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Abstract—Hybrid dynamical systems, i.e. systems that have
both continuous and discrete states, are ubiquitous in engineer-
ing, but are difficult to work with due to their discontinuous
transitions. For example, a robot leg is able to exert very little
control effort while it is in the air compared to when it is
on the ground. When the leg hits the ground, the penetrating
velocity instantaneously collapses to zero. These instantaneous
changes in dynamics and discontinuities (or jumps) in state
make standard smooth tools for planning, estimation, control,
and learning difficult for hybrid systems. One of the key tools
for accounting for these jumps is called the saltation matrix.
The saltation matrix is the sensitivity update when a hybrid
jump occurs and has been used in a variety of fields including
robotics, power circuits, and computational neuroscience. This
paper presents an intuitive derivation of the saltation matrix
and discusses what it captures, where it has been used in the
past, how it is used for linear and quadratic forms, how it is
computed for rigid body systems with unilateral constraints, and
some of the structural properties of the saltation matrix in these
cases.

I. INTRODUCTION

Many interesting problems in engineering can be modeled

as hybrid dynamical systems, meaning that they involve both

continuous and discrete evolution in state [1–4]. These systems

can be hybrid, e.g. due to physical contact, a result of digital

logic circuits, or they can be triggered by control – reacting

to sensor feedback or switching control modes. Meanwhile,

most of the tools that exist for planning, estimation, control,

and learning assume continuous (if not smooth) systems.

A common strategy to adapt tools that were designed for

smooth systems to hybrid systems is to minimize the effect

of discontinuities [5, 6] e.g. by slowing down to near zero

velocity at the time of an impact event [7]. However, these

strategies do not make use of the underlying dynamics of the

system and only seek to mitigate them. This may work out

for certain fully actuated systems, but many hybrid systems

of interest are underactuated and cannot always cancel out the

discontinuous dynamics.

Rather than assuming continuous dynamics, we present

tools that account for the effects of discrete events. Often,

discrete events are called “jumps” or “resets” that map state
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from one continuous domain to another. The key to capturing

hybrid events is to both model what occurs at the moment of

reset and what happens to initial variations, whose trajectories

we will refer to as perturbed trajectories, that reset at different

times. One might think that analyzing the evolution of these

variations simply requires linearization of the dynamics by

taking the Jacobian of the reset map, but this only captures

part of the story. It is just as important to capture the variation

that arises from changes in reset timing. If the hybrid modes

have different dynamics at the boundary, then trajectories that

spend a different amount of time in each mode will result in

changes in variation.

The saltation matrix, sometimes referred to as the jump

matrix, captures the total variation caused by both event timing

and reset dynamics and is the key tool to understanding the

evolution of trajectories near a hybrid event up to first order.

The saltation matrix originally appeared in [8, Eq. 3.5], where

it was used to analyze the stability of periodic motions. Other

major works include [9–11]. It provides essential information

about event driven hybrid systems that can be used for stability

analysis as well as for creating efficient estimation and control

algorithms [12–19]. The word “saltation” directly translates to

“leap” from Latin – which closely matches to the “jump” name

for the hybrid events – and is also used to describe how sand

particles “leap” along the ground when blown by wind in the

desert [20].

An illustrative example of how the saltation matrix can

capture a common hybrid system, a rigid body with contact,

is shown Fig. 1. Here a distribution of balls is dropped on

a slanted surface. When each ball makes contact with the

surface, a plastic impact law is applied which resets the system

into a sliding mode on the surface by zeroing out the velocity

into the surface. For this system, the distribution starts out in

the full 2D space and ends up constrained to the 1D surface

after all balls have made impact. However, since the reset map

only changes the velocity of the ball, its Jacobian does not

capture this change in the position variations. The saltation

matrix captures this information and accurately predicts the

resulting covariance by accounting for the difference in timing.

Sec. V in this tutorial shows that a similar trend is found for

general rigid body contact systems.

The objective of this paper is twofold. First, we present a

survey of the saltation matrix and its use in a number of areas

from robotics to computational neuroscience, discussed in Sec.

II. The rest of the paper, Sec. III-V, presents a tutorial on the

derivation of the saltation matrix and example computations

for a simple but common class of hybrid systems relevant

to robotics applications. The ultimate goal of this work is

to enable non-specialist controls and robotics engineers to

understand the saltation matrix and be able to incorporate it
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Fig. 1: Example drop on a slanted surface with initial co-

variance. The saltation matrix (Ξ) correctly estimates the end

distribution’s covariance where covariance in the direction of

the constraint is eliminated. Using the incorrect update, only

the Jacobian of the reset map (DxR) leads to retaining belief

in the direction of the constraint.

into the analysis and design of algorithms. Specifically, this

paper is organized as follows:

• (Sec. II) A literature survey of where the saltation matrix

is being used in a variety of application areas.

• (Sec. III) A tutorial on the definition of the saltation

matrix (Sec. III-A), its derivation (Sec. III-B), and how

it appears in linear (Sec. III-C) and quadratic forms

(Sec. III-D).

• (Sec. IV) An example showing the saltation matrix cal-

culation for a simple contact system and a discussion of

the properties of saltation matrices in various cases.

• (Sec. V) The calculation of saltation matrices for a

common class of hybrid dynamical systems, rigid body

dynamics with contact and friction, that unifies and

extends prior analysis that has been scattered across

different texts. This section provides more details on the

properties of saltation matrices presented in (Sec. IV),

including the eigenstructure of the saltation matrix for

different cases.

In addition to providing a survey and tutorial for the saltation

matrix, this paper also presents an alternate derivation of the

saltation matrix using the chain rule (App. A), a derivation

of the case in which the perturbed trajectory reaches a guard

condition before the nominal trajectory (App. B), and deriva-

tions for how it is used to propagate covariances (App. C)

and to update the Riccati equations (App. D), all of which

have not been presented previously. These appendices are

not crucial to the tutorial aspect of the paper, but provide

further insight for experienced practitioners that desire a more

rigorous discussion of the saltation matrix.

II. SURVEY OF SALTATION MATRIX APPLICATIONS

The saltation matrix is a valuable tool for analysis and

control in a wide variety of fields such as general bifurcations

theory [26–30], power circuits [22, 23, 31–39], rigid body

systems [40–45], chemical processing [46], and hybrid neuron

models [24, 25, 47–50]. Fig. 2 shows a few examples that

demonstrate the usage of the saltation matrix in the legged

robotics, power circuits, and neural modelling literature.

Often, the saltation matrix is used to assess the stability

of hybrid dynamical systems, especially for periodic systems

[8, 10, 11]. The most popular method for analyzing stability

of periodic hybrid systems is to analyze the fundamental

matrix solution (as shown in Sec. III-C) which for periodic

systems, is called the monodromy matrix [40, 44, 45, 51–

58]. The monodromy matrix is heavily used in the circuits

field specifically for determining local stability of switching

power converters and determining if bifurcations occur [59–

90]. See [59] for an in depth review for analyzing the stability

of switching mode power converters. For more information on

bifurcations in periodic systems, see [91–94] which discuss

Lyapunov exponents (the rate of separation of infinitesimally

close trajectories) for hybrid systems.

In [16], the saltation matrix components of the monodromy

matrix are used to analyze known robotic stabilizing phenom-

ena such as paddle juggling and swing leg retraction. The

saltation matrix formulation reveals “shape” parameters, which

are terms in the saltation matrix that are independent from the

system’s dynamics, but have an effect on the stability of the

system. These shape parameters can be optimized to generate

stable open loop trajectories for complex hybrid systems that

undergo periodic orbits. A similar strategy was used in [95]

to generate robust closed-loop trajectories for legged robots.

A more restrictive but stronger form of stability analysis,

known as contraction theory [96], can be done by analyzing the

convergence of neighboring trajectories through hybrid events

[97] – where global asymptotic convergence is guaranteed if

both the continuous-time flow and the saltation matrix are

infinitesimally contractive.

Another version of stability was analyzed in [98–101] as

sensitivities to system parameters. Adapted saltation condi-

tions were used to characterize sensitivities across hybrid

events. These results were used to formulate and solve optimal

design problems.

In addition to stability analysis, saltation matrices are also

useful for generating controllers. In optimal control, value

functions are propagated along a trajectory to generate feed-

back controllers. For linear time-varying LQR, sensitivity

information about a trajectory is used to schedule optimal

gains along that trajectory. To implement optimal trajectory

tracking for a hybrid system, [19] utilized the saltation matrix

to update the sensitivity equation (as shown in Sec. III-D).

