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ABSTRACT

Augmented Reality revolutionises education by enhancing learning with interactive, immersive
experiences. However, the impact of long-term AR use, particularly in terms of physical demand,
within educational environments remains poorly understood. This study investigates the
relationship between AR engagement and physical demand, utilising motion capture technology,
NASA Task Load Index, and HoloLens eye-tracking to quantify user posture, engagement, and
perceived workload. We hypothesise that prolonged AR interaction results in a change in
slouching scores, indicating increased fatigue. The results show a strong correlation between the
slouching score and the NASA-TLX physical demand score. Our study lays the groundwork for
incorporating predictive modelling to develop proactive physical demand measures.

Practitioner Summary: Measuring physical demand during AR-based learning is possible using the
slouching score. This metric enables dynamic assessment of user physical demand in AR
environments, paving the way for improved AR system design to minimise physical fatigue during
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tasks or learning, enhancing overall user comfort and performance.

1. Introduction

In the rapidly evolving digital era, Augmented Reality
(AR) stands at the forefront of transformative technol-
ogies (Rampolla and Kipper 2012), bridging the gap
between virtual and physical realms to enhance user
experiences across various domains. The beginning of
AR technology, dating back to the 1960s, laid the
foundation for a future where digital information
seamlessly integrates with the physical world. AR has
been broadly defined as the enhancement of natural
feedback provided to the operator through the inte-
gration of simulated cues using see-through or
monitor-based displays (Milgram et al. 1995). Over the
decades, advancements in computing power, sensor
technology, and software development have propelled
AR from conceptual prototypes to sophisticated sys-
tems capable of enhancing reality with virtual overlays
(Rampolla and Kipper 2012).

In educational contexts, AR’s potential to augment
learning experiences with interactive, three-dimensional
content offers a compelling tool for engaging students
and enriching curricula. AR offers a range of benefits,

from improving students’ spatial abilities to facilitating
knowledge acquisition and helping them grasp
abstract concepts in engineering physics (Czok et al.
2023). Also, AR has been found to boost motivation
levels among learners, providing valuable insights for a
deeper understanding of the dynamics involved in
educational environments (Chen et al. 2024). By inte-
grating interactive virtual 3D models into natural envi-
ronments, AR offers an engaging learning experience
that develops self-regulation skills, which are essential
for academic success (Arici 2024). It means that AR's
integration into educational settings heralds a new era
of immersive learning, offering dynamic, interactive
methodologies that promise to redefine traditional
pedagogical approaches. However, as AR technologies
gain traction in classrooms and learning environments
worldwide, there emerges a critical discourse sur-
rounding their implications—specifically, cognitive
overload, distractions, technical challenges (Peeters,
Habig, and Fechner 2023), and the physical fatigue
resulting from prolonged engagement with AR sys-
tems (Halim et al. 2012).
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In the realm of AR, where users often engage with
digital content through wearable devices or mobile
applications for extended periods, there is a growing
concern over the fatigue risks associated with such
interactions (Halim et al. 2012). These risks, manifesting
as postural fatigue, encompass the physical demand or
musculoskeletal strain experienced due to prolonged
maintenance of certain body positions. Given the
immersive nature of AR, users may remain oblivious to
the onset of fatigue until physical demand becomes
pronounced, potentially impairing learning outcomes.
Observations indicate that these effects are manifested
in the torso (Granata and Gottipati 2008), highlighting
ergonomics assessment. In AR environments, the
dynamic interplay between physical and virtual set-
tings necessitates the development of effective strate-
gies to measure physical demand and fatigue,
addressing the future challenges of an AR lifestyle. The
existing body of literature on AR predominantly con-
centrates on its technological, instructional, and cogni-
tive aspects, with scant attention to the physical
demands it places on users (Garzén, Pavén, and Baldiris
2019). This oversight highlights a critical gap in our
understanding of AR’s comprehensive impact, under-
scoring the necessity for a detailed investigation into
how AR-induced postural adjustments correlate with
physical demand and overall user well-being. Although
there are several subjective measurement tools (Gawron
2019) to assess physical demands, they are not
designed to effectively capture the dynamic changes in
physical demand. To tackle these challenges, it is essen-
tial to integrate insights from diverse studies to provide
a holistic understanding of the effects of fatigue, the
ergonomic implications of technology use (Filo and
Janousek 2022), and the role of statistical methodolo-
gies in assessing these phenomena (Aukstakalnis 2016;
Lutabingwa and Auriacombe 2007).

