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Introduction

Virtual learning environments, particularly AR–based plat-
forms, encourage knowledge construction and innovation 
development by fostering creative thinking and enabling 
learners to explore and interact with concepts in real-time 
(Chiu et al., 2024). This aligns with multimedia learning the-
ory, which suggests that well-structured AR applications can 
enhance learners’ innovation capacities (Çeken & Taşkın, 
2022). Beyond conceptual learning, AR could also play a cru-
cial role in metacognition, which refers to “thinking about 
one’s thinking”—a cognitive process where individuals moni-
tor, regulate, and reflect on their learning strategies. 
Metacognition consists of two primary dimensions: metacog-
nitive knowledge and metacognitive regulation. Metacognitive 
knowledge involves awareness of one’s cognitive abilities, the 
complexity of tasks, and appropriate learning strategies, such 
as chunking information to aid memory (Flavell, 1979). 
Metacognitive regulation, on the other hand, involves actively 
monitoring and directing cognitive processes, such as recog-
nizing an ineffective learning strategy and adjusting it accord-
ingly (Nelson, 1990). Magno (2010) asserts that metacognitive 
engagement requires awareness of all cognitive processes, 
including declarative, procedural, and conditional knowledge, 
as well as executive functions like information management 
and strategic adjustment. For instance, when using AR for 

argument preparation in a debate, students monitor their com-
prehension, organize information, plan their argument, test 
different presentation strategies, and evaluate their reasoning. 
This dynamic interaction between cognition and metacogni-
tion reflects how higher-order thinking tasks encourage the 
strategic application of learning techniques. Building on the 
role of metacognition in AR-based learning, debugging strate-
gies play a crucial role in identifying and correcting errors in 
both understanding and performance. The concept of debug-
ging—is a process, where learners reassess and modify their 
understanding or strategy upon realizing a discrepancy 
between expected and actual outcomes (Schraw & Graham, 
1997). Given novices lack of established schemas and relevant 
debugging experience (Van Gog et al., 2010), they must han-
dle multiple types of information in their working memory 
while debugging. In the debugging process, students must 
explore various potential strategies, select the most effective 
approach, and implement it to move toward their goal. If stu-
dents lack adequate support and rely on trial-and-error, which 
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consumes considerable cognitive resources, they may face 
elevated extraneous cognitive load (Van Merrienboer & 
Sweller, 2005). Put differently, students with a higher level of 
expertise deal with fewer interacting elements (linked to the 
task’s complexity) and consequently experience a reduced 
intrinsic cognitive load (Seufert, 2018). In many educational 
contexts, instructional content has largely emphasized two 
types of knowledge: declarative and procedural. Declarative 
knowledge refers to “know-what”—such as facts, concepts, 
and definitions—while procedural knowledge involves 
“know-how,” encompassing skills like driving, swimming, or 
problem-solving (Anderson, 1982). Improving outcomes for 
both types of knowledge requires examining how students’ 
learning behaviors connect to their metacognitive debugging 
strategies—the deliberate processes of identifying and 
addressing comprehension breakdowns (Chi et al., 1989). 
When engaging with declarative knowledge, these strategies 
often trigger error detection and activate working memory and 
conflict-monitoring systems (Metcalfe, 2009). In contrast, 
when applied to procedural knowledge, debugging supports 
error correction through rule-based reasoning and mental sim-
ulation (VanLehn, 1999). Given the cognitive demands associ-
ated with both the detection and correction of errors, it is 
feasible that these cognitive processes could be analyzed 
through pupil dilation (PD) measurements. Research indicates 
that pupil size scales with the attentional load (Robison & 
Brewer, 2022), workload (Kim & Yang, 2020; Yang & Kim, 
2019), and even the value of information (Ariel & Castel, 
2014). In addition, evidence suggests that the cognitive effort 
during encoding can be reliably indexed by the mean pupil 
size (Kahneman & Beatty, 1966; Mohanty et al., 2024). 
Notably, a larger pupil size during encoding is correlated with 
higher accuracy in recalling information (Papesh et al., 2012). 
Metacognitive monitoring, through physiological responses, 
reveals self-regulation patterns (Järvelä et al., 2019). PD 
changes indicate arousal levels linked to learning challenges 
(D’Mello et al., 2014) and serve as a “physiological footprint” 
of cognitive engagement (Pijeira-Díaz et al., 2018). Pupil size, 
influenced by locus coeruleus-norepinephrine (LC-NA) activ-
ity, reflects attention shifts (Bouret & Sara, 2005), while PD 
changes support internally focused thought like insight and 
mind-wandering (Franklin et al., 2013). Although many stud-
ies have explored the relationship between pupil size and 
memory, fewer have examined how pupil size relates to meta-
cognitive debugging during learning in AR. Thus, in this 
study, PD has been utilized as an index of debugging strategy 
applied by a student based on different knowledge types within 
the learning contents.