Due to the sudden jump from the reset map, the optimal

controller will also have a jump in the gain schedule, as first

noted in [102]. Other work further expanding and improving

on [19] include [17, 18, 103, 104]. A key concept from these

works for tracking hybrid trajectories is “reference spreading”

or “reference extension” which creates a new references by





TABLE I: Notation used and equation, definition, or section

of introduction.

ag Acceleration due to gravity, Sec. IV-A
A Linearized vector field matrix, (30)
COV Covariance
D∗ Jacobian w.r.t ∗
D, D Hybrid domain, Def. 1
E Expectation
e Coefficient of restitution, (67)
F , F Vector field, Def. 1
f Constraint force vector, (61)
fn, ft Normal and tangential constraint forces, (66)
G, G, g Guard sets and guard function, Def. 1
ḡ Linearized guard function, (18)
H Hamiltonian, (148)
h.o.t. Higher order terms, (1)
I Identity matrix
I, J, . . . Hybrid modes, Def. 1
i, j Hybrid mode indexes, (34)
J Constraint Jacobian, Sec. IV
J Set of discrete modes, Def. 1
L Limit cycle, Sec. III-C
ℓ Loss function, (144)
M,C,N,Υ Mass, Coriolis, nonlinear force, and input matrices, (61)

M†, J†, Λ† Dagger elements for rigid body systems, (62)
m,n Configuration & state dimensions, Def. 2, Sec. V-A
n, t Normal or tangential direction constraints, Sec. V-A
P Co-vector quadratic matrix, (40)
P Poincaré map, Sec. III-C
p Costate, Appendix D
Q Penalty on state, Appendix D
q, q̇, q̈ Configuration, velocity, and acceleration, Sec. IV
R, R Reset map, Def. 1

R̄ Linearized reset map, (17)
R Set of real numbers
S Poincaré section, Sec. III-C
T ∗ Tangent bundle over *
T Time period, Sec. III-C
t Time, Sec. III

t̃ Perturbed impact time, Sec. III-B
u Control input, Def. 1
U,V, S,C Rigid body modes, Secs. IV, V
V Penalty on input, Appendix D
v, λ Eigenvector and eigenvalue, Sec. IV-C
X Random variable, Appendix C
x State, Def. 1
x∗ Fixed point, Sec. III-C
x̃ Perturbed trajectory, Sec. III-B
δx Perturbation, (19)
Z Additional terms, (81)
Γ Set of discrete transitions, Def. 1
∆ Discrete timestep, Sec. III-C
θ Angle of sloped surface, (41)
µ Floquet exponent, Sec. III-C
µs, µk Static and kinetic friction coefficient, (66)
Ξ Saltation matrix, (9)
ρ Random variable mean, Appendix C
Σ Covariance, Appendix C
σ Floquet multiplier, Sec. III-C
τ Time to impact map, (100)
Φ Monodromy matrix, (34)
ϕ Solutions of the flow, (96)
Ω Saltation block element, (52)
0 Zero matrix

(∗)−, (∗)+ Pre-impact and post-impact, Sec. III-A

A. Saltation matrix definition

While there are many definitions of hybrid dynamical sys-

tems, e.g. [1–4], this treatment of the saltation matrix is based

on the definition from [13].

Definition 1: A Cr hybrid dynamical system, for continu-

ity class r ∈ N>0∪{∞, ω}, is a tuple H := (J , Γ,D,F ,G,R)

where the parts are defined as:

1) J := {I, J, ...} ⊂ N is the finite set of discrete modes.

2) Γ ⊆ J ×J is the set of discrete transitions forming a

directed graph structure over J .

3) D := ⨿I∈J DI is the collection of domains, where DI

is a Cr manifold and the state x ∈ DI while in mode I.
4) F : R×D → T D is a collection of Cr time-varying

vector fields, FI:= F|DI
: R × DI → T DI, for each

I ∈ J .

5) G := ⨿(I,J)∈Γ G(I,J)(t) is the collection of guard

sets, where G(I,J)(t) ⊆ DI for each (I, J) ∈ Γ is

defined as a regular sublevel set of a Cr guard func-

tion, i.e. G(I,J)(t) = {x ∈ DI|g(I,J)(t, x) ≤ 0} and

Dxg(I,J)(t, x) ̸= 0 ∀ g(I,J)(t, x) = 0.

6) R : R × G → D is a Cr map called the reset that

restricts as R(I,J) := R|G(I,J)(t)
: G(I,J)(t) → DJ for

each (I, J) ∈ Γ .

Note that this definition incorporates the control input u(t, x)
into the dynamics F as F(t, x, u(t, x)), which we simplify as

F(t, x) going forward.

Fig. 3 shows an example hybrid system with a hybrid

execution consisting of a starting point x(0) in DI flowing with

dynamics FI and reaching the guard condition g(I,J)(t, x) = 0
at time t, applying the reset map R(I,J)(t, x) resetting into DJ

and then flowing with the new dynamics FJ. Denote t− as

the instant before a hybrid event occurs while the system is

still in domain I, t+ the instant after the reset map is applied

following the hybrid event where the system has transitioned

into domain J, and x(t±) = x± the limiting value of the signal

x from the left (−) or right (+).
The goal in this paper is to understand how variations about

a nominal trajectory evolve over time. For smooth systems, it

is well known that variations about a nominal trajectory, δx,

can be approximated to first order using the derivative of the

dynamics F (t, x) with respect to state, Dx:

d

dt
δx(t) = DxF (t, x)δx+h.o.t. (1)

where h.o.t. represents higher order terms. Hybrid systems

with time triggered reset maps can be similarly analyzed

using the Jacobian of the reset map, δx+ = DxR(t, x)δx−.

However, the Jacobian of the reset map does not account for

differences that are introduced from time-to-impact variations

in systems with event driven resets, where the differences in

dynamics in the two hybrid modes must be considered. The

saltation matrix, e.g. [8, Eq. 3.5], [9, Pg. 118 Eq. 6], or [10,

Eq. 7.65], accounts for these terms to capture how variations

are mapped through event-driven hybrid transitions to the first

order. From here on, the term hybrid transition/system refers

to this event-driven class.

For notational simplicity, the following shorthands are made

for the terms in the saltation matrix:

F−
I := FI(t

−, x(t−)) (2)

F+
J := FJ(t

+, x(t+)) (3)

x(t+) := R(I,J)(t
−, x(t−)) (4)

DxR
− := DxR(I,J)(t

−, x(t−)) (5)



DtR
− := DtR(I,J)(t

−, x(t−)) (6)

Dxg
− := Dxg(I,J)(t

−, x(t−)) (7)

Dtg
− := Dtg(I,J)(t

−, x(t−)) (8)

Note that Dt in (6) and (8) refers to the derivative with respect

to the first coordinate (and not the time dependence of x, which

is captured by other terms). Now, we can define the saltation

matrix as follows.

Definition 2: The saltation matrix for transition from mode

I to mode J is the first order approximation of the variational

update at hybrid transitions from mode I to J, defined as

Ξ(I,J) := DxR
− +

(
F+
J −DxR

−F−
I −DtR

−
)
Dxg

−

Dtg− +Dxg−F
−
I

(9)

In the saltation matrix, the first term, DxR
−, captures the

variations due to the reset map being applied at different

states. The second term accounts for the variations caused

by a trajectory being subject to differing dynamics for a

small amount of time due to the displacement, which will

be discussed in detail in Sec. III-B.

Note that the matrix multiplication in (9) results in an outer-

product between the terms in the parentheses and Dxg
− to

get a rank-1 correction to the Jacobian of the reset map. The

saltation matrix is an nJ×nI matrix, where nI is the dimension

of the states in domain DI and nJ is the dimension of the states

in domain DJ.

The saltation matrix maps variations to the first order from

pre-transition δx(t−) to post-transition δx(t+) as

δx(t+) = Ξ(I,J)δx(t
−) + h.o.t. (10)

The saltation matrix in (9) is well defined when the follow-

ing assumptions are true:

1) Guards and resets are differentiable

2) Trajectories must be transverse to the guard at an event:

d

dt
g(I,J)(t, x(t)) = Dtg

− +Dxg
−F−

I < 0 (11)

In addition, it is often taken that trajectories cannot undergo

an infinite number of resets in finite time (no Zeno) in order

to ensure trajectories can be analyzed without needing to

determine the behavior in limit conditions.

The saltation matrix relies on differentiating the guards

and reset maps so they must be differentiable. Transversality

ensures that neighboring trajectories impact the same guard

unless the impact point lies on any other guard surface,

in which case the Bouligand derivative is the appropriate

analysis tool [52, 115–118]. Transversality also ensures the

denominator in (9) does not approach zero.

These assumptions also indicate the main limitations of

the saltation matrix. On top of the limitations inherent to the

linearization of nonlinear systems, the saltation matrix assumes

that all neighboring trajectories undergo the same transition

sequence as the nominal trajectory. This is unable to capture

situations where the nominal trajectory transitions transversely

to the guard (i.e. grazing impact) or near the intersection of

two guard surfaces (i.e. simultaneous touchdown of feet).

