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ABSTRACT
Augmented Reality revolutionises education by enhancing learning with interactive, immersive 
experiences. However, the impact of long-term AR use, particularly in terms of physical demand, 
within educational environments remains poorly understood. This study investigates the 
relationship between AR engagement and physical demand, utilising motion capture technology, 
NASA Task Load Index, and HoloLens eye-tracking to quantify user posture, engagement, and 
perceived workload. We hypothesise that prolonged AR interaction results in a change in 
slouching scores, indicating increased fatigue. The results show a strong correlation between the 
slouching score and the NASA-TLX physical demand score. Our study lays the groundwork for 
incorporating predictive modelling to develop proactive physical demand measures.

Practitioner Summary: Measuring physical demand during AR-based learning is possible using the 
slouching score. This metric enables dynamic assessment of user physical demand in AR 
environments, paving the way for improved AR system design to minimise physical fatigue during 
tasks or learning, enhancing overall user comfort and performance.

1.  Introduction

In the rapidly evolving digital era, Augmented Reality 
(AR) stands at the forefront of transformative technol-
ogies (Rampolla and Kipper 2012), bridging the gap 
between virtual and physical realms to enhance user 
experiences across various domains. The beginning of 
AR technology, dating back to the 1960s, laid the 
foundation for a future where digital information 
seamlessly integrates with the physical world. AR has 
been broadly defined as the enhancement of natural 
feedback provided to the operator through the inte-
gration of simulated cues using see-through or 
monitor-based displays (Milgram et  al. 1995). Over the 
decades, advancements in computing power, sensor 
technology, and software development have propelled 
AR from conceptual prototypes to sophisticated sys-
tems capable of enhancing reality with virtual overlays 
(Rampolla and Kipper 2012).

In educational contexts, AR’s potential to augment 
learning experiences with interactive, three-dimensional 
content offers a compelling tool for engaging students 
and enriching curricula. AR offers a range of benefits, 

from improving students’ spatial abilities to facilitating 
knowledge acquisition and helping them grasp 
abstract concepts in engineering physics (Czok et  al. 
2023). Also, AR has been found to boost motivation 
levels among learners, providing valuable insights for a 
deeper understanding of the dynamics involved in 
educational environments (Chen et  al. 2024). By inte-
grating interactive virtual 3D models into natural envi-
ronments, AR offers an engaging learning experience 
that develops self-regulation skills, which are essential 
for academic success (Arici 2024). It means that AR’s 
integration into educational settings heralds a new era 
of immersive learning, offering dynamic, interactive 
methodologies that promise to redefine traditional 
pedagogical approaches. However, as AR technologies 
gain traction in classrooms and learning environments 
worldwide, there emerges a critical discourse sur-
rounding their implications—specifically, cognitive 
overload, distractions, technical challenges (Peeters, 
Habig, and Fechner 2023), and the physical fatigue 
resulting from prolonged engagement with AR sys-
tems (Halim et  al. 2012).
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In the realm of AR, where users often engage with 
digital content through wearable devices or mobile 
applications for extended periods, there is a growing 
concern over the fatigue risks associated with such 
interactions (Halim et  al. 2012). These risks, manifesting 
as postural fatigue, encompass the physical demand or 
musculoskeletal strain experienced due to prolonged 
maintenance of certain body positions. Given the 
immersive nature of AR, users may remain oblivious to 
the onset of fatigue until physical demand becomes 
pronounced, potentially impairing learning outcomes. 
Observations indicate that these effects are manifested 
in the torso (Granata and Gottipati 2008), highlighting 
ergonomics assessment. In AR environments, the 
dynamic interplay between physical and virtual set-
tings necessitates the development of effective strate-
gies to measure physical demand and fatigue, 
addressing the future challenges of an AR lifestyle. The 
existing body of literature on AR predominantly con-
centrates on its technological, instructional, and cogni-
tive aspects, with scant attention to the physical 
demands it places on users (Garzón, Pavón, and Baldiris 
2019). This oversight highlights a critical gap in our 
understanding of AR’s comprehensive impact, under-
scoring the necessity for a detailed investigation into 
how AR-induced postural adjustments correlate with 
physical demand and overall user well-being. Although 
there are several subjective measurement tools (Gawron 
2019) to assess physical demands, they are not 
designed to effectively capture the dynamic changes in 
physical demand. To tackle these challenges, it is essen-
tial to integrate insights from diverse studies to provide 
a holistic understanding of the effects of fatigue, the 
ergonomic implications of technology use (Fiľo and 
Janoušek 2022), and the role of statistical methodolo-
gies in assessing these phenomena (Aukstakalnis 2016; 
Lutabingwa and Auriacombe 2007).