Recently, the integration of physical exertion with
dynamic tasks illuminates the multifaceted nature of
fatigue and its effects on both physiological functions
and performance (Mizuno et al. 2011), revealing pro-
found implications for biomechanics, injury prevention,
and the enhancement of outcomes through physical
activity. Pivotal research in the domain of running bio-
mechanics, as elucidated through tri-axial trunk accel-
erometry (Schiitte et al. 2015), highlights a significant
increase in variability within horizontal plane trunk
accelerations under fatigue, particularly in mediolateral
and anteroposterior directions. This variability suggests
compensatory kinematic adjustments that potentially
elevate the risk of musculoskeletal injuries, emphasis-
ing the need for incorporating fatigue considerations
into training regimens and rehabilitation protocols to

mitigate injury risks and enhance performance sustain-
ability (Halim et al. 2012). Moreover, the interconnect-
edness of physical exertion and task demand not only
impacts physiological functions but also emphasises
the potential of leveraging physical activity to enhance
outcomes (Marcora, Staiano, and Manning 2009).
According to the study done by Evans and Winter
(2018), physical fatigue can be measured by analysing
the location of the centre of mass (COM).

Hence, our study postulates that prolonged engage-
ment with AR technologies in learning environments
precipitates notable changes in user posture—specifi-
cally, a shift in the centre of mass (COM)—indicative of
escalating fatigue levels. This hypothesis is rooted in the
premise that sustained interaction with AR content,
requiring users to maintain fixed positions or perform
repetitive movements, increases physical demand, mani-
festing in altered postural dynamics. To explore this
hypothesis, the study adopts a multi-disciplinary
approach, integrating motion capture technology to
accurately capture and analyse postural changes, along-
side workload assessment tools such as the NASA Task
Load Index (Hart 2006) and HoloLens eye-tracking. These
methodologies collectively enable a comprehensive eval-
uation of the relationship between user posture, engage-
ment, and perceived workload in AR learning settings. To
quantitatively measure the shift of COM in AR learning
environments, we introduced a new method, termed the
‘slouching score, using motion capture technology. We
compared the slouching scores with NASA-TLX physical
demand scores to validate their relationship.

The findings from our study reveal a discernible
decline in slouching scores associated with increased
NASA-TLX physical demand scores during AR-based
learning. The implications of our findings could extend
beyond academic discourse, offering practical insights
for developers and practitioners aiming to harness AR'’s
educational potential without compromising user com-
fort. In synthesising our research outcomes, this paper
contributes significantly to the developing discourse
on the intersection of technology, ergonomics, and
education. By elucidating the challenges posed by AR
technologies, our study not only enriches academic lit-
erature but also provides a foundational basis for
future innovations in AR design.

2. Method
2.1. Experiment setup

The experimental setup (Yu et al. 2023) is designed to
assess the efficacy and usability of an innovative edu-
cational tool that integrates Augmented Reality (AR),



Figure 1. 3D scenes of an AR module built with unity.

Near-Field Electromagnetic Ranging (NFER), and motion
capture technologies. This system aims to enhance the
learning experience in engineering education, provid-
ing a unique and immersive learning environment
while also enabling the collection of detailed data on
student interaction and engagement.

At the core of the experiment is an AR-based
instructional system, developed to deliver two distinct
lectures on engineering topics. The system employs
Microsoft HoloLens 2 as the AR interface, chosen for
its advanced holographic projection capabilities and
its ability to create a seamless blend of physical and
digital learning environments. The HoloLens 2 is not
only a display device but also a data collection tool,
capturing eye-tracking data that offers insights into
where students focus their attention during the learn-
ing process.

The experiment’s physical setup is organised within
a controlled environment, where participants can nav-
igate and interact with the AR content. The environ-
ment is divided into specific zones, each corresponding
to different segments of the modules see Figure 1.
This spatial division is integral to the experiment, as it
allows for the incorporation of the Q-Track NFER sys-
tem (Schantz 2007), which is used for precise indoor
location tracking. The NFER technology allows physical
engagement and navigation in the AR environment.

In addition to the location tracking, participants are
outfitted with Xsens motion capture sensors (Roetenberg,
Luinge, and Slycke 2009). These sensors are placed on
various parts of the body to capture detailed move-
ment data, see Figure 2. This motion data is vital for
understanding how participants interact with the AR
system and for developing future gesture-based con-
trols that can enhance interactivity within the AR
learning environment.

The AR content is developed using the Unity game
engine, known for its robust capabilities in creating
immersive 3D environments. The lectures are
designed as a series of interactive 3D scenes, each
representing different concepts and elements of the
engineering curriculum. Autodesk 3ds Max is used to
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Figure 2. Equipped hardware components.

create complex 3D models and animations, which
demonstrate virtual instructors and provide supple-
mentary information displayed in various panels that
are then integrated into the Unity scenes, adding
depth and realism to the educational content. The
lectures are carefully crafted to vary in difficulty -
with Lecture 1 consisting of 7 modules, where learn-
ing and solving for each module are relatively easier,
focusing on basic concepts and definitions (declara-
tive knowledge). Lecture 2 consists of 8 modules,
where learning and solving for each module are
more challenging, involving complex calculations and
problem-solving (procedural knowledge). This varia-
tion allows for an assessment of how the difficulty
level impacts the usability and effectiveness of the
AR system.
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2.1.1. Content of AR learning modules

Lecture 1 (Duration: 15minutes for the modules,
25-30minutes total based on participants’ solving
capabilities):

«  Module 1: Introduction to new concepts in
biomechanics.