In some cases, the saltation matrix for a hybrid transition

can become an identity transformation. Knowing when the

saltation matrix is identity is useful to simplify computation

and analysis. The most common reason for a saltation matrix

to become identity is if both of these conditions are true:

1) The reset map is an identity transformation in the neigh-

borhood of the center of approximation, R(x) = In×nx,

where n is the dimension of the state x in both DI and

DJ, additionally this means that DxR = I .

2) The dynamics in both modes are the same before and

after impact, F−
I = F+

J .

With these conditions, we can see that the saltation matrix

becomes the identity map:

DxR(I,J) = In×n

F−
I = F+

J

}
=⇒ Ξ(I,J) = In×n (12)

An example of such a transition is a foot lifting off from the

ground, since there is no abrupt change in forces, the dynamics

are equal at the mode transition. If the reset map is an identity

transformation, then DxR is also identity and DtR is zero.

Using these conditions to simplify the expression in (9) gives

Ξ(I,J) = In×n +

(
F+
J − In×nF

−
I − 0n×n

)
Dxg

−

Dtg− +Dxg−F
−
I

= In×n

(13)

Lastly, in the case that the transition is triggered by time

rather than state, the saltation matrix is exactly equal to the

Jacobian of the reset map DxR. This is because there is no

longer a variation in the time to impact, and Dxg
− = 01×n,

thus

Ξ(I,J) = DxR
−+

(
F+
J −DxR

−F−
I −DtR

−
)
01×n

Dtg− + 01×nF
−
I

= DxR
−

(14)

Therefore, in this case, it is safe to use the Jacobian of the

Reset map instead of the saltation matrix, but that is because

they are equivalent.

B. Saltation matrix derivation

In this section, the derivation of the saltation matrix is

presented, showing that (10) is satisfied by (9). This follows

the geometric derivation from [10] with the addition of reset

maps. There are alternate ways to perform this derivation and

a derivation using the chain rule is included in Appendix A.

Suppose the nominal trajectory of interest is x(t) as shown

in Fig. 4. The trajectory starts in mode I and goes through a

hybrid transition to mode J at time t. The saltation matrix is a

first-order approximation, so the dynamics are integrated with

a forward Euler method. This treats the flow as a constant in

each mode, evaluated at time t± as in (2) and (3) such that

for an infinitesimal timestep δt,

x(t−) ≈ x(t− − δt) + F−
I δt in mode I (15)

x(t+ + δt) ≈ x(t+) + F+
J δt in mode J (16)







in both modes (A is zero). Instead, it is the difference in

mode timing that determines the change in sensitivity from

the initial to final state. If the Jacobian of the reset (which in

this case is identity) is used instead of the saltation matrix,

the prediction is incorrect. Sensitivity of hybrid systems is

extensively analyzed in [31] and [19].

Many algorithms consider finite, discrete timesteps. This

makes the analysis slightly different, since the hybrid transition

will most likely not occur exactly at the boundary of a discrete

timestep. In this case, a “sandwich” method is utilized, where

three (or more) smaller discrete updates are applied during a

timestep in which a hybrid transition occurs. Consider a time

interval from tk to tk+1 := tk +∆ over which a single reset

occurs at time tk+∆1. The system spends ∆1 time in the first

mode and ∆2 := ∆−∆1 in the second mode. In practice, ∆
may be chosen based on a desired control update rate, while

∆1 can be solved for with a zero-crossing algorithm in an

event-driven hybrid simulator or similar method. Let AI,∆ be

the Jacobian of the dynamics AI discretized to time duration

∆. Then a discrete approximation of the forward dynamics is

δx(tk+1) = AJ,∆2
Ξ(I,J)AI,∆1

δx(tk) (33)

which holds to first order. This result comes from the fun-

damental matrix solution [10, Eq. 7.22]. Note for the exam-

ple in Fig. 5, the constant flow in each mode means that

AI,∆1
= AJ,∆2

= I . If multiple (but finitely many) hybrid

transitions occur over a time interval, additional A∆ and Ξ
terms can be appended to (33) as necessary.

Extending this idea, consider a periodic orbit of period T ,

such that x(t) = x(t+T ). In this case, the fundamental matrix

solution is called the monodromy matrix. If the orbit passes

through modes labeled i = I, J,K, ...,Z, with mode periods Ti

such that T =
∑

i Ti, then we define the monodromy matrix

Φ, [10, Eq. 7.28], [119, Eq. 1], and [55, Eq. 12] as

Φ := Ξ(Z,I)AZ,TZ
· · · Ξ(J,K)AJ,TJ

Ξ(I,J)AI,TI
(34)

δx(t+ T ) = Φδx(t) (35)

which holds to first order. This monodromy matrix captures

the change in variations from one cycle through the orbit

to the next and its eigenvalues (called Floquet multipliers

[10]) determine the stability of the trajectory. Namely, if the

eigenvalues all have magnitude less than one then the reference

point is asymptotically stable (δx(t) is driven to zero) [10].

Related to the monodromy matrix, a common technique

to analyze stability of periodic systems is to analyze the

return/Poincaré map [10]. A Poincaré map P converts the

continuous-time system to a discrete map. For an autonomous

system with n states and a limit cycle L, the Poincaré map is

defined about a point x∗ on L and an n−1 dimensional hyper-

plane transverse to the flow F called the Poincaré section S,

with x∗ ∈ S and x∗ a fixed point of P . The Poincaré map

captures how points move along the Poincaré section after

one cycle (P : S → S). Stability of the fixed point is often

computed by taking the Jacobian of the Poincaré map and

analyzing its eigenvalues. If all eigenvalues are within the unit

circle (the requirements for stability for a discrete system),

the fixed point x∗ is stable. Note that the Poincaré map only

considers the state in which a trajectory crosses the Poincaré

section and is not generally a function of time. Asymptotic

stability of the fixed point indicates perturbed trajectories will

converge to the limit cycle, but a constant phase offset may

persist (δx(t) can never be driven to zero, only to some finite

limit). As such, variations along the direction of flow along

the limit cycle are invariant for autonomous systems.

For the autonomous case, the dimension of the system is

reduced by one due to the embedding of the n−1 dimensional

Poincaré section into the state space of dimension n. On the

other hand, non-autonomous systems depend explicitly on time

and the Poincaré map must be augmented to consider this

time dependency [10, Ch. 9.1]. To do this, the trajectory is

augmented with a periodic time coordinate on S1, and the

Poincaré section is now defined to be at the end of each period

T . In this case, the Poincaré map and its Jacobian are in the

full n space, as the Poincaré section is defined on the added

time coordinate.

Consider a monodromy matrix for a cycle that starts and

ends at the fixed point x∗ for one cycle. In the autonomous

case, the monodromy matrix has the same eigenvalues as the

Jacobian of the Poincaré map with an additional eigenvalue

equal to 1. This is because the monodromy matrix is still in

the full n space and, as mentioned above, variations along the

direction of the flow are invariant. For autonomous systems,

the limit cycle is asymptotically stable if all other eigenvalues

are within the unit circle. In the non-autonomous case, the

monodromy matrix and the Jacobian of the Poincaré map are

equivalent, so sometimes the monodromy matrix is defined

simply to be the Jacobian of the Poincaré map [59].

If the system is autonomous and periodic, using the Poincaré

map might be more practical because the analysis is simplified

by the reduction of a state variable, e.g. as shown for passive

dynamic walkers [120]. However, the monodromy matrix is

a more natural choice for non-autonomous systems and can

express a stronger level of asymptotic stability where all

variations from the reference point are driven to zero. The

monodromy matrix can also be generalized to the fundamental

matrix solution for analysis of non-cyclical behaviors [10,

Ch. 7], which the Poincaré map cannot. This is especially

important when designing dynamic behaviors like parkour or

dynamic grasps where transient growth of perturbations may

cause systems to fail prior to asymptotic convergence.

Also closely related to Floquet multipliers are Lyapunov

exponents [92–94]. A given Floquet multiplier σ can be

written in the form σ = eµT where µ is the Floquet exponent

and the real part of µ is the Lyapunov exponent [121]. If

all Lyapunov exponents are negative, then σ < 1 and the

trajectory is asymptotically stable.

D. Propagation of covariances and value approximations with

the saltation matrix

Similar to the linear gradient forms from the last section,

quadratic forms are often used in algorithms which rely on

linearizations. Examples of such algorithms include the well-

known Kalman filter and LQR controller, where quadratic

forms are used to propagate the covariance distribution and





mode U, the constrained sliding mode S (where the ball can

slide tangentially along the constraint surface), and a fully

constrained mode C (where velocity is zero).

