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ABSTRACT

Background and Context. The importance of CS to 21st-century

life and work has made it important to �nd ways to integrate learn-

ing CS and programming into the regular school day. However,

learning CS is di�cult, so teachers integrating programming need

e�ective strategies to sca�old the learning. In this study, we analyze

students’ log data and apply a novel technique to compare Parsons

Problems with from-scratch programming in a middle school sci-

ence class.

Objectives. Our research questions aimed to investigate whether,

how, and when Parsons Problems improve learning e�ciency for a

programming exercise within science, utilizing log data analysis

and an automated progress detector (SPD).

Method. We conducted a study on 199 students in a 6th-grade

science course, divided into two groups: one engaged with Parsons

problems, and the other, a control group, worked on the same pro-

gramming task without sca�olding. Then, we analyzed di�erences

in performance and coding characteristics between the groups. We

also adopted an innovative application of SPD to gain a better un-

derstanding of how and when Parsons problems helped students

make more progress on the coding task, with an objective measure

of �nal student grades.

Findings. The experimental group, with sca�olding through Par-

sons Problems, achieved signi�cantly higher grades, spent signif-

icantly less time programming, and toggled less between block

category tabs. Interestingly, they ran their code more frequently

compared to the control group. The SPD analysis revealed that the

experimental group made signi�cantly higher progress in all four

quartiles of their coding time.

Implications. Our �ndings suggest that Parsons problems can

improve learning e�ciency by enhancing novices’ learning expe-

rience without negatively impacting their performance or grades,
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which is especially important when programming is integrated into

K12 courses.
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1 INTRODUCTION

Because of its importance to 21st-century life and work, computer

science (CS) has become increasingly common in K-12 schools in

non-CS classes [55]. At the secondary level, there has been increased

attention on strategies for students learning CS concepts, particu-

larly in teaching programming and algorithmic thinking [25, 45].

Several research e�orts have studied pedagogical techniques and

curriculum design for teaching programming in non-CS classes

[5, 33, 41]. Learning programming during non-CS classes poses

unique challenges, including courses’ constrained time, varying

levels of teacher pro�ciency, diverse student experience levels, and

the inherent complexity of programming tasks and environments.

Sca�olding is one approach to help students learn more in a

shorter amount of time by providing support for students as they

learn. Sca�olding can take many forms, but in the context of pro-

gramming, it often looks like starter code and Parsons problems

[42]. This provides students with a subset or all of the correct code,

albeit in a disorganized order [50], before they begin working on a

project. Prior research has shown that this form of sca�olding can

reduce cognitive load [16, 73]. The end result of reducing cognitive

load is similar (or improved) performance but with less time spent

on tasks [73].
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There are a number of strategies for evaluating sca�olding’s

e�ectiveness, ranging from comparing assessment scores to timing

task completion rates [59, 65]. However, assessing an intervention

in an integrated programming lesson can be di�cult for teachers

and may harm student learning when some students have sca�old-

ing and others do not. One approach to address this gap is analyzing

students’ coding log data or trace logs. Trace log analysis can help

us understand the e�ectiveness of an intervention method at each

step of a student’s work, potentially pinpointing where the method

has the most e�ect on a student. It can also de�ne the rate at which

a student attains progress or proximity to correctness, as well as

observe characteristics in programming that may be associated

with certain traits. For instance, the number of times a student runs

their program may be associated with debugging or tinkering [12].

Yet despite trace log analysis’s promise for understanding exactly

how students progress through their programming, this strategy is

still relatively novel.

In this study, we explore the in�uence of sca�olding on students’

programming skills during integrated classroom programming ac-

tivities, contributing to the growing body of research on sca�olding,

and speci�cally Parsons problems, for secondary students. Speci�-

cally, we compare the outcomes between two groups: one provided

with sca�olding through Parsons problems, and another without

such support. Our focus is on sixth-grade students engaging in

programming through a science class activity in a block-based

programming environment (BBPE). We aim to look at whether,

how, and when Parsons problems improve learning e�ciency for

programming exercises, using three speci�c research questions:

• RQ1:How do students’ programming behaviors changewith

and without sca�olding through Parsons problems?

• RQ2: How do Parsons problems impact students’ scores on

the speci�c programming activity?

• RQ3: How can an automatic progress detector assess the

impact of Parsons problems on students’ programming per-

formance over time?

The research questions re�ect three techniques that constitute

a novel, triangulated method to gain a better understanding of

sca�olding impacts on learning by looking at what students do

(RQ1), their �nal code (RQ2), and their progress along the way

(RQ3).

2 RELATED WORKS

2.1 Sca�olding in Programming

Sca�olding in education was initially de�ned by Wood, Bruner,

and Ross, with emphasis on how teachers and tutors help students

learn by providing support as they acquire skills and master tasks

[69]. Sca�olding can trace at least some of its roots to Vygotsky’s

zone of proximal development, which states that there is a space

between what a student knows and what they can possibly learn,

which may be supported externally through aid [9]. In recent years,

rede�nitions of sca�olding by Holton and Clarke have emphasized

that sca�olding is an “act of teaching that i) supports the immediate

construction of knowledge by the learner; and (ii) provides the

basis for the future independent learning of the individual” [29];

this situates metacognition within the sca�olding framework, and

more strongly connects learning theories like the zone of proximal

development to the sca�olding process. Sca�olding has been shown

to improve learning outcomes at the application level but has less

impact on the principles level [3, 48]. In other words, sca�olding

may not improve how much a student learns but rather how well

they can carry out learned tasks.

