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Abstract

This study investigates the method for measuring cognitive workload in augmented reality-based biomechanics lectures by
analyzing pupil dilation. Using Dikablis Glasses 3 and Microsoft HoloLens, we recorded physiological and subjective data
across learning and problem-solving phases. Pupil dilation was normalized and segmented, enabling a comparison of cognitive
demands between phases. The results indicated significant correlations between pupil dilation and NASA TLX cognitive
demand, particularly in lectures that primarily involved procedural knowledge. These findings suggest that instructional
design and content complexity have a significant impact on cognitive load, providing valuable insights for optimizing AR-based
learning environments to support cognitive efficiency and student engagement.
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Introduction

Augmented Reality (AR) is transforming educational experi-
ences by providing immersive and interactive learning envi-
ronments. Although the potential of AR to significantly boost
engagement and improve learning outcomes has been inves-
tigated, the cognitive demands posed by this technology are
still surrounded by uncertainty. Further research is still
needed to understand these cognitive demands and explore
effective strategies to alleviate them during AR-based learn-
ing experiences. Hence, this current study investigates how
to measure cognitive load in AR-based biomechanics lec-
tures, focusing on pupil dilation as an indicator of mental
demand.

Prior research (Kim et al., 2024) has predominantly exam-
ined learning outcomes and user experience, often overlook-
ing how cognitive effort fluctuates between learning and
problem-solving phases. In our AR learning modules (as
illustrated in Figure 1), students are immersed in two distinct
cognitive states: the expedition of acquiring new knowledge
and the dynamic problem-solving process. The learning
phase requires intense focus and engagement, as students
wrestle with novel concepts. On the other hand, the problem-
solving stage needs strong thinking skills to analyze situa-
tions and make thoughtful decisions to address challenges.
Students frequently encounter various obstacles that compel

them to transform their theoretical knowledge into practical
solutions. These situations not only require them to think
critically and creatively but also to demonstrate a compre-
hensive understanding of their academic learning. By engag-
ing with real-world applications, they can showcase their
diverse intellectual skills, including analytical reasoning,
problem-solving, and effective communication, thereby
illustrating the breadth of their educational experience. To
explore and quantify the differences in mental workload
across these distinct phases, we turn to eye-tracking technol-
ogy alongside the NASA Task Load Index (NASA TLX). We
propose a compelling hypothesis: with its intense demands
of information processing and the establishment of concep-
tual understanding, the learning phase will reveal a stronger
correlation with mental demand than the problem-solving
phase. This research opens doors to invaluable insights for
optimizing AR-based instructional design. By carefully bal-
ancing cognitive load with effective learning strategies, we
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Figure |. 3D virtual contents used in AR learning Environment (Mohanty et al., 2024).

aim to enhance educational outcomes, ensuring that students
are as enriching and transformative as it is engaging.

Background

While AR learning environments have been extensively
studied for their impact on knowledge retention and learner
motivation, their cognitive demands remain less explored.
AR's ability to overlay digital information onto the physical
world introduces unique benefits and challenges to cognitive
processing. According to Cognitive Load Theory (Sweller,
2011), learning effectiveness is determined by the interplay
of three types of loads: intrinsic (task complexity), extrane-
ous (irrelevant or poorly designed information), and germane
(mental effort invested in learning). AR has the potential to
reduce extraneous load by providing intuitive, multimodal,
and context-rich instructional cues, yet it can also increase
intrinsic load due to the novelty and interactivity of the
medium, as well as the requirement for divided visual and
attentional resources (Buchner et al., 2022). This makes an
accurate assessment of mental workload in AR critical for
optimizing learning environments and reducing the risk of
cognitive overload.

Recent advancements in physiological measurement tech-
niques, particularly eye-tracking, have enabled researchers to
monitor learners' mental states during interactive tasks in real
time. Among these techniques, pupillometry the measure-
ment of pupil size has proven to be a robust and non-invasive
indicator of mental effort (Gorin et al., 2024; Othman &
Romli, 2016; Yang & Kim, 2019). Pupil dilation has been
shown to correlate with the activation of the locus coeruleus—
norepinephrine (LC-NE) system, which governs attentional
control and cognitive arousal (Kahneman & Beatty, 1966).
Pupillary responses have also been linked to task engage-
ment, mental fatigue, and attentional switching, making them
useful for assessing dynamic cognitive workload during com-
plex activities (Hopstaken et al., 2015; Kim & Yang, 2020;
Nazareth & Kim, 2020). When used alongside subjective
assessments like the NASA-TLX, pupillometry can offer a

dual-layered view of workload, capturing both perceived
effort and physiological strain (Xie & Salvendy, 2000).