Methodology

Experiment Set Up

This research used an innovative location-based AR learning 
platform (Guo & Kim, 2021; Yu et al., 2023). This dynamic 
system harnesses the power of the Dikablis Glass 3, an 

advanced eye-tracking device, in combination with the cut-
ting-edge Microsoft HoloLens 2 (see Figure 1). Throughout 
the educational activities, this technology captures changes 
in PD, providing valuable insights into students’ engagement 
as they immerse themselves in an interactive learning 
experience.

A total of twelve industrial engineering students engaged 
in this intriguing research study. The AR learning modules 
comprised two lectures (see Figure 2). Lecture 1 introduced 
core biomechanics principles, focusing on how forces inter-
act with the human body. Lecture 2 emphasized calculating 
those forces and moments to help students analyze human 
motion scientifically (see Table 1).

To measure metacognitive awareness, students completed 
the Metacognitive Awareness Inventory (MAI) (Schraw & 
Dennison, 1994) at the start and end of the experiment, captur-
ing changes in their self-regulation and reflective thinking.

The learning content in each module was categorized by 
knowledge type: declarative when defining concepts, and 
procedural when demonstrating step-by-step calculations. 
This classification helped students better understand and 
engage with the material.

Data Preparation

In our study, we focused on Lecture 2 because the 
Metacognitive Awareness Inventory (MAI) was given at the 
start of Lecture 1 and again at the end of Lecture 2. The score 
after Lecture 2 reflects students’ updated metacognitive 
awareness after going through the full learning experience. 
Students were divided into high and low-debugging groups 
based on their MAI scores. A cutoff score of 92, representing 
the average, was established to differentiate between the two 
groups: those scoring above 92 were classified as high 
debuggers. In contrast, students with scores below 92 were 
classified as low debuggers.

Utilizing footage captured by the Dikablis Glass 3 scene 
view camera (see Figure 3), we accurately segmented the 
eye-tracking dataset into two distinct phases marked by the 
timestamps recorded through the HoloLens device. These 
phases were defined as the learning phase (L) and the solving 
phase (S). For each AR module presented, we identified spe-
cific timestamps to indicate when students were fully 
engaged in absorbing the lecture content (Learning phase), 
and when they shifted their focus to tackling questions 
(Solving phase) following the completion of each module.

This careful segmentation enables a deeper understanding 
of student engagement and strategies employed during the 
learning process. To better understand the dilation effect 
induced by various debugging strategies, we measure the 
pupils of the participants at the beginning of their learning—
prior to any exposure to virtual stimuli (3 s). This initial mea-
surement, known as the baseline (B), serves as a crucial 
reference point, capturing the natural state of their pupil size 
(Pi) and setting the stage for comparison as they engage with 
the AR environment. In addition, pupil area data was 
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normalized using Equation (1). Pnormi is the normalized 
pupil data for Pi (i = 1, .  .  ., n).
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Then the left eye pupil area points during Learning in each 
module were subtracted from the averaged left eye pupil area 
during baseline (Kim et al., 2024). These values represent the 
normalized difference in pupil size when participants were 
engaged in different knowledge types of the learning con-
tent, compared to their initial pupil size.

Results

The differences in pupil size between the baseline phase (B) 
and the learning phase (L), is denoted as “B-L-1” to “B-L-8,”. 

For example, “B-L-1” denotes the pupil area difference 
between AR module 1’s phases B and L. The findings (see 
Table 2) indicated that the PD difference between baseline and 
learning in Lecture 2 was significantly associated with debug-
ging strategy, showing a positive relationship in Module #4 
and a negative relationship in Module #5.

Additionally, t-tests were employed to analyze the differ-
ences in PD between 2the High and Low-debugging groups 
across various knowledge types.

Comparison Between High and Low-Debugging 
Level in Module #4

In Module 4, the virtual instructor clarified the complex prob-
lem statement and provided essential supplementary informa-
tion needed for problem-solving. During this process, students 
categorized as Low-debugging level showed noticeable PD, a 

Figure 1.  Dikablis eye tracking with the HoloLens 2 device.

Figure 2.  Overview of the experiment setup for lectures and modules in the AR environment.



4	 Proceedings of the Human Factors and Ergonomics Society Annual Meeting

clear indicator of their heightened cognitive effort as they 
grappled with memorization and engaged deeply with the 
problem at hand (see Table 3). This physiological response 

could reflect their superior ability to allocate resources  
effectively and manage cognitive load with ease (Sweller, 
1988).