Recently, the integration of physical exertion with 
dynamic tasks illuminates the multifaceted nature of 
fatigue and its effects on both physiological functions 
and performance (Mizuno et  al. 2011), revealing pro-
found implications for biomechanics, injury prevention, 
and the enhancement of outcomes through physical 
activity. Pivotal research in the domain of running bio-
mechanics, as elucidated through tri-axial trunk accel-
erometry (Schütte et  al. 2015), highlights a significant 
increase in variability within horizontal plane trunk 
accelerations under fatigue, particularly in mediolateral 
and anteroposterior directions. This variability suggests 
compensatory kinematic adjustments that potentially 
elevate the risk of musculoskeletal injuries, emphasis-
ing the need for incorporating fatigue considerations 
into training regimens and rehabilitation protocols to 

mitigate injury risks and enhance performance sustain-
ability (Halim et  al. 2012). Moreover, the interconnect-
edness of physical exertion and task demand not only 
impacts physiological functions but also emphasises 
the potential of leveraging physical activity to enhance 
outcomes (Marcora, Staiano, and Manning 2009). 
According to the study done by Evans and Winter 
(2018), physical fatigue can be measured by analysing 
the location of the centre of mass (COM).

Hence, our study postulates that prolonged engage-
ment with AR technologies in learning environments 
precipitates notable changes in user posture—specifi-
cally, a shift in the centre of mass (COM)—indicative of 
escalating fatigue levels. This hypothesis is rooted in the 
premise that sustained interaction with AR content, 
requiring users to maintain fixed positions or perform 
repetitive movements, increases physical demand, mani-
festing in altered postural dynamics. To explore this 
hypothesis, the study adopts a multi-disciplinary 
approach, integrating motion capture technology to 
accurately capture and analyse postural changes, along-
side workload assessment tools such as the NASA Task 
Load Index (Hart 2006) and HoloLens eye-tracking. These 
methodologies collectively enable a comprehensive eval-
uation of the relationship between user posture, engage-
ment, and perceived workload in AR learning settings. To 
quantitatively measure the shift of COM in AR learning 
environments, we introduced a new method, termed the 
‘slouching score’, using motion capture technology. We 
compared the slouching scores with NASA-TLX physical 
demand scores to validate their relationship.

The findings from our study reveal a discernible 
decline in slouching scores associated with increased 
NASA-TLX physical demand scores during AR-based 
learning. The implications of our findings could extend 
beyond academic discourse, offering practical insights 
for developers and practitioners aiming to harness AR’s 
educational potential without compromising user com-
fort. In synthesising our research outcomes, this paper 
contributes significantly to the developing discourse 
on the intersection of technology, ergonomics, and 
education. By elucidating the challenges posed by AR 
technologies, our study not only enriches academic lit-
erature but also provides a foundational basis for 
future innovations in AR design.

2.  Method

2.1.  Experiment setup

The experimental setup (Yu et  al. 2023) is designed to 
assess the efficacy and usability of an innovative edu-
cational tool that integrates Augmented Reality (AR), 
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Near-Field Electromagnetic Ranging (NFER), and motion 
capture technologies. This system aims to enhance the 
learning experience in engineering education, provid-
ing a unique and immersive learning environment 
while also enabling the collection of detailed data on 
student interaction and engagement.

At the core of the experiment is an AR-based 
instructional system, developed to deliver two distinct 
lectures on engineering topics. The system employs 
Microsoft HoloLens 2 as the AR interface, chosen for 
its advanced holographic projection capabilities and 
its ability to create a seamless blend of physical and 
digital learning environments. The HoloLens 2 is not 
only a display device but also a data collection tool, 
capturing eye-tracking data that offers insights into 
where students focus their attention during the learn-
ing process.

The experiment’s physical setup is organised within 
a controlled environment, where participants can nav-
igate and interact with the AR content. The environ-
ment is divided into specific zones, each corresponding 
to different segments of the modules see Figure 1. 
This spatial division is integral to the experiment, as it 
allows for the incorporation of the Q-Track NFER sys-
tem (Schantz 2007), which is used for precise indoor 
location tracking. The NFER technology allows physical 
engagement and navigation in the AR environment.

In addition to the location tracking, participants are 
outfitted with Xsens motion capture sensors (Roetenberg, 
Luinge, and Slycke 2009). These sensors are placed on 
various parts of the body to capture detailed move-
ment data, see Figure 2. This motion data is vital for 
understanding how participants interact with the AR 
system and for developing future gesture-based con-
trols that can enhance interactivity within the AR 
learning environment.

The AR content is developed using the Unity game 
engine, known for its robust capabilities in creating 
immersive 3D environments. The lectures are 
designed as a series of interactive 3D scenes, each 
representing different concepts and elements of the 
engineering curriculum. Autodesk 3ds Max is used to 

create complex 3D models and animations, which 
demonstrate virtual instructors and provide supple-
mentary information displayed in various panels that 
are then integrated into the Unity scenes, adding 
depth and realism to the educational content. The 
lectures are carefully crafted to vary in difficulty - 
with Lecture 1 consisting of 7 modules, where learn-
ing and solving for each module are relatively easier, 
focusing on basic concepts and definitions (declara-
tive knowledge). Lecture 2 consists of 8 modules, 
where learning and solving for each module are 
more challenging, involving complex calculations and 
problem-solving (procedural knowledge). This varia-
tion allows for an assessment of how the difficulty 
level impacts the usability and effectiveness of the 
AR system.

Figure 1.  3D scenes of an AR module built with unity.

Figure 2.  Equipped hardware components.
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2.1.1.  Content of AR learning modules
Lecture 1 (Duration: 15 minutes for the modules, 
25-30 minutes total based on participants’ solving 
capabilities):

•	 Module 1: Introduction to new concepts in 
biomechanics.

