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ABSTRACT

Early diagnosis of colorectal polyps, before they turn into cancer,

is one of the main keys to treatment. In this work, we propose a

framework to help radiologists in reading CT scans and identify-

ing candidate CT slices that have polyps. We propose a colorectal

polyps detection approach which consists of two cascaded stages. In

the first stage, a CNN-based model is trained and validated to de-

tect polyps in axial CT slices. To narrow down the effective recep-

tive field of the detector neurons, the colon regions are segmented

and then fed into the network instead of the original CT slice. This

drastically improves the detection and localization results, e.g., the

mAP is increased by 36%. To reduce the false positives generated by

the detector, in the second stage, we propose a multi-view network

(MVN) that classifies polyp candidates. The proposed MVN classi-

fier is trained using sagittal and coronal views corresponding to the

detected axial views. The approach is tested in 50 CTC-annotated

cases, and the experimental results confirm that after the classifica-

tion stage, polyps can be detected with an AUC ∼ 95.27%.

Index Terms— Colorectal cancer, colon polyp, computerized

tomography (CT), polyp Detection, CNN, segmentation.

1. INTRODUCTION

Colorectal cancer (CRC) begins as small growths (polyps) that at-

tach to the luminal wall of the colon or rectum, which must be di-

agnosed and treated promptly. Optical colonoscopy (OC), a proce-

dure in which the colon and rectum are viewed through a lighted

flexible tube with a camera at the end, is the standard screening

approach. However, OC is an expensive and invasive procedure.

On the other hand, Computed Tomographic Colonography (CTC),

a screening method in which radiologists detect colon polyps from

CTC images, is a noninvasive, inexpensive, and gives clinically ac-

ceptable performance [1–3]. Chini et al., [4] showed that CTC is an

acceptable alternative to OC for polyp size ≥ 5 mm. Furthermore,

compared to other noninvasive CRC screening methods, the preci-

sion of CTC is much higher for sensitivity and specificity [1, 5]. We

propose a polyps detection approach to improve the performance

of CTC screening. The proposed approach will help radiologists

in reading CT scans and identifying candidate CT slices that have

polyps and then referring to polyp locations.
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Table 1. Summary of Polyp Analysis using CT Scans.

Approach # Scans S% Limitations∗

Shape-based model [6] 10 71 shape

variantTexture and shape analysis [7] 56 100

Shape & size invariant [8] 249 95 single type

DETALE transfer learning [9] 154 94
polyp or

non-

polyp

only

Deep ensemble CNN [10] 403 90.5

DCNN-CADe [11] 144 polyps 93

2D CNN [12] N/A 97

3D-GLCM CNN [13] 63 polyps 90.1

3D-Dense CNN [14] 403 95.1

categorization

only

Machine learning [15] 106 82

Seg + 3D CNN [16] 107 80

MM-GLCM CNN [17] 100 94.5
∗ None of the approaches detects the location and the size of a polyp

Over the past two decades many researchers exploited computer

vision algorithms to automatically detect or classify colonic polyps.

Table 1 shows a summary of the literature review for algorithms that

perform polyp analysis from CT scans. The summary categorizes

these algorithms and shows the number of used CT scans as well

as the reported sensitivity S, for each algorithm. Although the re-

ported sensitivities, in Table 1, are promising, there are many limi-

tations and drawbacks in these approaches. The approaches in [6, 7]

are shape-based algorithms but polyps come in a variety of shapes,

sizes, and types. Wijk et al. [8] focused on one polyp type with

lots of false positives. Furthermore, [9–13] classify polyp from non-

polyp candidates and [14–16] are focusing on classifying the polyp

category (Adenomatous, Serrated, Inflammatory polyps). Unfortu-

nately, there is no baseline dataset so the authors, of each approach

in Table 1, used their private dataset for evaluation. In this work,

experiments are conducted on the dataset that was used by Zhang

et al., [17]. However, Zhang et al., [17] focused on distinguish-

ing malignant from benign lesions, but we focus on polyps detec-

tion and localization. The only public dataset that has CT scans

with colonic polyps annotation is presented by The Cancer Imaging

Archive (TCIA), ACRIN-6664 [18]. However, only the slice num-

ber, which has polyps, is provided not the location and size of each

polyp within the slice. Finally, none of the approaches, in Table 1,

detects the exact location and size of a polyp within a CT scan except

Grosu et al., approach, [15], which detects polyps before classifica-

tion, but with a detection rate 73%.



