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ABSTRACT which is especially important when programming is integrated into
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gramming task without scaffolding. Then, we analyzed differences
in performance and coding characteristics between the groups. We
also adopted an innovative application of SPD to gain a better un-
derstanding of how and when Parsons problems helped students

make more progress on the coding task, with an objective measure 1 INTRODUCTION

of final student grades. Because of its importance to 21st-century life and work, computer
Findings. The experimental group, with scaffolding through Par- science (CS) has become increasingly common in K-12 schools in
sons Problems, achieved significantly higher grades, spent signif- non-CS classes [55]. At the secondary level, there has been increased
icantly less time programming, and toggled less between block attention on strategies for students learning CS concepts, particu-
category tabs. Interestingly, they ran their code more frequently larly in teaching programming and algorithmic thinking [25, 45].
compared to the control group. The SPD analysis revealed that the Several research efforts have studied pedagogical techniques and
experimental group made significantly higher progress in all four curriculum design for teaching programming in non-CS classes
quartiles of their coding time. [5, 33, 41]. Learning programming during non-CS classes poses
Implications. Our findings suggest that Parsons problems can unique challenges, including courses’ constrained time, varying
improve learning efficiency by enhancing novices’ learning expe- levels of teacher proficiency, diverse student experience levels, and
rience without negatively impacting their performance or grades, the inherent complexity of programming tasks and environments.

Scaffolding is one approach to help students learn more in a
shorter amount of time by providing support for students as they
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There are a number of strategies for evaluating scaffolding’s
effectiveness, ranging from comparing assessment scores to timing
task completion rates [59, 65]. However, assessing an intervention
in an integrated programming lesson can be difficult for teachers
and may harm student learning when some students have scaffold-
ing and others do not. One approach to address this gap is analyzing
students’ coding log data or trace logs. Trace log analysis can help
us understand the effectiveness of an intervention method at each
step of a student’s work, potentially pinpointing where the method
has the most effect on a student. It can also define the rate at which
a student attains progress or proximity to correctness, as well as
observe characteristics in programming that may be associated
with certain traits. For instance, the number of times a student runs
their program may be associated with debugging or tinkering [12].
Yet despite trace log analysis’s promise for understanding exactly
how students progress through their programming, this strategy is
still relatively novel.

In this study, we explore the influence of scaffolding on students’
programming skills during integrated classroom programming ac-
tivities, contributing to the growing body of research on scaffolding,
and specifically Parsons problems, for secondary students. Specifi-
cally, we compare the outcomes between two groups: one provided
with scaffolding through Parsons problems, and another without
such support. Our focus is on sixth-grade students engaging in
programming through a science class activity in a block-based
programming environment (BBPE). We aim to look at whether,
how, and when Parsons problems improve learning efficiency for
programming exercises, using three specific research questions:

e RQ1: How do students’ programming behaviors change with
and without scaffolding through Parsons problems?

e RQ2: How do Parsons problems impact students’ scores on
the specific programming activity?

e RQ3: How can an automatic progress detector assess the
impact of Parsons problems on students’ programming per-
formance over time?

The research questions reflect three techniques that constitute
a novel, triangulated method to gain a better understanding of
scaffolding impacts on learning by looking at what students do
(RQ1), their final code (RQ2), and their progress along the way

(RQ3).
2 RELATED WORKS

2.1 Scaffolding in Programming

Scaffolding in education was initially defined by Wood, Bruner,
and Ross, with emphasis on how teachers and tutors help students
learn by providing support as they acquire skills and master tasks
[69]. Scaffolding can trace at least some of its roots to Vygotsky’s
zone of proximal development, which states that there is a space
between what a student knows and what they can possibly learn,
which may be supported externally through aid [9]. In recent years,
redefinitions of scaffolding by Holton and Clarke have emphasized
that scaffolding is an “act of teaching that i) supports the immediate
construction of knowledge by the learner; and (ii) provides the
basis for the future independent learning of the individual” [29];
this situates metacognition within the scaffolding framework, and
more strongly connects learning theories like the zone of proximal
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development to the scaffolding process. Scaffolding has been shown
to improve learning outcomes at the application level but has less
impact on the principles level [3, 48]. In other words, scaffolding
may not improve how much a student learns but rather how well
they can carry out learned tasks.

Programming is challenging for many learners [22, 30] for vari-
ous reasons, such as the high distance between theory and practice
and the intense cognitive load [30]. As a result, scaffolding can be
very useful for supporting programming learners [44]. A myriad
of papers have mentioned the impacts of scaffolding on reducing
cognitive load and enhancing engagement [6, 35, 36], which have
been connected to improved learning outcomes [26, 37]. Some re-
search also suggests that creating scaffolding can be challenging
for teachers. Simons, Klein, and Brush found in a case study of
a sixth-grade teacher that creating resources for problem-based
learning was frustrating [60]; Ertmer and Simons followed this up
with a study on how teachers themselves can be scaffolded with
regard to implementing problem-based learning in their classrooms
[21]. It seems reasonable, then, that providing existing scaffolding
systems that have been assessed for efficacy can be beneficial for
instructors.