Programming is challenging for many learners [22, 30] for vari-

ous reasons, such as the high distance between theory and practice

and the intense cognitive load [30]. As a result, sca�olding can be

very useful for supporting programming learners [44]. A myriad

of papers have mentioned the impacts of sca�olding on reducing

cognitive load and enhancing engagement [6, 35, 36], which have

been connected to improved learning outcomes [26, 37]. Some re-

search also suggests that creating sca�olding can be challenging

for teachers. Simons, Klein, and Brush found in a case study of

a sixth-grade teacher that creating resources for problem-based

learning was frustrating [60]; Ertmer and Simons followed this up

with a study on how teachers themselves can be sca�olded with

regard to implementing problem-based learning in their classrooms

[21]. It seems reasonable, then, that providing existing sca�olding

systems that have been assessed for e�cacy can be bene�cial for

instructors.

Prior research has shown that there are both bene�ts and chal-

lenges in sca�olding for programming contexts speci�cally. Basu et

al. identi�ed several areas where sca�olding could improve learning

in programming, including domain knowledge, modularity, and

even reusing code [2]. Sca�olding can be bene�cial in improving

pair-programming [71], self-regulation [40], and metacognition

[61], the latter two of which constitute cognitive control, which has

been found to be signi�cantly tied to improved learning outcomes

[52]. It has also been tied to students spending more time on pro-

gramming, as they then spend less time setting up to program [34].

In a BBP (block-based programming) game context, Tikva and Tam-

bouris found that giving hints to students who were programming

resulted in improved learning outcomes for the sca�olded popula-

tion [64]. Zhi et al. created a sca�olding system to provide sca�olded

self-explanation prompts and found that while the system did not

impact students’ learning, it did reduce students’ intrinsic cognitive

load and slightly reduce the amount of time they had to spend on

tasks [73]. Ultimately, sca�olding can play a critical role in pro-

gramming contexts by reducing the di�culties students face and

improving their learning outcomes.

2.2 Parsons Problems for Sca�olding

Sca�olding the programming process appears in many di�erent

forms. Lytle et al. de�ne several categories of sca�olding in BBP,

including worked examples, incomplete code, buggy code, and

Parsons problems; their �ndings suggest that sca�olding coding

activities can be particularly helpful for novice programmers [42].

Parsons problems, also known as Parsons puzzles, were �rst intro-

duced by Parsons and Haden in 2006 [51]. Their idea, which was

employed by many instructors and researchers afterward, was to

present students with a set of code fragments, which students had

to choose from and arrange to build the �nal solution.

Ericson et al., in a systematic literature review, note that Par-

sons problems, by exposing students to worked examples (i.e., an
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expert’s solution to a problem [8]), reduce cognitive load for stu-

dents, allowing for students (especially novices) to learn with less

e�ort [17]. A study by Ericson et al. in 2017 con�rms that solving

Parsons problems takes less time than other code-related exercises

(such as �xing code errors), while also not negatively impacting

students’ learning performances or retention of knowledge [19].

Du, Luxton-Reilly, and Denny identi�ed in another systematic liter-

ature review that Parsons problems, in general, have been used to

identify student di�culties, provide immediate feedback, improve

student engagement, and reduce cognitive load [14]. Hou, Ericson,

and Wang found that Parsons problems helped to bene�t students

with low self-e�cacy, making them more likely to complete a given

task than if provided no sca�olding [31]. Parsons problems have

also been correlated with improved code writing scores [10].

However, Parsons problems may not be the end-all of learning

programming; for instance, some evidence points to Parsons prob-

lems potentially being solved by students using syntactic heuristics,

allowing them to solve the problems without actually understand-

ing the solutions [68]. Some, including Ericson et al. in 2023, have

called for an increase in replication studies to corroborate exist-

ing �ndings and create better variations of Parsons problems to

address learning concerns [20]. We note here that most research

on Parsons problems has been conducted at the post-secondary

level and with text-based languages, with less research focused

on Parsons problems’ e�cacy at the secondary level or within the

context of block-based programming. Zhi et al. studied Parsons

problems in the BBP language, Snap!, and found that students in a

CS0 course (i.e., novices) spent half as much time to complete a Par-

sons problem than an equivalent programming problem, while also

demonstrating similar performance on subsequent assignments

[72]; in other words, Parsons problems were seemingly e�ective in

a BBP context. Harms, Chen, and Kelleher found that, for students

aged 10-15 working in a BBPE, distractors in Parsons problems

(i.e., extra unrelated statements) increased cognitive load, which

decreased students’ completion rates and increased the time they

spent on the tasks [27].

