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Abstract Accurate colon segmentation on abdominal CT scans is crucial for various clinical applications. In this
work, we propose an accurate approach to colon segmentation from abdomen CT scans. Our architecture
incorporates 3D contextual information via sequential episodic training (SET). In each episode, we
used two consecutive slices, in a CT scan, as support and query samples in addition to other slices that did
not include colon regions as negative samples. Choosing consecutive slices is a proper assumption for
support and query samples, as the anatomy of the body does not have abrupt changes. Unlike traditional
few-shot segmentation (FSS) approaches, we use the episodic training strategy in a supervised manner. In
addition, to improve the discriminability of the learned features of the model, an embedding space is
developed using contrastive learning. To guide the contrastive learning process, we use an initial labeling
that is generated by a Markov random field (MRF)-based approach. Finally, in the inference phase, we first
detect the rectum, which can be accurately extracted using the MRF-based approach, and then apply the
SET on the remaining slices. Experiments on our private dataset of 98 CT scans and a public dataset of 30
CT scans illustrate that the proposed FSS model achieves a remarkable validation dice coefficient (DC) of
97.3% (Jaccard index, JD 94. 5%) compared to the classical FSS approaches 82.1% (JD 70.3%). Our
findings highlight the efficacy of sequential episodic training in accurate 3D medical imaging
segmentation. The codes for the proposed models are available at https://github.com/Samir-Farag/
ICPR2024.
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Abstract. Accurate colon segmentation on abdominal CT scans is cru-
cial for various clinical applications. In this work, we propose an accurate
approach to colon segmentation from abdomen CT scans. Our archi-
tecture incorporates 3D contextual information via sequential episodic
training (SET). In each episode, we used two consecutive slices, in a CT
scan, as support and query samples in addition to other slices that did
not include colon regions as negative samples. Choosing consecutive slices
is a proper assumption for support and query samples, as the anatomy
of the body does not have abrupt changes. Unlike traditional few-shot
segmentation (FSS) approaches, we use the episodic training strategy in
a supervised manner. In addition, to improve the discriminability of the
learned features of the model, an embedding space is developed using
contrastive learning. To guide the contrastive learning process, we use
an initial labeling that is generated by a Markov random field (MRF)-
based approach. Finally, in the inference phase, we first detect the rec-
tum, which can be accurately extracted using the MRF-based approach,
and then apply the SET on the remaining slices. Experiments on our
private dataset of 98 CT scans and a public dataset of 30 CT scans
illustrate that the proposed F'SS model achieves a remarkable validation
dice coefficient (DC) of 97.3% (Jaccard index, JD 94. 5%) compared to
the classical F'SS approaches 82.1% (JD 70.3%). Our findings highlight
the efficacy of sequential episodic training in accurate 3D medical imag-
ing segmentation. The codes for the proposed models are available at
https://github.com/Samir-Farag/ICPR2024.
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1 Introduction

Automated image segmentation plays a crucial role in medical imaging research
and clinical applications by automating or facilitating the delineation of anatom-
ical structures and other regions of interest. The segmentation step is of signifi-
cant importance to facilitate accurate identification and delineation of structures
or abnormalities for clinical applications such as lesion localization, disease diag-
nosis, and prognosis [30,31]. Specifically, automatic colon segmentation is a key
step for medical image analysis pipelines (e.g. colonography [3,16]), because any
inaccuracies at the segmentation stage will carry through to subsequent steps.
This underscores the importance of prioritizing the segmentation process and
improving its effectiveness, which consequently leads to performance enhance-
ments in the next stages of this pipeline.

Variability in shape Imaging artifacts Thickened colonic folds

Fig. 1. Examples of challenges that hinder accurate segmentation of the colon [3,11].