«  Modules 2 & 4: Problem explanation and solving
related to forces and momentum on animated
objects and achieving static equilibrium.

«  Module 3: Further exploration of new concepts
on static equilibrium.

«  Module 5: Introduction of biomechanical princi-
ples as they apply to the human body during
object lifting.

+  Modules 6 & 7: Detailed problem-solving with
calculations on forces and momentum in
human body dynamics, supplemented with
necessary biomechanical data.

Lecture 2 (Duration: 27 minutes for modules, 40-50 min-
utes total based on participants’ solving capabilities):

«  Module 1: Recap of Lecture 1 and introduction to
new problems in Lecture 2.

«  Modules 2 & 3: Explanation and analysis of a bio-
mechanical problem involving different ways of
holding a box.

«  Modules 4 to 7: Progressive problem-solving on
forces and moments acting on different arm seg-
ments, each focusing on a specific part but build-
ing upon the last.

«  Module 8: Conclusion and comprehensive resolu-
tion of the problems discussed.

This research complied with the Code of Ethics and
was approved by the Institutional Review Board of The
University of Missouri. 21 undergraduate engineering
students participated in this experiment. All subjects
had their informed consent before they participated in
the study. These individuals are selected based on
their enrolment in engineering courses that provide
them with a foundational knowledge of AR content
presented. To ensure participants are well-acquainted
with the AR technology and the structure of the exper-
iment, a training session is conducted before the com-
mencement of the experiment. This phase is important
for familiarising students with the AR equipment and
the overall experimental protocol, setting the stage for
their engagement with Lecture 1. The experiment
involves participants’ interaction with two distinct AR
lectures. Lecture 1 this initial lecture series is struc-
tured to facilitate ease of learning and solving,

ensuring participants can smoothly navigate through
the 3D scenes and effectively engage with the founda-
tional material. In contrast, Lecture 2, which partici-
pants engage with after a rest period of at least
4hours but no more than 48hours following Lecture 1,
consists of 8 modules.

As participants navigate through the 3D scenes and
interact with the content across both lectures, their
engagement is multi-dimensional. Following each lec-
ture segment, participants complete quizzes and assess-
ments tailored to the content they have just encountered.
These assessments play a pivotal role in evaluating
immediate learning outcomes and the efficacy of the
AR system in facilitating knowledge acquisition. By inte-
grating direct assessments of learning outcomes with
user feedback, the experiment aims to provide a holistic
understanding of the AR system’s effectiveness.

Data collection is extensive and multi-layered. The
experiment generates a dataset encompassing perfor-
mance data (quiz scores), usability feedback which
includes metacognition awareness, NASA TLX forms,
and tracking data (HoloLens eye-tracking, D-lab
eye-tracking, and motion data). This data is subjected
to rigorous statistical analysis to test the study’s
hypotheses, evaluate the effectiveness of the AR sys-
tem, and understand the nuances of how students
interact with and learn from this innovative educa-
tional tool. This experimental setup represents a com-
prehensive approach to evaluating an AR-based
learning system. It not only assesses the system'’s effec-
tiveness in delivering educational content but also
provides deep insights into the ways students interact
with and respond to AR technology in a learning
context.

2.2. Data processing

This subsection elaborates on the methodologies uti-
lised for processing and refining the collected data to
focus on specific aspects relevant to our study
objectives.

2.2.1. Segmentation of data

This step is pivotal in narrowing down the vast dataset
to specific, relevant metrics. By concentrating on data
related to position and the centre of mass (COM) from
the motion capture dataset, you isolate the elements
crucial for analysing postural dynamics. This segmenta-
tion is not just a data reduction technique; it's a stra-
tegic move to zoom in on the most telling indicators
of how participants interact with and respond to the
AR environment.



2.2.2. Visual analysis for postural dynamics

In this phase, we initially focused on generating visual
representations to examine shifts in balance, as indi-
cated by changes in COM (Stapley et al. 1999) and
position data. Through these visual interpretations, we
gained valuable insights into the participants’ postural
dynamics during their engagement with the AR envi-
ronment. The visual tools helped us discern patterns
and subtle shifts in the COM, which were not as imme-
diately apparent in the position data. This decision was
driven by the realisation that the COM data offered a
more direct and quantifiable measure of the partici-
pants’ postural stability and adjustments, which are
critical factors in understanding their physical interac-
tion with the AR system.

2.2.3. Synchronisation of timestamps for Data
Alignment

In the study, we employed a meticulous process for
aligning the timestamps of two distinct but comple-
mentary datasets: the motion capture data and the
HoloLens eye-tracking data. This alignment was crucial
to segregate the data according to participant activi-
ties, particularly differentiating between the learning
and problem-solving phases of the modules. The align-
ment was achieved through a dynamic approach
named ‘Data Alignment and Frame Indexing. The
HoloLens eye-tracking data consisted of 2 files for
each module, with each file representing learning and
problem-solving activities. The columns in the HoloLens
dataset included timestamps and detailed information
about the participant’s gaze direction and focal points,
such as the following:

« Timestamp: The exact time at which the data
was recorded.