The proposed framework aims to identify the accurate location

and size of potential polyps by locating the slice and the bounding

box for the detected polyp. Colonic polyp detection is a challeng-

ing problem due to the uncertainties in acquiring CT scans, e.g.,

preparation artifacts, polyp size, and location [19]. To develop an

efficient approach that overcomes polyps detection and localization

challenges, the proposed algorithm focuses on colon regions. So, a

preprocessing step is performed to segment colon regions. Then, the

segmented regions are fed into a CNN-based detector for polyps de-

tection. The detector results are fed into the proposed CNN-MVN

module to enhance the final results. The main contributions of the

proposed work include developing:

1. a CNN-based polyp detector that is trained and validated using

axial CT scans,

2. a colon segmentation approach to guide the proposed detectors

focusing on the colon wall, and

3. a multi-view fusion network (MVN) classifies polyp candidates

generated by the proposed detector. The proposed MVN classi-

fier is trained using sagittal and coronal views corresponding to

the detected axial views.

2. PROPOSED APPROACH

The proposed approach for colonic polyps detection and localization

uses segmented axial CT slices, which are fed into a CNN model to

localize candidate polyps, as shown in Fig. 1. A segmentation step

is used to guide the CNN detector to the regions of interest only,

the colon wall. This changes the neuron’s effective receptive field

to focus on colon regions. However, the detector may generate false

positives. To eliminate these false positives, we exploit the other two

views of a CT scan (i.e., a CT scan is a volume in DICOM format

and other views can be projected not only the axial view). There-

fore, we train a classifier using the three views, as shown in Fig. 3.

The proposed MVN classifier uses three 2D images (sagittal, coro-

nal, and axial views) for each candidate generated by the detectors.

Moreover, the proposed classifier avoids the drawbacks of using a

volume in the training process (e.g., 3D-CNN [14]) and consumes

less time and memory compared to the 3D network.

2.1. Colon Segmentation

Colon segmentation is a challenging problem due to the colon’s

asymmetric topology. Also, uncertainties appear due to the presence

of Hounsfield (HU) intensity regions consisting of air, soft tissue,

and high-attenuation structures like the bones. In addition, com-

plications result due to the presence of residual stool, parts of the

diaphragm, lungs, and disconnected colon segments [20]. In this

paper, we propose a segmentation approach that involves multiple

steps, as shown in Fig. 2. The first step is to calculate the empiri-

cal distributions of Hounsfield intensities in a DICOM volume, as

shown in Fig. 2-b. The main components of a colon are the air, for

which the characteristic peaks are almost at -1000 HU [21], and the

fluid whose Hounsfield intensity is greater than 300 HU.

To extract the colon components, first, we estimate the marginal

densities of air, fat, muscle, and fluid by fitting four Gaussian compo-

nents using the Expectation Maximization (EM) algorithm, as shown

in Fig. 2-b. Then, we identify colon regions using two thresholds.

The first threshold t1 is between air and fat, and the second thresh-

old t2 is between muscle and fluid. The HU values of colon regions

should be < t1 and > t2. However, this simple thresholding tech-

nique cannot isolate colon regions from non-colon regions. There-

fore, we use this initial segmentation to extract the rectum region,

which can be easily identified as a disk-like region that has a low

HU, in the first part of the DICOM volume, as shown in Fig. 2-

d. This region is used as a starting seed, from which other colon

regions are extracted by region growing. However, since there are

non-colon parts that are interwind with colon parts, this yields er-

rors in the region growing step. Therefore, restricted region growing

is performed using the morphological operation to guarantee more

separation between the colon and non-colon classes. The output of

the region growing step, Fig. 2-e, is used as a seed for Graph Cut

approach [22] to generate the final segmentation Fig. 2-f.