However, segmenting the colon regions accurately from abdominal CT scans
poses significant challenges, as depicted in Fig. 1. First, colon regions exhibit
highly variable and asymmetric topology [22], and their positions vary between
different CT images [9]. Second, distinguishing colon regions from surround-
ing structures is complicated by the presence of Hounsfield intensity regions
containing soft tissues, air regions resembling gas-filled organs like the small
intestine, and high-attenuation structures, e.g., bones. Lastly, patient prepara-
tion imperfections, such as residual stool and lesions, can lead to disjointed colon
segments. These complexities inherent in colon segmentation, particularly in sce-
narios where automated algorithms are indispensable, may confuse segmentation
algorithms [9]

Colon segmentation approaches that have been reported in the literature
could be grouped into two main categories: (1) classic segmentation approaches,
which typically employ techniques such as MRF-based models, e.g. [3,5,21,26],
edge detection, region growth and division, e.g. [6,7,17,20,21], or hybrid segmen-
tation algorithms [14]; and (2) deep learning (DL) approaches, e.g. [2,10,15,30],
which exploit the available data to learn complicated high-level characteristics
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that can be used for segmentation, unlike the classical approaches that focus on
low-level traits, which may not be as helpful for segmentation.

Although DL approaches are successful segmentation tools, Jakob Wasserthal
et al. [30], who developed the state-of-the-art (SOTA) segmentation tool,
Totalsegmentator, reported that the colon posed the most significant challenges,
with a failure rate of ~35% of cases. This failure was mainly attributed to diffi-
culties in precisely segmenting the subtle details of the colon.

Traditional deep Convolutional Neural Networks (CNNs) adept at semantic
segmentation often encounter challenges, relying on a plethora of densely anno-
tated images for effective training and struggling to generalize to unfamiliar
object classes. This issue is exacerbated in medical imaging, where the dearth of
annotations hampers the applicability of conventional methods. Recently, few-
shot learning (FSL) has emerged as a prominent deep learning approach to equip
a model with the ability to segment unseen semantic classes by learning from
just a few labeled images of this unseen class during inference, without necessi-
tating model retraining. Hence, Few-Shot Segmentation (FSS) was introduced to
address the challenges of medical image segmentation by leveraging knowledge
distilled from labeled samples (support) to segment unlabeled samples (query).
FSS learns tasks composed of base class in an episodic training manner and
segments unseen classes in the form of tasks in the inference stage.

One of the pioneering DL networks proposed to utilize FSL in natural images
is PANet [29]. Prior to PANet, FSS methods demonstrated unsatisfactory gen-
eralization due to a lack of separation between knowledge extraction and seg-
mentation processes, as well as the utilization of support data solely for masking
purposes. PANet addressed these issues by introducing a separation between pro-
totype extraction (which involves feature extraction from support images and
subsequent prototype extraction from these features, along with feature extrac-
tion from query images) and non-parametric metric learning (which segments the
query image by computing the cosine distance between each support class pro-
totype and query features at each spatial location). Furthermore, PANet uses
annotations to supervise Few-Shot Learning. To eliminate the need for anno-
tations during training, Ouyang, Cheng et al. [19] developed a self-supervised
FSS framework, SSL-ALPNet, that exclusively utilizes superpixel-based pseudo-
labels for supervision. In addition, an adaptive local prototype module is pre-
sented to mitigate the challenge of foreground-background imbalance in medical
image segmentation. Wu, Huisi et al. [31] proposed AAS-DCL to combine dual
contrastive learning and anatomical guidance to enhance feature discriminability
and data utilization to help few-shot medical image segmentation.