2.3 Analysis of Trace Log Data

Log analysis involves examining trace log data (i.e., records of

sequences of events or actions within a system) [1]. Previous stud-

ies have utilized log analysis in order to gain insights into pro-

gramming behaviors and processes, like predicting student perfor-

mance [23, 47, 67], potential dropouts [49], student self-perception

[24], achievement goals [7], and novices’ programming strategies

[39, 66, 70]. In one study to understand novice programming behav-

iors, Dong et al. de�ned and classi�ed students’ tinkering behaviors

in block-based programming assignments by analyzing students’

coding traces to determine patterns representing di�erent forms of

tinkering [12]. Kong and Pollock [38] have created a tool that logs

students’ interactions in the programming environment of the BBP

language Scratch. They analyzed students’ logs both manually and

using sequential pattern mining algorithms to identify students’

tinkering behaviors and di�erent characteristics of students’ �nal

code.

The analysis of trace logs can be bene�cial in assessing the ef-

fects of sca�olding interventions, particularly when triangulated

with other quantitative and qualitative techniques. Dever et al. used

log �les to understand the impact of sca�olding (as done through a

game-based learning environment) on self-regulated learning [11].

Jennings and Muldner extracted data from log �les (e.g., number of

attempts per problem, problem time, etc.) in order to assess the im-

pacts of a new sca�olding system for students learning how to code

trace [32]. Siadaty, Gasevic, and Hatala found that a trace-based

protocol was bene�cial in assessing the e�ects of sca�olding on self-

regulated learning processes [58]. Trace log analysis has also been

used in some studies assessing Parsons problems; Ericson, McCall,

and Cunningham used log �le data to demonstrate that adaptive

Parsons problems were more likely to be correctly solved than non-

adaptive Parsons problems [15], although the log analysis in this

studywas relegated to assessing the �nal result of programming and

not the entire programming process (i.e., whether the solution was

correct, rather than any elements of the process of programming).

These studies suggest that log data, either alone or triangulated

against other sources of data like pre- and post-intervention tests,

can be an e�ective source of data for quantitatively evaluating the

impacts and e�ectiveness of sca�olding.

The use of this data requires an environment that actually col-

lects this data. For this paper and its context, we focus here on BBP

environments. As mentioned earlier, Kong and Pollock developed

such a tool for Scratch, but this is not the only BBP language that

can have its trace logs evaluated. Price et al. introduced iSnap, an ex-

tension to the Snap! programming environment that, among other

features, collects programming logs [53]; this includes records of

a person running their code or dragging out a block. Dong et al.

proposed a set of data-driven detectors that, when provided with

logs of students’ programs, could automatically de�ne thresholds

for progress and struggle during programming [13]. In this study,

they evaluated these detectors via expert review, comparing when

the detectors noted a period of struggle against when an expert

would intervene. Tabarsi et al. further evaluated this system by com-

paring the de�ned struggle and progress moments against novice

programmers’ think-aloud data [62]. They found that the detectors

had a high accuracy rate in predicting progression moments. We

consequently conclude that trace logs can be used to understand

students’ programming behaviors and performance (for example,

by quantifying students’ progress so as to compare the results of

interventions), as we do below.

3 METHODOLOGY

In this section, we �rst introduce the participants and the context in

which the study was conducted. Next, we outline the steps taken to

prepare our data for analysis. Subsequently, we elaborate on the use

of SPD to identify moments of struggle and progress. Finally, we

delve into the data analysis phase, discussing the various metrics

employed.

3.1 Participants and Context

For this study, we analyzed the programming log data of 199 stu-

dents enrolled in a middle school in the southeastern United States.1

The students programmed in a BBPE called Cellular [33]. Cellular

extends the capabilities of Snap! (which itself is an extension of

1The study was covered by IRB 18022 at NC State University.
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the programming language Scratch [28]) for modeling agent-based

scenarios within a grid of cells [42]. This data was collected on the

last day of a four-day computational thinking lesson, “Food Webs,”

within �ve sixth-grade science classes.

Given that participant demographics were not gathered when

the study was conducted, we present the demographic pro�le of

the school in Table 1. This is based on the assumption that the

classroom demographics mirror those of the school.

Table 1: Demographic Pro�le of the School Population for

the 2019-2020 Academic Year (The Basis for Our Sample Pop-

ulation)

Demographic Category Count Percentage

Gender
Female 371 44.4%

Male 464 55.6%

Race

American Indian 0 0.0%

Asian 52 6.2%

Black 173 20.7%

Hispanic 188 22.5 %

Paci�c Islander 1 0.1%

More than One Race 41 4.9 %

White 380 45.5%

The activity followed a multi-day paradigm in which students

worked with and developed code in the BBPE. On the �rst day,

students learned Food Webs terminology and components and

practiced writing pseudocode for Food Webs agents’ behaviors,

such as eating and moving. On the second day, students were given

code that already programmed sunlight’s e�ect on the “Plant” agent

as a producer in Cellular. The third day shifted focus to coding the

“Bunny” agent as a primary consumer. The �nal day culminated

with students coding the “Fox” agent as a secondary consumer and

experimenting with altering their code to observe the changes in

the simulation. Our study focuses on the fourth day, as it had a

uniform pedagogical structure for all students.

This study employed a between-subjects, controlled quasi-experi-

mental design. It was conducted across �ve classes on the same

day, categorizing them into experimental (three classes) and control

(two classes) groups. Speci�cally, the experimental classes were

presented with Parsons problems, and the control classes proceeded

without this intervention. No demographic data was used in creat-

ing the splits in order to ensure balance.

