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Abstract

This research aims to explore the prediction of student learning outcomes in Augmented Reality (AR) educational settings,
focusing on engineering education, by analyzing pupil dilation and problem-solving time as key indicators. In this research, we
have created an innovative AR learning platform through the incorporation of eye-tracking technology into the Microsoft
HoloLens 2. This enhanced learning platform enables the collection of data on pupil dilation and problem-solving duration
as students engage in AR-based learning activities. In this study, we hypothesize that pupil dilation and problem-solving time
could be significant predictors of student performance in the AR learning environment. The results of our study suggest
that problem-solving time may be a critical factor in predicting student learning success for materials involving procedural
knowledge at low difficulty levels. Additionally, both pupil dilation and problem-solving time are predictive indicators of
student learning outcomes when dealing with predominantly procedural knowledge at high difficulty levels.
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Introduction This research focuses on investigating the use of pupil
dilation and problem-solving time as key parameters for pre-
dicting student learning success in an AR-based educational
environment.

In this research, we have developed an innovative AR
learning platform by integrating eye-tracking technology
into the Microsoft HoloLens 2. The integration of eye-track-
ing technology is crucial for the real-time collection and
analysis of eye-related metrics, such as pupil dilation, pro-
viding insights into student engagement and cognitive load.
Such data are invaluable for understanding how students
interact with and learn from AR content. The result is an
enhanced learning platform that enables the collection of
data on pupil dilation and problem-solving duration as stu-
dents engage in AR-based learning activities. These metrics
are then utilized as indicators to assess student learning
performance.

Pupil dilation acts as a physiological indicator of cognitive
effort (Holmgqvist et al., 2011), and solving time provides
insight into a student’s comprehension of the concepts taught
during the lecture (De Boeck & Scalise, 2019). These mea-
sures shed light on how students interact with educational
content, allowing educators to customize their teaching
approaches for enhanced learning results. Despite their
potential, there has been limited research exploring the rela-
tionship between pupil dilation, solving time, and student
learning performance in Augmented Reality (AR) settings.

AR is revolutionizing education, offering dynamic,
immersive experiences with tools like Microsoft HoloLens
2. It enriches learning, particularly in complex fields like
engineering education, by making content interactive and
accessible to various learning styles, thus improving educa-
tional results. While numerous studies have highlighted the
advantages of AR-based learning, users continue to face
challenges such as cognitive overload, triggered by an
overload of stimuli, and cyber sickness (Alzahrani, 2020;
Wau et al., 2013). Furthermore, it is hard to predict learning
performance in such settings (Koumpouros, 2024). Hence, ¢ . o
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Figure 1. Dikablis eye tracking with HoloLens 2 device.

Table |. The Example of Performance Data for Each Participant.

Q. No Response Score Solving time (s)
| Musculoskeletal injury 100 21.012

2 Object of mass; distance 100 43.891

3 Zero 100 172,519

4 5m 100 18.932

5 0.3m 0 36.798

6 2.16 Nm 100 24.63

7 43.60% 100 30.866

In this study, we hypothesize that pupil dilation and prob-
lem-solving time could be significant predictors of student
performance in the AR learning environment. For the experi-
ment, we created two AR lectures on biomechanics. The first
lecture introduced essential concepts in biomechanics and
physics, including fundamental definitions and formulas.
Following this, the next lecture built on these foundations by
applying the concepts covered earlier, thus increasing the
complexity. Lecture #1 was divided into seven modules,
whereas Lecture #2 was organized into eight modules.

Methodology

Twelve engineering students (average age=20.6) from the
University of Missouri participated by completing a survey
that gathered demographic information. Following the sur-
vey, participants were provided with a comprehensive orien-
tation session to familiarize them with the HoloLens headset
and the Dikablis Eye Tracking system (see Figure 1). After
the calibration of both devices, the study was structured
around two distinct AR lectures, each separated by a mini-
mum interval of 4 hr and a maximum of 48 hr to ensure ade-
quate rest and mental preparation for the participants. The
initial lecture covered fundamental concepts in biomechan-
ics, laying the groundwork for the subsequent session. The
second lecture, designed to be more challenging, required
participants to apply the knowledge acquired from the first
lecture to solve advanced problems in the same fields.