Within AR learning, students typically engage in two dis-
tinct cognitive phases: a learning phase, where they absorb
and make sense of new information, and a problem-solving
phase, where they apply that knowledge in a task-specific
context. The learning phase often involves conceptual inte-
gration and schema building, which can impose significant
intrinsic and germane load. Conversely, the problem-solving
phase may involve working memory overload, error correc-
tion, and adaptive reasoning, all of which can increase cogni-
tive demands. While some studies have suggested that pupil
dilation is more pronounced during problem-solving
(Marshall, 2002), the mental workload imposed by concep-
tual learning, especially in immersive AR environments
remains underexamined. A key research gap persists in
directly comparing cognitive load across these phases using
real-time physiological indicators in combination with vali-
dated subjective instruments.

To tackle this gap, we embraced a comprehensive frame-
work for categorizing AR instructional modules into two dis-
tinct types: declarative and procedural knowledge.
Declarative knowledge encompasses information, descrip-
tive insights, and conceptual understanding, imagine grasp-
ing the intricate principles of biomechanics or pinpointing
various anatomical structures in vivid detail. In contrast, pro-
cedural knowledge is rooted in action; it involves the
dynamic sequences of tasks and the cognition necessary to
execute them to think of conducting ergonomic assessments.
These two forms of knowledge are recognized for engaging
different cognitive mechanisms, resulting in varying levels
of cognitive load that depend heavily on both the nature of
the task at hand and the surrounding context. By aligning
eye-tracking data with our classification of these modules,
this study paves the way for an intricate examination of how
the type of knowledge and the cognitive phase, whether
learning or problem-solving interact to shape mental work-
load within AR environments. The insights gained promise
practical applications for refining AR instructional design,
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Figure 2. Participant equipped with Dikablis eye tracker and Microsoft HoloLens undergoing lectures.

ensuring that it is finely tuned to meet learners’ needs and
optimizing the delivery of content to enhance understanding
and cognitive efficiency.

Methodology
Experimental Setup

This study was conducted using two structured AR lectures
focused on biomechanics and ergonomics, delivered through
the Microsoft HoloLens 2 headset (Guo & Kim, 2021; Yu
et al., 2023). The first lecture unfolded across seven crafted
modules, each designed to immerse students in the essential
concepts of biomechanics and the principles of ergonomic
practices. Building upon this solid foundation, the second
lecture expanded into eight engaging modules that presented
dynamic problem-solving tasks, challenging participants to
apply the knowledge they had just acquired.

To obtain an objective measurement of cognitive work-
load, we incorporated the Dikablis Glasses 3 eye tracker into
our HoloLens setup, allowing for the capture of real-time
pupil dilation data, as illustrated in Figure 2. A group of 27
participants, all students enrolled in an industrial engineering
program at the University of Missouri, participated in this
study. Each participant embraced both lectures, with a care-
fully mandated 24-hour rest interval between sessions, ensur-
ing that the effects of cognitive fatigue were minimized and
that they could approach each lecture with fresh minds and
renewed focus.

In each lecture, participants engaged with immersive AR
content directly from the designated locations, engaging in
an interactive AR learning experience designed to facilitate
conceptual understanding. Following these AR modules,
they tackled concept-specific questions on the laptop to
assess comprehension and apply learned concepts in a prob-
lem-solving context. To create a distinct and seamless transi-
tion from the realm of learning to that of application, we
designed the sessions to fluidly shift from dynamic AR pre-
sentations to thoughtful, related tasks.

Throughout both phases (learning and solving), the eye-
tracking system closely monitored pupil dilation, unveiling
invaluable insights into their cognitive engagement. At the
conclusion of each lecture, participants reflected on their
experiences using the NASA-TLX, filing in on the mental
demand subscale to create a synergy with our pupil dilation
data.

Data Analysis

Pupil area data gathered using the Dikablis Glasses 3 eye
tracker was analysed to explore cognitive workload during
AR learning sessions. Recognizing the inherent variability in
pupil size among individuals, which typically ranges from
800 to 2,500 square millimetres, we employed Equation 1 to
normalize all pupil data between 0 and 1. The original pupil
size is called P, (i=1...n) and Pnorm; is the normalized
pupil data for P,.
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Figure 3. Scatter plots comparing actual NASA TLX Mental Demand values against predicted Mental Demand.
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The data from each learning module was thoughtfully
segmented into three distinct phases: baseline (B), learning
(L), and problem-solving (S). The baseline phase was char-
acterized by a serene three-second idle period preceding the
introduction of AR content, serving as a reference point for
participants’ resting pupil sizes. The learning phase kicked
off as participants fully engaged with the AR instructional
scene, powered by the Microsoft HoloLens. Subsequently,
the problem-solving phase commenced when they shifted
gears to tackle a quiz question on the laptop.