As shown in Figure 2, all students were given a starter code for

the Fox agent to place the agent on the screen and center it within

a particular cell. The students in the control group did not receive

any further sca�olding for the Fox implementation. The students

in the experimental group were given all the blocks they needed

to build the Fox agent code to accomplish the assigned tasks, a

technique often referred to as a Parsons Problem, as discussed in

Section 2.2. The �nal Fox agent code solution for both groups is

given in Figure 1. The only di�erence was in the sca�olding they

did (experimental) or did not (control) receive in the starter code.

As illustrated in Figure 1, students were asked to start with

making a local variable named “Energy” for tracking the energy

of the Fox agent. Subsequently, students had to add a move block

inside a forever loop to mimic the movement of a Fox roaming

through a biome. They were also supposed to decrease the Fox’s

energy after each move to replicate energy loss. Finally, they were

supposed to implement three conditions: 1) they had to de�ne a

condition for times when the Fox energy was low, and the fox would

then eat an animal to regain energy; 2) the Fox was supposed to die

if the energy value became negative; and 3) after a certain amount

of time had passed, the Fox would ’reproduce.’ The abstraction of

energy and the translation of its �ow into an algorithm are both

computational thinking concepts. Of 199 participants, we had 106

working on the experimental assignment and 93 on the control.

The starter code for both groups and the di�erence between them

is highlighted in Figure 2.

Figure 1: Fox’s Final Code with Assigned Tasks for Students

3.2 Data Preparation

Cellular utilizes the iSnap trace log system, developed by Price et

al. [53], to log student activities during block-based programming!.

The purpose of this trace log system was to be able to record the

actions students took within the programming environment and

to be able to use the trace log to create a series of snapshots about

student code and generate hints for future students writing code

to solve the same programming problem. As part of this process, a

similarity metric was developed to compare student code to existing

previous correct student solutions, and that was then extended by

Dong et al. to create the SPD [13], which we discuss in more detail

in section 3.3.

Following initial data cleaning steps on the log data, we extracted

each student’s last code entry due to the absence of separate student

submissions. Afterward, we made minor adjustments to make the

Cellular submissions compatible with SPD. Finally, one of the re-

searchers de�ned the rubric given in Table 2 and scored all students’

programs. The rubric items correspond to the correct construction

of a program. Overall, the rubric is a performance metric that mea-

sures the extent to which students were able to implement the

algorithm for energy �ow into their own block-based programs.

Consequently, we primarily measured computational thinking out-

comes. When the scoring was completed, we combined the log data

and corresponding scores into a dataset.

3.3 SPD

All students completed their activity in Cellular, which logs student

interactions (e.g., creating a project, adding a sprite, or clicking on

the run button). The rubric scores and log data were input into
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Figure 2: Starter Code for Fox Agent: The pink box (left) rep-

resents the starter code for all students, and the red dashed

box (right) features the Parsons Problem exclusive to the

experimental group.

Table 2: Rubric Items for Grading the Activity

# Rubric Items

1 Move Block is inside forever

2 Energy value is set outside Loop

3 Energy value is decreased inside Loop

4 If Energy < Positive Eat Animal and Gain Positive Energy

5 Code related to rubric #4 is in correct location

6 If Energy < 0 Die

7 Code related to rubric #6 is in correct location

8 If N Days have Passed, Fox agent should Reproduce

9 Code related to rubric #8 is in the correct location

the SPD2. SPD o�ers several options, including SourceCheck [54],

Similarity Score, and tree edit distance [74], to compare student log

data with correct, �nal solutions and measure their progress.

A key novelty of SPD is its adaptation of SourceCheck’s mapping

cost to the similarity score to �nd the closest solution and break

students’ coding time into struggle or progress periods. To achieve

this, SPD measures how the proximity of the student’s code to the

nearest correct submission improves over time. This is important for

2SPD was originally developed by Dong et al. [13] to be used as an indicator for when
students programming in Snap! might need an intervention based on their progress.

understanding a student’s coding path, as it allows for quantifying

the proximity to correctness after each code edit. However, our log

data was not fully compatible with SPD’s original con�guration and

similarity score due to the di�erences between Snap! and Cellular.

We examined several metrics and found tree edit distance ef-

fective in �nding the closest solution for Cellular code. Tree edit

distance is a measure of the minimum number of node insertions,

deletions, and relabelings required to transform one tree into the

other [63, 74]. Inspired by Dong et al. de�nition of absolute progress

[13], we de�ne a metric named “minimum distance”<(C), which

quanti�es the shortest distance attained from the closest correct

solution up to any given point. Given 3 (C) as measured tree edit

distance at each logged action time C ,<(C) is computed as

<(C) = min(<(C − 1), 3 (C)) (1)

where 3 (1) = <(1), serving as the baseline distance for the sub-

sequent comparisons. For ease of reference, we will refer to this

metric as the “SPD score” throughout the remainder of the paper.

Also, while the speci�c value is not of importance in this study, it

is essential to know a lower number indicates less distance from a

correct solution within this SPD con�guration.

SPD can leverage correct code implementations from both stu-

dents’ solutions and instructor-crafted examples. However, the use

of a large quantity of student-derived work is preferable, as it o�ers

a closer representation of the diverse strategies students might

employ. Since we did not have access to implementations from pre-

vious students, we evaluated the �nal state of our current students’

code to measure their progress.