•	 Modules 2 & 4: Problem explanation and solving 
related to forces and momentum on animated 
objects and achieving static equilibrium.

•	 Module 3: Further exploration of new concepts 
on static equilibrium.

•	 Module 5: Introduction of biomechanical princi-
ples as they apply to the human body during 
object lifting.

•	 Modules 6 & 7: Detailed problem-solving with 
calculations on forces and momentum in 
human body dynamics, supplemented with 
necessary biomechanical data.

Lecture 2 (Duration: 27 minutes for modules, 40-50 min-
utes total based on participants’ solving capabilities):

•	 Module 1: Recap of Lecture 1 and introduction to 
new problems in Lecture 2.

•	 Modules 2 & 3: Explanation and analysis of a bio-
mechanical problem involving different ways of 
holding a box.

•	 Modules 4 to 7: Progressive problem-solving on 
forces and moments acting on different arm seg-
ments, each focusing on a specific part but build-
ing upon the last.

•	 Module 8: Conclusion and comprehensive resolu-
tion of the problems discussed.

This research complied with the Code of Ethics and 
was approved by the Institutional Review Board of The 
University of Missouri. 21 undergraduate engineering 
students participated in this experiment. All subjects 
had their informed consent before they participated in 
the study. These individuals are selected based on 
their enrolment in engineering courses that provide 
them with a foundational knowledge of AR content 
presented. To ensure participants are well-acquainted 
with the AR technology and the structure of the exper-
iment, a training session is conducted before the com-
mencement of the experiment. This phase is important 
for familiarising students with the AR equipment and 
the overall experimental protocol, setting the stage for 
their engagement with Lecture 1. The experiment 
involves participants’ interaction with two distinct AR 
lectures. Lecture 1 this initial lecture series is struc-
tured to facilitate ease of learning and solving, 

ensuring participants can smoothly navigate through 
the 3D scenes and effectively engage with the founda-
tional material. In contrast, Lecture 2, which partici-
pants engage with after a rest period of at least 
4 hours but no more than 48 hours following Lecture 1, 
consists of 8 modules.

As participants navigate through the 3D scenes and 
interact with the content across both lectures, their 
engagement is multi-dimensional. Following each lec-
ture segment, participants complete quizzes and assess-
ments tailored to the content they have just encountered. 
These assessments play a pivotal role in evaluating 
immediate learning outcomes and the efficacy of the 
AR system in facilitating knowledge acquisition. By inte-
grating direct assessments of learning outcomes with 
user feedback, the experiment aims to provide a holistic 
understanding of the AR system’s effectiveness.

Data collection is extensive and multi-layered. The 
experiment generates a dataset encompassing perfor-
mance data (quiz scores), usability feedback which 
includes metacognition awareness, NASA TLX forms, 
and tracking data (HoloLens eye-tracking, D-lab 
eye-tracking, and motion data). This data is subjected 
to rigorous statistical analysis to test the study’s 
hypotheses, evaluate the effectiveness of the AR sys-
tem, and understand the nuances of how students 
interact with and learn from this innovative educa-
tional tool. This experimental setup represents a com-
prehensive approach to evaluating an AR-based 
learning system. It not only assesses the system’s effec-
tiveness in delivering educational content but also 
provides deep insights into the ways students interact 
with and respond to AR technology in a learning 
context.

2.2.  Data processing

This subsection elaborates on the methodologies uti-
lised for processing and refining the collected data to 
focus on specific aspects relevant to our study 
objectives.

2.2.1.  Segmentation of data
This step is pivotal in narrowing down the vast dataset 
to specific, relevant metrics. By concentrating on data 
related to position and the centre of mass (COM) from 
the motion capture dataset, you isolate the elements 
crucial for analysing postural dynamics. This segmenta-
tion is not just a data reduction technique; it’s a stra-
tegic move to zoom in on the most telling indicators 
of how participants interact with and respond to the 
AR environment.
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2.2.2.  Visual analysis for postural dynamics
In this phase, we initially focused on generating visual 
representations to examine shifts in balance, as indi-
cated by changes in COM (Stapley et  al. 1999) and 
position data. Through these visual interpretations, we 
gained valuable insights into the participants’ postural 
dynamics during their engagement with the AR envi-
ronment. The visual tools helped us discern patterns 
and subtle shifts in the COM, which were not as imme-
diately apparent in the position data. This decision was 
driven by the realisation that the COM data offered a 
more direct and quantifiable measure of the partici-
pants’ postural stability and adjustments, which are 
critical factors in understanding their physical interac-
tion with the AR system.

2.2.3.  Synchronisation of timestamps for Data 
Alignment
In the study, we employed a meticulous process for 
aligning the timestamps of two distinct but comple-
mentary datasets: the motion capture data and the 
HoloLens eye-tracking data. This alignment was crucial 
to segregate the data according to participant activi-
ties, particularly differentiating between the learning 
and problem-solving phases of the modules. The align-
ment was achieved through a dynamic approach 
named ‘Data Alignment and Frame Indexing’. The 
HoloLens eye-tracking data consisted of 2 files for 
each module, with each file representing learning and 
problem-solving activities. The columns in the HoloLens 
dataset included timestamps and detailed information 
about the participant’s gaze direction and focal points, 
such as the following:

•	 Timestamp: The exact time at which the data 
was recorded.