2.2. CNN-based polyps detection approach

After performing the segmentation step, we use the segmentation as

a mask for colon regions since the detection algorithm would focus

only on the colon regions. Therefore, the original CT slice is mul-

tiplied by this binary mask, as shown in Fig. 1. To make sure that

the colon wall is included in the segmented regions, the segmented

regions are dilated before the multiplication. The output of this step,

as shown in Fig. 1, is the masked axial view, which is fed into the

YOLO model [23]. The model is trained to extract all the true

polyps from the axial view, even with a high number of false pos-

itives. Therefore, the confidence score threshold is chosen to have a

low value to produce all possible true positive regions.

2.3. Multi-view fusion network (MVN)

Since the detector produces many false positives from the axial view,

an algorithm is needed to filter these false positives. We tried to

mimic what radiologists do when they find a potential polyp can-

didate. They usually confirm or discard this finding by examining

the other two views of the polyp candidate (i.e., sagittal and coronal

views). This is why we extract the corresponding sagittal and coro-

nal views to be fed into our proposed MVN model. Our hypothesis

is based on that most polyps have the shape of a small protruding

mound and they should appear in the three views as a small protrud-

ing mound, unlike the non-polyp areas, e.g. colon folds. Figure 4

shows examples of different false positive samples. The top row il-

lustrates the axial views, and each has a geometric feature similar

to polyps, so they can deceive the detector. However, the sagittal

and coronal views, in the bottom row, show that the geometric and

appearance features of the polyp are not presented. Therefore, us-

ing the other views will filter the detector results. However, in some

hard cases (e.g. Fig. 4-e) the three views show the presence of the

geometric feature of a polyp while it is not a true polyp.

To integrate information from the different views, inspired by

Markov chain model [24], we assume that the polyp classification is

conditionally independent due to the different views. Consequently,

the joint probability over all views factorizes into the conditional

probabilities over the separate views, using the chain rule, as follows.

P (Y |X) = P (Yc|X,Ys, Ya)P (Ys|X,Ya)P (Ya|X), (1)

where X = {Xc, Xs, Xa} is the input sequence of the three views

and Y = {Yc, Ys, Ya} is the output sequence, which should be pre-

dicted. As shown in Fig. 3, the learned features {fc, fs, fa} are

extracted from the three views {Xc, Xs, Xa}, respectively. Accord-

ing to Eq. 1, estimating axial prediction Ya depends only on the

extracted features from axial slice, so its conditional probability is

approximated as follows.

P (Ya|X) = Sigmoid(FC(fa)), (2)



Fig. 1. The first stage of the proposed CT-based approach. An input axial CT slice is segmented. Then it is fed into a CNN-based detector to

localize polyp candidates. The output shows the location and the size of any potential polyp that needs to be verified.

where FC(.) is a fully connected network. On the other hand, esti-

mating the sagittal prediction Ys depends on the axial prediction Ya

as well as the extracted features from both sagittal and axial views

so its conditional probability can be approximated as follows.

P (Ys|X,Ya) = Sigmoid(FC([fs, ha, ya])). (3)

Finally, estimating the coronal prediction Yc depends on both ax-

ial and sagittal predictions as well as the extracted features from all

views, so its conditional probability can be approximated as follows.

P (Yc|X,Ya, Ys) = Sigmoid(FC([fc, hs, ys, ya])). (4)

This model is trained to check if the detected candidate is a polyp

or not in the three corresponding views of the candidate. The final

score reflects the score of all three views to obtain the best classifi-

cation results.

3. EXPERIMENTAL RESULTS

3.1. Dataset

The dataset used to train and validate the proposed modules, was

provided by CTC experts from the University of Wisconsin. The

data consists of scans, in the supine and prone positions, for 50 pa-

tients. The scans have 59 annotated polyps larger than 6 mm. The

annotation of the lesions was done by one of three experienced radi-

ologists. The train-validation ratio is 80/20 while cross-validation is

used due to the limited number of scans in the dataset.