Precise phase transitions were determined using time-
stamps from Microsoft HoloLens logs, which tracked scene
engagement and user navigation across the dynamic AR
modules. From the normalized pupil data, we computed the
absolute differences between the baseline and learning
phases (B—L) and between the baseline and solving phases
(B-S). These critical values were extracted for each module

and labelled B-L-1 through B-L-7 for the seven modules in
Lecture 1, and B-S-1 through B-S-8 for the eight modules in
Lecture 2. To assess the relationship between these physio-
logical indicators and perceived mental effort, we conducted
a regression analysis on the B-L and B-S values against the
mental demand subscale scores collected from the NASA-
TLX, which participants completed after each lecture. This
analytical approach provided an avenue for exploring how
shifts in pupil area—interpreted as indicators of mental
workload—correspond with participants’ subjective evalua-
tions of task difficulty. By connecting eye-tracking data to
cognitive phases (learning versus solving), this study unveils
an understanding of how mental demand fluctuates within
AR-driven educational environments.

Results

Figure 3 presents the results of the Fit model analysis, which
explores the relationship between the predicted mental
demand derived from regression models utilizing normalized
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pupil dilation differences (B—L and B-S) and self-reported
NASA-TLX Mental Demand scores during both the learning
and problem-solving phases of two AR-based lectures. The
term “predicted” is employed to denote the modeled regres-
sion estimates of perceived mental demand based on the
pupil dilation data. These models assess the extent to which
variations in pupil size correspond to variations in subjective
reports of cognitive workload. In Lecture 1, the learning
phase (illustrated in Figure 3a) displayed no correlation
(R*=0.18, p=.1940). The problem-solving phase (Figure 2b)
revealed a slightly stronger, still non-significant correlation
(R*=0.25, p=.0807). This might hint at a subtle increase in
cognitive engagement but not enough to signify a profound
connection in mental workload.

In contrast, Lecture 2 offered a more dynamic picture.
The learning phase (depicted in Figure 3¢) demonstrated a
statistically significant correlation (R*=.31, p=.0378,
RMSE=14.908). In this phase of Lecture 2, pupil dilation
demonstrated a statistically significant relationship with
reported cognitive effort during the learning phase, suggest-
ing its potential as a physiological indicator of mental work-
load. The problem-solving phase of Lecture 2 (illustrated in
Figure 3d) presented a moderate yet non-significant correla-
tion (R?=.23, p=.2298).

These findings compellingly illustrate the variable nature
of cognitive workload in AR contexts, showing clear distinc-
tions based on task phases and types of knowledge. Notably,
the learning material in Lecture 2 elicited a more consistent
connection between pupil dilation signals of mental demand,
underscoring the interplay between content type and cogni-
tive engagement. These results advocate for applying pupil-
lometry as a sensitive, phase-dependent measure of mental
workload, emphasizing the critical need to develop tailored
AR instructional designs that adeptly navigate varying cog-
nitive loads across diverse content types.

Discussion

This study offers valuable insights into measuring cognitive
load during various phases of AR-based learning environ-
ments. By analysing normalized pupil dilation data, the
research highlights how pupil responses can indicate the
mental effort students face at different stages of their educa-
tional journey within AR settings. The findings underscore
the importance of understanding these physiological markers
to enhance the design and effectiveness of AR learning expe-
riences. Contrary to earlier beliefs that problem-solving tasks
might require greater mental effort, our data suggest a nota-
ble insight: a more pronounced relationship between pupil
dilation and mental demand during the learning phase, par-
ticularly in the intensity of Lecture 2. This supports our idea
that learning new concepts, particularly those involving the
understanding and integration of complex ideas, shows a
stronger correlation between pupil dilation and mental work-
load than problem-solving tasks.

Within Lecture 2, we observed elevated correlations
between pupil dilation and mental demand during learning
(R*=.31, p=.0378) compared to the problem-solving phase
(R*=.23, p=.2298). This disparity suggests that the intricate
nature or challenging complexity of the content presented in
Lecture 2 likely intensified cognitive processing demands. In
contrast, Lecture 1 exhibited no correlation throughout both
phases. These variations highlight the critical importance of
thoughtful content design and sequencing in shaping the
mental workload experienced by students within AR
contexts.