Table 1.  Learning Content from Lectures 1 and 2—Biomechanics.

Module (lecture 1) Learning content summary

1. What does biomechanics mean? Definition of biomechanics
2. Example of force and moment Mechanical effects of applied forces and moments on objects
3. Explanation of static equilibrium How forces/moments lead to static equilibrium
4. Example for Static Equilibrium Example problems for static equilibrium
5. Acting forces and moments on the body Human avatar lifting object; forces/moments explained
6. Calculation of force and moment Summing forces/moments for static equilibrium
7. Important table and figures Use of the center of mass table and figure for calculations

Module (Lecture 2) Learning content summary

1. Review of lecture 1 Overview of previously covered topics
2. 2D external single segment example Posture-based biomechanical forces
3. Answer to the previous question Solution explanation and reasoning
4. Multilink problem explanation Forces/moments for multiple segments
5. �Forces and Moments acting on the lower arm and 

corresponding calculations
Explaining forces acting on the lower arm and calculating associated forces 

and moments
6. Upper arm calculations Computing upper arm forces/moments
7. Back and L5/S1 calculations Force/moment calculations on the back
8. Testing student’s knowledge Asking students to solve a question

Figure 3.  Overview of the data processing steps.
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Comparison Between High and Low-Debugging 
Level in Module #5

Module #5 includes complex calculations and dynamics of 
the forces and moments acting on various body segments. 
The results indicate significant PD patterns among students 
classified as high debugging. These learners showed a sig-
nificant increase in PD when they engaged with certain 
pieces of declarative knowledge, clearly indicating their 
strong memory encoding and allocation of cognitive 
resources. This not only demonstrates their ability to retain 
information but also highlights their capacity to navigate 
their learning environment with intention and focus (see 
Table 4). Conversely, students who demonstrated a higher 
debugging level exhibited higher PD in procedural knowl-
edge when required to engage in deep concentration. On the 
other hand, students with a low debugging level exhibited a 
different pattern; their PD peaks were predominantly associ-
ated with specific elements of procedural content, particu-
larly in Procedural 6, 7, and 9. This observation could suggest 
that these students exert greater cognitive effort as they navi-
gate the challenges presented during the learning process.

Discussion

This study uncovers the new role of pupil dilation (PD) as a 
potential window into the debugging strategies employed by 
students in augmented reality (AR) learning environments. 

The responses of PD vary intriguingly based on the nature of 
the learning content. Among the eight modules explored in 
Lecture 2, Module #4 emerged as a standout, demonstrating 
a negative correlation between PD and debugging strategy. 
The learning contents related to declarative knowledge and 
procedural knowledge in this module primarily consist of 
text-based animated sentences. Interestingly, students with 
lower debugging skills showed higher PD, indicating signifi-
cant challenges in understanding this text-only material. 
Their struggles were further compounded by difficulties in 
accessing additional information suggested by their virtual 
instructor. Encoding sensory input into mental representa-
tions requires efficient cognitive resource allocation 
(Baddeley, 2010; Chen et al., 2016). Those with weaker 
debugging skills often struggle to encode both declarative 
and procedural knowledge effectively. Consequently, pupil 
size may serve as an indicator, not just reflecting the 

Table 2.  The Results of the Regression Model in Lecture 2.

Term Estimate Std error t Ratio Prob>|t|

Intercept 108.318   8.942 12.11 <.0001**
B-L-2 −69.555 30.642 −2.27 0.063
B-L-4 −126.036 39.973 3.15 0.019*
B-L-5 123.764 46.554 −2.66 0.037*
B-L-6 −81.191 36.620 −2.22 0.068

*p < .05, **p < .01.

Table 3.  The Comparison Between High and Low-debugging 
Level in Module #4.

Knowledge type Level N Mean Std error p-value

Declarative 1 L 2,880 0.221 0.002 <.0001**
H 5,640 0.146 0.001

Declarative 2 L 9,840 0.228 0.001 <.0001**
H 1,927 0.195 0.001

Procedural 1 L 720 0.230 0.004 <.0001**
H 1,410 0.157 0.002

Procedural 2 L 2,880 0.207 0.002 <.0001**
H 5,640 0.184 0.001

Note. N denotes the quantity of data points captured by the eye tracking 
device at each time-window corresponding to different knowledge types.
*p < .05, **p < .01.

Table 4.  The Comparison Between the High Debugging Score 
Group and the Low Debugging Score Group in Module #5.

