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Abstract

This research investigates fatigue’s impact on arm gestures within augmented reality environments. Through the analysis
of the gathered data, our goal is to develop a comprehensive understanding of the constraints and unique characteristics
affecting the performance of arm gestures when individuals are fatigued. Based on our findings, prolonged engagement
in full-arm movement gestures under the influence of fatigue resulted in a decline in muscle strength within upper body
segments. Thus, this decline led to a notable reduction in the accuracy of gesture detection in the AR environment, dropping
from an initial 97.7% to 75.9%. We also found that changes in torso movements can have a ripple effect on the upper and
forearm regions. This valuable knowledge will enable us to enhance our gesture detection algorithms, thereby enhancing

their precision and accuracy, even in fatigue-related situations.
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Introduction

Gesture-based interactions are gaining prominence across
diverse domains such as gaming (Chezhiyan et al., 2022),
augmented (Challenor et al., 2023)/virtual reality (Zhang
et al., 2022), and human-computer interactions (Hosseini
et al., 2023). However, more research needs to be con-
ducted to understand the influence of fatigue on human
body gestures and its implications for developing more
effective and reliable applications. This knowledge gap
necessitates further exploration to bridge the understanding
between fatigue and gesture-based interactions, enabling
improved and dependable applications in these fields.

Our focus is to explore the impact of individual fatigue on
arm gestures during augmented reality (AR) environments.
We have gathered precise participant body movement data
through real-time motion tracking sensors. The primary
objective is to evaluate the recognition rate of two specific
arm gestures and determine their ability to be accurately
identified and captured, even in the presence of fatigue.
Fatigue can lead to various changes in body posture, such as
slouching, decreased muscular control, and reduced stability
(Bazazan et al., 2019). These alterations can deviate from the
anticipated or predefined postural patterns, posing chal-
lenges for the algorithm to identify and interpret the intended
posture precisely. By studying the posture variations caused
by fatigue, we can design advanced motion gesture computer

algorithms that can adapt, perform accurately, promote user
comfort, and enhance the overall user experience in various
applications. The outcome of this study will improve the reli-
ability and effectiveness of gesture-based interactions.

In the realm of AR, the development of accurate and reli-
able gesture-based interaction holds immense significance
for improving usability. Users must seamlessly engage with
virtual and physical objects within an AR environment. To
gain a comprehensive understanding of users’ actions during
tasks, the integration of highly accurate gesture-based inter-
action becomes necessary. As a result, it is crucial to priori-
tize the development of precise and dependable gesture-based
interaction among the various applications of AR. During the
utilization of AR environments, users may undergo fatigue
due to prolonged interaction, the weight of the AR device, or
the cognitive load imposed by the tasks (Gabbard et al.,
2019; Guo & Kim, 2021; Kalra & Karar, 2023; Kim et al.,
2019). This fatigue can have a detrimental impact on the
user’s capability to execute arm gestures accurately and
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Figure 1. Calibration process.

efficiently, consequently resulting in errors or a decline in
overall performance. Hence, in this study, we examined the
alterations in arm gestures over time due to fatigue and
explored how these changes impacted the accuracy of arm
gesture recognition.

The experiment involved using the Microsoft Hololens
2 headset to perform mirror movements of arm gestures,
mimicking the actions demonstrated by a human avatar in
the AR environment. The participants were required to con-
tinuously perform two sets of gestures for 15min without
any breaks, leading to fatigue. These specific gestures were
chosen to avoid confusion or complexity that could hinder
participants’ ability to follow along. To assess the accuracy
of arm gestures under fatigue, real-time motion capture sen-
sors were placed on the participants’ vertebrae and upper
extremity regions. The experiment occurred in a motion cap-
ture sensor lab, where digitally augmented content was over-
laid onto the physical wall.