3.2. Training and testing procedure for detector stage

To evaluate the detection model, first, the proposed colon segmenta-

tion approach has been applied to the input axial view of CT slices

to be fed into the next stage for detecting polyps. Next, data aug-

mentation was used to make different variations to the dataset by

flipping some of the images horizontally and applying different ex-

posure, saturation, and brightness. These augmented and segmented

images have been used to train the model. To present the importance

of the segmentation step on axial view images, a YOLO model has

been trained with the original 2D CT slices without the segmentation

step. This model gives only 44% mean Average Precision (mAP).

Also, for the sake of comparison, masked slices have been

used to train different models e.g., YOLO-V5 [25], YOLO-V7 [26],

Faster-RCNN with Resnet-50 [27], and Faster-RCNN with Resnet-

101 [27]. As shown in Table 2, the YOLO-V7 detector has the

highest mean Average Precision (mAP), so it has been chosen to

Table 2. The results of the CT-based detection stage.

Model Sensitivity mAP

YOLO-V5 [25] 86.67 % 79.7 %

YOLO-V7 [26] 88.05% 85.7 %

Faster RCNN R-50 [27] 69.1% 71 %

Faster RCNN R-101 [27] 70.6% 71.7 %

become the detector of the first stage of the proposed framework.

As expected YOLOv7 outperforms YOLOv5 since it is a bigger

model and can fit more complex mapping. On the other hand, Dy-

namic RCNN with ResNet 50 [28], Retina Net with Efficient Net

backbone [29], Sparse RCNN [30], and Swin Transformer [31] were

implemented and trained for the polyp detection task. However,

their results were not included in Table 2 as these models performed

poorly, with a very low mAP. These models were unable to detect

very small objects such as polyps in 2D slices, as a polyp in a 2D CT

slice would only occupy on average 4− 5% of the total image size.

Note that we use the mean Average Precision rather than the mean

Average Recall (mAR), or the F1 score since our main concern is

not to miss any polyp rather than giving some false positives within

the detected regions. All the detectors training’s batch size is 16, but

all other hyperparameters were the original hyperparameters from

each model’s original papers. All the training was performed on

Nvidia TITAN RTX 24 Gb. Moreover, all models were trained to

a high number of epochs (2000 epochs) to get the best validation

score epoch.

3.3. Training and testing procedure for classifier stage

To reduce the false positives generated by the detector, the proposed

multi-view fusion network, Fig. 3, is trained using sagittal and coro-

nal views corresponding to the detected axial views, to classify the

candidates. Additional experiments have been conducted to inves-

tigate more classification architectures compared to the proposed

MVN model. In the first experiment, instead of using the detected

2D axial view and its corresponding sagittal and coronal views, i.e.,

three 70 × 70 images, the corresponding volume (70 × 70 × 15)

is extracted from the DICOM. Then, the 3D-CNN [14] model has

been trained using the extracted volumes. The 3D-CNN model, as

expected, needs high computational power to be trained and it needs

a larger dataset for the training. As shown in Table 3, it is almost

7 times the size of the 2D-CNN model as shown in the number of

parameters.



Fig. 2. The Proposed Colon Segmentation Approach

In the second experiment, instead of using each of the three cor-

responding views as a separate image, the three views were com-

bined as three channels, then the three channels images were used

to train the depthwise convolution-based model [32]. The depthwise

convolution layer had been used in this experiment because the spa-

tial relations are different in the three views, so, the standard CNN

architecture cannot be used.

In the third experiment, we use some of the most successful clas-

sifiers to compare them with the previous results as shown in Table 3.