3.4 Data Analysis

In the initial phase of our analysis, we used the SPD score in each

student’s log data to determine whether they were working on

the Parsons Problem or not. Then, we de�ned a list of per-student

metrics to gain insight into each student’s coding path, enabling us

to make comparisons as follows:

• Score. The rubric-based score for each student.

• Active time. Duration of a student’s coding time, excluding

periods of inactivity lasting more than one minute. For pe-

riods of inactivity longer than one minute, only the �rst 60

seconds are counted as active time.

• Idle time. The sum of a student’s idle durations exceeding

one minute but excluding gaps of more than 5 minutes.

• Number of runs. The number of times the student ran their

program.

• Number of consecutive runs. The number of times the student

ran their program consecutively two times or more without

any action in between.

• Number of category changes. The number of instances the

student switched between block categories.

• Number of consecutive category changes. The frequency of

the two or more consecutive block category switches by a

student without any action in between.

• SPD Score. A metric indicating the minimum code tree edit

distance between the student’s code and the closest correct

solution [13, 54], at each code log generation.
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We conducted the Shapiro-Wilk test to assess the normality of

the distribution of all metrics for both experimental and control

groups independently. All but one of the metrics were non-normal

in both conditions, while the number of runs was normal for just

one. Consequently, the Mann-Whitney U test, suitable for analyzing

non-normal distributions, was applied across all comparisons to

determine the signi�cance of di�erences between the study’s two

independent groups. We ran this test with a two-tailed approach

to identify any signi�cant di�erences, irrespective of direction.

Furthermore, since we conducted a number of tests, we performed

Benjamini-Hochberg correction [4] with a signi�cance level (U)

of 0.05 for tests of signi�cance. The results of comparisons are

presented in Table 3.

We demonstrated all metrics (except for score and time) at four

distinct phases throughout each student’s active programming pe-

riod: 1) at the �rst quartile, 2) at the midpoint, 3) at the third quartile,

and 4) upon completion. By presenting each metric by time quar-

tiles, we aimed to characterize students’ coding behavior (what

they did within each group) over the course of their programming.

To avoid in�ating the risk of false discoveries from excessive com-

parisons, we did not test the statistical signi�cance of each metric

across time quartiles for all metrics. However, we made an excep-

tion for the SPD score, as we believed that verifying the trend of

students’ progress was essential for assessing the e�ectiveness of

the Parsons problem throughout the programming time.

4 RESULTS

This section describes the results corresponding to metrics speci�ed

in Section 3.4. Table 3 provides a comparison of each metric for the

experimental and control groups by the average, median, and the

related research question.

Active Time. The Mann-Whitney U test revealed that active

time di�erences were statistically signi�cant in the two groups.

(U = 6402.5, p = 5.12e-4). As demonstrated in Table 3, the control

group spent a median of 12.72 minutes, and an average of 12.47

minutes of active time, while the control group spent a median of

13.92 and an average of 13.75 minutes. These results suggest that

the Parsons Problem signi�cantly a�ects active programming time

among students.

Idle Time. The di�erence between the two groups’ distribution

of idle times was not statistically signi�cant (U = 4302.5, p = 0.12).

The experimental group had an average idle time of 2.52 and a me-

dian of 1.98 minutes, while the control group had an average of 2.03

and a median of 1.67 minutes, which shows a minimal di�erence in

students’ tendency to disengage among the two groups.

Number of Runs.TheMann-Whitney U test results suggest that

the di�erence between the experimental and control groups was

signi�cant (U = 3292.5, p = 1.14e-4). According to the data presented

in Table 3, the experimental group had an average of 7.92 runs and

a median of 8 runs, while the control group had an average of 5.6

and a median of 5. Further investigation of the frequency at which

students ran their code across each programming time quartile,

as shown in Figure 3, indicated nuanced di�erences between the

coding paths of the two groups.

In the initial three quartiles, the experimental group had a higher

frequency of runs compared to the control group, which may indi-

cate more testing on the experimental group side. However, this

trend reverses in the �nal quartile, where the experimental group’s

frequency of code execution diminishes, falling below that of the

control group.

The control group demonstrated a persistent increase in the

number of runs from the �rst through the last quartiles, with a steep

rise from the second to the third quartile. This surge contrasts with

the experimental group’s most notable increase, which occurred

earlier, from the �rst to the second quartile. These �ndings outline

a divergent trajectory in the programming behaviors of the two

groups.
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Figure 3: Average Number of Runs Across Time Quartiles by

Group

Number of Consecutive Runs. Our test demonstrated the

signi�cance of the di�erence between the experimental and control

groups for this metric (U = 4111, p = 0.03). The experimental group

ran their code two times or more, with an average of 1.05, while the

control group did so with an average of 0.71 times. The medians for

the two groups were also distinct: 1 for the experimental group and

0 for the control group. A closer examination of consecutive runs

within each quartile of programming time in Figure 4 reinforces

the results associated with the “Number of Runs” metric.

While the overall incidence of consecutive runs was inherently

lower compared to the number of runs, the trend almost mirrors

that of the previously discussed metric with one notable excep-

tion. In the second quartile, the average number of consecutive

runs demonstrated by the control group decreased. This di�erence

contrasts with the control group’s consistent rise observed in the

number of runs, which also resulted in a greater disparity between

the two groups during this quartile.