Methodology

From our previous study (Yu et al., 2023), we developed a
client program in C# based on the API of the motion capture
system in which AR scene should be triggered by receiving
the position coordinates. A total of 25 participants aged
between 18 and 25 took part in the study, with each partici-
pant performing the same task consecutively. Before starting
the experiment, participants were asked to complete a ques-
tionnaire encompassing general inquiries about their age,
gender, academic status, and prior immersive experiences
with AR technology. Subsequently, a comprehensive over-
view of the Hololens device and Xsens motion capture
sensors was provided, elucidating the specific tasks to be
performed during the experiment. Following this, a set of 11
Xsens motion capture sensors (head, sternum, pelvis, right
shoulder, left shoulder, right upper arm, left upper arm, right
lower arm, left lower arm, right hand, left hand) were affixed
to the participant’s body. While attaching these sensors, care-
ful attention must be paid to their orientation. Moreover, it
was crucial to ensure that the upper and lower arm sensors

were positioned beneath the straps, facilitating more precise
data capture. Given the participant’s rotational movements,
securing the arm straps, especially for those wearing long
sleeves, is advisable. After that, a thorough verification pro-
cess was mandatory to confirm the accurate attachment of all
sensors to their designated positions (left/right/arm/hand/
shoulder) and prevent potential misplacement. After the suc-
cessful detection of sensors, the participants were instructed
to remain stationary for 3 s, followed by 13 s of walking. As
the participant nears approximately 3 s, guidance was given
to return to the initial position, stand still, and face the com-
puter screen until the calibration concludes. Upon comple-
tion of calibration, the program prompted the participant to
press “Enter” to commence the recording phase. The partici-
pants were directed to execute the two designated gestures
during the recording. They were trained to follow the proce-
dure below:

a. The participant should be oriented toward the wall
marked with numbers, as depicted in Figure 1.

b. Both arms should be fully extended, maximizing
their reach, as illustrated in Figure 2.

c. The height of the forearms must align with the ster-
num’s height.

d. Both arms should maintain proximity and avoid
excessive spreading (refer to Figure 3).

e. Initiating by raising both arms, the participant should
proceed to rotate toward the right or left rear (as
depicted in Figure 3)

Following this stage, we informed the participants that the
gestures demonstrated by the virtual instructor involved mir-
rored movements. Emphasis was placed on avoiding incor-
rect rotational directions. Additionally, if the virtual instructor
performed the two designated gestures (see Figure 3), the
participants were expected to replicate them accurately as
previously instructed. Subsequently, the participants were
directed to focus on the numbered marker on the wall until
the designated scene became visible. To access the HoloLens
program, the MOCAP (Motion Capture) app was activated.
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Figure 2. Initiating arm gesture.

Figure 3. Two designed arm movements.

After that, the AR environment displayed a human avatar.
The participants were prompted to imitate the avatar’s move-
ments. The duration of each movement has been chosen to
increase participant fatigue from continuously performing
the defined gestures for an extended period.

Each participant action produced a log detailing the exe-
cution of gestures using the MOCAP app, which pinpoints
instances when a specific gesture (right/left) was enacted.
The action interval is every 6 s. However, due to diverse fac-
tors like latency, the time required to comprehend the action,
and the duration to complete the gesture, the recording inter-
vals could be fluctuated. These variables differed for each
participant and spanned from 0 to 3s.

Results

Upon completion of data collection, the subsequent step
involves analyzing the miss count. Within this context, it is
essential to understand that the virtual human instructor
within the HoloLens performed a distinct number of ges-
tures, denoted as o.. Presuming that all participants success-
fully completed the experiment, the approximate value of
o would be 150 gestures. Our existing methodology for data

analysis entails a comparison of timestamps associated
with each gesture, contrasting them against those docu-
mented by the HoloLens 2 device. A temporal variance of
0 to 3 s signifies simultaneous gesture execution. The count
of such consistently synchronized gestures, denoted as
“Recognized Gestures” is labeled as y. For a better examina-
tion of the data, a segmentation of the 15-min experiment
into 15 distinct intervals is crucial. Examining the instances
of misses and computing accuracy for each segment requires
a thorough and careful approach. To achieve this, the entire
15-min video was meticulously reviewed for each segment.
Subsequently, the accurate gestures within each segment
were computed using the formula [(yo) /X 100%]. Conse-
quently, the accuracy for each participant within each seg-
ment is documented in Figure 4.

This refers to instances when the virtual human instructor
executed a gesture at a particular timestamp, yet the gesture-
detecting program failed to notice the participant’s corre-
sponding execution at that same timestamp. We tabulated the
count of these untriggered right/left gestures.

The accuracy percentage associated with each segment
reflects the participants’ proficiency in executing the task
during various time intervals. The results show a significant
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Figure 5. The accuracy comparisons by groups.

decline in accuracy spanning the 15-min duration. It implies
that the participants encountered fatigue as they persisted in
performing the assigned task. As previously mentioned,
fatigue is described as a sensation of tiredness, weakness, or
depletion that emerges after extended physical exertion. In
this context, the continuous full-arm movements required by
the task likely contributed to the onset of fatigue among the
participants. The accuracy results show a meaningful nega-
tive correlation between accuracy and duration (r=—4753,
p<.0001).

