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Introduction

Augmented Reality (AR) is transforming educational experi-
ences by providing immersive and interactive learning envi-
ronments. Although the potential of AR to significantly boost 
engagement and improve learning outcomes has been inves-
tigated, the cognitive demands posed by this technology are 
still surrounded by uncertainty. Further research is still 
needed to understand these cognitive demands and explore 
effective strategies to alleviate them during AR-based learn-
ing experiences. Hence, this current study investigates how 
to measure cognitive load in AR-based biomechanics lec-
tures, focusing on pupil dilation as an indicator of mental 
demand.

Prior research (Kim et al., 2024) has predominantly exam-
ined learning outcomes and user experience, often overlook-
ing how cognitive effort fluctuates between learning and 
problem-solving phases. In our AR learning modules (as 
illustrated in Figure 1), students are immersed in two distinct 
cognitive states: the expedition of acquiring new knowledge 
and the dynamic problem-solving process. The learning 
phase requires intense focus and engagement, as students 
wrestle with novel concepts. On the other hand, the problem-
solving stage needs strong thinking skills to analyze situa-
tions and make thoughtful decisions to address challenges. 
Students frequently encounter various obstacles that compel 

them to transform their theoretical knowledge into practical 
solutions. These situations not only require them to think 
critically and creatively but also to demonstrate a compre-
hensive understanding of their academic learning. By engag-
ing with real-world applications, they can showcase their 
diverse intellectual skills, including analytical reasoning, 
problem-solving, and effective communication, thereby 
illustrating the breadth of their educational experience. To 
explore and quantify the differences in mental workload 
across these distinct phases, we turn to eye-tracking technol-
ogy alongside the NASA Task Load Index (NASA TLX). We 
propose a compelling hypothesis: with its intense demands 
of information processing and the establishment of concep-
tual understanding, the learning phase will reveal a stronger 
correlation with mental demand than the problem-solving 
phase. This research opens doors to invaluable insights for 
optimizing AR-based instructional design. By carefully bal-
ancing cognitive load with effective learning strategies, we 
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aim to enhance educational outcomes, ensuring that students 
are as enriching and transformative as it is engaging.

Background

While AR learning environments have been extensively 
studied for their impact on knowledge retention and learner 
motivation, their cognitive demands remain less explored. 
AR's ability to overlay digital information onto the physical 
world introduces unique benefits and challenges to cognitive 
processing. According to Cognitive Load Theory (Sweller, 
2011), learning effectiveness is determined by the interplay 
of three types of loads: intrinsic (task complexity), extrane-
ous (irrelevant or poorly designed information), and germane 
(mental effort invested in learning). AR has the potential to 
reduce extraneous load by providing intuitive, multimodal, 
and context-rich instructional cues, yet it can also increase 
intrinsic load due to the novelty and interactivity of the 
medium, as well as the requirement for divided visual and 
attentional resources (Buchner et al., 2022). This makes an 
accurate assessment of mental workload in AR critical for 
optimizing learning environments and reducing the risk of 
cognitive overload.

Recent advancements in physiological measurement tech-
niques, particularly eye-tracking, have enabled researchers to 
monitor learners' mental states during interactive tasks in real 
time. Among these techniques, pupillometry the measure-
ment of pupil size has proven to be a robust and non-invasive 
indicator of mental effort (Gorin et  al., 2024; Othman & 
Romli, 2016; Yang & Kim, 2019). Pupil dilation has been 
shown to correlate with the activation of the locus coeruleus–
norepinephrine (LC-NE) system, which governs attentional 
control and cognitive arousal (Kahneman & Beatty, 1966). 
Pupillary responses have also been linked to task engage-
ment, mental fatigue, and attentional switching, making them 
useful for assessing dynamic cognitive workload during com-
plex activities (Hopstaken et al., 2015; Kim & Yang, 2020; 
Nazareth & Kim, 2020). When used alongside subjective 
assessments like the NASA-TLX, pupillometry can offer a 

dual-layered view of workload, capturing both perceived 
effort and physiological strain (Xie & Salvendy, 2000).

Within AR learning, students typically engage in two dis-
tinct cognitive phases: a learning phase, where they absorb 
and make sense of new information, and a problem-solving 
phase, where they apply that knowledge in a task-specific 
context. The learning phase often involves conceptual inte-
gration and schema building, which can impose significant 
intrinsic and germane load. Conversely, the problem-solving 
phase may involve working memory overload, error correc-
tion, and adaptive reasoning, all of which can increase cogni-
tive demands. While some studies have suggested that pupil 
dilation is more pronounced during problem-solving 
(Marshall, 2002), the mental workload imposed by concep-
tual learning, especially in immersive AR environments 
remains underexamined. A key research gap persists in 
directly comparing cognitive load across these phases using 
real-time physiological indicators in combination with vali-
dated subjective instruments.