In this work, we propose a novel FSS approach for precise colon segmenta-
tion in abdominal CT scans, addressing the inherent challenges of this critical
medical imaging task. Our proposed approach introduces an episodic segmenta-
tion strategy that takes advantage of sequential episode training and contrastive
learning techniques. Unlike traditional few-shot segmentation approaches, our
method employs supervised episodic training, facilitating enhanced feature dis-
criminability and segmentation accuracy. In particular, we incorporate unrelated
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slices rich in anatomical structures to provide vital background guidance, further
refining the segmentation process. Based on the AAS-DCL framework [31], our
approach integrates dual contrastive learning (DCL) and anatomical guidance,
culminating in improved feature extraction and segmentation performance. In
addition, we introduce a novel MRF-based rectum detection and initial labeling
technique, enhancing the robustness and accuracy of the proposed approach.
The primary contributions of our work are as follows:

i) Develop an MRF-based rectum detection and initial labeling method, con-
tributing to improved accuracy and robustness of the overall segmentation
process.

ii) Integrate supervised sequential episodic training and contrastive learning
techniques to enhance feature discriminability and segmentation accuracy,
while incorporating unrelated slices rich in anatomical structures to provide
essential background guidance.

iii) Enhance feature extraction and segmentation performance through the inte-
gration of dual contrastive learning with anatomical guidance.

2 Method

Our approach aims to accurately segment the colon in abdominal CT scans. We
use a method that combines 3D information (through SET) with 2D segmenta-
tion models. This allows us to avoid the high computational costs of complex 3D
neural networks while still achieving precise results. The 2D models are efficient
and flexible, handling individual CT images well even with irregular sampling.

2.1 Proposed Episodic Segmentation Approach

The traditional episodic training strategy for the few-shot segmentation (FSS)
approach involves training a model over a large number of epochs, with multiple
episodes in each epoch. So, a dataset, in episodic training, is arranged into mul-
tiple episodes and each episode consists of support and query pairs. For a set of
images X and its corresponding set of binary masks ), we define the support set
S = {zg,y5} and the query set Q = {z§,y7}, where 5 € X, yg(qg € ), and the
superscript ¢ represents an arbitrary class in a set of classes C. Since few-shot
segmentation approaches were introduced to take advantage of distilled knowl-
edge from labeled samples for segmenting unlabeled ones, in these approaches,
a model is trained to identify a set of classes Cy- in a training dataset Dy,.. But
it never sees the set of classes C;s in the test dataset D;s. Then, during the infer-
ence, the model is used to segment the unseen classes C;s in Dy, using annotated
samples of these classes, without the need to re-train the model.

We propose an FSS-like approach in which we use support and query sets,
but unlike the classical FSS approaches, we use the episodic training strategy
in a supervised manner. Therefore, training and test classes are the same, that
is, Cyr = Cis = {colon}, but Dy, # Dys where Dy, contains training scans and
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Dy, contains testing scans. Moreover, to enhance the discriminability of learned
features of the model, we exploit unrelated slices U = {z£,y%} but rich with
anatomical structures (i.e., ¢ non-colon regions, e.g., liver) to provide more back-
ground guidance. Using support, query, and unrelated features, extracted from
x§, xg, and xj, respectively, we develop an embedding space using contrastive
learning to pull closer (¢, ) and push farther (zf,z$).

Each two consecutive slices i
1 are support and query
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Fig. 2. The proposed SET FSS approach with DCL. An MRF-based auxiliary super-
vision is used to enhance the baseline AAS-DCL. The workflow starts by arranging
scans into pairs of consecutive slices (z5,xj). Then unrelated slices are selected as
negative samples {z}. The episode (z%,z;, {z}) is fed into encoders to extract fea-
tures (fs, fq, {fu}).- Masked average pooling is applied on these features and contrastive
learning is used to generate an embedding space. Finally, decoders with skip connection
are used to estimate the final segmentation 547 which is iteratively refined using initial
labeling.

We build on the AAS-DCL approach [31], as shown in Fig. 2, to combine DCL
and anatomical guidance to enhance feature discriminability. However, unlike
the AAS-DCL approach, we use SET, in which support and query samples are
consecutive slices in a CT scan. The motivation behind this is that the anatomy
of the human body does not have abrupt changes and thus if a pixel in the
current CT slice is colon, it is most likely that this pixel will be colon within
the next or the previous few CT slices. Therefore, using consecutive slices as
support and query samples simplifies the segmentation approach. Moreover, for
more guidance, we start with an initial labeling that is generated using an MRF-
based approach (Algorithm 1). This enhances the DCL. Finally, in the inference
stage, we first detect the rectum, which can be accurately extracted as shown in
Fig. 4, then apply the sequential episodic approach.