•	 Target data: The name of the panel or object 
the participant is looking at.

•	 Gaze Point: The coordinates of where the partici-
pant is looking, represented as a 3D point (x, y, z).

For the motion capture data, which followed the 
Xsens motion capture system, we had a set structure 
that included the frame number and the Centre of 
Mass (COM) positions in three-dimensional space. The 
columns in this dataset were as follows:

•	 Frame: The specific frame number, corresponding 
to a particular moment in time (captured at 60fps)

•	 COM pos X, COM pos Y, COM pos z: The x, y, z 
coordinates of the participant’s centre of mass 
at that frame respectively.

The process began by gathering the start and end 
timestamps for each module or scene from the 
HoloLens data. We then calculated frame numbers at a 
fixed rate of 60 frames per second, as dictated by the 
Xsens system, using these timestamps. This calculation 
allowed us to define distinct ranges of frame numbers 
corresponding to the respective modules. Essentially, 
each frame number from the motion capture data was 
a snapshot in time, which, when aligned with the cor-
responding snapshot from the HoloLens data, pro-
vided a comprehensive picture of how a participant’s 
gaze direction and focal points correlated with their 
physical movements.

This precise alignment enabled us to isolate motion 
capture data that corresponded to specific modules, 
ensuring that our analysis focused on the periods 
when participants were actively engaged with the lec-
ture content. By correlating frame numbers and COM 
positions from the motion capture data with the time-
stamped gaze data from the HoloLens, we gained a 
nuanced understanding of the participant’s interac-
tions with the AR environment, particularly how their 
visual attention and physical orientation were syn-
chronised during different educational phases.

2.2.4.  Data segregation by module
Following the synchronisation of the motion capture 
and HoloLens eye-tracking data, we proceeded to the 
phase of Data Segregation by Module. This step was 
essential for isolating and analysing the data specific 
to each learning phase within the individual modules. 
In this process, we assigned acquired frame numbers 
to the HoloLens eye-tracking data, ensuring that they 
corresponded precisely with the motion capture data. 
This allowed us to match every gaze and head move-
ment captured by the HoloLens with the exact physi-
cal position and movement of the participant at that 
moment, as recorded by the motion capture system. 
The dynamic approach is a process specifically 
designed to handle the variability in the eye-tracking 
data points. Given that eye-tracking data can vary sig-
nificantly in terms of the number and frequency of 
data points recorded, it was imperative to develop a 
method that could dynamically assign frame numbers 
to these data points, ensuring they align perfectly with 
the corresponding frames in the motion capture data. 
The outcome of this process was a set of module-specific 
datasets that seamlessly integrated motion capture 
data with frame-indexed HoloLens eye-tracking data. 
Each dataset now represented a complete picture of 
the participant’s interactions within a specific module, 
capturing both their physical movements and gaze 
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patterns in a synchronised manner. This integrated 
dataset was then primed for an in-depth analysis.

2.2.5.  Data filtering for focused analysis
The initial step in this phase was the addition of a 
new column in our dataset, which described the direc-
tion of the participants’ gaze, such as whether they 
were looking towards the central panel, left panel, or 
other areas within the AR environment. However, upon 
further scrutiny of the data, we encountered a signifi-
cant challenge: there was considerable ‘noise’ or extra-
neous data, primarily resulting from the participants’ 
movements as they shifted their gaze across different 
panels within the 180-degree visual field of the AR 
setup. Such movements often led to complex and 
erratic data patterns, making it difficult to isolate key 
moments of interaction and engagement. To tackle 
this issue, we implemented a targeted approach to fil-
ter the dataset. We narrowed our focus to specifically 
identify and analyse instances where participants were 
directly facing the central panel. The rationale behind 
this decision was twofold. Firstly, by concentrating on 
moments when participants were looking straight 
ahead at the central panel, we could significantly 
reduce the complexity and variability in the data 
caused by their movements. This reduction in variabil-
ity was key to achieving cleaner, more reliable data for 
analysis. Secondly, this focused approach allowed us to 
better assess instances of postural stability. When par-
ticipants faced the central panel directly, there was 
minimal twisting or turning of their COM, leading to 
more stable and consistent postural data. This refined 
dataset, now concentrated on moments of direct 
engagement with the central panel, provided us with 
a clearer and more accurate representation of partici-
pant behaviour and interaction within the AR 
environment.

2.2.6.  Visual representation
We employed visual analytical tools to transform our 
refined datasets into intuitive graphical representa-
tions. This stage was essential in making the complex 
data more accessible and understandable. We created 
a variety of graphs and charts that visually narrated 
the participant’s journey through the AR learning envi-
ronment. These visualisations highlighted key aspects 
such as the frequency of gaze towards specific panels 
and changes in posture over time, providing an imme-
diate and clear understanding of participant behaviour 
and engagement. Once these visual representations 
were established, we prepared the data for export, for-
matting it for further detailed analysis and broader 
presentation.