Number of Category Changes. The di�erence between the

number of category changes in the experimental group and the

control group was statistically signi�cant (U = 8984, p = 1.41e-22).

As shown in Table 3, the average number of category changes in the

experimental group, 6.9, was much lower than in the control group,
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Metric Group Mean Median Mann-Whitney U Corrected P-Value

Research Question 1: Students’ Programming Behaviors With and Without Sca�olding through Parsons Problems

Active Time (minutes)
E 12.47 12.72

6402.5 5.12e-4
C 13.75 13.92

Idle Time (minutes)
E 2.52 1.98

4302.5 0.12
C 2.03 1.67

# of Runs
E 7.92 8.0

3292.5 1.14e-4
C 5.6 5.0

# of Consecutive Runs
E 1.05 1.0

4111 0.03
C 0.71 0

# of Category Changes
E 6.9 4

8984 1.41e-22
C 24.27 22

# of Consecutive Category Changes
E 1.19 1.0

8363 4.01e-17
C 3.88 4

Research Question 2: Parsons Problems’ Impact on Students’ Scores

Score
E 78% 89%

3791.5 5.5e-3
C 64% 78%

Table 3: Summary of Descriptive Statistics and Statistical Test for Metrics by Group
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Figure 4: Average Number of Consecutive Runs Across Time

Quartiles by Group

24.27. This di�erence is further re�ected in the median values,

where the experimental group had a median of 4 category changes,

contrasting sharply with the median of 22 in the control group.

To further analyze this substantial di�erence, we drew the box

plot of category change, illustrated in Figure 5(a). This plot demon-

strates a noticeably wider spread of clicking on category tabs within

the control group, as evidenced by the interquartile range (IQR) of

16, which suggests a broader variance in novices’ patterns of chang-

ing block categories. Contrarily, the experimental group exhibited a

narrow spread (IQR = 7.0), suggesting a more homogeneous pattern

of category changing among novices on the Parsons problem.

Looking into the diagram of the average number of category

changes within each time quartile in Figure 5(b) reveals di�erent

patterns among the two groups. While the numbers in the control

group are constantly at least two times higher across all quartiles,

their busiest period seems to be the second quartile, which is fol-

lowed by two lower values in the subsequent quartiles. In contrast,

the experimental group exhibits a decrease in this behavior from

the beginning to the end.

In conjunction with the results associated with the number of

runs, we can see that while running seems to be the predominant

action of the experimental group from the beginning through the

third quartile, the control group is less engaged with running in

the �rst two quartiles and is most changing block categories.

Number of Consecutive Category Changes. The distribution

of consecutive category changes in the experimental group had a

statistically signi�cant (U = 8363, p = 4.01e-17) di�erence from the

control group. Table 3 demonstrates that the average number of two

or more consecutive block category changes without intermediate

actions in the experimental group, 1.19, was lower than that of

the control group, 3.88, although the contrast is not as stark as

the previous metric. The median of 1 in the experimental group

compared to 4 in the control group further con�rms students’ fewer

switches between categories.

As illustrated in Figure 6, novices’ pattern of consecutive cate-

gory changing across each programming time quartile is not much

di�erent from the trend of category switching. This similarity cor-

roborates the observed di�erences in category-changing behavior

between the groups.

Score. Our test results indicated a signi�cant di�erence in the

distributions of the two groups (U = 3791.5, p = 5.5e-3). The di�erence

is re�ected in a higher average score of 78% in the experimental

group compared to 64% in the control group. Moreover, the median

score in the experimental group was 89% as opposed to 78% in the

control group, further indicating the two groups’ di�erences.

The score distribution of students in experimental and control

projects is visualized in Figure 7. Scores are divided into �ve bins

on the x-axis, and the percentage of students within each project

type is depicted on the y-axis. In the �rst four bins, the number

of students in the experimental group is lower than their other

counterparts. However, the trend reverses in the �nal score bin,
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Figure 5: Distribution of Category Changes based on Project

Type
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Figure 6: Average Number of Consecutive Category Changes

Across Time Quartiles by Group
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Figure 7: Score Distribution of Students in Experimental and

Control Groups Across Score Bins.

where over 66% of the experimental group scored 80-100%, but only

44.1% of the control group scored in this range.

SPD Score. We examined students’ distance from a correct solu-

tion at four quartiles to see if the di�erences between the experi-

mental and control groups were signi�cant. The Mann-Whitney U

test indicates that the di�erences were statistically signi�cant in all

four quartiles of time. The results of these tests are demonstrated

in Table 4.

To e�ectively illustrate students’ progress in their programming

session, Figure 8 displays a graph plotting the average SPD score of

students across eight points of their active coding. These intervals

include the four quartiles of active coding time (as highlighted by

vertical lines) and four midpoints that lie in the middle of each

quartile.

Starting the analysis from the �rst quartile, as opposed to the

onset of the programming activity, e�ectively excludes the initial

decline in distance score due to importing code. To ensure a thor-

ough understanding, the initial distance score of the control group

after importing the starter code stood at 28, in contrast to 24 for

the experimental group. As illustrated in Figure 8, the four-unit

gap between the groups grows until the second quartile and then

diminishes, ultimately resulting in the narrowest gap by the end

of the programming period. The steeper decline in the SPD score

of experimental group scores during the �rst two quartiles implies

the positive impact of the Parsons Problem on students’ progress

toward a valid solution.

