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ABSTRACT

Early diagnosis of colorectal polyps, before they turn into can-
cer, is one of the main keys for treatment. In this work, we propose a
framework to help radiologists in identifying polyp candidates using
virtual colonoscopy. In the proposed approach, first a colon is seg-
mented from a CT scan, then 3D reconstruction, to generate a surface
representation of the colon, is performed. From the reconstructed
3D colon, 2D images are generated using the virtual colonoscopy,
Fly-In approach. To enhance polyp detection, we fuse these 2D im-
ages and the 3D colon representation by generating 3D geometric
feature maps, e.g. depth and curvature maps. CNN-based models
are trained and validated to detect polyps using the generated feature
maps, which are combined in multi-channel images. These images
are successfully used to train a CNN-based model that detects polyps
with mAP ~ 97.1%.

Colorectal cancer, colon polyp, computerized tomography (CT),
Detection, CNN, segmentation.

1. INTRODUCTION

Colorectal cancer (CRC) begins as small growths (polyps) that attach
to the luminal wall of the colon or rectum. These growths must be di-
agnosed and treated promptly. If colon polyps are not diagnosed and
treated at the right time, they may grow in size and become cancer-
ous. That is why the American Cancer Society (ACS) recommends
that people at average risk of colorectal cancer should start regu-
lar screening starting at age 45 [1]. The two screening procedures,
which have the highest performance among other procedures, are
the optical colonoscopy (OC) and Computed Tomography Colonog-
raphy (CTC). However, one fourth of colorectal polyps are missed
with performing screening [2]. Consequently, an automated system
for the detection of polyps could be essential in reducing the number
of missed polyps by providing the location and size of any poten-
tial polyps during the screening process. The Optical colonoscopy
(OC) procedure, in which the colon and rectum are viewed using
an endscope, is the gold standard screening approach. The use of
colonoscopy has been significant in terms of diagnosis, treatment,
and screening. In addition, captured videos during OC can be ana-
lyzed to diagnose and detect colon polyps. Many studies have been
introduced to analyze OC videos. Many of these algorithms have
been discussed in different reviews, e.g., Hassan et al. [2] and Barua
et al. [3]. Although, colonoscopy is a secure process, yet compli-
cations can arise, such as perforatio [4], bleeding [5] among other
complications [6].

The second screening procedure of CRC is Computed Tomog-
raphy Colonography (CTC), which can detect polyps with a similar
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accuracy of OC but with lower cost. The American College of Radi-
ology Imaging Network (ACRIN) [7] performed standard CTC and
OC on 2531 patients at 15 study centers in the US. The study showed
that per-patient sensitivity and specificity for CTC were: 0.9 + 0.03
and 0.86+£0.02, respectively, which are very close to OC. So, CTC is
considered as a reliable and robust procedure to detect colon polyps.
Therefore, there are several algorithms have been introduced to de-
tect colon polyps within CT scans. Godkhindi and Gowda [8] trained
a CNN classifier to identify the CT slices, which have polyps. How-
ever, their approach does not localize polyps in the CT slices. Ue-
mura and Néppi [9] proposed a method to classify polyps using 3D
CNN, however, the network needs high computational power in or-
der to be trained on 3D data as shown in the experiments section.
Furthermore, Tan’s approach [10] classifies the polyp type if it was
benign or malignant using a geometric feature called Gray-Level Co-
Occurrence Matrix (GLCM) with AUC = 0.91. Zhang’s work [11]
was built on Tan’s work by making a multi-model to extract the
GLCM features with different sizes, which raised the AUC = 0.94
and raised the accuracy by 0.05 to be 0.964. However, these two
methods require a polyp region as an inputs and they can’t detect
such regions. On the other hand, Virtual Colonoscopy (VC), which
is a part of the Computed Tomography Colonography (CTC) pro-
cedure, is considered cheaper and safer alternative way for screen-
ing [12, 13]. Moreover, VC can be used to perform massive scale
screening for polyp early detection and it also can help in perform-
ing the early detection in economic depressed regions and rural areas
where there are limited availability of OC. Virtual colonoscopy mim-
ics OC by visualizing the luminal surface of the colon using different
visualization approaches. So many of the video analysis approaches
that have been used in OC can be used with VC.