This approach not only facilitated a smoother tran-
sition into the data analysis phase of our study but 
also ensured that our findings were presented in a 
clear, concise, and impactful manner. In each of these 
steps, coding and software tools play a crucial role.

3.  Data analysis

3.1.  Postural dynamics analysis

Using the filtered motion capture data, we plotted the 
deviations of the COM positions (x, y, z) from the overall 
average for each module. The variations in ‘COM pos x’ 
occasionally displayed significant differences from the 
average, indicating lateral shifts in balance that might 
reflect a response to the AR content. The analysis 
included a comparison of the deviations in the COM 
from reference points for each module. The visualisa-
tions suggested meaningful insights into postural 
dynamics, providing significant evidence of the relation-
ship between postural variation and physical demand. 
The COM deviations indicated that certain modules 
might place greater physical demands on participants, 
leading to more noticeable postural adjustments.

3.2.  Slouching score analysis

In our research, a significant portion of our data anal-
ysis was devoted to the computation and interpreta-
tion of slouching scores. This metric was creatively 
developed to quantitatively assess the postural 
changes experienced by participants while using AR 
systems (see Equation 1). In our study, the slouching 
score acts as a numerical gauge, ranging from 0 to 
100, that measures the degree of a participant’s pos-
tural deviation from a predetermined baseline. A 
slouching score of 100 signifies no deviation from this 
baseline posture, whereas lower scores indicate greater 
deviations. A score of 0 represents the maximum devi-
ation observed, suggesting a significant postural 
change that may lead to a high physical demand. This 
scoring system allowed us to precisely measure and 
analyse the ergonomic impact of prolonged AR use on 
participants’ posture.

	

Slouchingscore

abs COM pos X Global Baseline

=

× −
−( )

100

1
_ _ _

Maximum__Deviation




















	 (1)

The calculation of slouching scores was based on 
establishing a baseline posture. This baseline was 
determined by analysing the average position of the 
Centre of Mass (COM) in the x-direction (‘COM pos x’) 
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during the first 4 seconds of data collection before 
‘Module 1′. We found that participants maintained rel-
atively stable postures during this initial time frame. 
Following the establishment of this baseline, we 
moved forward to conduct the evaluation aimed at 
identifying the maximum deviation from it. The pro-
cess involved a detailed analysis to identify 240 devia-
tions in the ‘COM pos x’ for each participant by sorting 
in ascending order, emphasising the most significant 
shifts from their baseline posture. The number 240 
was chosen to align with the amount of time consid-
ered for the baseline, as each second is composed of 
60 frames. Thus, 4 seconds equate to 240 frames. The 
mean of these deviations provided a threshold for 
what we considered substantial postural change. By 
focusing on these scores, the analysis could reveal 
broader patterns and trends that might be obscured in 
a frame-by-frame examination see Figure 3.

3.2.1.  Final steps in slouching score analysis
As the concluding part of our slouching score analysis, 
we calculated the average slouching scores for each 
module. This step was important in distilling the vast 
amount of data into manageable, module-specific 
insights, reflecting the variation in postural dynamics 
throughout the different phases of the AR experience.

Upon obtaining these average scores, we prepared 
to compare them with the NASA-TLX Physical Demand 
(PD) values. The NASA-TLX PD is a subjective assess-
ment tool designed to evaluate the physical demands 
and workload. Each aspect of the NASA-TLX, including 
the Physical Demand subscale, is rated on a scale of 0 
to 100. Here, a score of 0 signifies very low demand, 
while 100 represents extremely high demand. This 
comparison analyzes the relationship between objec-
tive postural data, as indicated by quantified slouching 

scores, and the subjective experience of NASA-TLX PD. 
For instance, a high slouching score nearing 100 is 
usually interpreted to signify a lower rating on physical 
demand. A higher slouching score represents a smaller 
posture deviation compared to the baseline posture, 
suggesting that the participant requires minimal phys-
ical effort. It means a low physical demand environ-
ment where the participant’s body does not experience 
significant strain. In contrast, a low slouching score 
indicates a noticeable deviation from this baseline 
posture. Such deviations could involve hunching, lean-
ing, or other postural changes typically resulting from 
increased physical effort or discomfort. As a result, par-
ticipants with lower slouching scores, reflecting these 
more pronounced postural alterations, would likely 
report a heightened sense of physical demand associ-
ated with their activities. This relationship is further 
supported by the NASA TLX PD component, which 
evaluates the perceived level of physical effort required. 
Therefore, as participants encounter more significant 
postural changes—evidenced by reduced slouching 
scores—they may experience an increase in their 
reported physical demand levels when interacting with 
the AR system.

This comparative analysis aims to establish how the 
physical changes in posture, quantified objectively 
through slouching scores, align with the participants’ 
subjective perceptions of physical demand. The 
detailed results of this comparison, along with their 
implications, are extensively discussed in the results 
section of our research.

3.2.2.  Prediction and correlation analysis
In this phase of our research, we concentrated on dis-
cerning the impact of average slouching scores, 
derived module-wise, on the physical demand as 

Figure 3.  Frame-by-frame COM pos X trajectory across modules.
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perceived by participants. This step involved creating a 
new dataset exclusively composed of the average 
slouching scores for each module for 16 participants. 
Our objective was to utilise this dataset to establish a 
robust linear regression model, thereby unravelling the 
relationship between slouching scores and the physi-
cal demand reported by participants.