5 DISCUSSION

5.1 RQ1: Students’ Programming Behaviors
With and Without Sca�olding through
Parsons Problems

As outlined in Table 3, we used six metrics to compare the coding

behaviors of students engaged with the experimental activity com-

pared to the control activity. Our analysis revealed that students in

the experimental group spent less time while also achieving better

scores on the activity. This suggests that students who received
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Metric Group Mean Median Mann-Whitney U Corrected P-Value

SPD Score in 1st Time Quartile
E 14.07 15.5

7810 3.51e-12
C 22.39 25

SPD Score in 2nd Time Quartile
E 8.42 7

6926.5 2.19e-06
C 14.83 15

SPD Score in 3rd Time Quartile
E 6.58 5

5971.5 0.01
C 10.04 8

SPD Score in 4th Time Quartile
E 4.74 0

5841 0.02
C 7.44 4

Table 4: Summary of Descriptive Statistics and Mann-Whitney U Test Results for SPD Score in Di�erent Quartiles of Active

Programming Time by Group

1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8
Total Active Time Fractions

5

10

15

20

25

M
in

im
um

 D
ist

an
ce

20.48

14.07

10.46

8.42
7.27

6.58
5.97

4.74

25.97

22.39

18.32

14.83

11.95

10.04

8.70
7.44

Experimental Group
Control Group

Figure 8: The Average of Students’ SPD Score throughout

Active Coding Time in Experimental and Control Groups.

sca�olding through Parsons problems had a more e�cient program-

ming experience. Idle time, however, was consistent across groups,

averaging 2 to 3 minutes within the session, suggesting that both

groups had similar levels of engagement with the activity.

The experimental group demonstrated a notable increase in the

number of runs, executing their code approximately 41%more times

on average compared to their control counterparts. Upon examining

traces from several students, we propose two hypotheses for the

increased number of runs. First, students in the experimental group

could construct their code by actively experimenting and trial-and-

error. Additionally, since this group’s active time was lower and

they progressed faster toward a solution, they had more chances

to play with the code, understand the scienti�c concept they were

learning, and check how code changes impacted execution. As

an example, we observed some students changing the number of

agents, a modi�cation relevant to those curious about the dynamics

of equilibrium in scenarios with an imbalance between predators

(fox) and prey (bunny). Conversely, the other group, as previously

indicated by their slower progress to the �nal solution in Figure 8,

was more engaged with the implementation process, which might

also describe the reason behind their signi�cantly higher frequency

of category changes.

The results from the consecutive runs metric revealed that this

behavior was signi�cantly more common among students in the

experimental group. A study by Dong et al. linked frequent code ex-

ecution without intermediary actions to tinkering behaviors, which

can sometimes be a sign of frustration (e.g., as a debugging behavior)

and sometimes be productive (e.g., running the code and attempt-

ing to understand what it is doing) depending on the context [12].

While we lacked a measure to assess frustration or productivity, we

believe a potential reason behind the higher number of consecutive

runs in the experimental group was that Parson’s problems had

more code present in the coding environment from the start, so

the experimental group could run the code to build an understand-

ing of what each part of the code does. On the other hand, this

also implies that the control group had to spend more time �nding

blocks and constructing the code (notably in the �rst half of their

coding time), so they could not spend time early on running the

program to understand the impact of the code blocks and how they

are ordered.

Our analysis also demonstrated signi�cant di�erences in the av-

erage number of both category-changing and consecutive category-

changing between the two groups. Prior research has referred to

category switching as a highly frequent search-related action in

BBPEs [57], and often as an indicator of struggle [56]. This is in

line with other learning outcomes perceived in the control group

and also suggests that Parsons problems can serve as a bene�cial

tool in reducing the cognitive strain of searching for blocks.

5.2 RQ2: Parsons Problems’ Impact on Students’
Scores

In the context of a science classroom where the primary goal is

fostering computational thinking, rather than teaching the partic-

ulars of the programming language, having students spend more

time re-ordering and running code is more relevant to their learn-

ing than having them �nd where the code is located. Although a

longitudinal study is needed to determine the long-term impacts,

our results suggest that sca�olding via Parsons problems can help

students achieve higher scores. This �nding, in conjunction with

faster progress toward a correct solution and spending less time

switching through code categories, corroborates prior research in-

dicating that Parsons problems e�ectively reduce cognitive load by

lowering the load on student working memory, thereby improving

learning and performance [18, 46].
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5.3 RQ3: Utilizing an Automatic Progress
Detector to Assess Parsons Problems Impact
on Programming Performance

In studies like ours, where �nal submissions are not collected, or

students may diverge from the main task to explore within the pro-

gramming environment, automated measures like code distance are

highly practical. They enable an understanding of how students’

closest approach to a correct solution evolves throughout their

programming session. However, relying upon them needs an un-

derstanding of how they actually measure students’ work. To delve

deeper into this, we conducted a detailed analysis of trace logs from

two arbitrarily selected students: one from the experimental group,

referred to as “Jill,” and another from the control group, referred to

as “Bob”.