We also performed the analysis using the Fit Mixed
Effects Model on a dataset of 22 participants. The outcomes
indicate the delineation of three distinct groups (see Figure 5).
Initially, during the initial 7min, participants exhibited a
high accuracy in executing the assigned task, with an aver-
age accuracy of 96.1% (standard deviation="7.86). However,
between the 8 and 12min mark, accuracy was substantially
declined, amounting to 87.7%. Beyond the 13-minute thresh-
old, accuracy was further reduced below 80%.

To comprehend the effects of physical fatigue on pos-
ture, we categorized the entire dataset of segment positions
into the following labels: (1) Performance of Left Full Arm
Gesture, (2) Performance of Right Full Arm Gesture, and
(3) Other Gestures. Based on this categorization, we
extracted the maximum values of body sensors (neck, TS,
left shoulder, right shoulder, left upper arm, right upper
arm, left forearm, and right forearm) observed when the
participants performed both left and right full arm move-
ment gestures.

The outcomes indicated significant alterations (p <.0001)
in segment positions in x and y coordinates for sensors
placed on the neck, T8, left shoulder, and right shoulder
(see Table 1). These alterations were observed when partici-
pants engaged in the left and right full-arm movement ges-
tures for a duration exceeding 7 min. Especially, a consistent
pattern emerged across all these segments, characterized
by decreases in x and z-axis positions, accompanied by an
increase in the y-axis position for the left full arm movement
gesture. On the other hand, a steady pattern occurred across
all these segments, characterized by an increase in the x-axis
position, with a decrease in y and z-axis positions for the
right full-arm movement gesture.

Regarding the upper arms, executing the full arm gesture
led to substantial alterations in segment positions in z coordi-
nate among participants. As for the forearm sensors, a dis-
tinct decreasing trend was evident in the y-axis positions,
although not in x and z-axis positions.

Discussion

The present study aims to address how body posture
changes in response to fatigue while performing full-arm
gestures in the performed a full arm motion gesture.
Referring to the directional cues shown in Figure 6, during
the execution of the left full arm gesture under conditions
of physical fatigue, the neck, T8, and shoulder shifted 5 to
8cm in the forward-right direction. Conversely, when the
participants performed the right full arm gesture, those
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Figure 6. Segment position directions.

body parts moved 3 to 6 cm in the left and backward direc-
tion. This suggests that fatigue caused changes in the neck
and back movement patterns of the trunk. That was the
main reason the precision of posture detection was signifi-
cantly reduced from 97.7% to 75.9%.

As indicated by our findings, fatigue triggered a decrease
in the muscle strength of upper body segments during par-
ticipants’ full arm movement gestures. This, in turn, posed
challenges for participants in sustaining accurate and well-
regulated body movements. As fatigue sets in, they exert
more effort and engage in larger body motions to compen-
sate for decreased muscle function and stability. In our
study, using upper body motion sensor data, physical
fatigue can be quantified by measuring changes in the range
of motion over time. When the body is fatigued during full
arm gestures, its ability to produce and maintain force
decreases, leading to changes in the range of motion of
various body segments. The neck and back of the trunk play
a pivotal role in upholding core stability. When fatigue
affects these regions, it can impact overall posture and sta-
bility, potentially compromising the accuracy of gesture
detection. Our data analysis indicates that alterations in the
torso movement can extend their influence on the upper and
forearm regions. Consequently, tracking changes in the
movement of the neck, T8 (thoracic vertebra), and shoul-
ders can offer early insights into the impact of fatigue on
users in AR environments.

Focusing exclusively on alterations in arm movement
may overlook the broader context of how fatigue impacts the
overall body’s movement and stability. Comprehending the
effects of fatigue on these specific areas can yield valuable

Table I. Comparing Groups Vitality Versus Fatigue in Full Arm
Motion (Significant <.0001).