During these sessions, participants engaged with a series of
modules—seven in the first lecture and eight in the sec-
ond—each designed to progressively build on their under-
standing and application of biomechanics. After each lecture
concluded, we recorded the performance metrics and prob-
lem-solving times for each participant onto the laptop. For
example, Table 1 displays data on performance and solving
time from the first lecture. To understand the performance
data, each module records a solving time alongside a score,
with 100 indicating a correct answer and 0 denoting an
incorrect one. As participants navigated through the educa-
tional content and problem-solving activities, we continu-
ously gathered eye-tracking information, including metrics
such as the pupil area for both the left and right eyes, along
with the pupil size.

During the experiment, participants were equipped with
two devices: a HoloLens for accessing AR learning materi-
als, and Dikablis eye-tracking cameras to monitor pupil
activity. Additionally, the NFER system was deployed to
trigger the loading of subsequent AR modules based on the
participants’ physical locations, which included seven spe-
cific learning stations for Lecture #1 and eight spots for
Lecture #2 (Yu et al., 2023). The NFER tag was placed on the
table used by participants during the experiment. This tag
tracks the real-time location within a calibrated indoor room.
By utilizing this technology, we can accurately display the
relevant AR learning contents (see Figures 2 and 3) by mini-
mizing any mismatch issues between physical objects and
virtual objects (Guo & Kim, 2021).

To analyze the participant’s pupil data, we normalized the
pupil area data using equation (1) (Liang et al., 2021) . In this
equation, Pnorm represents the normalized pupil area, Pi
stands for each data point in the pupil area (i=1, . . ., n),
min(P) is the smallest pupil area observed in the entire data-
set of the participant, and max(P) indicates the largest pupil
area from the same dataset.

_ P, - min(P) (1)

" max(P) - min(P)
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Figure 2. Labeled 3D scene of an AR module built with unity.
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Figure 3. Bird’s-eye view of the AR learning platform (Kim et al., 2023).

After completing the normalization process, we divided
the pupil dataset into two categories: baseline (B) and solving
(S). The baseline includes the pupil data collected when a par-
ticipant was waiting for new AR content after moving to the
next location spot. In the solving category, pupil data is gath-
ered when the participant addresses a problem associated
with the recently learned content through the AR module. To
determine the extent of pupil dilation when participants
solved problems, the normalized pupil data from the prob-
lem-solving category was compared with baseline pupil data,
denoted as B-S. The absolute value of B-S was used to mea-
sure its distance from zero, representing no pupil dilation dif-
ference between the baseline and problem-solving. This
comparison with absolute value occurred across all modules
in both Lecture #1 and Lecture #2.

To accurately measure each participant’s problem-solving
time, we designed an interface accessible via a touchscreen
laptop computer (refer to Figure 4). When a participant was

prepared to tackle the question, they would press the “NEXT”
button, which triggered the start of the timer. After selecting
an answer from multiple choices, the “NEXT” button would
activate. The timer stopped as soon as the participant clicked
this button. Each problem-solving time is denoted as ST.

In this experiment, participants solved one problem after
each AR module. However, module 1 in Lecture 2 did not
include a question, resulting in seven ST values for both
Lectures #1 and #2. Accordingly, for Lecture #1, seven nor-
malized B-S values corresponded to modules #1 through #7.
For Lecture #2, seven normalized B-S values corresponded
to modules #2 through #8 for each participant.

Results

The findings indicate that the mean pupil dilation difference
between baseline and problem-solving is 0.11 with a stan-
dard deviation of 0.077 for Lecture #1 and 0.09 with a
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Figure 4. The touchscreen laptop computer to collect problem-solving time.

standard deviation of 0.079 for Lecture #2 (see Table 2). This
suggests a 9% to 11% fluctuation in pupil size while partici-
pants were engaged in problem-solving compared to when
no visual stimuli were presented. For the problem-solving
time, the mean solving time is 41.61 s with a standard devia-
tion of 42.32 for Lecture #1 and 79.5 s with a standard devia-
tion of 74.11 for Lecture #2 (see Table 3). This implies that
participants took longer to solve the problems in Lecture #2,
possibly perceiving them as more difficult than those in
Lecture #1. This interpretation could be supported by a com-
parison of performances between the two lectures: Lecture
#1 had an average performance score of 90.42 with a stan-
dard deviation of 9.31. In contrast, Lecture #2 had an average
score of 68.84 with a standard deviation of 18.43. The per-
formance in Lecture #2 was significantly lower than in
Lecture #1 (see Figure 5).