Unrelated Slices Selection: The proposed workflow starts by arranging CT
scans into pairs of consecutive slices (x5, z7). Then, in each episode, we randomly
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select three unrelated slices as negative samples {z¢}. These unrelated slices
do not include colon regions but they may have irrelevant organs or tissues.
To define masks {y} for unrelated samples {z¢}, we employ an unsupervised
graph cut-based algorithm [8], offline, which generates superpixel segmentation.
These pseudo-labels are binarized by choosing the dominant superpixel (i.e., the
largest connected region) in each pseudo-label as a target and other superpixels
as a background. Then an encoder is used to extract the features { f¢} from {z¢}.
Finally, these features and their masks {f¢, ¢S} are included in the AAS-DCL
scheme.

Dual Contrastive Learning: To provide more background guidance, we
exploit the unrelated slices with query and support slices in contrastive learn-
ing. Inspired by the baseline AAS-DCL approach [31], we combine prototypical
contrastive learning and contextual contrastive learning to form a DCL scheme,
which makes the features of the colon regions closer to other characteristics of
dissimilar tissues. The infoNCE loss [18] L(v4,vs,v,,) is used for the training
process of the contrastive learning module.

n
L(vg, Vs, Vy) = —Vq.05/T + logZexp(vq.vm-/T),
i=1
where 7 is a control parameter, n is the number of negative samples, vy, vs,
and v, are the query, support and background prototypes, respectively. These
prototypes are generated by the global average pooling of features and the corre-
sponding masks. However, these prototypes cannot acquire intra-class variations.
To overcome this problem, patch-based prototypes may be used.

Prototypical Contrastive Learning: Prototype-based learning is based on the gen-
eration of prototypes that discriminate between the features of the foreground
and the background. In this approach, support features {f;} and their corre-
sponding masks {y,} are used to generate the colon prototype using the masked
averaged pooling (MAP) operation [34] vy = %

Unlike the baseline AAS-DCL approach, which uses global average pooling to
calculate the query prototype, we exploit the initial query mask g, to calculate
the query prototype using masked average pooling. Also, instead of using the
query feature f;, we employ a prior embedding module [31] to enhance the

query feature. The enhanced query feature fq further activates the foreground
2. 9q (T)-fq (r)
- 9q(r) ’

Similarly, unrelated features {f,} and their corresponding masks {y,} are
also used to generate the background prototype v, using masked averaged pool-
ing.

To overcome intra-class variations and to exploit information about other
structures around colon regions as unrelated samples, we employed patch-based
learning [19]. In this method, the support feature and its mask are divided into

information in the query prototype v, =
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patches, then these patches are used to generate a colon prototype and a back-
ground prototype depending on a threshold. This scheme increases the number
of negative samples and distinguishes between the local characteristics of differ-
ent tissues. Again, unlike the baseline AAS-DCL approach, we exploit the initial
mask of the query g, to calculate the query prototype using the masked average
pooling.

Conteztual Contrastive Learning: Finally, to guide feature maps focusing on rich
contextual information, a spatial attention block [24] is employed to process the
support feature f,, enhanced query feature fq and unrelated features { f, }. Then
the processed features are averaged and used in contextual contrastive learning,
for more details see [31].

Iterative Prediction: For accurate segmentation, iterative optimization meth-
ods [28,32] are used to combine the prediction of the query with the query
feature by convolution. Unlike the baseline [31], we guide the iterative process
using the initial labeling to promote the fusion of the query feature and the pre-
dicted mask. The query prediction is updated through the similarity consistency
constraint, in which we also use initial labeling to calculate a similarity map
between support and query features.