In this paper, we propose an approach, shown in Fig. 1, for
colonic polyps detection in virtual colonoscopy. To develop an ef-
ficient approach that overcomes polyps detection and localization
challenges, we exploit the 3D surface information in VC to gener-
ate different geometric features that discriminate between polyp and
non-polyp regions. These features are used to train a CNN-based
model for polyps detection. The main contributions of this work
include developing:

1. a colon segmentation approach to accurately reconstruct 3D
colon surface,

2. multiple approaches to extract 3D surface geometric features that
increase detection performance, and

3. a CNN-based model, which is trained and validated using gener-
ated features that encode 3D surface geometry.

2. PROPOSED APPROACH

The Computed tomography colonography (CTC) framework con-
sists of four-steps, as shown in Fig. 2-(a), starting from an abdominal
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Fig. 1. The pipeline of the proposed polyp detection approach in VC: (a) The reconstructed 3D colon. (b) A desk-like rig of virtual cameras
captures the inner wall of the region of interest. (c) Generated images: (I) The curvature map, (II) The normal map, (III) The classical Fly-In
visualization albedo and lightning image, and (IV) The depth map. (d) A YOLO-based detector localizes polyps using the concatenated
images in (c). (e) The locations and sizes of the detected polyp candidates.
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Fig. 2. CTC Platform: (a) Typical pipeline; (b) CTC components:
2D CT slices, 3D model reconstruction and visualizations: Fly-In
and Fly-Through.

CT scan of a prepped patient. These steps are: 1) Image segmenta-
tion to isolate the lumen from the rest of tissues in the abdomen (e.g.,
the liver, lungs and small intestines, in addition to addressing uncer-
tainties of CT acquisition); 2) 3D model building to construct the
colon, which also involves extracting the centerline as a datum for
visualization, and the registration of supine and prone CTC scans; 3)
Visualization to present the lumen on radiology stations with details
in 3D and corresponding 2D CT, in addition to functionalities for
polyp editing; and 4) Analysis step which performs polyp detection,
classification and archiving, and preparation of a full patient record.
In this work, we focus on the first and last steps.

2.1. Images from Virtual Colonoscopy

To generate a sequence of images that visualize the luminal sur-
face of a colon, as shown in Fig. 2-(b), the colon should be seg-
mented from a CT scan then a 3D surface should be reconstructed.
Finally, virtual camera(s) can be used for visualization, e.g. 1) Fly-
Through [14] uses a virtual camera on the centerline to mimic OC,
and 2) Fly-IN [15] uses a ring of virtual cameras around the center-
line showing 360° field of view (FOV) of colon segments internally.
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Fig. 3. The Proposed Colon Segmentation Approach

2.1.1. Colon Segmentation and 3-D reconstruction

Colon segmentation is a challenging problem due to the colon’s
asymmetric topology. Also, uncertainties appear due to the presence
of Hounsfield (HU) intensity regions consisting of air, soft tissue,
and high-attenuation structures like the bones. Also, there are other
complications due to the presence of residual stool, parts of the
diaphragm, lungs, and disconnected colon segments [16]. In this
paper, we propose a segmentation approach that involves multiple
steps as shown in Fig. 3. The first step is to calculate the empiri-
cal distributions of Hounsfield intensities in a DICOM volume, as
shown in Fig. 3-b. The main components of a colon are the air, for
which the characteristic peaks are almost at -1000 HU [17], and the
fluid whose Hounsfield intensity is greater than 300 HU.

To extract the colon components, first, we estimate the marginal
densities of air, fat, muscle, and fluid by fitting four Gaussian compo-
nents using the Expectation Maximization (EM) algorithm, as shown
in Fig. 3-b. Then, we identify colon regions using two thresholds.
The first threshold, < ¢1, is between air and fat (e.g., ~ —577HU),
and the second threshold, < t2, is between muscle and fluid (e.g.,
~ 305HU). The HU values of colon regions should be < ¢; and
> to.