For Lecture #1, the most effective regression model con-
siders problem-solving time and pupil dilation as indepen-
dent variables, with the sum of each module’s performance
as the dependent variable, including only the solving times
for modules #4, #5, and #6. This is evidenced by an R-squared
value of 0.86 (see Figure 6 (a)). It means that the solving
times for those modules, called ST-4, ST-5, and ST-6, indi-
cate their critical role in determining student performance for
Lecture #1 contents. In Lecture #2, which contains more
complex biomechanics contents, the model’s R-squared
value rises to 0.97 (see Figure 6 (b)). This indicates a signifi-
cantly enhanced predictive accuracy. The solving times for
modules #4 (ST-4) and #8 (ST-8) and pupil dilations for
modules #2 (B-S 2), #5 (B-S 5), #7(B-S 7), #8 (B-S 8) are
significant predictors of performance. Based on the regres-
sion coefficient findings from Lecture #1, as detailed in
Table 4, it is evident that there is a positive correlation

Table 2. Descriptive Statistics for Pupil Dilation Differences
with Absolute Value Between Baseline and Problem-Solving.

Parameters Lecture | Lecture 2
Mean Std Dev Mean Std Dev

B-S | 0.15 0.076 - -
B-S 2 0.11 0.058 0.09 0.076
B-S 3 0.10 0.087 0.10 0.088
B-S 4 0.12 0.091 0.11 0.078
B-S 5 0.11 0.064 0.10 0.074
B-S 6 0.10 0.075 0.08 0.058
B-S 7 0.11 0.090 0.10 0.095
B-S 8 - - 0.07 0.081

Table 3. Descriptive Statistics for Problem-Solving Time.

Parameters Lecture | Lecture 2
Mean Std Dev Mean Std Dev
ST I 17.08 8.46 - -
ST2 41.47 32.25 31.5 66.98
ST3 37.64 58.38 62.53 56.82
ST4 38.96 30.32 42.25 4].16
STS5 74.75 90.77 53.05 23.29
ST6 38.43 24.52 26.44 15.95
ST7 4297 51.59 56.51 112.63
ST 8 - - 284.22 201.97

between student performance and the time spent solving
problems in modules #4 and #5. Conversely, a negative cor-
relation was observed between student performance and
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Table 4. The Most Effective Regression Model of Problem-
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Figure 6. A Scatter plot comparing
actual performance and predicted performance: (a) Lecture |I.
(b) Lecture 2.

Intercept 95.203509 2.597573 36.65 <.0001*

ST-4 0.1597777 0.045701 3.50 .0081*
ST-5 0.0593085 0.015113 3.92 .0044%*
ST-6 -0.400484 0.058719 -6.82 .0001°*

Table 5. The Most Effective Regression Model of Problem-
Solving Times and Pupil Dilation Correlated with Performance in
Lecture 2.

Term Estimate Std error t ratio Prob>|t|
Intercept 80.111508 7.989319 10.03 .0002*
B-S 2 -230.3605 32.65722 -7.05 .0009*
B-S 5 -182.5271 36.89973 -4.95 .0043*
B-S 7 -90.87113 35.19589 -2.58 .0493*
B-S 8 212.11168 51.96491 4.08 .0095*
ST4 0.2144843 0.045473 4.72 .0053*
ST8 0.0489495 0.010133 4.83 .0048*

the time spent on problem-solving in module #6. In Lecture
#2, as indicated in Table 5, positive correlations were identi-
fied between student performance and the time spent solving
problems in modules #4 and #8, as well as the pupil dilation
observed in module #8. Additionally, negative correlations
were noted between student performance and pupil dilation
in modules #2, #5, and #7.