To tackle this gap, we embraced a comprehensive frame-
work for categorizing AR instructional modules into two dis-
tinct types: declarative and procedural knowledge. 
Declarative knowledge encompasses information, descrip-
tive insights, and conceptual understanding, imagine grasp-
ing the intricate principles of biomechanics or pinpointing 
various anatomical structures in vivid detail. In contrast, pro-
cedural knowledge is rooted in action; it involves the 
dynamic sequences of tasks and the cognition necessary to 
execute them to think of conducting ergonomic assessments. 
These two forms of knowledge are recognized for engaging 
different cognitive mechanisms, resulting in varying levels 
of cognitive load that depend heavily on both the nature of 
the task at hand and the surrounding context. By aligning 
eye-tracking data with our classification of these modules, 
this study paves the way for an intricate examination of how 
the type of knowledge and the cognitive phase, whether 
learning or problem-solving interact to shape mental work-
load within AR environments. The insights gained promise 
practical applications for refining AR instructional design, 

Figure 1.  3D virtual contents used in AR learning Environment (Mohanty et al., 2024).
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ensuring that it is finely tuned to meet learners’ needs and 
optimizing the delivery of content to enhance understanding 
and cognitive efficiency.

Methodology

Experimental Setup

This study was conducted using two structured AR lectures 
focused on biomechanics and ergonomics, delivered through 
the Microsoft HoloLens 2 headset (Guo & Kim, 2021; Yu 
et al., 2023). The first lecture unfolded across seven crafted 
modules, each designed to immerse students in the essential 
concepts of biomechanics and the principles of ergonomic 
practices. Building upon this solid foundation, the second 
lecture expanded into eight engaging modules that presented 
dynamic problem-solving tasks, challenging participants to 
apply the knowledge they had just acquired.

To obtain an objective measurement of cognitive work-
load, we incorporated the Dikablis Glasses 3 eye tracker into 
our HoloLens setup, allowing for the capture of real-time 
pupil dilation data, as illustrated in Figure 2. A group of 27 
participants, all students enrolled in an industrial engineering 
program at the University of Missouri, participated in this 
study. Each participant embraced both lectures, with a care-
fully mandated 24-hour rest interval between sessions, ensur-
ing that the effects of cognitive fatigue were minimized and 
that they could approach each lecture with fresh minds and 
renewed focus.

In each lecture, participants engaged with immersive AR 
content directly from the designated locations, engaging in 
an interactive AR learning experience designed to facilitate 
conceptual understanding. Following these AR modules, 
they tackled concept-specific questions on the laptop to 
assess comprehension and apply learned concepts in a prob-
lem-solving context. To create a distinct and seamless transi-
tion from the realm of learning to that of application, we 
designed the sessions to fluidly shift from dynamic AR pre-
sentations to thoughtful, related tasks.

Throughout both phases (learning and solving), the eye-
tracking system closely monitored pupil dilation, unveiling 
invaluable insights into their cognitive engagement. At the 
conclusion of each lecture, participants reflected on their 
experiences using the NASA-TLX, filing in on the mental 
demand subscale to create a synergy with our pupil dilation 
data.

Data Analysis

Pupil area data gathered using the Dikablis Glasses 3 eye 
tracker was analysed to explore cognitive workload during 
AR learning sessions. Recognizing the inherent variability in 
pupil size among individuals, which typically ranges from 
800 to 2,500 square millimetres, we employed Equation 1 to 
normalize all pupil data between 0 and 1. The original pupil 
size is called Pi (i = 1.  .  .n) and Pnormi is the normalized 
pupil data for Pi.

Figure 2.  Participant equipped with Dikablis eye tracker and Microsoft HoloLens undergoing lectures.
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The data from each learning module was thoughtfully 
segmented into three distinct phases: baseline (B), learning 
(L), and problem-solving (S). The baseline phase was char-
acterized by a serene three-second idle period preceding the 
introduction of AR content, serving as a reference point for 
participants’ resting pupil sizes. The learning phase kicked 
off as participants fully engaged with the AR instructional 
scene, powered by the Microsoft HoloLens. Subsequently, 
the problem-solving phase commenced when they shifted 
gears to tackle a quiz question on the laptop.