3.2.3.  Development of the linear regression model
Using the JMP analysis tool, a linear regression model 
was constructed. The choice of JMP was driven by its 
advanced statistical capabilities and its proficiency in 
handling complex datasets. The model was structured 
as follows (Equation 2):

	
Predicted PD Intercept

n

= + ( )
+ ( ) +…+ (

β

β β
1

2

1

2

Module

Module Modulen))
	 (2)

The primary goal of this model was to quantify the 
influence of each module’s slouching score on the per-
ceived physical demand (NASA TLX PD). The variables 
β1, β2, …, βn represent the estimated coefficients for 
each module, essentially capturing the unique impact 
of each module on the physical demand. The Intercept 
in the regression equation is a constant that provides 
the baseline level of perceived physical demand, inde-
pendent of the slouching scores.

3.2.4.  Significance of the regression coefficients
Each coefficient (β1, β2, …, βn) in the regression 
model serves as a crucial indicator. A positive coeffi-
cient suggests that an increase in the slouching score 
for that module is associated with an increase in the 
perceived physical demand, while a negative coeffi-
cient indicates the opposite. These coefficients, there-
fore, provide a nuanced understanding of the 
relationship between postural dynamics in each 
AR module.

3.2.5.  Correlation
Beyond developing the regression model, we also con-
ducted a correlation analysis to measure the strength 
of the relationship between the predicted PD values 
(from the regression model) and the actual NASA TLX 
PD values reported by participants.

This is performed to solve the following questions.

•	 Validation of Predictive Model: It helped in val-
idating the relevance of our linear regression 
model. A strong correlation would indicate that 
the model is effective in predicting PD based 
on slouching scores.

•	 Understanding Subjective Perceptions: By cor-
relating the objective data (slouching scores) 
with subjective assessments (NASA TLX PD val-
ues), we gained insights into how physical 
changes are perceived and experienced by 
users.

4.  Results

4.1.  Slouching score

The examination of slouching scores across both lec-
tures in our study provides a compelling insight into 
the physical demands placed on participants engaged 
in augmented reality (AR) learning environments. A 
consistent pattern emerges from the data: a gradual 
decline in slouching scores across the initial modules, 
indicating a notable increase in postural deviations 
and, by inference, an escalation in physical demand 
and fatigue experienced by participants see Tables 
1 and 2.

This trend is particularly pronounced in the early 
modules of each lecture, where the foundational and 
complex topics are introduced. For instance, a marked 
reduction in slouching scores from the onset to the 
completion of these segments signifies an increase in 
physical demand or adjustment by the participants, 
mirroring an increase in perceived physical demand, as 
quantified by the NASA TLX (PD) values.

Table 1.  Average slouching scores of Lecture 1 across modules 
and NASA TLX PD values of participants.

Parameter Mean Std Dev
Std Err 
Mean

Upper 
95%

Lower 
95%

Module 1 89.31 9.94 2.48 94.61 84.01
Module 2 78.87 16.08 4.05 87.44 70.30
Module 3 75.87 16.29 4.07 84.55 67.19
Module 4 71.85 15.19 3.79 79.97 63.77
Module 5 75.62 10.80 2.70 81.38 69.86
Module 6 74.31 12.26 3.06 80.84 67.77
Module 7 68.31 16.70 4.17 77.21 59.40
NASA TLX PD 25.18 19.75 4.94 35.71 14.66
Predicted PD 21 15.61 3.90 29.32 12.68

Table 2.  Average slouching scores of Lecture 2 across modules 
and NASA TLX PD values of participants.

Parameter Mean Std Dev
Std Err 
Mean

Upper 
95%

Lower 
95%

Module 1 86.75 9.59 2.39 91.86 81.64
Module 2 80.5 12.01 3.00 86.90 74.10
Module 3 75.12 16.34 4.08 83.83 66.42
Module 4 73.87 14.80 3.70 81.76 65.99
Module 5 72.06 17.74 4.43 81.52 62.61
Module 6 70.12 19.45 4.83 80.48 59.76
Module 7 66.00 18.73 4.68 75.97 56.02
Module 8 66.06 19.62 4.91 76.52 55.60
NASA TLX PD 36.68 27.07 6.76 51.11 22.26
Predicted PD 30.87 18.56 4.64 40.76 20.98
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The alignment of slouching score trends with the 
hypothesised model across most participants under-
scores a strong correlation between the physical 
demands of engaging with AR content and the physi-
ological responses elicited. The initial modules, 
demanding high engagement across multiple panels, 
present a contrast to later modules where cumulative 
fatigue might dampen the physical response.

The candlestick plots in Figure 4 display a trend of 
decreasing average slouching scores across modules in 
two lectures.

The examination of slouching scores across both lec-
tures in our study provides a compelling insight into the 
physical demands placed on participants engaged in aug-
mented reality (AR) learning environments. A consistent 
pattern emerges from the data: a gradual decline in 
slouching scores, indicating a notable increase in postural 
deviations and, by inference, an escalation in physical 
demand and fatigue experienced by participants. The 
reduction in slouching scores across successive modules 
in both lectures aligns with our hypothesis that pro-
longed engagement with AR technology results in 
increased fatigue, as evidenced by changes in posture.