Starting with the first case, the ball impacts a sloped surface

parameterized by an angle θ, where the position constraint is

defined by the guard function

g(U,S)(t, x) := sin (θ)q1 + cos (θ)q2 = 0 (41)

The resulting velocity constraint Jacobian JS in the sliding

mode is

JS(q) := Dqg(U,S)(t, x) =
[
sin (θ) cos (θ)

]
(42)

which enforces the constraint JSq̇ = 0 so that the velocity

must be along the surface. The unconstrained mode dynamics

are defined by ballistic motion:

FU(t, x) :=
[
q̇1 q̇2

u1

m

u2 − agm

m

]T
(43)

The hybrid guard for impact is defined by the constraint

g(U,S)(q) ≤ 0, i.e when the constraint is met the impact

occurs. The reset map is defined by plastic impact [126], which

enforces the velocity constraint:

R(U,S)(t, x) :=




q1
q2

q̇1 cos
2 (θ)− q̇2 cos (θ) sin (θ)

q̇2 sin
2 (θ)− q̇1 cos (θ) sin (θ)


 (44)

The constrained mode dynamics are found by solving the

ballistic dynamics while maintaining the velocity constraint:

FS(t, x) := (45)



q̇1
q̇2

u1 cos
2 (θ)

m
−

u2 cos (θ) sin (θ)

m
+

ag m cos (θ) sin (θ)

m

−
u1 cos (θ) sin (θ)

m
+

u2 sin
2 (θ)

m
−

ag m sin2 (θ)

m




In the case of sticking friction in mode C, the guard function

is equivalent to (41) (g(U,C)(t, x) = g(U,S)(t, x)), but there is

a no slip condition added to (42):

JC :=

[
− cos (θ) sin (θ)
sin (θ) cos (θ)

]
(46)

which enforces the constraint JCq̇ = 0 so that velocity is zero.

The constrained dynamics are

ẋ = FC(t, x) =
[
0 0 0 0

]T
(47)

The reset map eliminates all velocities:

R(U,C)(t, x) :=
[
q1 q2 0 0

]T
(48)

Note that the state in this mode is fully constrained and the

ball will just stick to the surface (as q̇ = 0 after impact).

B. Saltation matrix calculation

To compute the saltation matrix, the Jacobians of the guard

and reset map with respect to state must be computed. The

Jacobian of the guard is simply the velocity constraint Jacobian

padded with zeros for each velocity coordinate:

Dxg(U,S)(t, x) =
[
JS 01×2

]
=

[
sin (θ) cos (θ) 0 0

]

(49)

The Jacobian of the reset map is

DxR(U,S)(t, x) = (50)



1 0 0 0
0 1 0 0
0 0 cos2 (θ) − cos (θ) sin (θ)
0 0 − cos (θ) sin (θ) sin2 (θ)




The saltation matrix is then computed by substituting in each

component, (43)–(50), into the definition, (9), to get

Ξ(U,S) =

[
Ω(U,S) 02×2

02×2 Ω(U,S)

]
(51)

where Ω(U,S) is a block element consisting of

Ω(U,S) :=

[
cos2 (θ) − cos (θ) sin (θ)

− cos (θ) sin (θ) sin2 (θ)

]
(52)

Note that the control input does not appear in the saltation

matrix, indicating that if the control input is constant across the

hybrid transition, it has no effect on the evolution of variations

across the transition. This is not necessarily true in general,

as discussed in the following section. Also note the block

diagonal structure of the saltation matrix, which has interesting

implications discussed in Sec. IV-C.

For the sticking saltation matrix, similar calculations are

made as in the sliding case:

Dxg(U,C)(t, x) =
[
sin (θ) cos (θ) 0 0

]
(53)

Note that the guard condition is the same, which results in

having the same Jacobian of the guard as the sliding case.

The Jacobian of the reset map is

DxR(U,C)(t, x) =

[
I2x2 02x2
02x2 02x2

]
(54)

The resulting saltation matrix becomes

Ξ(U,C) =

[
Ω(U,C) 02×2

02×2 02×2

]
(55)

where Ω(U,C) is a block element consisting of

Ω(U,C) :=
1

q̇2 cos (θ) + q̇1 sin (θ)

[
q̇2 cos (θ) −q̇1 cos (θ)
−q̇2 sin (θ) q̇1 sin (θ)

]

(56)

Note that (56) and, as a result, (55) will go to infinity

as the term q̇2 cos (θ) + q̇1 sin (θ) goes to zero. This is a

consequence of a non-transverse guard crossing that violates

(11). Also observe that the saltation matrix’s dependence on

state is highly non-linear, despite the linearization of the guard

and reset map.





The states of the system are the configuration coordinates

q and their velocities q̇, such that x := [q, q̇]T . The dimension

of the configuration q is defined to be m, while the dimension

of the state space x is n = 2m. Contacts between rigid bodies

are regulated through a unilateral constraint in the normal (n)

direction, gn(t, x) ≥ 0. Note that gn(t, x) only depends on the

configuration q and not the velocity. When rigid bodies are in

contact they must satisfy gn(t, x) = 0.

The Jacobian of gn with respect to the configuration coor-

dinates is defined to be Jn(t, q) := Dqgn(t, x). In the sliding

mode, the constraint Jacobian consists of just this normal

direction constraint, JS = Jn. However, if the no slip condition

is added, the constrained mode C has a constraint Jacobian of

JC(t, q) :=

[
Jn(t, q)
Jt(t, q)

]
(59)

where Jt(t, q) is the tangential velocity constraint Jacobian.

For unconstrained modes, J ∈ R
0×0 is empty.

Define that J(t, q) with no subscript specifies any mode,

where it can be empty, just the normal, or both the normal

and tangential component. We also assume that J(t, q) is

differentiable with respect to time. In any mode, the following

acceleration constraint is applied based on J(t, q) for that

mode to maintain the active constraints until the next guard

J(t, q)q̈ + J̇(t, q)q̇ = 0 (60)

This acceleration constraint is derived by differentiating the

velocity constraint once with respect to time using the chain

rule.

The equations of motion for each mode are defined by

the constrained manipulator dynamics, e.g. [127], where this

constraint is combined with Lagrangian dynamics:
[
M JT

J 0

] [
q̈
f

]
=

[
Υ−N

0

]
−

[
C

J̇

]
q̇ (61)

[128, Eqn. 33] where f is the constraint force vector (La-

grange multiplier), M(q) is the mass matrix, C(q, q̇) is the

Coriolis matrix, Υ(u) the input vector, and N(q, q̇) are the

other nonlinear forces such as gravity and sliding friction.

To help with the following equations, we use the † notation

from [4, Eqn. 8] to label the blocks of the following matrix

inverse, where in each mode:

[
M† J†T

J† Λ†

]
:=

[
M JT

J 0

]−1

(62)

This definition produces a number of identities, in particular,

M†M = Im×m − J†TJ (63)

[4, Eqn. 11], which will be helpful in simplifying the saltation

matrix expressions. Note that in the unconstrained case, M† =
M−1, J† ∈ R

0×0, and Λ† ∈ R
0×0.

With this notation, the state space dynamics can be solved

by multiplying the matrix inverse to the right side of (61) and

is expressed as

ẋ =
d

dt

[
q
q̇

]
=

[
q̇

M† (Υ−N − Cq̇)− J†T J̇ q̇

]
(64)

[4, Eqn. 75] where each † component is different depending

on the hybrid mode based on J .

By similarly multiplying the matrix inverse to the right side

of (61), the constraint forces f(t, x) are calculated from the

bottom row of (61):

f(t, x) = J† (Υ−N − Cq̇)− Λ†J̇ q̇ (65)

Coulomb friction is used in the sliding mode – frictional

forces in the tangential direction ft (included in N ) are applied

to resist sliding motion proportional to the normal constraint

force, fn, and in the direction resisting the sliding velocity,

vt = Jtq̇:

ft = µkfn
Jtq̇

∥Jtq̇∥
= µkfn

vt
∥vt∥

(66)

where µk is the kinetic coefficient of friction.

When a contact constraint is added, for example the normal

surface constraint gn, an impact law Jnq̇
+ = −eJnq̇

− is

applied (where the coefficient of restitution e = 1 is perfectly

elastic and e = 0 is perfectly plastic) along with the impulse

momentum equation to get

[
q̇+

p̂

]
=

[
M JT

n

Jn 0

]−1[
M

−eJn

]
q̇− =

[
M†

n J†T
n

J†
n Λ†

n

][
M

−eJn

]
q̇−

(67)

where p̂ is the impulse magnitude vector [4, Eqn. 23], [129].

Since the positions do not change instantaneously, the state

space reset map for elastic, frictionless impact from mode U

to mode V is

x+ =

[
q+

q̇+

]
= R(U,V)(t, x

−) =

[
q−

M†
nMq̇− − eJ†T

n Jnq̇
−

]

(68)

The plastic, frictionless impact reset map into mode S follows

(68) but with e = 0 (and written with M†
S for mode S, though

M†
S = M†

n since JS = Jn):

x+ =

[
q+

q̇+

]
= R(U,S)(t, x

−) =

[
q−

M†
SMq̇−

]
(69)

The frictional, plastic impact reset map, R(U,C), follows (69)

but with JC and M†
C instead of JS and M†

S . Similarly, the

liftoff reset maps into modes U or V are the same except

that there is no constraint J , and so the reset simplifies to an

identity map. Note that the reset map does not depend on the

prior mode, so for example R(S,C) = R(U,C).