Precise phase transitions were determined using time-
stamps from Microsoft HoloLens logs, which tracked scene 
engagement and user navigation across the dynamic AR 
modules. From the normalized pupil data, we computed the 
absolute differences between the baseline and learning 
phases (B–L) and between the baseline and solving phases 
(B–S). These critical values were extracted for each module 

and labelled B-L-1 through B-L-7 for the seven modules in 
Lecture 1, and B-S-1 through B-S-8 for the eight modules in 
Lecture 2. To assess the relationship between these physio-
logical indicators and perceived mental effort, we conducted 
a regression analysis on the B–L and B–S values against the 
mental demand subscale scores collected from the NASA-
TLX, which participants completed after each lecture. This 
analytical approach provided an avenue for exploring how 
shifts in pupil area—interpreted as indicators of mental 
workload—correspond with participants’ subjective evalua-
tions of task difficulty. By connecting eye-tracking data to 
cognitive phases (learning versus solving), this study unveils 
an understanding of how mental demand fluctuates within 
AR-driven educational environments.

Results

Figure 3 presents the results of the Fit model analysis, which 
explores the relationship between the predicted mental 
demand derived from regression models utilizing normalized 

Figure 3.  Scatter plots comparing actual NASA TLX Mental Demand values against predicted Mental Demand.
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pupil dilation differences (B–L and B–S) and self-reported 
NASA-TLX Mental Demand scores during both the learning 
and problem-solving phases of two AR-based lectures. The 
term “predicted” is employed to denote the modeled regres-
sion estimates of perceived mental demand based on the 
pupil dilation data. These models assess the extent to which 
variations in pupil size correspond to variations in subjective 
reports of cognitive workload. In Lecture 1, the learning 
phase (illustrated in Figure 3a) displayed no correlation 
(R² = 0.18, p = .1940). The problem-solving phase (Figure 2b) 
revealed a slightly stronger, still non-significant correlation 
(R² = 0.25, p = .0807). This might hint at a subtle increase in 
cognitive engagement but not enough to signify a profound 
connection in mental workload.

In contrast, Lecture 2 offered a more dynamic picture. 
The learning phase (depicted in Figure 3c) demonstrated a 
statistically significant correlation (R² = .31, p = .0378, 
RMSE = 14.908). In this phase of Lecture 2, pupil dilation 
demonstrated a statistically significant relationship with 
reported cognitive effort during the learning phase, suggest-
ing its potential as a physiological indicator of mental work-
load. The problem-solving phase of Lecture 2 (illustrated in 
Figure 3d) presented a moderate yet non-significant correla-
tion (R² = .23, p = .2298).

These findings compellingly illustrate the variable nature 
of cognitive workload in AR contexts, showing clear distinc-
tions based on task phases and types of knowledge. Notably, 
the learning material in Lecture 2 elicited a more consistent 
connection between pupil dilation signals of mental demand, 
underscoring the interplay between content type and cogni-
tive engagement. These results advocate for applying pupil-
lometry as a sensitive, phase-dependent measure of mental 
workload, emphasizing the critical need to develop tailored 
AR instructional designs that adeptly navigate varying cog-
nitive loads across diverse content types.

Discussion

This study offers valuable insights into measuring cognitive 
load during various phases of AR-based learning environ-
ments. By analysing normalized pupil dilation data, the 
research highlights how pupil responses can indicate the 
mental effort students face at different stages of their educa-
tional journey within AR settings. The findings underscore 
the importance of understanding these physiological markers 
to enhance the design and effectiveness of AR learning expe-
riences. Contrary to earlier beliefs that problem-solving tasks 
might require greater mental effort, our data suggest a nota-
ble insight: a more pronounced relationship between pupil 
dilation and mental demand during the learning phase, par-
ticularly in the intensity of Lecture 2. This supports our idea 
that learning new concepts, particularly those involving the 
understanding and integration of complex ideas, shows a 
stronger correlation between pupil dilation and mental work-
load than problem-solving tasks.

Within Lecture 2, we observed elevated correlations 
between pupil dilation and mental demand during learning 
(R² = .31, p = .0378) compared to the problem-solving phase 
(R² = .23, p = .2298). This disparity suggests that the intricate 
nature or challenging complexity of the content presented in 
Lecture 2 likely intensified cognitive processing demands. In 
contrast, Lecture 1 exhibited no correlation throughout both 
phases. These variations highlight the critical importance of 
thoughtful content design and sequencing in shaping the 
mental workload experienced by students within AR 
contexts.