Discussion

According to the results, we observed that when students
engaged with learning materials primarily composed of pro-
cedural knowledge at low difficulty levels (Lecture #1 in
modules #4 to #06), their performance demonstrated a sig-
nificant correlation with the time spent on problem-solving
but showed no correlation with pupil dilation. As previously
mentioned, Lecture #1 introduced fundamental concepts
and simple examples in biomechanics. Specifically, mod-
ules #1 to #3 covered the definition of biomechanics, forces
and moments, and static equilibrium using free body dia-
grams. Modules #4 to #6 offered straightforward examples
of calculating forces and moments on body segments.
Module #7 detailed additional information for solving more
complex multi-segment biomechanics problems, which will
be explored further in Lecture #2. In other words, modules
#1, #2, #3, and #7 are structured to impart declarative
knowledge related to biomechanics, while modules #4 to
#6 focus on teaching procedural knowledge, such as calcu-
lating forces and moments on the body. the results from
the regression model indicate that the time spent solving
problems in modules #4 to #6 is a significant predictor of
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student learning success in Lecture #1. It is interesting to
observe how problem-solving time can predict performance.
According to Table 4, spending more time on modules 4 and
5 but less time on module 6 results in better performance.
This could be because mastering modules 4 and 5 provides
a significant advantage in understanding and efficiently
completing module 6. In other words, a student who spends
more time solving problems correctly in modules 4 and 5
spend less time on module 6 due to their high level of under-
standing of calculating forces and moments in biomechanics.

However, when students interacted with learning materi-
als that predominantly featured procedural knowledge at a
high difficulty level (Lecture #2), their performance signifi-
cantly correlated with the time they dedicated to problem-
solving and pupil dilation. Aside from module #1, which
focused on summarizing the content from Lecture #1, all
other modules were dedicated to addressing multi-segment
biomechanics problems to assess potential ergonomic risks
during manual material handling tasks. This indicates that
for procedural learning at high difficulty level, both the effort
invested in solving problems and the physiological responses,
as reflected by pupil dilation, are important predictors of stu-
dent success.

Prior research has established pupil dilation as a reliable
measure of cognitive load (Gavas et al., 2017; Kim & Yang,
2017; Sibley et al., 2011). This phenomenon becomes par-
ticularly evident when students tackle new content, such as
calculating forces and moments affecting individual body
segments. Such topics demand considerable cognitive
effort to grasp the sequence and methodology involved.
Participation in these procedural tasks at a high difficulty
level can increase cognitive load and student engagement,
as indicated by changes in pupil dilation. Additionally, the
time spent on problem-solving acts as a direct measure of
student engagement with a task.

Our regression model supports these observations.
According to Table 5, the variables of problem-solving time
and pupil dilation in modules #3 and #6 are not significant
predictors of performance in Lecture #2. This may be due to
the lack of new information or equations in these modules.
Specifically, in module #3, the virtual instructor repeated the
method for calculating forces and moments, previously cov-
ered, but applied it to a different posture. Similarly, in mod-
ule #6, the same procedure used in module #5 for calculating
forces and moments on the upper arm was repeated.

The results of our study indicate that learning modules
focused on procedural knowledge significantly impact stu-
dent learning performance. This is because adequate knowl-
edge about the subject is essential for solving problems that
require procedural understanding. An interesting observation
from the study is that at low difficulty levels, only problem-
solving time is relevant for predicting performance. However,
at high difficulty levels, both pupil dilation and problem-
solving time emerge as significant predictors in the model.

Conclusion

This study seeks to predict student learning outcomes in
Augmented Reality (AR) educational environments by
examining pupil dilation and problem-solving time as pri-
mary indicators. The results of our study suggest that both
pupil dilation and problem-solving time serve as predictive
indicators of student learning outcomes when the material
is predominantly procedural knowledge. This study shows
that AR’s impact could be amplified through pupil dilation
and solving time to understand student learning in the AR
environment. Pupil dilation reflects the mental effort in AR
interactions, while solving time measures how students com-
prehend concepts. These metrics could provide real-time
insight into student engagement and cognitive challenges.
Educators can utilize these insights to customize content,
ensuring it matches student capability, and thereby fostering
personalized learning. The current study explores AR’s role
in education, focusing on how pupil dilation and solving
time as performance metrics can enhance AR-based engi-
neering education. This research contributes to digital educa-
tion, highlighting eye-tracking’s potential to improve AR
methodologies. Conclusively, by leveraging these findings,
we will be able to create an innovative AR learning platform
that tailors itself to the learner’s cognitive state and perfor-
mance metrics.

Future studies should aim to increase the sample size and
diversity of participants to improve the generalizability of
the results. Additionally, it is important to expand the range
of AR content to encompass various educational and training
contexts. Furthermore, incorporating additional physiologi-
cal sensors could enhance the accuracy and reliability of per-
formance prediction models in AR settings.
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