B. Apex

Apex is a “virtual” hybrid event – one that does not have

a physical reset map or change in the dynamics – and is

triggered when the velocity switches from going away from

the constraint to towards the constraint (V,U). As the reset

map is identity, and the dynamics match before and after (since

there is not a difference in control at this event) the saltation

matrix is identity following (12):

Ξ(V,U) = In×n (70)





but JC ̸= Dxg. Rather, Dxg = Jn is a row of JC, i.e. the

non-penetrating constraint. The resulting saltation matrix is

Ξ(U,C) =


Im×m −

J†T
C JCq̇

−Jn
Jnq̇−

0m×m

ZC +Dq(M
†
CMq̇−) M†

CM


 (82)

where

(83)
ZC :=

(
M†

C(C
−q̇− − C+q̇+)− J†T

C J̇+
C q̇+

−Dq(M
†
CMq̇−)q̇−

)
JC/(JCq̇

−)

Again, the difference between the saltation matrix and the

Jacobian of the reset is in the left column associated with

the configuration variations. However, the upper left block

no longer maps configuration variations exactly the same as

velocity variations in the lower right, because the tangential

constraint is only a velocity constraint – the contact point can

be anywhere on the contact surface, whereas the velocity of

the contact point must be the same everywhere on the surface.

Other than the upper left block, the structure of (U, S) and

(U,C) saltation matrices look remarkably similar, with the

interchange of JS and JC being the only other difference. In

the example in Sec. IV, the lower left block of these saltation

matrices was zero. This block is comprised of Coriolis-like

terms, so for simple systems like the ball drop, Coriolis terms

do not exist in the dynamics and the lower left block of the

saltation matrix collapses to zero. However, for systems of

appreciable complexity, this does not hold.

E. Elastic impact

When the coefficient of restitution is non-zero, states in the

approaching unconstrained mode U transition directly to the

separating unconstrained mode V through elastic impact. The

dynamics for each mode, (64), are

FU(t, x
−) =

[
q̇

M−1(Υ− C−q̇− −N)

]
(84)

FV(t, x
+) =

[
q̇+

M−1(Υ− C+q̇+ −N)

]
(85)

Again, note that − or + on C indicates that these functions

use the pre- or post-impact velocity, q̇− or q̇+, respectively.

The Jacobian of the reset map for elastic impact, (68), is

DxR
−
(U,V) =

[
Im×m 0m×m

Dq((M
†
nM − eJ†T

n Jn)q̇
−) M†

nM − eJ†T
n Jn

]

(86)

The Jacobian of the guard is again Dxg = [Jn 01×n]. Plugging

each component back into the full saltation matrix equation

results in

Ξ(U,V)=

[
M†M − eJ†TJ 0m×m

ZV+Dq((M
†M − eJ†TJ)q̇−) M†M−eJ†TJ

]

(87)

where J and M† use the normal constraint, Jn and M†
n , and

ZV :=
([
M−1(C− − C+(M†

nM − eJ†T
n Jn))

−Dq((M
†
nM − eJ†T

n Jn)q̇
−)

]
q̇−

+ (1 + e)J†T
n JnM

−1(Υ− C−q̇− −N)
)
Jn/(Jnq̇

−)

(88)

Note that the following substitution can be made M†M −
eJ†TJ = Im×m − (1 + e)J†TJ by (63).

F. Stick-slip friction

Stick-slip friction refers to when the tangential force of an

object constrained to a surface exceeds the frictional force

which constrains the tangential direction. Coulomb friction

is a commonly used model of friction in robotics and the

experimental law states that the magnitude of the frictional

force is equal to the product between the coefficient of static

friction µ and the magnitude of the normal force fn(t, x). The

saltation matrix for stick-slip friction has been calculated in

[10, Sec. 7.3]. This section computes this saltation matrix for

a generalized system and analyzes its components.

When the friction cone is broken, the mode is switched from

the constrained mode C to the sliding mode S. The guard to

check for slipping is when the tangential force ft(t, x) exceeds

the frictional force µsfn(t, x) in either direction:

g(C,S)(t, x) := µsfn(t, x)− ft(t, x) = 0 (89)

where µs is the coefficient of static friction. The reset map

for these hybrid transitions is an identity transformation x+ =
R(C,S)(x

−) = x−, and therefore DxR(C,S) = In×n.

If the guard g(C,S) is met, it can be assumed that slipping

will also occur in the direction of the maximum tangential

force. Therefore, at the slipping boundary, if both the coeffi-

cient of static friction and kinetic friction match, µs = µk, then

∆F = 0 (as the frictional force reaches and then maintains

the value in (66)) and the saltation matrix is identity by

(12). Indeed, any friction model (not just Coulomb) where

the frictional force matches at the boundary results in an

identity saltation matrix. This includes models where µk is

a function of velocity, such as Stribeck friction, so long as at

∥vt∥= ∥Jtq̇∥= 0, µk(0) = µs, to get

µs = µk =⇒ FS = FC =⇒ Ξ(C,S) = In×n (90)

If µs ̸= µk, the saltation matrix is not necessarily identity,

and the general computations of the saltation matrix can be

made to obtain this form:

µs ̸= µk =⇒ F+
S ̸= F−

C

=⇒ Ξ(C,S) = In×n +
(F+

S − F−
C )Dxg(C,S)

Dtg(C,S) +Dxg(C,S)F
−
C

(91)

For this saltation matrix, position variations do not change

because the reset map is identity and the top row of FS and

FC are equal (i.e. the velocity q̇ does not change between

modes).

However, this saltation matrix will be very prone to mod-

eling errors as it depends on knowing exactly how the sliding



and sticking coefficients differ. Because there are many differ-

ent types of friction models, it may be advantageous to assume

that at the boundaries the sliding and sticking coefficients

match when appropriate for the specific friction interaction

i.e. selecting a Stribeck friction model.

G. Slip-stick friction

When the tangential velocity in mode S goes to zero,

the sliding stops and “sticks” into the constrained mode C.

Therefore, the guard at slip-stick friction is just the magnitude

of the tangential velocity:

g(S,C)(t, x) := ∥Jtq̇∥= ∥vt∥ (92)

Dxg(S,C)(t, x) =
[
J̇−
t Jt

]
(93)

The guard also has the condition ft < µsfn. However,

note that the way tangential friction forces are calculated is

different in the sliding mode S than in the sticking mode C.

In sliding, the tangential force is proportional to the normal

force, ft = µkfn, (66). In the constrained sticking mode, the

force vector is calculated from Lagrange multipliers as in (65).

These generally are not equal and so there is a difference in

the tangential force at the transition, and thus a difference in

dynamics.

The reset is an identity transformation, x+ = R(S,C)(x
−) =

x−, and therefore DxR(S,C) = In×n, so the saltation matrix is

primarily composed of the difference between the dynamics of

both modes and the tangential velocity term from the guard.

The guard captures time varying interactions with the envi-

ronment through the constraint Jacobian’s J(t, q) derivatives.

There are no other time varying components which enter so

the simplification Dtg(S,C) = 0 can be made. The saltation

matrix is

Ξ(S,C) = In×n +
(F+

C − F−
S )

[
J̇−
t Jt

]

J̇−
t q̇− + Jtq̈−

(94)

Note that the denominator is the tangential acceleration con-

straint (60) in mode C. If this condition is met at the exact

moment that the velocity guard is satisfied while in the sliding

mode S, the saltation matrix is not well defined; however,

this would violate the transversality assumption (11). For this

saltation matrix, as with stick-slip, position variations do not

change because the reset map is identity and the top row of FC

and FS are equal (i.e. the velocity q̇ does not change between

modes).

H. Analysis of Saltation Matrices for Rigid Bodies

This section presents saltation matrix derivations for a

number of hybrid transitions that occur in rigid body systems

with contact, as summarized in Table II. These derivations

reveal patterns among many of these saltation matrices. For

instance, the upper right block of the saltation matrix is zero

for every case presented here. This is due to the second order

nature of mechanical systems as a whole (i.e. acceleration is

the derivative of velocity, which is the derivative of position).