{xu} + (v}

Fig. 3. Examples of episodes from training dataset. Each row represents a single episode
that includes labeled support, query with initial labeling, and unrelated labeled slices.
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Training Stage: In this stage, two consecutive slices are randomly selected as a
pair of support and query. In addition, three randomly selected unrelated slices
are added to this pair to form an episode, as shown in Fig. 3. Each episode is fed
into the encoder-decoder sSENet [25] for feature extraction and reconstruction.
Then the cross-entropy loss uses the prediction of this module to calculate a
prediction error against the ground truth. The prediction error and contrastive
learning loss, which are computed using the extracted features and the initial
query mask, are backpropagated to train the network.

Inference Stage: This stage starts by detecting the rectum and the initial
mask for a given abdomen CT scan using the proposed MRF-based approach.
Subsequently, a rectum slice is considered a support sample and the consecutive
slice is a query. In addition, three randomly selected unrelated slices are added
to this pair to form an episode. Each episode is fed into the trained model to
generate the prediction of the query. Then, the segmented query slice will be the
support sample for the consecutive slice in the sequence. This iterative process
continues until all colon regions are successfully segmented.

a

Frequency

S oy
S ”‘“S‘ff
o P
b) Marginal ad 0 255
'/’:’7/\ RG 2 OGC

d) Restricted Region Growing e) Initial Segmentation using
generates eroded colon Graph Cut

a) Abdomen CT Scan V; showing the
rectum axial slices

) Rectum Detection OEM

Fig. 4. MRF-based initial labeling approach. Rectum is the only region, in the lower
CT slices that has air, and it can be easily identified as a disk-like region that has low
Hounsfield. First, EM is used to calculate the empirical distributions P of Hounsfield
intensities in a DICOM volume V. Thresholds between air and fat and between mus-
cle and fluid are used to generate Ogn. RG algorithm is applied starting from the
rectum to generate an eroded colon O ri. This guarantees that other organs, e.g., small
intestine, are not merged with Ogr¢g. Finally, Ogr¢ is refined through an optimization
technique to generate Ogc, which still may have other structures (colored) misclassified
as colon. (Color figure online)

2.2 MRF-Based Rectum Detection and Initial Labeling

To generate an initial labeling, we develop a multi-step approach, which employs
three algorithms: Expectation-Maximization (EM) to calculate the empirical
distributions of Hounsfield units (HU) in a DICOM volume, Region Growing
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(RG) to generate initial labeling by identifying colon regions starting from the
rectum, and Graph Cut (GC) to estimate the initial mask of colon regions. The
main components of a colon are the air, for which the characteristic peaks are
almost at -1000 HU [17], and the opacified fluid whose Hounsfield intensity is
greater than 300 HU. To extract the colon components, first we estimate the
marginal densities of air, fat, muscle, and fluid, in an abdomen scan, by fitting
four Gaussian components using the EM algorithm, as shown in Fig. 4-b. Then,
we identify colon regions using two thresholds. As shown in Fig. 4-c, the rectum
is the only region, in the lower CT slices of an abdomen scan, that has air.
Therefore, the rectum region can be easily identified as a disk-like region with
a low Hounsfield unit. This region is used as a starting seed, from which other
colon regions are extracted by the proposed model.

The problem is formulated as the maximum-A posterior estimate of an MRF
model, which involves finding the labeling that minimizes the following energy
function E(y) (Eq. (1)) that combines both the spatial smoothness and data

consistency.
Z V(gm th) + Z D(gr)v (1)

{rt}eN rep

where A represents the set of neighboring pixel pairs (r,t), V(.,.) is the potential
function that penalizes label inconsistencies between neighboring pixels, and
D(.) is the data penalty term that measures how well the labeling 7, matches
the observed data. The minimization of the energy function in Eq. (1) using a
graph cut generates the initial labeling result. The Algorithm 1 summarizes this
approach.