- Target data: The name of the panel or object
the participant is looking at.

«  Gaze Point: The coordinates of where the partici-
pant is looking, represented as a 3D point (x, y, 2).

For the motion capture data, which followed the
Xsens motion capture system, we had a set structure
that included the frame number and the Centre of
Mass (COM) positions in three-dimensional space. The
columns in this dataset were as follows:

«  Frame: The specific frame number, corresponding
to a particular moment in time (captured at 60fps)

+ COM pos X, COM pos Y, COM pos z: The x, y, z
coordinates of the participant’s centre of mass
at that frame respectively.
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The process began by gathering the start and end
timestamps for each module or scene from the
HoloLens data. We then calculated frame numbers at a
fixed rate of 60 frames per second, as dictated by the
Xsens system, using these timestamps. This calculation
allowed us to define distinct ranges of frame numbers
corresponding to the respective modules. Essentially,
each frame number from the motion capture data was
a snapshot in time, which, when aligned with the cor-
responding snapshot from the HololLens data, pro-
vided a comprehensive picture of how a participant’s
gaze direction and focal points correlated with their
physical movements.

This precise alignment enabled us to isolate motion
capture data that corresponded to specific modules,
ensuring that our analysis focused on the periods
when participants were actively engaged with the lec-
ture content. By correlating frame numbers and COM
positions from the motion capture data with the time-
stamped gaze data from the HoloLens, we gained a
nuanced understanding of the participant’s interac-
tions with the AR environment, particularly how their
visual attention and physical orientation were syn-
chronised during different educational phases.

2.2.4. Data segregation by module

Following the synchronisation of the motion capture
and HoloLens eye-tracking data, we proceeded to the
phase of Data Segregation by Module. This step was
essential for isolating and analysing the data specific
to each learning phase within the individual modules.
In this process, we assigned acquired frame numbers
to the HoloLens eye-tracking data, ensuring that they
corresponded precisely with the motion capture data.
This allowed us to match every gaze and head move-
ment captured by the HoloLens with the exact physi-
cal position and movement of the participant at that
moment, as recorded by the motion capture system.
The dynamic approach is a process specifically
designed to handle the variability in the eye-tracking
data points. Given that eye-tracking data can vary sig-
nificantly in terms of the number and frequency of
data points recorded, it was imperative to develop a
method that could dynamically assign frame numbers
to these data points, ensuring they align perfectly with
the corresponding frames in the motion capture data.
The outcome of this process was a set of module-specific
datasets that seamlessly integrated motion capture
data with frame-indexed HoloLens eye-tracking data.
Each dataset now represented a complete picture of
the participant’s interactions within a specific module,
capturing both their physical movements and gaze
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patterns in a synchronised manner. This integrated
dataset was then primed for an in-depth analysis.

2.2.5. Data filtering for focused analysis

The initial step in this phase was the addition of a
new column in our dataset, which described the direc-
tion of the participants’ gaze, such as whether they
were looking towards the central panel, left panel, or
other areas within the AR environment. However, upon
further scrutiny of the data, we encountered a signifi-
cant challenge: there was considerable ‘noise’ or extra-
neous data, primarily resulting from the participants’
movements as they shifted their gaze across different
panels within the 180-degree visual field of the AR
setup. Such movements often led to complex and
erratic data patterns, making it difficult to isolate key
moments of interaction and engagement. To tackle
this issue, we implemented a targeted approach to fil-
ter the dataset. We narrowed our focus to specifically
identify and analyse instances where participants were
directly facing the central panel. The rationale behind
this decision was twofold. Firstly, by concentrating on
moments when participants were looking straight
ahead at the central panel, we could significantly
reduce the complexity and variability in the data
caused by their movements. This reduction in variabil-
ity was key to achieving cleaner, more reliable data for
analysis. Secondly, this focused approach allowed us to
better assess instances of postural stability. When par-
ticipants faced the central panel directly, there was
minimal twisting or turning of their COM, leading to
more stable and consistent postural data. This refined
dataset, now concentrated on moments of direct
engagement with the central panel, provided us with
a clearer and more accurate representation of partici-
pant behaviour and interaction within the AR
environment.

2.2.6. Visual representation

We employed visual analytical tools to transform our
refined datasets into intuitive graphical representa-
tions. This stage was essential in making the complex
data more accessible and understandable. We created
a variety of graphs and charts that visually narrated
the participant’s journey through the AR learning envi-
ronment. These visualisations highlighted key aspects
such as the frequency of gaze towards specific panels
and changes in posture over time, providing an imme-
diate and clear understanding of participant behaviour
and engagement. Once these visual representations
were established, we prepared the data for export, for-
matting it for further detailed analysis and broader
presentation.