The implemented classifiers are: ResNet 18 [33], VGG-19 [34],

GoogleNet [35], DenseNet [36], SENet [37], PNASNet [38], Mo-

bileNetV2 [39], ResNext [40], and ShuffleNetV2 [41]. As shown

in Table 3, the proposed multi-view fusion network (MVN) has the

highest number in the sensitivity 94.80% and area under the curve

95.27%, indicating that the classifier has rejected most false positive

candidates that had been extracted in the previous detector stage, and

most of the true positive results are correctly classified. We believe

that our proposed MVN model outperforms other models because

the model has been customized to fit perfectly on the polyp classi-

fication task with the lowest number of parameters needed, which

leads to being the fastest model while performing the testing proce-

dure. All the classifiers training’s batch size = 256, epochs= 2000

with early stopping, and the training was performed on Nvidia TI-

TAN RTX 24 Gb. All models have been trained from scratch.

To illustrate the effect of each stage in the proposed approach, an

experiment has been conducted using 19 2D axial slices, each slice

having a polyp. The standard YOLO detector missed 11 polyps, i.e.,

FN = 11, in addition to three false positive samples. So, we re-

duced its confidence score threshold, as in the previous experiments,

to detect all the polyps. Although we make FN = 0, this configu-

ration extracts FP = 13 false positive samples. After applying the

Table 3. The results of the MVN classification stage.

Model Parameters Sensitivity AUC

proposed MVN 520,067 96.92% 95.27%

3D CNN [14] 1,296,577 87.80% 93.52%

Depthwise conv [32] 399,314 84.73% 89.97%

ResNet-18 [33] 11,186,274 79.06% 84.90%

VGG-19 [34] 20,036,418 82.59% 86.31%

GoogleNet [35] 6,158,050 80.58% 85.12%

DenseNet [36] 6,956,298 83.85% 90.53%

SENet [37] 11,256,250 81.46% 88.94%

PNASNet [38] 450,594 79.57% 86.82%

MobileNetV2 [39] 2,286,674 79.82% 85.71%

ResNext [40] 9,120,578 78.56% 82.53%

ShuffleNetV2 [41] 1,263,854 79.31% 84.22%

proposed classifier to these candidates, these false positive samples

have been decreased to only one sample.

We note that the proposed MVN model may fail in hard condi-

tions, which have geometric and appearance features similar to polyp

in all of the three views. As shown in Fig. 4, cases (a) to (d) have

been correctly classified because at least one of the views does not

have polyp-like features, but as shown in case (e), the classifier iden-

tifies the sample as a polyp because its three views have polyp-like

features, although it is not a polyp.

4. CONCLUSION

In this work, we proposed a colorectal polyp detector to identify the

locations and sizes of the polyps for CT colonography. The proposed



Fig. 3. Multi-view fusion network (MVN) is the second stage of the proposed CT-based approach. The detected axial candidate and its

corresponding sagittal and coronal views are fed into a CNN-based classifier to classify a candidate using a Markov chain network. The

output shows the location and the size of the final detected polyp after removing false positives.

Fig. 4. Different false positive samples. The top is the axial view showing the geometric appearance and features of polyps. (a-d) false

positives that do not have consistent features in the three views. In hard cases (e.g., e) the three views confirm the presence of the geometric

feature of a polyp, so the proposed approach may fail.

approach consisted of two cascade stages: a detector, to detect polyp

candidates, followed by a classifier, to filter the detected candidates.

The proposed CNN-based detector was guided by changing the neu-

ron’s effective receptive field, using the segmented colon wall, which

drastically enhanced the detection performance. Since the detector

produced false positives, each detected candidate was fed into the

proposed multi-view fusion network (MVN) classifier to exploit the

different views of the CT scans for each candidate. This step re-

fined the detection by rejecting false positives. The high sensitivity

∼ 94.8% and AUC ∼ 95.3% of the proposed approach illustrate

that it can be adopted by radiologists to read CT scans in a short

time.
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[9] J Näppi, T Hironaka, D Regge, and H Yoshida, “Deep transfer learning
of virtual endoluminal views for the detection of polyps in ct colonog-
raphy,” in Medical imaging 2016: computer-aided diagnosis. SPIE.
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