This makes it convenient to perform the eigen-analysis as

in Sec. IV. The eigenvalues and eigenvectors of a block

TABLE II: Properties of the Saltation Matrix for Different

Rigid Body Mode Transitions

Transition R = I F+ = F− Equal Diag. Blocks Eq. #

(V,U) ✓ ✓ ✓ (70)
(U, S) ✗ ✗ ✓ (80)
(U,C) ✗ ✗ ✗ (82)
(U,V) ✗ ✗ ✓ (87)
(C, S) ✓ if µs = µk if µs = µk (90,91)
(C,V) ✓ ✓ ✓ (72)
(S,V) ✓ ✓ ✓ (73)
(S,C) ✓ ✗ ✗ (94)

triangular matrix are the eigenvalues and eigenvectors of its

diagonal block components, and the lower left block does

not affect them. In applications where only the eigenvalues

of the saltation matrix of interest, knowing the structure of

the saltation matrix means the full saltation matrix need not

be computed.

Four of the saltation matrices analyzed are identity: apex

(70), the two liftoff cases (72,73), and stick-slip under constant

friction coefficient (90). This occurs when the reset map is

identity and the dynamics in each mode are equivalent, as

in (12). Outside of these identity cases, the stick-slip with

unequal friction coefficients (91) and slip-stick (94) transitions

also have an identity reset map because there is no instanta-

neous change in positions or velocities. An identity reset map

allows for further insight into the eigen-properties of these

matrices. Both of these saltation matrices can be written as

Ξ = In×n + abT where a and b are n × 1 vectors and abT

is their outer product. The eigenvalues of a matrix with this

structure are all 1 except for one eigenvalue of 1 + aT b with

corresponding eigenvector a. This can be easily shown from

the equality:

(I + abT )a = a+ a(bTa) = (1 + aT b)a (95)

This makes it possible to compute the eignvalues of these salta-

tion matrices without performing the full matrix computation.

Two non-identity saltation matrices had equivalent diagonal

blocks, sliding plastic impact (80) and elastic impact (87).

This occurs because the guard surface enforces an equivalent

constraint on both position and velocities to be along the

guard. When a non-holonomic constraint is added in mode

C, this equivalency breaks. Equal diagonal blocks means that

the eigenvalues of these saltation matrices are the eigenvalues

of a diagonal block repeated twice. Table II summarizes the

properties of identity reset map, matching hybrid dynamics,

equal diagonal blocks, as well as equation number for each

saltation matrix.

VI. CONCLUSION

The saltation matrix is an essential tool when dealing with

hybrid systems with state dependent switches. This paper

presents a derivation of the saltation matrix with two different

methods and demonstrates how the saltation matrix can be

used in linear and quadratic forms for hybrid systems. A

survey of where saltation matrices are used in other fields

is also presented. In the past, it has been heavily utilized for

analyzing the stability of periodic systems, but more recently



it has been critical for analyzing and designing non-periodic

behaviors. This analysis is especially useful for robotics where

many important robotic motions are not periodic, but are

hybrid due to the discontinuous nature of impact in rigid body

systems with unilateral constraints.

To further explore the nature of contact and how vari-

ations are mapped through them, a simple contact system

is considered to compute the saltation matrix for plastic

impact and analyze the different components of the result-

ing saltation matrices. These saltation matrices capture how

position variations are mapped through contact, whereas the

Jacobian of the reset map does not provide any information

on position. In addition to this simple example, saltation

matrices are computed for each of the hybrid transitions for

a generalized rigid body model and we give insights on their

structure. These computations are especially useful because

the rigid body model covers a wide variety of systems and

will help when getting started using saltation matrices for

these systems. Saltation matrices exhibit common structures

that can be exploited. In contrast to using the Jacobian of the

reset map, the saltation matrix captures the position variational

information when applying a unilateral holonomic constraint.

For other hybrid transitions such as stick-slip friction, the

Jacobian of the reset map provides no additional information

because it is an identity transformation and all the information

is contained in the saltation matrix.

In general, the effects of hybrid transitions are significant

and can not simply be ignored. But, in specific instances,

it’s possible to simplify computations by not computing the

saltation matrix: when the saltation matrix is identity (12) or

when the hybrid transition is time dependent rather than state

dependent the Jacobian of the reset map can be used instead

(14). In rigid body dynamics with unilateral constraints, for

instance, the saltation matrix becomes an identity matrix when

a constraint is removed (liftoff), allowing it to be disregarded.

However, it is essential to first verify that the saltation matrix is

always an identity matrix in such scenarios. Another example

involves systems with slow and fast dynamics. If the fast

dynamics are hybrid and stable, and the focus is on the slow

dynamics, the saltation matrix can be ignored. Take a DC

motor controlled by pulse-width modulation (PWM) as an

example. The PWM operates as a fast hybrid system, but the

position and velocity of the rotor, which are slow dynamics,

are of primary concern. Knowing that the PWM is stable

allows us to ignore the saltation matrices and focus on the

average effect of the fast hybrid dynamics (nominal voltage)

on the slow dynamics (rotor velocity). However, once again,

the saltation matrices might be needed to show stability of the

fast hybrid dynamics before it can be ignored.

By using saltation matrices for hybrid systems, efficient

analysis, planning, control, and state estimation algorithms can

be produced. This is especially important as many algorithms

for hybrid systems naturally have combinatoric time com-

plexities and through the use of these tools we can simplify

these problems. The hope of this paper is to introduce the

topic of saltation matrices to a broader community so that we

can, as a whole, develop better methods for dealing with the

complexities of hybrid systems and their applications.
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APPENDIX

Appendices A and B present the chain rule derivation of the

saltation matrix and the early impact case for the geometric

derivation. Appendices C and D prove the update laws through

hybrid events for both covariance propagation and the Riccati

equations.

A. Saltation matrix chain rule derivation

This appendix shows an alternate derivation of (9) using

the chain rule, providing an analytical derivation rather than

a geometric one. Define the solutions of the flow in hybrid

domains I and J, which integrate the continuous dynamics from

an initial state x at time t0 to a state xf at time tf , as

ϕI : (t0 ∈ R, tf ∈ R, x ∈ DI) 7→ xf ∈ DI (96)

ϕJ : (t0 ∈ R, tf ∈ R, x ∈ DJ) 7→ xf ∈ DJ (97)

such that the vector fields are

FI(t0, x) = −Dt0ϕI(t0, tf , x) (98)

FI(tf , x) = DtfϕI(t0, tf , x) (99)

for each mode. Define the solution across a hybrid transition

from mode I to J to be

ϕ(t0, tf , x) :=ϕJ(τ(x), tf , R(I,J)(τ(x), ϕI(t0, τ(x), x)))
(100)

where τ(x) is the time to impact map, such that

g(I,J)(τ(x), ϕI(t0, τ(x), x)) = 0 (101)

It helps to look at the in between steps of the function

composition in (100). Define

x−(x) := ϕI(t0, τ(x), x) (102)

x+(x) := R(I,J)(τ(x), x
−(x)) (103)

xf (x) := ϕJ(τ(x), tf , x
+(x)) (104)

where xf = ϕ(t0, tf , x) is the final state in the new mode. To

find the derivative of ϕ with respect to x in (100), the chain

rule is used on each of these steps:

Dxx
−(x) = Dτ(x)ϕIDxτ +DxϕI (105)

Dxx
+(x) = Dτ(x)R(I,J)Dxτ +Dx−(x)R(I,J)Dxx

− (106)

Dxxf (x) = Dτ(x)ϕJDxτ +Dx+(x)ϕJDxx
+ (107)

where the arguments to each function are suppressed but equal

to their corresponding value in (102)–(104).

Combining these:

(108)
Dxϕ = Dτ(x)ϕJDxτ +Dx+(x)ϕJ[Dτ(x)R(I,J)Dxτ

+Dx−(x)R(I,J)(Dτ(x)ϕIDxτ +DxϕI)]



As this is a first order approximation, the terms DxϕI and

Dx+(x)ϕJ can be taken as identity matrices (as they would

in a linear system), and so this simplifies to (with additional

substitutions for FI and FJ using (98)–(99)):

(109)
Dxϕ = (−FJ +Dτ(x)R(I,J) +Dx−(x)R(I,J)FI)Dxτ

+Dx−(x)R(I,J)

To obtain Dxτ , use the implicit function theorem and take the

chain rule on the guard condition (101), and using (99) and

(105) results in the following relation:

0 = Dτ(x)g(I,J)Dxτ(x) + Dx−(x)g(I,J)Dxx
− (110)

0 =
(
Dτ(x)g(I,J) +Dx−(x)g(I,J)FI

)
Dxτ +Dx−(x)g(I,J)

(111)

Dxτ(x) =
−Dx−(x)g(I,J)

Dτ(x)g(I,J) +Dx−(x)g(I,J)FI
(112)

Plugging back into (109), evaluating at the instant of impact,

t = τ(x) = 0, substituting the notation from (2)–(8), and

simplifying:

Dxϕ = DxR
− +

(
−F+

J +DtR
− +DxR

−F−
I

)
Dxτ (113)

Dxϕ = DxR
− +

(
F+
J −DxR

−F−
I −DtR

−
)
Dxg

−

Dtg− +Dxg−F
−
I

(114)

Dxϕ := Ξ(I,J) (115)

as in (9), where all terms are evaluated at the time of impact

and the state just before impact, except for F+
J which is

evaluated at the state just after impact, as in (2)–(8).