This approach not only facilitated a smoother tran-
sition into the data analysis phase of our study but
also ensured that our findings were presented in a
clear, concise, and impactful manner. In each of these
steps, coding and software tools play a crucial role.

3. Data analysis
3.1. Postural dynamics analysis

Using the filtered motion capture data, we plotted the
deviations of the COM positions (x, y, z) from the overall
average for each module. The variations in ‘COM pos x’
occasionally displayed significant differences from the
average, indicating lateral shifts in balance that might
reflect a response to the AR content. The analysis
included a comparison of the deviations in the COM
from reference points for each module. The visualisa-
tions suggested meaningful insights into postural
dynamics, providing significant evidence of the relation-
ship between postural variation and physical demand.
The COM deviations indicated that certain modules
might place greater physical demands on participants,
leading to more noticeable postural adjustments.

3.2. Slouching score analysis

In our research, a significant portion of our data anal-
ysis was devoted to the computation and interpreta-
tion of slouching scores. This metric was creatively
developed to quantitatively assess the postural
changes experienced by participants while using AR
systems (see Equation 1). In our study, the slouching
score acts as a numerical gauge, ranging from 0 to
100, that measures the degree of a participant’s pos-
tural deviation from a predetermined baseline. A
slouching score of 100 signifies no deviation from this
baseline posture, whereas lower scores indicate greater
deviations. A score of 0 represents the maximum devi-
ation observed, suggesting a significant postural
change that may lead to a high physical demand. This
scoring system allowed us to precisely measure and
analyse the ergonomic impact of prolonged AR use on
participants’ posture.

Slouching score =100

: abs(COM _pos _X —Global _Baseline) M
< 1—
Maximum _ Deviation

The calculation of slouching scores was based on
establishing a baseline posture. This baseline was
determined by analysing the average position of the
Centre of Mass (COM) in the x-direction (‘COM pos x')



Figure 3. Frame-by-frame COM pos X trajectory across modules.

during the first 4seconds of data collection before
‘Module 1'. We found that participants maintained rel-
atively stable postures during this initial time frame.
Following the establishment of this baseline, we
moved forward to conduct the evaluation aimed at
identifying the maximum deviation from it. The pro-
cess involved a detailed analysis to identify 240 devia-
tions in the ‘COM pos x’ for each participant by sorting
in ascending order, emphasising the most significant
shifts from their baseline posture. The number 240
was chosen to align with the amount of time consid-
ered for the baseline, as each second is composed of
60 frames. Thus, 4seconds equate to 240 frames. The
mean of these deviations provided a threshold for
what we considered substantial postural change. By
focusing on these scores, the analysis could reveal
broader patterns and trends that might be obscured in
a frame-by-frame examination see Figure 3.

3.2.1. Final steps in slouching score analysis
As the concluding part of our slouching score analysis,
we calculated the average slouching scores for each
module. This step was important in distilling the vast
amount of data into manageable, module-specific
insights, reflecting the variation in postural dynamics
throughout the different phases of the AR experience.
Upon obtaining these average scores, we prepared
to compare them with the NASA-TLX Physical Demand
(PD) values. The NASA-TLX PD is a subjective assess-
ment tool designed to evaluate the physical demands
and workload. Each aspect of the NASA-TLX, including
the Physical Demand subscale, is rated on a scale of 0
to 100. Here, a score of 0 signifies very low demand,
while 100 represents extremely high demand. This
comparison analyzes the relationship between objec-
tive postural data, as indicated by quantified slouching
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scores, and the subjective experience of NASA-TLX PD.
For instance, a high slouching score nearing 100 is
usually interpreted to signify a lower rating on physical
demand. A higher slouching score represents a smaller
posture deviation compared to the baseline posture,
suggesting that the participant requires minimal phys-
ical effort. It means a low physical demand environ-
ment where the participant’s body does not experience
significant strain. In contrast, a low slouching score
indicates a noticeable deviation from this baseline
posture. Such deviations could involve hunching, lean-
ing, or other postural changes typically resulting from
increased physical effort or discomfort. As a result, par-
ticipants with lower slouching scores, reflecting these
more pronounced postural alterations, would likely
report a heightened sense of physical demand associ-
ated with their activities. This relationship is further
supported by the NASA TLX PD component, which
evaluates the perceived level of physical effort required.
Therefore, as participants encounter more significant
postural changes—evidenced by reduced slouching
scores—they may experience an increase in their
reported physical demand levels when interacting with
the AR system.

This comparative analysis aims to establish how the
physical changes in posture, quantified objectively
through slouching scores, align with the participants’
subjective perceptions of physical demand. The
detailed results of this comparison, along with their
implications, are extensively discussed in the results
section of our research.

3.2.2. Prediction and correlation analysis

In this phase of our research, we concentrated on dis-
cerning the impact of average slouching scores,
derived module-wise, on the physical demand as
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perceived by participants. This step involved creating a
new dataset exclusively composed of the average
slouching scores for each module for 16 participants.
Our objective was to utilise this dataset to establish a
robust linear regression model, thereby unravelling the
relationship between slouching scores and the physi-
cal demand reported by participants.