Jill and Bob’s coding area after importing the starter code re-

sembled the code shown in Figure 2. Jill received all of the shown

blocks, and Bob received the code inside the pink box on the left.

Following the import, a notable decrease in their SPD scores was

observed as expected, declining from 397 to 24 for Jill and to 28 for

Bob. Starting from the �rst seconds of programming, we observed

Jill accurately positioning and snapping the blocks, which led to

a reduction in her SPD score. Notably, her score dropped to two

within just 66 seconds of beginning the task. As demonstrated in

Figure 9(a), her code was fully assembled at this point. The persis-

tence of a 2-unit score, as opposed to zero, may be attributed to the

order of blocks, which does not impact the code’s functionality and

was not considered in our grading rubrics.

Figure 9(b) displays Bob’s code at the same time, around 66

seconds into the task, which shows a stark contrast to Jill’s progress

at the same interval. Although complete code was not expected

from Bob at this point, the comparison underscores their completely

di�erent experiences, even in the beginning.

Throughout the session, Jill remained engaged with the task,

primarily experimenting with blocks, modifying inputs, and exe-

cuting the code, which could improve not only her programming

skills but also her grasp of the scienti�c concepts underpinning

the assignment. This is visualized in Figure 10(a), where roughly

six minutes into coding, she had added “Flower" to eat the block

and reduced its “if” condition value to 6. On the other side, at a

similar point in time, Bob is still focused on placing blocks and edit-

ing inputs, as illustrated in 10(b). While Bob’s minimum distance

gradually decreased, eventually, he reached a distance of 4 after 9.5

minutes, which was a correct implementation upon review. Over-

all, as we also observed in Figure 8, there is a remarkably sharper

reduction in the SPD scores for the experimental group compared

to the control group during the initial half of the coding period.

While a sharp decrease in SPD scores does not necessarily equate

to code correctness, it does indicate that the experimental group is

contributing code that is more likely to be correct than students in

the control group.

6 LIMITATIONS AND FUTUREWORK

Here, we identify two primary limitations in our study. First, we

relied on extracting students’ �nal code states for grading due to

the lack of submissions. This approach was not optimal, as many

(a)

(b)

Figure 9: Jill’s Code (a student from the experimental group)

and Bob’s Code (a student from the control group) Approxi-

mately One Minute After Starting to Code

students completed the activity and then modi�ed their code to ex-

plore other ideas in the programming environment. We considered

extracting code at the point of the lowest SPD score. However, it

was not feasible to objectively di�erentiate between students who

restarted their work after completion and those who did so out of

confusion. Second, we did not have the speci�c demographics of our

participants. Although we attempted to mitigate this by including

the school demographics pro�le in Table 1, we acknowledge that

these statistics may not accurately represent the demographics of

our study’s population.

As for future work, we recommend that further research replicate

our �ndings with considerations for students’ demographics and

ensure random design. As classes were assigned to groups rather

than individual students, the teacher/classroom environment may

have had some in�uence on students’ outcomes. Moreover, while

we recognize the inherent challenges in developing a �awless code

proximity detector, we see designing a Cellular-speci�c detector as

an intriguing idea worth exploring in future studies. Future work

may also focus on the role of programming sca�olding for other

non-CS classroom contexts, such as English or Social Studies.

The use of SPD-type analyses of trace log data may be used

to help visualize students’ progress in systems meant to provide

progress monitoring for teachers through dashboards or for stu-

dents through progress monitors, as in the Adaptive Immediate
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(a)

(b)

Figure 10: Jill’s Code (a student from the experimental group)

and Bob’s Code (a student from the control group) Approxi-

mately Six Minutes After Starting to Code

Feedback (AIF) system designed byMarwan et al. [43]. SPD progress

visualizations could allow teachers to see the status of the whole

class without the need for precise auto-graders, student submis-

sions of code, or unit tests. Similar metrics using trace log analysis

may help teachers more quickly assess programming assignments

if precise grades are not needed, and researchers can use them in

the assessment of pedagogical interventions.

7 CONCLUSION

In this study, we investigated the impact of Parsons problems on

students’ coding behaviors, their �nal scores in a programming

activity, and their progress toward a correct solution. We sought

to understand the impact of this sca�olding strategy by analyzing

the coding log data of 199 sixth-grade students and employing an

automated progress detection (SPD) model. Our analysis indicated

that engaging with Parsons problems improved learning outcomes

for these students.

Students working with Parsons problems spent less time on their

code and achieved relatively higher scores compared to their peers.

Moreover, we noted that Parsons problems e�ectively reduced the

need for students to alternate between di�erent categories in search

of appropriate code blocks. The reduction in search time, in con-

junction with this group’s higher number of code runs, implies that

this group had additional opportunities to delve deeper into the

assignment and explore how the code related to its execution. This

aspect is particularly important in integrated classrooms, where

the purpose of programming is to enhance the learning of the main

course topic while introducing important computational thinking

concepts.

Furthermore, we demonstrated a novel methodology to assess

and demonstrate the impacts of our intervention by utilizing the

data-driven SPD. By leveraging trace log analysis in this capacity,

we can reach a better understanding of students’ learning processes

and behaviors throughout programming, allowing researchers to

better pinpoint where interventions are most e�ective and how

they interact with learning schema.
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