An initial segmentation of both air and fluid could be generated
using these two thresholds. However, this simple thresholding tech-
nique cannot isolate colon regions from non-colon regions because
other tissues, e.g., lungs, have the same low HU as air. Also, there
are non-colon regions, e.g., bones, that have a high HU as fluid, as
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Fig. 4. Visualization of colon segment by FI. (Left) Camera geom-

etry showing the cell visualization depends on: principal axis look,
projection direction p, surface normal n and distance d; (right) Cam-
eras configuration of a rig of 8 cameras over a ring; and (bottom) the
rendered filet.

shown in Fig. 3-c. Therefore, the initial segmentation is used to gen-
erate seeds from colon regions. These seeds are fed to a Graph Cut
(GC) algorithm that formulates the segmentation problem as a graph
partitioning problem. To extract seeds from the initial segmentation,
the rectum region is identified in the first part of the DICOM volume.
The rectum can be extracted as a disk-like region that has a low HU,
as shown in Fig. 3-d. This region is used as a starting seed, from
which other colon regions are extracted by region growing. How-
ever, since there are non-colon parts in the abdominal CT scan (e.g.,
small intestine, bones, etc.) that are interwind with colon parts, this
yields errors in the region growing step. Therefore, restricted region
growing is performed using the morphological operation to guaran-
tee more separation between the two aforementioned classes (i.e.,
colon and non-colon). The output of the region growing step, shown
in Fig. 3-e, is used as a seed for GC to generate the final segmenta-
tion, shown in Fig. 3-f.

2.1.2. Colon Visualization

After a colon is segmented, 3D reconstruction to generate a surface
representation of the colon is performed and the centerline of the 3D
colon is generated [18]. Then, the virtual colonoscopy Fly-In ap-
proach [15] is developed to provide state of the art accuracy in polyp
detection. This method involves a desk-like rig of virtual cameras
centered on the centerline of a reconstructed colon, providing 360°
visualization of a cylindrical region of interest (ROI) which, when
projected, provides a “filet”’-like display of the internal surface of
the ROI, as shown in Fig. 4. By moving the ROI along the center-
line of the colon, radiologists would be able to examine the luminal
surface and detect colonic polyps.

An optimal visualization approach projects most of the surface
cells on the image plane without local deformations or loss. The
visualization loss can be defined as a function of three factors: The
angle (o) between the projection direction (p) and the camera’s prin-
cipal axis (look); the angle (®) between the projection direction (p)
and the cell’s normal vector (n); and finally, the ratio between the
camera focal length (f) and the cell’s distance (d) to the projection
center on the direction of (look). Figure 4 demonstrates the Fly-In
on a rendered segment of the colon and shows a rig of 8 cameras
over aring. A near distortionless filet of the colon segment is shown
as well. By adjusting the visualization frustum for the cameras, we
can control the size of displayed ring and resolution.

2.2. Polyps Detection based on Modified Fly-In Approach

In the proposed polyp detection framework, Fly-In is used to gener-
ate 2D images of the internal surface of the colon for better visualiza-
tion of the colon wall. In addition to the conventional images formed

Fig. 5. a) An RGB image captured by virtual cameras. b) Adding
curvature information to the image highlight the convex and concave
regions.

by Fly-In (i.e., albedo and lightning), Fig. 1-c(IlI), we generate sets
of images coding the geometric surface features:

1. The surface curvature map, as shown in Fig. 1-c(I), in which the
curvature is calculated using the algebraic point set surface [19].
The curvature is based on moving least squares (MLS) fitting
algebraic spheres to the surface.

2. Normal map which could be computed for each surface by get-
ting two vectors on the surface. Then cross product these two
vectors, for each vertex on the surface we can get two vectors by
subtracting the 3d coordinates (z,y, z) of the vertex from two
neighbors 3d coordinates as shown in Fig. 1-c(II). The normal
map is represented as a 3-channel (RGB) image to represent the
normal vector (N, Ny, N;).

3. The depth map that reflects the smallest distance between each
surface point and the centerline, as shown in Fig. 1-c(IV).

Our hypothesis is that fusing the 2D projections and the 3D colon
representation in virtual colonoscopy can enhance polyp detection
accuracy. The reason of this expected enhancement is that images
formed by Fly-In can’t accurately encode convex (e.g., polyps) and
concave (e.g., folds) surface regions if improper lightning is used,
see Fig. 5. Therefore, the generated feature maps are combined as
multi-channel image and fed into a deep learning model, which can
be trained to extract polyps candidates in these images.

