strong memory encoding and allocation of cognitive
resources. This not only demonstrates their ability to retain
information but also highlights their capacity to navigate
their learning environment with intention and focus (see
Table 4). Conversely, students who demonstrated a higher
debugging level exhibited higher PD in procedural knowl-
edge when required to engage in deep concentration. On the
other hand, students with a low debugging level exhibited a
different pattern; their PD peaks were predominantly associ-
ated with specific elements of procedural content, particu-
larly in Procedural 6, 7, and 9. This observation could suggest
that these students exert greater cognitive effort as they navi-
gate the challenges presented during the learning process.

Discussion

This study uncovers the new role of pupil dilation (PD) as a
potential window into the debugging strategies employed by
students in augmented reality (AR) learning environments.

Table 4. The Comparison Between the High Debugging Score
Group and the Low Debugging Score Group in Module #5.

Knowledge type Level N Mean Std error p-value

Procedural | L 1,440 0.198 0.005 <.000 | **
H 2,820 0.266 0.003

Procedural 2 L 3,120 0.223 0.003 .0204*
H 6,110 0.232 0.002

Procedural 3 L 4,560 0.220 0.002 <.000 | **
H 8,930 0.249 0.002

Procedural 4 L 1,440 0.221 0.005 <.000 | **
H 2,820 0.261 0.003

Procedural 5 L 4,560 0.227 0.002 <.000 | **
H 8,930 0.256 0.002

Procedural 6 L 5,040 0.254 0.002 <.000 | **
H 9,870 0.234 0.001

Procedural 7 L 1,440 0.298 0.005 <.000 | **
H 2,820 0.231 0.003

Procedural 8 L 9,120 0.220 0.002 <.000 | **
H 1,786 0.269 0.001

Procedural 9 L 5,760 0.226 0.002 .0008%*
H 1,128 0.216 0.001

Procedural 10 L 3,840 0.223 0.003 <.000 | #%*
H 7,520 0.254 0.002

Declarative | L 2,400 0.188 0.003 <.000 | #%*
H 4,700 0.228 0.002

Declarative 2 L 1,008 0.209 0.001 <.000 | **
H 1,974 0.256 0.001

Declarative 3 L 1,680 0.200 0.004 <.000 | **
H 3,290 0.254 0.003

Declarative 4 L 1,440 0.218 0.004 <.000 | **
H 2,820 0.255 0.003

Declarative 7 L 1,920 0.202 0.004 <.000 | **
H 3,760 0.257 0.003

Declarative 9 L 720 0.191 0.007 <.000 | **
H 1,410 0.285 0.005

*p < .05, #p < .0l.

The responses of PD vary intriguingly based on the nature of
the learning content. Among the eight modules explored in
Lecture 2, Module #4 emerged as a standout, demonstrating
a negative correlation between PD and debugging strategy.
The learning contents related to declarative knowledge and
procedural knowledge in this module primarily consist of
text-based animated sentences. Interestingly, students with
lower debugging skills showed higher PD, indicating signifi-
cant challenges in understanding this text-only material.
Their struggles were further compounded by difficulties in
accessing additional information suggested by their virtual
instructor. Encoding sensory input into mental representa-
tions requires efficient cognitive resource allocation
(Baddeley, 2010; Chen et al., 2016). Those with weaker
debugging skills often struggle to encode both declarative
and procedural knowledge effectively. Consequently, pupil
size may serve as an indicator, not just reflecting the
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intensity of cognitive effort but also shedding light on task
engagement and the role of norepinephrine in regulating
attention (Ariel & Castel, 2014; Robison & Brewer, 2022).
In Module #5, students faced increased challenges as they
were required to integrate a variety of information. This
added complexity called for strategic thinking, resulting in
significant differences in PD responses. High-debugging stu-
dents showed more substantial PD when engaging with both
declarative and procedural content, indicating greater focus,
accurate memory recall, and a deeper level of engagement
with the task. In contrast, students with lower debugging lev-
els exhibited notable pupil dilation, particularly when wres-
tling with procedural content (6, 7, and 9). This reaction
might suggest their mental struggle to filter through the over-
whelming confusion in search of relevant information. An
expansion of the pupils usually indicates a surge in cognitive
effort and memory retention. For other modules—such as #1
~ #3 and #6 ~ #8—PD seemed to play a minimal role, which
can likely be traced back to the nature of the content. Module
#1, for example, served as a refresher of Lecture 1, present-
ing familiar material that required less cognitive engage-
ment. Similarly, Module #8 was predominantly focused on
assessing students’ existing knowledge rather than introduc-
ing new concepts, leaving little room for profound cognitive
effort. Module #7, on the other hand, may have sparked more
instinctive, automatic responses from learners. Moreover,
it’s essential to recognize that pupil dilation is not solely a
response to cognitive load; it can also be caused by emo-
tional arousal, levels of fatigue, and even the interplay of
lighting in the environment.

Conclusion

This study sheds light on PD as a potential indicator of
debugging strategies within the immersive realm of AR
learning. The variation in PD responses is significant,
influenced by the intricacies of the learning content, which
reveals the nuanced interplay between attention and cogni-
tive processing. By harnessing physiological markers like
PD to explore the depths of metacognitive processes, we
launch intriguing research toward designing adaptive edu-
cational systems. This innovative approach not only deep-
ens our understanding of human experience but also drives
remarkable advancements in the realm of educational
technology.

Limitations

This study has several limitations that should be noted. The
small sample size of only twelve participants is a major
drawback, significantly affecting the generalizability of our
findings. This issue is particularly important, given the com-
plex nature of collecting physiological data in immersive
environments. With such a limited dataset, we also run the

risk of overfitting our models. However, this research marks
a pioneering effort, offering vital pilot evidence for the feasi-
bility of using physiological signals to monitor metacogni-
tive processes in AR settings. Moving forward, future studies
will employ advanced techniques, such as bootstrapping and
cross-validation, to further enhance the reliability of our
findings. We also recognize that individual differences in
familiarity with AR technology, as well as varying levels of
technical skill, might have influenced participants’ responses.
Consequently, our upcoming research will aim to incorporate
these factors as covariates, thereby enriching the depth and
precision of our analyses.
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