4.2.  Regression model

The best-fit regression model provided a framework 
for predicting Physical Demand (PD) values for each 
participant by analysing their slouching scores as they 
interacted with AR modules. This method involved 
gathering and evaluating slouching data collected 
during participants’ interaction with the AR experi-
ences. By comparing the actual PD values measured 
using the NASA TLX and the predicted PD values 

obtained from our regression analysis, we can high-
light the accuracy of predictions and provide insights 
into the connection between slouching scores and 
perceived physical demand in an AR environment.

The first set of regression coefficients, associated 
with Lecture 1 in Table 3, indicates that the modules 
had varied impacts on the participants’ centre of mass 
(COM) deviation, with Module 3 showing a significant 
negative effect, implying that it led to more pro-
nounced postural deviation indicative of fatigue. The 
other modules did not show significant effects.

In contrast, the second set, linked to Lecture 2 in 
Table 4, highlights the relationship between slouching 
scores and physical demand across different AR mod-
ules. Here, both negative (Modules 1 and 3) and posi-
tive (Modules 2 and 4) coefficients were observed, 
suggesting that some modules led to increased physi-
cal demand and postural deviation, while others possi-
bly promoted more stable postures or less deviation. 
The significant coefficients across different modules in 
Lecture 2 suggest a clearer correlation between the 
module content or delivery and the physical demand 
on participants, contrasting with the more mixed or 
inconclusive findings from Lecture 1.

The scatter plots illustrate the correlation between 
actual and predicted NASA TLX Physical Demand (PD) 

Figure 4.  Box plot illustrating average slouching scores.

Table 3. R egression coefficients for slouching scores of Lecture 
1 by AR modules.
Slouching 
scores

Regression 
Coefficients Std Error t Ratio Prob>|t|

Intercept 69.76158 40.81793 1.71 0.1155
Module 1 0.35709 0.58694 0.61 0.5553
Module 2 −0.06574 0.45306 −0.15 0.8872
Module 3 −1.00859 0.32904 −3.07 0.0108
Module 4 0.07297 0.40764 0.18 0.8612
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scores from a regression analysis. In both plots, indi-
vidual data points represent paired actual and pre-
dicted PD scores for participants. According to Figure 
5, the Lecture 1 plot has an R-squared value of 0.59, 
indicating that around 59% of the variability in actual 
PD scores is accounted for by the predictions. The 
associated P-value of 0.0322 suggests the model’s pre-
dictions are statistically significant. The right plot 
shows an R-squared value of 0.64, similarly indicating 
that the model explains 64% of the variability in actual 
scores. Its P-value of 0.0166 further confirms the mod-
el’s strong predictive significance.

To support this analysis, we did a correlation analy-
sis between NASA TLX PD values and the Predicted PD 
values. The result shows 0.8114 for lecture 2 and 
0.7668 for lecture 1, which is a high correlation (see 
Tables 5 and 6).

5.  Discussion

5.1.  Relationship between slouching score and 
NASA TLX PD

The analysis provided compelling insights into the rela-
tionship between user engagement in AR modules and 
their physical postures during these activities. Specifically, 
it was observed that as participants progressed through 

the AR learning, there was a meaningful correlation 
between their slouching scores—indicative of their body 
posture—and their perceived physical demand, quanti-
fied using NASA TLX PD values. This relationship sup-
ports the idea that slouching scores can serve as an 
effective and meaningful metric for assessing the physi-
cal demands placed on users during AR interactions. 
The linear regression analysis produced a combination 
of positive and negative coefficients,

5.2.  Explain the correlation of both predicted and 
actual NASA TLX PD

The correlation analysis conducted to compare the pre-
dicted physical demand values with the actual observed 
NASA TLX PD values revealed a significant positive rela-
tionship. This finding demonstrates significant predictive 
abilities, suggesting it captures the details of physical 
demands encountered by individuals in AR environ-
ments. A substantial correlation between slouching 
scores and perceived physical demand indicates that 
the slouching score could effectively serve as an early 
sign of users’ experience with physical fatigue in AR 
learning environments. This finding supports our deci-
sion to focus on the first four modules of the lecture for 
more accurate prediction. This explains that the hypoth-
esis of fatigue influence in AR environments can be 
observed and influential (Guo and Kim 2020).

5.3.  Interpretation of linear regression coefficients

5.3.1.  Lecture 1
Module 3 of Lecture 1, which focuses on the ‘Explanation 
of Static Equilibrium’, presents a significant increase in 

Table 4. R egression coefficients for slouching scores of Lecture 
2 by AR modules.
Slouching 
scores

Regression 
Coefficients Std Error t Ratio Prob>|t|

Intercept −22.70897 50.14632 −0.45 0.6595
Module 1 −2.03492 0.75230 −2.70 0.0205
Module 2 4.36161 1.01810 4.28 0.0013
Module 3 −2.88397 0.77967 −3.70 0.0035
Module 4 1.37360 0.50274 2.73 0.0195

Figure 5. S catter plots comparing actual NASA TLX PD values against predicted PD values.
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physical demand, as evidenced by its negative regres-
sion coefficient and significant p-value = 0.0108. This 
module’s complexity, both in terms of conceptual depth 
and the spread of content across multiple panels likely 
necessitates extensive learning and physical interaction. 
Participants are required to engage with multiple panels 
to grasp the principles of static equilibrium, leading to 
increased physical movements and adjustments. This 
broader engagement not only enhances learning but 
also potentially contributes to higher physical demand, 
as participants must navigate through the AR environ-
ment’s spatial layout to connect theoretical concepts 
with visual representations.