The absence of a statistically significant correlation 
such as the solving phase of Lecture 1 could be attributed 
to various factors, including individual differences in cog-
nitive strategies or potential environmental distractions. 
Furthermore, while the NASA-TLX provides a validated 
subjective measure of workload, there are instances where 
it may not align precisely with physiological reactions, 
particularly when participants’ self-perceptions fluctuate 
across different tasks or individuals.

Integrating subjective and objective metrics fosters a 
richer and better understanding of cognitive demand. The 
alignment between pupil dilation and perceived mental effort 
in specific contexts highlights the promise of pupillometry as 
a tool for real-time cognitive monitoring. These insights call 
for a deliberate approach to AR instructional design, one that 
prioritizes not just engagement but also cognitive efficiency 
by judiciously adjusting content density, pacing, and interac-
tivity based on the mental workload thresholds of learners.

In this study, AR modules in Lecture 2 focused on proce-
dural knowledge, guiding students through step-by-step 
applications such as posture analysis, while Lecture 1 empha-
sized declarative knowledge, including conceptual principles 
of biomechanics and anatomy. Procedural content often 
requires mental simulation during learning, leading to higher 
intrinsic cognitive load as learners attempt to internalize 
sequences. In contrast, declarative knowledge may appear 
less demanding initially, when learners must recall and apply 
abstract concepts. This distinction reflects the Cognitive 
Theory of Multimedia Learning and aligns with phases of the 
skill acquisition model, where early procedural learning acti-
vates different cognitive resources than conceptual problem-
solving (Sweller et  al., 1998). These findings can also be 
contextualized using the skill acquisition framework (Fitts & 
Posner, 1967), where learners transition from the cognitive 
stage (requiring significant mental effort) to associative and 
autonomous stages. During the initial stages of learning, par-
ticularly when grasping procedural tasks, pupils often expe-
rience significant dilation. This phenomenon reflects a 
heightened cognitive engagement as learners grapple with 
understanding complex sequences and mechanisms that 
demand intense mental effort. This aligns with the associa-
tive stage of learning, where the cognitive load is dominated 
by the need to recall information and apply it effectively in 
various contexts.
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In future inquiries, it would be appropriate to explore the 
long-term effects of learning by analyzing how students 
respond over extended periods. Incorporating additional 
physiological indicators, such as heart rate variability or 
electroencephalography data, could provide deeper insights 
into the intricacies of cognitive load. Furthermore, testing 
AR contents across various disciplines would help to broaden 
the applicability of these findings. Optimizing the transitions 
between learning and problem-solving phases is crucial, as is 
offering adaptive feedback tailored to individual needs, both 
of which could significantly enhance the management of 
mental workload and boost overall learning effectiveness.

Conclusion

This study investigates the cognitive workload encountered 
during learning and problem-solving tasks within AR-enhanced 
lectures on biomechanics and ergonomics. We uncovered 
compelling insights by comparing subjective assessments 
through the mental demand of NASA-TLX and objective 
measures via pupil dilation.

The findings illuminated a compelling link between pupil 
dilation and perceived mental demand during the learning 
phase, particularly in Lecture 2, which concentrated on pro-
cedural knowledge. This indicates that the cognitive work-
load experienced in AR environments varies significantly 
across different types of tasks and knowledge domains.

These outcomes highlight the profound potential of using 
real-time physiological indicators, such as pupillometry, to 
gauge cognitive engagement and enhance the design of AR 
instructional experiences. Educators and developers can 
craft more adaptable and cognitively efficient AR learning 
environments by pinpointing the moments and areas where 
cognitive load surges.

Future research should focus on utilizing multimodal 
assessments to measure cognitive workload, explore indi-
vidual differences in cognitive responses, and investigate 
how these findings can be applied across various fields and 
learner demographics. This exploration is crucial for validat-
ing and refining the role of eye-tracking technology in the 
rapidly evolving landscape of AR-based education.

Limitations

This study has several limitations. Firstly, while pupil dila-
tion is widely recognized as a physiological indicator of 
mental workload, it is also influenced by various factors, 
including emotional states and fatigue. Although we took 
steps to mitigate these influences, it was impossible to elimi-
nate them. Additionally, our sample was limited to students 
from a single discipline—Industrial Engineering—which 
may restrict the generalizability of our findings to broader 
populations. For future research, it would be beneficial to 
incorporate additional measurement techniques, such as 
EEG and heart rate variability, to more effectively monitor 

emotional states and fatigue. Moreover, involving a more 
diverse group of participants could lead to richer insights.
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