3.2.3. Development of the linear regression model
Using the JMP analysis tool, a linear regression model
was constructed. The choice of JMP was driven by its
advanced statistical capabilities and its proficiency in
handling complex datasets. The model was structured
as follows (Equation 2):

Predicted PD = Intercept + 3, (Module1)
+B,(Module2) +...+ 8, (Modulen)

The primary goal of this model was to quantify the
influence of each module’s slouching score on the per-
ceived physical demand (NASA TLX PD). The variables
B1, B2, ..., Bn represent the estimated coefficients for
each module, essentially capturing the unique impact
of each module on the physical demand. The Intercept
in the regression equation is a constant that provides
the baseline level of perceived physical demand, inde-
pendent of the slouching scores.

3.2.4. Significance of the regression coefficients

Each coefficient (1, B2, ..., Bn) in the regression
model serves as a crucial indicator. A positive coeffi-
cient suggests that an increase in the slouching score
for that module is associated with an increase in the
perceived physical demand, while a negative coeffi-
cient indicates the opposite. These coefficients, there-

fore, provide a nuanced understanding of the
relationship between postural dynamics in each
AR module.

3.2.5. Correlation
Beyond developing the regression model, we also con-
ducted a correlation analysis to measure the strength
of the relationship between the predicted PD values
(from the regression model) and the actual NASA TLX
PD values reported by participants.

This is performed to solve the following questions.

«  Validation of Predictive Model: It helped in val-
idating the relevance of our linear regression
model. A strong correlation would indicate that
the model is effective in predicting PD based
on slouching scores.

« Understanding Subjective Perceptions: By cor-
relating the objective data (slouching scores)
with subjective assessments (NASA TLX PD val-
ues), we gained insights into how physical
changes are perceived and experienced by
users.

4, Results
4.1. Slouching score

The examination of slouching scores across both lec-
tures in our study provides a compelling insight into
the physical demands placed on participants engaged
in augmented reality (AR) learning environments. A
consistent pattern emerges from the data: a gradual
decline in slouching scores across the initial modules,
indicating a notable increase in postural deviations
and, by inference, an escalation in physical demand
and fatigue experienced by participants see Tables
1 and 2.

This trend is particularly pronounced in the early
modules of each lecture, where the foundational and
complex topics are introduced. For instance, a marked
reduction in slouching scores from the onset to the
completion of these segments signifies an increase in
physical demand or adjustment by the participants,
mirroring an increase in perceived physical demand, as
quantified by the NASA TLX (PD) values.

Table 1. Average slouching scores of Lecture 1 across modules
and NASA TLX PD values of participants.

Std Err Upper Lower
Parameter Mean Std Dev Mean 95% 95%
Module 1 89.31 9.94 2.48 94.61 84.01
Module 2 78.87 16.08 4.05 87.44 70.30
Module 3 75.87 16.29 4.07 84.55 67.19
Module 4 71.85 15.19 3.79 79.97 63.77
Module 5 75.62 10.80 2.70 81.38 69.86
Module 6 7431 12.26 3.06 80.84 67.77
Module 7 68.31 16.70 417 77.21 59.40
NASA TLX PD 25.18 19.75 494 35.71 14.66
Predicted PD 21 15.61 3.90 29.32 12.68

Table 2. Average slouching scores of Lecture 2 across modules
and NASA TLX PD values of participants.

Std Err Upper Lower
Parameter Mean Std Dev Mean 95% 95%
Module 1 86.75 9.59 2.39 91.86 81.64
Module 2 80.5 12.01 3.00 86.90 74.10
Module 3 75.12 16.34 4.08 83.83 66.42
Module 4 73.87 14.80 3.70 81.76 65.99
Module 5 72.06 17.74 443 81.52 62.61
Module 6 70.12 19.45 483 80.48 59.76
Module 7 66.00 18.73 4.68 75.97 56.02
Module 8 66.06 19.62 491 76.52 55.60
NASA TLX PD 36.68 27.07 6.76 51.11 22.26
Predicted PD 30.87 18.56 464 40.76 20.98




Figure 4. Box plot illustrating average slouching scores.

The alignment of slouching score trends with the
hypothesised model across most participants under-
scores a strong correlation between the physical
demands of engaging with AR content and the physi-
ological responses elicited. The initial modules,
demanding high engagement across multiple panels,
present a contrast to later modules where cumulative
fatigue might dampen the physical response.

The candlestick plots in Figure 4 display a trend of
decreasing average slouching scores across modules in
two lectures.

The examination of slouching scores across both lec-
tures in our study provides a compelling insight into the
physical demands placed on participants engaged in aug-
mented reality (AR) learning environments. A consistent
pattern emerges from the data: a gradual decline in
slouching scores, indicating a notable increase in postural
deviations and, by inference, an escalation in physical
demand and fatigue experienced by participants. The
reduction in slouching scores across successive modules
in both lectures aligns with our hypothesis that pro-
longed engagement with AR technology results in
increased fatigue, as evidenced by changes in posture.