Knowledge type Level N Mean Std error p-value

Procedural 1 L 1,440 0.198 0.005 <.0001**
H 2,820 0.266 0.003

Procedural 2 L 3,120 0.223 0.003 .0204*
H 6,110 0.232 0.002

Procedural 3 L 4,560 0.220 0.002 <.0001**
H 8,930 0.249 0.002

Procedural 4 L 1,440 0.221 0.005 <.0001**
H 2,820 0.261 0.003

Procedural 5 L 4,560 0.227 0.002 <.0001**
H 8,930 0.256 0.002

Procedural 6 L 5,040 0.254 0.002 <.0001**
H 9,870 0.234 0.001

Procedural 7 L 1,440 0.298 0.005 <.0001**
H 2,820 0.231 0.003

Procedural 8 L 9,120 0.220 0.002 <.0001**
H 1,786 0.269 0.001

Procedural 9 L 5,760 0.226 0.002 .0008**
H 1,128 0.216 0.001

Procedural 10 L 3,840 0.223 0.003 <.0001**
H 7,520 0.254 0.002

Declarative 1 L 2,400 0.188 0.003 <.0001**
H 4,700 0.228 0.002

Declarative 2 L 1,008 0.209 0.001 <.0001**
H 1,974 0.256 0.001

Declarative 3 L 1,680 0.200 0.004 <.0001**
H 3,290 0.254 0.003

Declarative 4 L 1,440 0.218 0.004 <.0001**
H 2,820 0.255 0.003

Declarative 7 L 1,920 0.202 0.004 <.0001**
H 3,760 0.257 0.003

Declarative 9 L 720 0.191 0.007 <.0001**
H 1,410 0.285 0.005

*p < .05, **p < .01.
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intensity of cognitive effort but also shedding light on task 
engagement and the role of norepinephrine in regulating 
attention (Ariel & Castel, 2014; Robison & Brewer, 2022). 
In Module #5, students faced increased challenges as they 
were required to integrate a variety of information. This 
added complexity called for strategic thinking, resulting in 
significant differences in PD responses. High-debugging stu-
dents showed more substantial PD when engaging with both 
declarative and procedural content, indicating greater focus, 
accurate memory recall, and a deeper level of engagement 
with the task. In contrast, students with lower debugging lev-
els exhibited notable pupil dilation, particularly when wres-
tling with procedural content (6, 7, and 9). This reaction 
might suggest their mental struggle to filter through the over-
whelming confusion in search of relevant information. An 
expansion of the pupils usually indicates a surge in cognitive 
effort and memory retention. For other modules—such as #1 
~ #3 and #6 ~ #8—PD seemed to play a minimal role, which 
can likely be traced back to the nature of the content. Module 
#1, for example, served as a refresher of Lecture 1, present-
ing familiar material that required less cognitive engage-
ment. Similarly, Module #8 was predominantly focused on 
assessing students’ existing knowledge rather than introduc-
ing new concepts, leaving little room for profound cognitive 
effort. Module #7, on the other hand, may have sparked more 
instinctive, automatic responses from learners. Moreover, 
it’s essential to recognize that pupil dilation is not solely a 
response to cognitive load; it can also be caused by emo-
tional arousal, levels of fatigue, and even the interplay of 
lighting in the environment.

Conclusion

This study sheds light on PD as a potential indicator of 
debugging strategies within the immersive realm of AR 
learning. The variation in PD responses is significant, 
influenced by the intricacies of the learning content, which 
reveals the nuanced interplay between attention and cogni-
tive processing. By harnessing physiological markers like 
PD to explore the depths of metacognitive processes, we 
launch intriguing research toward designing adaptive edu-
cational systems. This innovative approach not only deep-
ens our understanding of human experience but also drives 
remarkable advancements in the realm of educational 
technology.

Limitations

This study has several limitations that should be noted. The 
small sample size of only twelve participants is a major 
drawback, significantly affecting the generalizability of our 
findings. This issue is particularly important, given the com-
plex nature of collecting physiological data in immersive 
environments. With such a limited dataset, we also run the 

risk of overfitting our models. However, this research marks 
a pioneering effort, offering vital pilot evidence for the feasi-
bility of using physiological signals to monitor metacogni-
tive processes in AR settings. Moving forward, future studies 
will employ advanced techniques, such as bootstrapping and 
cross-validation, to further enhance the reliability of our 
findings. We also recognize that individual differences in 
familiarity with AR technology, as well as varying levels of 
technical skill, might have influenced participants’ responses. 
Consequently, our upcoming research will aim to incorporate 
these factors as covariates, thereby enriching the depth and 
precision of our analyses.
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