Algorithm 1. MRF-based segmentation approach

: Input: DICOM volume V

Calculate the histogram P of HU values in V

Apply EM algorithm, and identify air and fluid regions Ogm

Detect rectum region in Ogm

Starting from rectum region, apply RG algorithm to extract colon Org from Orm
Use Orgc as a seed for GC and minimize E(g) to extract initial labeling Occ

Al > iy

3 Experiments

Dataset: We conducted experiments on our private dataset having abdominal
CT scans of 49 patients in both supine and prone positions. Experts annotated
the colon segments in these 98 CT scans. Also, for the sake of comparison, we use
the synapse public dataset [12] which has been used by several SOTA approaches.
In our work, we refer to this dataset as SABS. It contains 30 abdominal CT scans.
In SABS dataset, 13 organs were manually annotated (colon is not included) by
2 experienced undergraduate students and verified by a radiologist [1]. From
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these two datasets, we created three training datasets, Dy, , Dyr, and Dy, and
a testing dataset Dys:

i Dy, (SABS): Consists of 30 scans from the SABS CT dataset, with anno-
tated organs labeled 1 through 13. Specifically, the labels include spleen (1),
right kidney (2), left kidney (3), and so forth, up to the left adrenal gland
(13).

ii Dy, (SABS 4 CTC68): Combines the SABS dataset (with 13 annotated
organs) and 68 scans (34 prone and 34 supine) from our private dataset (with
annotated colon). Consequently, the combined dataset covers spleen (1), right
kidney (2), left kidney (3), and so forth, up to the left adrenal gland (13),
and includes the colon as label 14.

iii Dyry (CTC68): Includes 68 scans (34 prone and 34 supine) from our private
dataset (with annotated colon).

iv D¢y (CTC30): Encompasses 30 scans (15 prone and 15 supine) from our
private dataset (with annotated colon).

Evaluation Metrics. We employed both DC and JD to quantify the pixel-wise
agreement between the predicted and ground truth segmentation [27]. This dual
assessment approach considers both the overlap and spatial agreement between
the predicted and ground truth colon regions.

Technical and Implementation Details: We implemented our framework
with PyTorch, based on the official baseline implementation https://github.com/
cvszusparkle/AAS-DCL_FSS, on a Nvidia TITAN RTX with 24 GB. Among
the different available off-the-shelf fully convolutional networks, we utilized
ResNet101 that guaranteed high spatial resolutions in feature maps. As a pre-
processing step, we first resize the 2D slices to 256 x 256 resolution and divide
data into 4 patches for prototypical contrastive learning. Our proposed SET
starts with a learning rate of 10™%, a batch size of 1, and applies polynomial
decay. Adam optimization with power = 0.95 and weight decay = 107 is used
over 100 epochs. Data augmentation includes random adjustments to sharpness
and lightness. For high-resolution feature maps, a fully convolutional ResNet101
pre-trained on MS-COCQO processes 256 x 256 images to 256 x 32 x 32 maps.
Training uses a Local Pooling Window of 4 x 4, reducing to 2 x 2 for infer-
ence. Training on a Nvidia TITAN RTX GPU takes 3h, using 3 GB memory,
on average for the proposed model.

Standard FSS Approaches vs the Proposed SET FSS Approach: Since
the proposed approach uses the FSS concept of support and query sets, we
compare its performance against standard FSS approaches. To highlight the high
performance of our proposed SET FSS approach with respect to the standard
FSS segmentation approaches, we evaluated the SSL-ALPNet [19] model and
the AAS-DCL [31] network, which is our baseline, in the colon segmentation
problem. The experimental results on the test set D;s, shown in Table 1, shed
light on the performance of various model configurations in colon segmentation.
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Table 1. Comparison of validation DC and JD on D;, dataset for our proposed models
against the SOTA models, with different training and initialization settings.