4.2. Regression model

The best-fit regression model provided a framework
for predicting Physical Demand (PD) values for each
participant by analysing their slouching scores as they
interacted with AR modules. This method involved
gathering and evaluating slouching data collected
during participants’ interaction with the AR experi-
ences. By comparing the actual PD values measured
using the NASA TLX and the predicted PD values
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Table 3. Regression coefficients for slouching scores of Lecture
1 by AR modules.

Slouching Regression

scores Coefficients Std Error t Ratio Prob>|t|
Intercept 69.76158 40.81793 1.71 0.1155
Module 1 0.35709 0.58694 0.61 0.5553
Module 2 —0.06574 0.45306 -0.15 0.8872
Module 3 —1.00859 0.32904 -3.07 0.0108
Module 4 0.07297 0.40764 0.18 0.8612

obtained from our regression analysis, we can high-
light the accuracy of predictions and provide insights
into the connection between slouching scores and
perceived physical demand in an AR environment.

The first set of regression coefficients, associated
with Lecture 1 in Table 3, indicates that the modules
had varied impacts on the participants’ centre of mass
(COM) deviation, with Module 3 showing a significant
negative effect, implying that it led to more pro-
nounced postural deviation indicative of fatigue. The
other modules did not show significant effects.

In contrast, the second set, linked to Lecture 2 in
Table 4, highlights the relationship between slouching
scores and physical demand across different AR mod-
ules. Here, both negative (Modules 1 and 3) and posi-
tive (Modules 2 and 4) coefficients were observed,
suggesting that some modules led to increased physi-
cal demand and postural deviation, while others possi-
bly promoted more stable postures or less deviation.
The significant coefficients across different modules in
Lecture 2 suggest a clearer correlation between the
module content or delivery and the physical demand
on participants, contrasting with the more mixed or
inconclusive findings from Lecture 1.

The scatter plots illustrate the correlation between
actual and predicted NASA TLX Physical Demand (PD)
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scores from a regression analysis. In both plots, indi-
vidual data points represent paired actual and pre-
dicted PD scores for participants. According to Figure
5, the Lecture 1 plot has an R-squared value of 0.59,
indicating that around 59% of the variability in actual
PD scores is accounted for by the predictions. The
associated P-value of 0.0322 suggests the model’s pre-
dictions are statistically significant. The right plot
shows an R-squared value of 0.64, similarly indicating
that the model explains 64% of the variability in actual
scores. Its P-value of 0.0166 further confirms the mod-
el's strong predictive significance.

To support this analysis, we did a correlation analy-
sis between NASA TLX PD values and the Predicted PD
values. The result shows 0.8114 for lecture 2 and
0.7668 for lecture 1, which is a high correlation (see
Tables 5 and 6).

5. Discussion

5.1. Relationship between slouching score and
NASA TLX PD

The analysis provided compelling insights into the rela-
tionship between user engagement in AR modules and
their physical postures during these activities. Specifically,
it was observed that as participants progressed through

Table 4. Regression coefficients for slouching scores of Lecture
2 by AR modules.

Slouching Regression

scores Coefficients Std Error t Ratio Prob>|t|
Intercept —22.70897 50.14632 —-0.45 0.6595
Module 1 —2.03492 0.75230 -2.70 0.0205
Module 2 436161 1.01810 4.28 0.0013
Module 3 —2.88397 0.77967 -3.70 0.0035
Module 4 1.37360 0.50274 2.73 0.0195

the AR learning, there was a meaningful correlation
between their slouching scores—indicative of their body
posture—and their perceived physical demand, quanti-
fied using NASA TLX PD values. This relationship sup-
ports the idea that slouching scores can serve as an
effective and meaningful metric for assessing the physi-
cal demands placed on users during AR interactions.
The linear regression analysis produced a combination
of positive and negative coefficients,

5.2. Explain the correlation of both predicted and
actual NASA TLX PD

The correlation analysis conducted to compare the pre-
dicted physical demand values with the actual observed
NASA TLX PD values revealed a significant positive rela-
tionship. This finding demonstrates significant predictive
abilities, suggesting it captures the details of physical
demands encountered by individuals in AR environ-
ments. A substantial correlation between slouching
scores and perceived physical demand indicates that
the slouching score could effectively serve as an early
sign of users’ experience with physical fatigue in AR
learning environments. This finding supports our deci-
sion to focus on the first four modules of the lecture for
more accurate prediction. This explains that the hypoth-
esis of fatigue influence in AR environments can be
observed and influential (Guo and Kim 2020).

5.3. Interpretation of linear regression coefficients

5.3.1. Lecture 1
Module 3 of Lecture 1, which focuses on the ‘Explanation
of Static Equilibrium, presents a significant increase in

Figure 5. Scatter plots comparing actual NASA TLX PD values against predicted PD values.