3. EXPERIMENTAL RESULTS

3.1. Dataset

Two sets of data are used to validate our proposed framework. For
segmentation evaluation, we use a dataset provided by the American
College of Radiology Imaging Network (ACRIN) [7] and Walter-
Reed medical center. The polyps detection modules were trained
and validated on a dataset of supine and prone scans of 49 patients,
provided by CTC experts from the University of Wisconsin. The
dataset contains 59 annotated polyps larger than 6 mm, detected and
annotated by one of the three experienced radiologists.

3.2. Training and testing procedure

In order to assess the performance of the proposed automatic seg-
mentation approach, the intersection over union metric, JoU =
g%g, was used to compare the automatic segmentation S with the
ground truth G. The results demonstrate that the proposed automatic
segmentation approach was successful in segmenting 74% of the
cases with an ToU of more than 90%.

For the polyp detection approach, we test each geometric feature
separately, to know which one is the best to be used. Table 1 shows
the comparison for each proposed geometric feature as an input for



Table 1. The mAP validation results for different approaches for the 3D-based detection model.

| | YOLO-V7 [ Dynamic-RCNNR-50 | FasterRCNNR-50 | Faste-RCNNR-101 [ RetinaNet Efficient-Net | Sparse-RCNN [ Swin Transformer |

Curvature (I) | 97.1% 77.1% 76.2% 81.6% 83.6% 45.1% 94.0%
Normal (II) 79.4% 94.7 % 85.8% 74.9% 93.0% 39.2% 90.3%
Original (III) 84.5% 91.5% 91.0% 92.0% 93.7% 64.37% 88.1%
Depth (IV) 82.9% 95.4% 88.6% 83.8% 92.5% 62.6% 89.2%
different state-of-the-art detection approaches like YOLO V7 [20], [5]1 Ankie Reumkens et al., “Post-colonoscopy complications: a systematic re-

dynamic RCNN with ResNet 50 [21], faster RCNN with ResNet 50
or ResNet 101 as a backbone [22], Retina Net with Efficient Net
backbone [23], Sparse RCNN [24], and Swin Transformer [25].

For the training procedure, all the detector’s training batch size
= 16 except the Swin transformer which has batch size = 8 due to the
size of the model, but all other hyperparameters were the original
hyperparameters from each model’s original papers. All the training
was performed on Nvidia TITAN RTX 24 Gb. Moreover, all models
were trained to a high number of epochs (2000 epochs), and the best
validation score for each model was chosen to be the tested model.

Since the main goal is to detect all polyps, Mean Average Preci-
sion (mAP) is the best metric to report in our application. As shown
in Table 1, the curvature feature shows the highest mAP score with
the use of YOLOv7, which is the most appearance feature that can
distinguish between the curvature type if it is convex curvature or
concave curvature. The colon contains a lot of concave curvatures
which can deceive the detector, so a feature that can distinguish con-
cave and convex surfaces is needed to make the detector work best
since polyps have mostly a convex curvature shape. That is why the
curvature feature is the most important. The second best feature is
the depth feature with Dynamic RCNN network. Since depth can
distinguish between the near and far tissue surfaces, it can give the
model the needed feature for distinguishing between polyp and non-
polyp parts. Then comes the normal feature with Dynamic RCNN
network. We believe that Swin transformer has a big potential to
achieve better results but it needs more polyps data than we have to
train.

4. CONCLUSION

In this work, we proposed an approach to identify the locations and
sizes of the polyps in virtual colonoscopy. The modified Fly-In
method was developed to generate images encoding 3D surface ge-
ometry features. Then a CNN-based detector was trained using these
images to extract potential polyp regions. High performance, i.e.
mAP ~ 97.1%, encourages radiologists to use the proposed ap-
proach in identifying polyp candidates using virtual colonoscopy.

5. COMPLIANCE WITH ETHICAL STANDARD
This research study was conducted retrospectively using human sub-
ject data made available in open access by ACRIN, Walter Reed
Medical Center, and the University of Wisconsin. The research pro-
tocol is governed by the University of Louisville IRB No. 07.0252.
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