B. Early impact saltation derivation

In the geometric derivation of the saltation matrix, it was

assumed the perturbed trajectory impacted late. This appendix

shows that the saltation matrix expression is the same if

derived following the same logic as Sec. III-B but with early

impact. It may help to visualize Fig. 4 with the roles of

the nominal x(t) and perturbed x̃(t), and the corresponding

linearization arrows, flipped.

Again, start by assuming the same flow, reset, and guard

linearizations as in (15)–(18). The perturbed impact occurs

first at time t̃− i.e. t̃− < t− and δt = t̃− − t− < 0. Because

the perturbed trajectory impacts first, the aim is to find the

mapping from δx(t̃−) to δx(t+) (instead of δx(t−) to δx(t̃+)
as in the case of late impact). This allows for comparisons

between states (nominal and perturbed) that are in the same

hybrid domain.

Define δx(t̃−) and δx(t+) to be

δx(t̃−) := x̃(t̃−)− x(t̃−) (116)

δx(t+) := x̃(t+)− x(t+) (117)

We would like to write these in terms of the nominal trajectory

at that time. Using the linearization of the flow before impact

(15) and rearranging (116) we get

x̃(t̃−) = x(t−) + δx(t̃−) + F−
I δt (118)

Since the perturbed trajectory impacts earlier, next is to

compute where it ends up after the reset map is applied and

it flows for |δt| time on the new dynamics. Again, using the

linearization of the flow (16):

x̃(t+) = R(t̃−, x̃(t̃−))− F+
J δt (119)

Next, R(t̃−, x̃(t̃−)) can be solved for as a function of x(t̃−)
by substituting in x̃(t̃−) from (118) and using the linearization

of the reset map from (17):

R̄(t̃−, x̃(t̃−)) = R̄(t− + δt, x(t−) + δx(t̃−) + F−
I δt)

(120)

= R(t−, x(t−)) + DxR
−
(
δx(t̃−) + F−

I δt
)
+DtR

−δt
(121)

Now plugging back in to (119):

x̃(t+) =R(t−, x(t−)) + DxR
−δx(t̃−) (122)

+
(
DxR

−F−
I +DtR

− − F+
J

)
δt

δx(t+) can be written as a function of δx(t̃−) and δt by

subbing x̃(t+) into (117):

δx(t+) = DxR
−δx(t̃−) +

(
DxR

−F−
I +DtR

− − F+
J

)
δt

(123)

Next, δt can be found as a function of δx(t̃−) using

0 = g(t̃−, x̃(t̃−)) (124)

Substituting in (118) and expanding using the linearization of

the guard (18) (and noting that g(t−, x(t−) = 0):

0 = g
(
t− + δt, x(t−) + δx(t̃−) + F−

I δt
)

(125)

0 = g(t−, x(t−)) + Dxg
−
(
δx(t̃−) + F−

I δt
)
+Dtg

−δt
(126)

0 = Dxg
−
(
δx(t̃−) + F−

I δt
)
+Dtg

−δt (127)

Now, solving for δt in terms of δx(t̃−):

δt = −
Dxg

−

Dxg−F
−
I +Dtg−

δx(t̃−) (128)

Substitute (128) into (123) and simplify to get the saltation

matrix equivalent to (29):

δx(t+) = DxR
−δx(t̃−) (129)

+

(
F+
J −DxR

−F−
I −DtR

−
)
Dxg

−

Dxg−F
−
I +Dtg−

δx(t̃−)

= Ξ(I,J)δx(t̃
−) (130)

C. Covariance update through a hybrid event

This appendix presents a derivation for the covariance

update through a reset map, (37). Consider the state trajectory

as a random variable X(t) with mean ρ(t) = x(t), the nominal

trajectory x(t), and covariance Σ(t). Define a perturbation as

a zero mean random variable δx(t) with the same covariance,

such that X(t) = x(t) + δx(t), where X(t), x(t), and

δx(t) evolve according to the dynamics of the hybrid system.

Therefore, once X(0) and δx(0) are sampled, the dynamics

evolve deterministically.

At a hybrid impact event, define the pre-impact time of the

mean to be t−, where g(t−, ρ(t−)) = 0, and the corresponding



post-impact time to be t+. Consider how the distribution is

updated to find X(t+) based on X(t−). To find the mean,

take the expectation of X(t+):

ρ(t+) =E[X(t+)] = E[x(t+) + δx(t+)] (131)

=x(t+) + E[δx(t+)] (132)

where the two terms are separable because expectation is

a linear operator, and the expectation of the nominal post-

impact state is just its value, E[x(t+)] = x(t+) = R(x(t−)).
Substituting in δx(t+) = Ξ(I,J)(t

−, x(t−))δx(t−)+h.o.t. from

(10):

ρ(t+) = x(t+) + E[Ξ(I,J)(t
−, x(t−))δx(t−) + h.o.t.]

(133)

ρ(t+) = x(t+) + Ξ(I,J)(t
−, x(t−))E[δx(t−)] + E[h.o.t.]

(134)

Because expectation is a linear operator, Ξ(t−, x(t−)) can be

moved out of the expectation. Then, because δx(t−) is cen-

tered about zero, E[δx(t−)] = 0, and for small displacements

the higher order terms are negligible, E[h.o.t.] ≈ 0, which

simplifies to

ρ(t+) ≈ x(t+) = R(x(t−)) (135)

Note that it is approximate because of the approximation that

higher order terms are zero.

Covariance is defined as

COV[X] := E[(X − E[X])(X − E[X])T ] (136)

the post-impact covariance Σ(t+) is

Σ(t+) =COV[X(t+)] = COV[x(t+) + δx(t+)] (137)

=E

[(
(x(t+) + δx(t+)− ρ(t+))

(x(t+) + δx(t+)− ρ(t+)
)T ]

(138)

Since ρ(t+) = x(t+), this simplifies to

(139)Σ(t+) = E[δx(t+)δx(t+)T ]

Using (10), δx(t+) can be expanded as

Σ(t+) = E[(Ξ(I,J)δx(t
−) + h.o.t.)(Ξ(I,J)δx(t

−) + h.o.t.)T ]

(140)

= Ξ(I,J)E[δx(t
−)δx(t−)T ]ΞT

(I,J) (141)

+ 2Ξ(I,J)E[δx(t
−)(h.o.t.)T ] + E[(h.o.t.)(h.o.t.)T ]

(142)

and for small displacements, h.o.t. ≈ 0, which simplifies to

Σ(t+) ≈ Ξ(I,J)Σ(t
−)ΞT

(I,J) (143)

as in (37), which holds to first order and is exact for linear

hybrid systems.

D. Riccati update through hybrid events

This appendix derives the update for the Riccati equation

through a hybrid event, (40). This general form can be used

to update co-vectors through hybrid transitions when the co-

vector can be represented as a matrix multiplication of a

quadratic form and the change in state p = Pδx. See [131,

Ch. 6.1] for a background on the continuous Riccati update

and [132, Ch. 8.3] for an overview of the discrete formula-

tion. Solving the Riccati update along a trajectory yields a

locally optimal feedback controller, called the linear quadratic

regulator (LQR). The optimality of LQR is conditioned on

the balance between penalties on deviations in state Q and

control input V at each timestep, called the stage cost, and at

the final state, called the terminal cost, where Q is a positive

semi-definite matrix and V is positive-definite.

Define the optimal stage cost ℓ∗t− for the reference trajectory

(x(t), u(t)) and the optimal solution (x∗, u∗) applied at a

hybrid transition at time t− as

ℓ∗t− = ℓt−(x
∗(t−), u∗(t−)) =

1

2
(x∗(t−)− x(t−))TQt−(x

∗(t−)− x(t−))

+
1

2
(u∗(t−)− u(t−))TVt−(u

∗(t−)− u(t−)) (144)

where Qt− and Vt− are the quadratic penalty on state and

input respectively at time t−. Define the current state to be x̃
and the difference with the optimal solution to be

δx∗(t−) := x∗(t−)− x̃(t−) (145)

such that (144) becomes

ℓ∗t− =
1

2
(δx∗)TQt−(δx

∗)

+
1

2
(u∗(t−)− u(t−))TVt−(u

∗(t−)− u(t−)) (146)

Because the transition is instantaneous, assume that the input

has no effect u(t−) = u∗(t−) and simplify the optimal stage

cost as

ℓ∗t− =
1

2
(δx∗)TQt−(δx

∗) (147)

The Hamiltonian [131, Ch. 2.4] for the hybrid transition is

Ht− := H(x∗(t−), u∗(t−), p∗(t+))

:= ℓ∗t− +RT
(I,J)(t

−, x∗(t−))p∗(t+) (148)

where p∗(t+) is the optimal costate [131, Ch. 3.4]. Using the

expansion (10) about R(I,J)(t
−, x̃(t−) + δx∗(t−)) :

R(I,J)(t
−, x∗(t−)) = R(I,J)(t

−, x̃(t−)) + Ξδx∗(t−) + h.o.t.