The absence of a statistically significant correlation
such as the solving phase of Lecture 1 could be attributed
to various factors, including individual differences in cog-
nitive strategies or potential environmental distractions.
Furthermore, while the NASA-TLX provides a validated
subjective measure of workload, there are instances where
it may not align precisely with physiological reactions,
particularly when participants’ self-perceptions fluctuate
across different tasks or individuals.

Integrating subjective and objective metrics fosters a
richer and better understanding of cognitive demand. The
alignment between pupil dilation and perceived mental effort
in specific contexts highlights the promise of pupillometry as
a tool for real-time cognitive monitoring. These insights call
for a deliberate approach to AR instructional design, one that
prioritizes not just engagement but also cognitive efficiency
by judiciously adjusting content density, pacing, and interac-
tivity based on the mental workload thresholds of learners.

In this study, AR modules in Lecture 2 focused on proce-
dural knowledge, guiding students through step-by-step
applications such as posture analysis, while Lecture 1 empha-
sized declarative knowledge, including conceptual principles
of biomechanics and anatomy. Procedural content often
requires mental simulation during learning, leading to higher
intrinsic cognitive load as learners attempt to internalize
sequences. In contrast, declarative knowledge may appear
less demanding initially, when learners must recall and apply
abstract concepts. This distinction reflects the Cognitive
Theory of Multimedia Learning and aligns with phases of the
skill acquisition model, where early procedural learning acti-
vates different cognitive resources than conceptual problem-
solving (Sweller et al., 1998). These findings can also be
contextualized using the skill acquisition framework (Fitts &
Posner, 1967), where learners transition from the cognitive
stage (requiring significant mental effort) to associative and
autonomous stages. During the initial stages of learning, par-
ticularly when grasping procedural tasks, pupils often expe-
rience significant dilation. This phenomenon reflects a
heightened cognitive engagement as learners grapple with
understanding complex sequences and mechanisms that
demand intense mental effort. This aligns with the associa-
tive stage of learning, where the cognitive load is dominated
by the need to recall information and apply it effectively in
various contexts.
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In future inquiries, it would be appropriate to explore the
long-term effects of learning by analyzing how students
respond over extended periods. Incorporating additional
physiological indicators, such as heart rate variability or
electroencephalography data, could provide deeper insights
into the intricacies of cognitive load. Furthermore, testing
AR contents across various disciplines would help to broaden
the applicability of these findings. Optimizing the transitions
between learning and problem-solving phases is crucial, as is
offering adaptive feedback tailored to individual needs, both
of which could significantly enhance the management of
mental workload and boost overall learning effectiveness.

Conclusion

This study investigates the cognitive workload encountered
during learning and problem-solving tasks within AR-enhanced
lectures on biomechanics and ergonomics. We uncovered
compelling insights by comparing subjective assessments
through the mental demand of NASA-TLX and objective
measures via pupil dilation.

The findings illuminated a compelling link between pupil
dilation and perceived mental demand during the learning
phase, particularly in Lecture 2, which concentrated on pro-
cedural knowledge. This indicates that the cognitive work-
load experienced in AR environments varies significantly
across different types of tasks and knowledge domains.

These outcomes highlight the profound potential of using
real-time physiological indicators, such as pupillometry, to
gauge cognitive engagement and enhance the design of AR
instructional experiences. Educators and developers can
craft more adaptable and cognitively efficient AR learning
environments by pinpointing the moments and areas where
cognitive load surges.

Future research should focus on utilizing multimodal
assessments to measure cognitive workload, explore indi-
vidual differences in cognitive responses, and investigate
how these findings can be applied across various fields and
learner demographics. This exploration is crucial for validat-
ing and refining the role of eye-tracking technology in the
rapidly evolving landscape of AR-based education.

Limitations

This study has several limitations. Firstly, while pupil dila-
tion is widely recognized as a physiological indicator of
mental workload, it is also influenced by various factors,
including emotional states and fatigue. Although we took
steps to mitigate these influences, it was impossible to elimi-
nate them. Additionally, our sample was limited to students
from a single discipline—Industrial Engineering—which
may restrict the generalizability of our findings to broader
populations. For future research, it would be beneficial to
incorporate additional measurement techniques, such as
EEG and heart rate variability, to more effectively monitor

emotional states and fatigue. Moreover, involving a more
diverse group of participants could lead to richer insights.
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