Table 5. Correlation matrix of actual vs. predicted Nasa TLX
PD scores of lecture 1.

NASA TLX PD Predicted PD
NASA TLX PD 1.0000 0.7668
Predicted PD 0.7668 1.0000

Table 6. Correlation matrix of actual vs. predicted Nasa TLX
PD scores of lecture 2.

NASA TLX PD Predicted PD
NASA TLX PD 1.0000 0.8114
Predicted PD 0.8114 1.0000

physical demand, as evidenced by its negative regres-
sion coefficient and significant p-value = 0.0108. This
module’s complexity, both in terms of conceptual depth
and the spread of content across multiple panels likely
necessitates extensive learning and physical interaction.
Participants are required to engage with multiple panels
to grasp the principles of static equilibrium, leading to
increased physical movements and adjustments. This
broader engagement not only enhances learning but
also potentially contributes to higher physical demand,
as participants must navigate through the AR environ-
ment’s spatial layout to connect theoretical concepts
with visual representations.

5.3.2. Lecture 2

Modules 1 and 3 are defined by their comprehensive
understanding of Lecture 1 content, placing substan-
tial demands on participants. Module 1, serving as a
bridge between foundational knowledge and new
concepts introduced in Lecture 2, requires significant
effort as learners must recall, synthesise, and inte-
grate various pieces of information. The requirement
for participants to engage with content spread across
multiple panels likely leads them to adopt more static
postures. Likewise, module 3 extensively explores
problem-solving, demanding that learners fully
immerse themselves in the AR environment. This
involves applying intricate biomechanical principles
to a range of scenarios. It requires the participants to
engage with the AR content longer than the modules
in Lecture 1, with focused interaction that further
contributes to physical demand.

Findings from modules 2 and 4 suggest a contrast-
ing engagement pattern. These modules introduce
practical, application-oriented tasks that, while still
demanding, are likely to distribute the workload more
evenly through dynamic interaction with the AR sys-
tem. Balancing procedural knowledge and physical
activity can result in more varied postures and move-
ments, reducing the probability of physical demand
from prolonged static positions. Module 2, for
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example, involves analysing different postures for hold-
ing a box, a task that encourages participants to phys-
ically mimic or visualise the actions. In the same line,
module 4 emphasises the calculation of forces and
moments acting on different body segments, main-
taining the trend of active learning.

5.4. The first four modules in the regression
model in both lectures

The decision to concentrate the regression analysis on
the initial four modules of each lecture is underpinned
by several key factors that relate to the participant’s
interaction with the AR learning environment. These
early modules represent a critical phase where partici-
pants are introduced to new concepts, leading to
heightened declarative/procedural knowledge, and
physical engagement. This phase is characterised by a
steep learning curve, where the novelty of both the
AR platform and the educational content likely elicits
more pronounced postural adjustments, captured
effectively by slouching scores. As participants prog-
ress through the lecture, factors such as physical
fatigue, familiarisation with the AR interface, and the
diminishing novelty of interaction could lessen the
slouching score impact of later modules, making their
effects less detectable in the regression analysis.
Consequently, focusing on the first four modules pro-
vides a more controlled environment to observe and
analyse the direct impact of AR educational content
on physical demand.

6. Conclusion

Our exploration has revealed insightful findings on
measuring physical demand in AR Learning
Environments. Using advanced motion capture tech-
nology alongside workload assessments, we accurately
tracked how users’ posture and perceived workload
evolved during their interactions with the AR system.

The concept of ‘slouching scores, derived from the
motion capture data, served as a quantitative measure
of postural deviations—a decline in these scores indi-
cated an increase in physical demand. Consistently,
across both lecture series, we observed a decline in
slouching scores. This trend suggests that as partici-
pants explored deeper into the AR content, their
engagement led to more significant postural adjust-
ments and, consequently, increased physical demand.
Our regression analysis, which focused on the impact
of the initial four modules of each lecture, further
solidified the link between AR engagement and physi-
cal demand. The analysis revealed a clear correlation
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between decreased slouching scores and increased
physical demand, as perceived by participants. This
correlation highlights the need for AR systems to be
designed with user comfort and physical health in
mind. It suggests that while AR has the potential to
transform educational experiences by making learning
more interactive and immersive, it also poses chal-
lenges that must be addressed to ensure the technol-
ogy supports users’ physical well-being.

Despite the compelling insights gained, our study
acknowledges certain limitations, such as the small
sample size and the concentration on specific AR mod-
ules. To build on our findings and enhance their appli-
cability, future research should aim to include a
broader participant base and explore a wider variety
of AR content. Moreover, there is significant potential
for integrating machine learning and predictive model-
ling techniques into AR systems. As AR technologies
continue to evolve and find their place in educational
settings, their AR design and implementation must
consider not only the cognitive and instructional ben-
efits but also the physical impacts on users. By priori-
tising ergonomic design principles and exploring
advanced predictive technologies, we can ensure that
AR systems not only enrich learning experiences but
also promote the comfort of users.
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