Model Training Initialization DC JD
SOTA |SSL-ALPNet [19] |SABS None 34.1% [21.0%
SABS + CTC|None 81.7% |70.0%
CTC None 82.1% [70.3%
AAS-DCL [31] SABS None 16.0% 8.8%
SABS + CTC|None 65.5% [49.5%
CTC None 68.8% [53.2%
Proposed Guided-AAS-DCL  |[SABS Superpixel 61.0% |44.2%
SABS + CTC|Superpixel+MRF|83.0% |71%
CTC MRF 96.3% 192.9%
SET-DCL CTC None 96.8% 193.7%
Guided-SET-DCL|ICTC MRF 97.3%94.5%

First, we used the standard FSS technique, in which we train SSL-ALPNet
and AAS-DCL models using Dtrl (i.e., self-supervised learning by training net-
works with data that included superpixel results instead of annotations). As
expected, standard FSS techniques do not perform well in this scenario. This
is due to many reasons, such as uncertainties in the dataset (e.g., prep deficits,
patient conditions, and scanner settings and errors). In addition, the learned
embedding space of the prototypes of different organs in the Dtrl dataset has
different distributions than the colon prototype due to the characteristics of dif-
ferent tissues. Specifically, SSL-ALPNet trained in SABS achieved 34.1% DC
and 21.0% JD, and AAS-DCL trained on Dtrl achieved 16.0% DC and 8.8%
JD. For learning a more general embedding space, in the second experiment,
we included the colon in the training phase. So, we used Dtr2 to train the two
models (i.e., supervised learning by training networks with data including the
colon along with the other 13 organs). This drastically enhances the performance
of the models. SSL-ALPNet trained on Dtr2 achieved 81.7% DC and 70.0% JD,
while AAS-DCL trained on Ditr2 achieved 65.5% DC and 49.5% JD.

To explore the upper limit of the performance of the models, we used the
purely supervised learning scheme by training the models using Dtr3. The SSL-
ALPNet trained model provides decent performance, achieving 82.1% DC and
70.3% JD, because the SSL-ALPNet model ensures that each prototype exclu-
sively represents a distinct part of the object-of-interest. This enables precise
localization of colon structures by preserving intricate local details crucial to
segmentation accuracy. However, the AAS-DCL model needs more guidance to
enhance its performance, achieving only 68.8% DC and 53.2% JD.

Ablation Study: The proposed approach depends on the initial labeling and
sequential episodic learning. Table 1 summarize effects of these components. In
order to enhance the performance of the baseline model, we guide the DCL
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Ground Truth

Fig. 5. Qualitative results on different training settings show that the results of SOTA
FSS approaches include artifacts, on the other hand, the proposed method achieves
desirable segmentation results that are close to ground truth.

using an initial labeling as explained in the proposed approach. Also, we add the
constraint on a query slice to be within 5 neighbors from the support slice. This
limits the changes in the colon structure. The first Guided-AAS-DCL model is
trained using Dtrl and the initial labeling for the organ of interest is estimated
using the superpixel approach. The initialization and the neighbor constraint
enhance the model performance from 16.0% to 61.0% DC and from 8.8% to
44.2% JD. Adding colon scans with MRF-based initial labeling to the training
dataset in Dtr2 boosts the model performance, yielding a DC of 83.0% and a JD
of 71%. Finally, the supervised learning performance of the Guided-AAS-DCL
model reaches 96.3% DC and 92.9% JD. This highlights that the synergistic
fusion of initial labeling and query constraint promises to deliver precise and
reliable colon segmentation results.