Body part Difference  Std err difference  p-Value
T8 x 0.0140390 0.0025554 <.0001*
T8y 0.0266150 0.0033425 <.0001*
T8z 0.0024726 0.0004301 <.0001*
Neck x 0.0247267 0.0039791 <.0001*
Neck y 0.0363149 0.0052869 <.0001*
Neck z 0.0012081 0.0005590 .0786
Left Shoulder x 0.0184482 0.0032183 <.0001*
Left Shoulder y 0.0311803 0.0041541 <.0001*
Left Shoulder z 0.0002996 0.0005550 8517
Right Shoulder x 0.0172346 0.0032261 <.0001*
Right Shoulder y 0.0299646 0.0042938 <.0001*
Right Shoulder z 0.0032570 0.0005171 <.0001*
Left Upper arm x 0.0111541 0.0033849 .0029
Left Upper arm y 0.0235738 0.0062178 .0005
Left Upper arm z 0.0059539 0.0013983 <.0001*
Right Upper arm x  0.0111541 0.0033849 .0029
Right Upper army  0.0235738 0.0062178 .0005
Right Upper armz  0.0059539 0.0013983 <.0001*
Left Forearm x 0.0258343 0.0070564 .0008
Left Forearm y 0.0510707 0.0090921 <.0001*
Left Forearm z 0.0029183 0.0043226 .7780
Right Forearm x 0.0171088 0.0087591 1247
Right Forearm y 0.0280900 0.0063943 <.0001%*
Right Forearm z 0.0049655 0.0037987 3915

insights for enhancing the precision of computer algorithms
designed to interpret human gestures accurately. To mitigate
these challenges, it is crucial to consider the effects of fatigue
during algorithm development. This may involve adapting
the algorithm to account for fatigue-related postural changes,
implementing real-time feedback mechanisms to assist users
in maintaining proper posture despite fatigue, or collecting
data specific to fatigued conditions to train the algorithm for
improved accuracy in such scenarios.

AR environment. The findings revealed a correlation
between body posture and fatigue. More specifically, the
range of body segments for the neck, T8 (thoracic vertebra),
and shoulder sensors show meaningful patterns to evaluate
fatigue levels. The results indicate that physical fatigue sig-
nificantly influenced the ranges of motion in these body parts
when the participants.

Conclusion

Spending an extended duration on educational AR material
can undoubtedly lead to profound fatigue, particularly when
confronted with protracted or demanding content. The nega-
tive consequences of physical and mental exhaustion should
not be overlooked. However, the intensity of this weariness
can differ depending on multiple factors, including the
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specific AR technology employed, the complexity of the
educational material, and the overall arrangement of the
learning environment. Understanding the effects of physical
fatigue during AR learning is crucial in assessing their impact
on individuals in specific contexts. Through the findings of
the current study, we are able to reveal how physical fatigue
can manifest muscular strain, diminished range of motion,
heightened muscle tension, and a general sense of bodily dis-
comfort. By using motion capture technology, we can effec-
tively monitor alterations in body movements and detect
patterns that signify the onset of physical fatigue. Physical
fatigue can influence the overall learning experience and
performance of individuals engaged in extended periods of
AR-based learning. By investigating the impact of fatigue on
body segment movement during prolonged standing and
AR-based learning, we could gain insights into the relation-
ship between fatigue and human performance. These insights
can contribute to developing strategies to reduce fatigue and
enhance performance in AR environments.

The current study analyzed upper body motion data based
on the fatigue level of participants in the AR learning
environment. The utilization of motion capture technology
enables the monitoring of an individual’s movements, allow-
ing for the identification of obvious patterns indicative of
physical fatigue, such as a restricted range of motion move-
ments. Through the analysis of participant movements,
researchers and AR design engineers can enhance their com-
prehension of how fatigue and other factors can influence
user engagement and performance. Gaining insights into the
movement patterns associated with fatigue can contribute to
a better understanding of the impact of fatigue on body pos-
ture and provide valuable knowledge for ergonomic design
considerations in AR environments.

For the limitations, the HoloLens device may have con-
tributed to the physical strain and fatigue experienced by
participants. In future investigations, exploring the potential
impact of different AR device form factors and configura-
tions on physical strain and fatigue would be beneficial,
aiming for a more comprehensive understanding of their
effects. Furthermore, upcoming research initiatives might
explore integrating machine learning methodologies to cre-
ate an advanced human gesture recognition system capable
of discerning precise fatigue-related movement patterns
and sequences within the AR learning environment. Lastly,
future studies may contemplate enlarging the sample size
and extending the duration of data collection to enhance sta-
tistical robustness and enable more precise pattern identifi-
cation. With a larger and longer-term observation period,
capturing a broader array of movement patterns and poten-
tially discerning nuanced variations associated with fatigue
becomes feasible
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