(149)

where Ξ = Ξ(I,J)(t
−, x̃(t−)). The Hamiltonian for the hybrid

transition is then

(150)
Ht− =

1

2
(δx∗(t−))TQt−δx

∗(t−)+
(
R(I,J)(t

−, x̃(t−))

+ Ξδx∗(t−) + h.o.t.
)T

p∗(t+)

Using Pontryagin’s Maximum principle [131, Ch. 4.1], derive

the optimal state update and costate update:

x∗(t+) =Dp∗Ht− = R(I,J)(t
−, x̃(t−)) + Ξδx∗(t−) (151)



p∗(t−) =Dx∗Ht− = Qt−δx
∗ + ΞT p∗(t+) + h.o.t. (152)

Given the standard costate guess of p(t+) = P (t+)δx(t+)
[132], we can derive the hybrid update for the matrix P ,

which defines the boundary conditions for the optimal control

problem:

P (t−)δx∗(t−) = Qt−δx
∗(t−) + ΞTP (t+)δx∗(t+) + h.o.t.

(153)

Substitute δx∗(t+) = Ξδx∗(t−) + h.o.t.:

P (t−)δx∗(t−) = Qt−δx
∗(t−)

+ ΞTP (t+)(Ξδx∗(t−) + h.o.t.) + h.o.t.

(154)

The update for P (t−) is recursive and cannot be computed

as is. However, when higher order terms are small, we cancel

δx∗(t−) from both sides and write the Bellman update for

P (t−):

P (t−)δx∗(t−) ≈Qt−δx
∗(t−) + ΞTP (t+)Ξδx∗(t−) (155)

P (t−) ≈Qt− + ΞTP (t+)Ξ (156)
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[24] S. Coombes, Y. M. Lai, M. Şayli, and R. Thul, “Networks of piecewise
linear neural mass models,” European Journal of Applied Mathematics,
vol. 29, no. 5, pp. 869–890, 2018.

[25] Y. M. Lai, R. Thul, and S. Coombes, “Analysis of networks where
discontinuities and nonsmooth dynamics collide: Understanding syn-
chrony,” The European Physical Journal Special Topics, vol. 227,
no. 10, pp. 1251–1265, 2018.

[26] R. I. Leine and D. H. van Campen, “Fold bifurcations in discontinuous
systems,” in International Design Engineering Technical Conferences

and Computers and Information in Engineering Conference, vol.
19777. American Society of Mechanical Engineers, 1999, pp. 1423–
1429.

[27] R. Leine and D. Van Campen, “Discontinuous bifurcations of periodic
solutions,” Mathematical and Computer Modelling, vol. 36, no. 3, pp.
259–273, 2002.

[28] ——, “Bifurcation phenomena in non-smooth dynamical systems,”
European Journal of Mechanics-A/Solids, vol. 25, no. 4, pp. 595–616,
2006.

[29] M. Di Bernardo, C. J. Budd, A. R. Champneys et al., “Bifurcations
in nonsmooth dynamical systems,” SIAM Review, vol. 50, no. 4, pp.
629–701, 2008.

[30] P. Kowalczyk and P. Glendinning, “Micro-chaos in relay feedback sys-
tems with bang-bang control and digital sampling,” IFAC Proceedings

Volumes, vol. 44, no. 1, pp. 13 305–13 310, 2011.

[31] I. A. Hiskens and M. A. Pai, “Trajectory sensitivity analysis of hybrid
systems,” IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, vol. 47, no. 2, pp. 204–220, 2000.

[32] A. P. Ivanov, “Stability of periodic motions with impacts,” in Impacts

in Mechanical Systems. Springer, 2000, pp. 145–187.

[33] S. Maity, D. Giaouris, S. Banerjee et al., “Control of bifurcations
in power electronic DC-DC converters through manipulation of the
saltation matrix,” in Proc. PhysCon, 2007, pp. 1–5.

[34] F. Bizzarri, A. Brambilla, S. Perticaroli, and G. S. Gajani, “Noise in a
phase-quadrature pulsed energy restore oscillator,” in IEEE European

Conference on Circuit Theory and Design, 2011, pp. 465–468.

[35] D. Giaouris, S. Banerjee, O. Imrayed et al., “Complex interaction
between tori and onset of three-frequency quasi-periodicity in a current
mode controlled boost converter,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 59, no. 1, pp. 207–214, 2011.

[36] K. Chakrabarty and U. Kar, “Control of bifurcation of PWM controlled
DC drives,” in IEEE International Conference on Power Electronics,

Drives and Energy Systems, 2012, pp. 1–8.

[37] F. Bizzarri, A. Brambilla, and G. Storti Gajani, “Extension of the vari-
ational equation to analog/digital circuits: Numerical and experimental
validation,” International Journal of Circuit Theory and Applications,
vol. 41, no. 7, pp. 743–752, 2013.

[38] M. Biggio, F. Bizzarri, A. Brambilla et al., “Reliable and efficient
phase noise simulation of mixed-mode integer-N phase-locked loops,”
in IEEE European Conference on Circuit Theory and Design, 2013,
pp. 1–4.



[39] R. Mallik, A. M. Pace, S. A. Burden, and B. Johnson, “Accurate small–
signal discrete–time model of dual active bridge using saltation matri-
ces,” in IEEE Energy Conversion Congress and Exposition (ECCE),
2020, pp. 6312–6317.

[40] S. Banerjee, J. Ing, E. Pavlovskaia et al., “Invisible grazings and
dangerous bifurcations in impacting systems: The problem of narrow-
band chaos,” Physical Review E, vol. 79, p. 037201, Mar 2009.

[41] S. Revzen and M. Kvalheim, “Data driven models of legged locomo-
tion,” in Micro-and Nanotechnology Sensors, Systems, and Applications

VII, vol. 9467. SPIE, 2015, pp. 315–322.

[42] F. Bizzarri, A. Colombo, F. Dercole, and G. S. Gajani, “Necessary
and sufficient conditions for the noninvertibility of fundamental solu-
tion matrices of a discontinuous system,” SIAM Journal on Applied

Dynamical Systems, vol. 15, no. 1, pp. 84–105, 2016.

[43] N. Suda and S. Banerjee, “Why does narrow band chaos in impact os-
cillators disappear over a range of frequencies?” Nonlinear Dynamics,
vol. 86, no. 3, pp. 2017–2022, Nov 2016.

[44] H. Jiang, A. S. Chong, Y. Ueda, and M. Wiercigroch, “Grazing-induced
bifurcations in impact oscillators with elastic and rigid constraints,”
International Journal of Mechanical Sciences, vol. 127, pp. 204–214,
2017.

[45] R. Chawla, A. Rounak, and V. Pakrashi, “Stability analysis of hy-
brid systems with higher order transverse discontinuity mapping,”
arXiv:2203.13222, 2022.

[46] P. I. Barton, R. J. Allgor, W. F. Feehery, and S. Galán, “Dynamic
optimization in a discontinuous world,” Industrial and Engineering

Chemistry Research, 1998.

[47] F. Bizzarri, A. Brambilla, and G. Storti Gajani, “Lyapunov exponents
computation for hybrid neurons,” Journal of Computational Neuro-

science, vol. 35, no. 2, pp. 201–212, 2013.

[48] S. Nobukawa, H. Nishimura, T. Yamanishi, and J.-Q. Liu, “Chaotic
states induced by resetting process in Izhikevich neuron model,”
Journal of Artificial Intelligence and Soft Computing Research, vol. 5,
2015.

[49] S. Nobukawa, H. Nishimura, and T. Yamanishi, “Chaotic resonance
in typical routes to chaos in the Izhikevich neuron model,” Scientific

Reports, vol. 7, no. 1, pp. 1–9, 2017.

[50] Y. Park, K. M. Shaw, H. J. Chiel, and P. J. Thomas, “The infinitesimal
phase response curves of oscillators in piecewise smooth dynamical
systems,” European Journal of Applied Mathematics, vol. 29, no. 5,
pp. 905–940, 2018.

[51] I. Lopez, J. Busturia, and H. Nijmeijer, “Energy dissipation of a friction
damper,” Journal of Sound and Vibration, vol. 278, no. 3, pp. 539–561,
2004.

[52] M. Bernardo, C. Budd, A. R. Champneys, and P. Kowalczyk,
Piecewise-Smooth Dynamical Systems: Theory and Applications.
Springer Science & Business Media, 2008, vol. 163.
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