Exploiting the anatomical structure of the colon, we propose the sequential
episodic training SET-DCL FSS approach, in which the support and query are
neighboring slices. Additionally, the inference phase starts with the detected
rectum slices as a support and then sequentially segments the remaining slices
where each segmented slice acts as a support slice for the consecutive query slice
in the CT scan. Without any additional initialization, the proposed SET-DCL
model exhibits a DC of 96.8% and a JD of 93.7%, better than the Guided-AAS-
DCL model. Moreover, leveraging MRF-based initialization further enhances the
performance of the proposed Guided-SET-DCL model’s performance further,
resulting in a remarkable DC of 97.3% and a JD of 94.5%. This underscores the
efficacy of MRF-based initialization and sequential episodic training in increasing
segmentation accuracy.

Figures 5 and 6 show the robustness of the proposed framework that consis-
tently produces satisfactory results, especially for training solely with the CTC.
Also, Fig. 7 provides more illustrations on how the proposed approach accurately
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segments colon parts, while other SOTA approaches may miss parts and have
some artifacts.

Supervised Learning Scheme: Finally, since our proposed approach depends
on supervised learning, to compare against the SOTA CNN-based encoder-
decoder segmentation architectures trained using a supervised learning scheme,
we trained the PAN model [13] that is paired with resnest269e [33] backbone
and U-Net model [23] using Dtr3 then we tested them on D;s. The primary
challenge in traditional encoder-decoder networks lies in their inability to incor-
porate temporal information in a sequence of images such as colon CT scans.
Therefore, we explore the fusion of C-LSTM with U-Net by replacing the con-
volutional layers in the encoder section with C-LSTM layers [4]. As shown in
Table 2, our proposed approach outperforms the SOTA approaches. Specifically,
the DC for our proposed approach (Guided-SET-DCL) is 97.3%, which is higher
than MRF-based (87.9%), C-LSTMs (89.2%), U-Net (85.0%), and PAN (97.1%).
Similarly, the JD for our proposed approach is 94.5%, which also outperforms
MRF-based (84.5%), C-LSTMs (80.7%), U-Net (80.0%), and PAN (95.5%). The
C-LSTM has a lower performance because it has a larger number of parameters
that should be optimized, and this hinders the network learning, especially for
long and high-resolution image sequences.

Although the experiments were conducted to segment the colon, we believe
that the same approach can be successfully used to segment other organs that
are scanned as sequential slices that do not have abrupt changes.

Unrelated slices

Query + label Query + initial label

Fig. 6. An example of an episode: query with ground truth, query with initial labeling,
unrelated slices with labels, and support with label. The qualitative results show that
SOTA FSS approaches miss colon semilunar folds (shown in red arrows); on the other
hand, the proposed method achieves desirable segmentation results that are close to
ground truth. (Color figure online)
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Ground Truth rSSL-APLNet(Dtrg)

Fig. 7. Ground truth 3D colon and results of the proposed method compared to the
SOTA FSS approaches. The qualitative results show that the SOTA FSS approaches
miss parts and generate incomplete colon, on the other hand, the proposed method
generates accurate colon segments.

Table 2. Comparison of validation DC and JD on D, dataset for our proposed app-
roach against CNN-based SOTA architectures.

Metric MRF-based|C-LSTMs [4] U-Net [23]|PAN [13] Guided-SET-DCL
DC 87.9% 89.2% 85.0% 97.1% |97.3%
JD 84.5% 80.7% 80.0% 95.5% [94.5%

4 Conclusions

We proposed an FSS approach that addresses the significant challenge of accu-
rate colon segmentation in abdominal CT scans. Through the integration of
a classical segmentation model, i.e., MRF model, deep learning, and sequen-
tial episodic training, we developed a comprehensive approach for colon seg-
mentation. Using episodic training and dual contrastive learning, our Guided-
SET-DCL approach achieves remarkable segmentation accuracy, outperforming
traditional SOTA FSS methods and CNN-based models. We demonstrated the
efficacy of our proposed approach in different training settings that highlighted
its robustness and generalization capability. By incorporating sequential episodic
training and anatomical guidance, we navigated the complexities of colon seg-
mentation, overcoming challenges such as variable topology and variations in
tissue intensity.
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