5.3.2.  Lecture 2
Modules 1 and 3 are defined by their comprehensive 
understanding of Lecture 1 content, placing substan-
tial demands on participants. Module 1, serving as a 
bridge between foundational knowledge and new 
concepts introduced in Lecture 2, requires significant 
effort as learners must recall, synthesise, and inte-
grate various pieces of information. The requirement 
for participants to engage with content spread across 
multiple panels likely leads them to adopt more static 
postures. Likewise, module 3 extensively explores 
problem-solving, demanding that learners fully 
immerse themselves in the AR environment. This 
involves applying intricate biomechanical principles 
to a range of scenarios. It requires the participants to 
engage with the AR content longer than the modules 
in Lecture 1, with focused interaction that further 
contributes to physical demand.

Findings from modules 2 and 4 suggest a contrast-
ing engagement pattern. These modules introduce 
practical, application-oriented tasks that, while still 
demanding, are likely to distribute the workload more 
evenly through dynamic interaction with the AR sys-
tem. Balancing procedural knowledge and physical 
activity can result in more varied postures and move-
ments, reducing the probability of physical demand 
from prolonged static positions. Module 2, for 

example, involves analysing different postures for hold-
ing a box, a task that encourages participants to phys-
ically mimic or visualise the actions. In the same line, 
module 4 emphasises the calculation of forces and 
moments acting on different body segments, main-
taining the trend of active learning.

5.4.  The first four modules in the regression 
model in both lectures

The decision to concentrate the regression analysis on 
the initial four modules of each lecture is underpinned 
by several key factors that relate to the participant’s 
interaction with the AR learning environment. These 
early modules represent a critical phase where partici-
pants are introduced to new concepts, leading to 
heightened declarative/procedural knowledge, and 
physical engagement. This phase is characterised by a 
steep learning curve, where the novelty of both the 
AR platform and the educational content likely elicits 
more pronounced postural adjustments, captured 
effectively by slouching scores. As participants prog-
ress through the lecture, factors such as physical 
fatigue, familiarisation with the AR interface, and the 
diminishing novelty of interaction could lessen the 
slouching score impact of later modules, making their 
effects less detectable in the regression analysis. 
Consequently, focusing on the first four modules pro-
vides a more controlled environment to observe and 
analyse the direct impact of AR educational content 
on physical demand.

6.  Conclusion

Our exploration has revealed insightful findings on 
measuring physical demand in AR Learning 
Environments. Using advanced motion capture tech-
nology alongside workload assessments, we accurately 
tracked how users’ posture and perceived workload 
evolved during their interactions with the AR system.

The concept of ‘slouching scores’, derived from the 
motion capture data, served as a quantitative measure 
of postural deviations—a decline in these scores indi-
cated an increase in physical demand. Consistently, 
across both lecture series, we observed a decline in 
slouching scores. This trend suggests that as partici-
pants explored deeper into the AR content, their 
engagement led to more significant postural adjust-
ments and, consequently, increased physical demand. 
Our regression analysis, which focused on the impact 
of the initial four modules of each lecture, further 
solidified the link between AR engagement and physi-
cal demand. The analysis revealed a clear correlation 

Table 5. C orrelation matrix of actual vs. predicted Nasa TLX 
PD scores of lecture 1.

NASA TLX PD Predicted PD

NASA TLX PD 1.0000 0.7668
Predicted PD 0.7668 1.0000

Table 6. C orrelation matrix of actual vs. predicted Nasa TLX 
PD scores of lecture 2.

NASA TLX PD Predicted PD

NASA TLX PD 1.0000 0.8114
Predicted PD 0.8114 1.0000
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between decreased slouching scores and increased 
physical demand, as perceived by participants. This 
correlation highlights the need for AR systems to be 
designed with user comfort and physical health in 
mind. It suggests that while AR has the potential to 
transform educational experiences by making learning 
more interactive and immersive, it also poses chal-
lenges that must be addressed to ensure the technol-
ogy supports users’ physical well-being.

Despite the compelling insights gained, our study 
acknowledges certain limitations, such as the small 
sample size and the concentration on specific AR mod-
ules. To build on our findings and enhance their appli-
cability, future research should aim to include a 
broader participant base and explore a wider variety 
of AR content. Moreover, there is significant potential 
for integrating machine learning and predictive model-
ling techniques into AR systems. As AR technologies 
continue to evolve and find their place in educational 
settings, their AR design and implementation must 
consider not only the cognitive and instructional ben-
efits but also the physical impacts on users. By priori-
tising ergonomic design principles and exploring 
advanced predictive technologies, we can ensure that 
AR systems not only enrich learning experiences but 
also promote the comfort of users.
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