Prior research has shown that there are both benefits and chal-
lenges in scaffolding for programming contexts specifically. Basu et
al. identified several areas where scaffolding could improve learning
in programming, including domain knowledge, modularity, and
even reusing code [2]. Scaffolding can be beneficial in improving
pair-programming [71], self-regulation [40], and metacognition
[61], the latter two of which constitute cognitive control, which has
been found to be significantly tied to improved learning outcomes
[52]. It has also been tied to students spending more time on pro-
gramming, as they then spend less time setting up to program [34].
In a BBP (block-based programming) game context, Tikva and Tam-
bouris found that giving hints to students who were programming
resulted in improved learning outcomes for the scaffolded popula-
tion [64]. Zhi et al. created a scaffolding system to provide scaffolded
self-explanation prompts and found that while the system did not
impact students’ learning, it did reduce students’ intrinsic cognitive
load and slightly reduce the amount of time they had to spend on
tasks [73]. Ultimately, scaffolding can play a critical role in pro-
gramming contexts by reducing the difficulties students face and
improving their learning outcomes.

2.2 Parsons Problems for Scaffolding

Scaffolding the programming process appears in many different
forms. Lytle et al. define several categories of scaffolding in BBP,
including worked examples, incomplete code, buggy code, and
Parsons problems; their findings suggest that scaffolding coding
activities can be particularly helpful for novice programmers [42].
Parsons problems, also known as Parsons puzzles, were first intro-
duced by Parsons and Haden in 2006 [51]. Their idea, which was
employed by many instructors and researchers afterward, was to
present students with a set of code fragments, which students had
to choose from and arrange to build the final solution.

Ericson et al., in a systematic literature review, note that Par-
sons problems, by exposing students to worked examples (i.e., an



Scaffolding Novices: Analyzing When and How Parsons Problems Impact Novice Programming

expert’s solution to a problem [8]), reduce cognitive load for stu-
dents, allowing for students (especially novices) to learn with less
effort [17]. A study by Ericson et al. in 2017 confirms that solving
Parsons problems takes less time than other code-related exercises
(such as fixing code errors), while also not negatively impacting
students’ learning performances or retention of knowledge [19].
Du, Luxton-Reilly, and Denny identified in another systematic liter-
ature review that Parsons problems, in general, have been used to
identify student difficulties, provide immediate feedback, improve
student engagement, and reduce cognitive load [14]. Hou, Ericson,
and Wang found that Parsons problems helped to benefit students
with low self-efficacy, making them more likely to complete a given
task than if provided no scaffolding [31]. Parsons problems have
also been correlated with improved code writing scores [10].

However, Parsons problems may not be the end-all of learning
programming; for instance, some evidence points to Parsons prob-
lems potentially being solved by students using syntactic heuristics,
allowing them to solve the problems without actually understand-
ing the solutions [68]. Some, including Ericson et al. in 2023, have
called for an increase in replication studies to corroborate exist-
ing findings and create better variations of Parsons problems to
address learning concerns [20]. We note here that most research
on Parsons problems has been conducted at the post-secondary
level and with text-based languages, with less research focused
on Parsons problems’ efficacy at the secondary level or within the
context of block-based programming. Zhi et al. studied Parsons
problems in the BBP language, Snap/, and found that students in a
CS0 course (i.e., novices) spent half as much time to complete a Par-
sons problem than an equivalent programming problem, while also
demonstrating similar performance on subsequent assignments
[72]; in other words, Parsons problems were seemingly effective in
a BBP context. Harms, Chen, and Kelleher found that, for students
aged 10-15 working in a BBPE, distractors in Parsons problems
(i.e., extra unrelated statements) increased cognitive load, which
decreased students’ completion rates and increased the time they
spent on the tasks [27].

2.3 Analysis of Trace Log Data

Log analysis involves examining trace log data (i.e., records of
sequences of events or actions within a system) [1]. Previous stud-
ies have utilized log analysis in order to gain insights into pro-
gramming behaviors and processes, like predicting student perfor-
mance [23, 47, 67], potential dropouts [49], student self-perception
[24], achievement goals [7], and novices’ programming strategies
[39, 66, 70]. In one study to understand novice programming behav-
iors, Dong et al. defined and classified students’ tinkering behaviors
in block-based programming assignments by analyzing students’
coding traces to determine patterns representing different forms of
tinkering [12]. Kong and Pollock [38] have created a tool that logs
students’ interactions in the programming environment of the BBP
language Scratch. They analyzed students’ logs both manually and
using sequential pattern mining algorithms to identify students’
tinkering behaviors and different characteristics of students’ final
code.

The analysis of trace logs can be beneficial in assessing the ef-
fects of scaffolding interventions, particularly when triangulated
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with other quantitative and qualitative techniques. Dever et al. used
log files to understand the impact of scaffolding (as done through a
game-based learning environment) on self-regulated learning [11].
Jennings and Muldner extracted data from log files (e.g., number of
attempts per problem, problem time, etc.) in order to assess the im-
pacts of a new scaffolding system for students learning how to code
trace [32]. Siadaty, Gasevic, and Hatala found that a trace-based
protocol was beneficial in assessing the effects of scaffolding on self-
regulated learning processes [58]. Trace log analysis has also been
used in some studies assessing Parsons problems; Ericson, McCall,
and Cunningham used log file data to demonstrate that adaptive
Parsons problems were more likely to be correctly solved than non-
adaptive Parsons problems [15], although the log analysis in this
study was relegated to assessing the final result of programming and
not the entire programming process (i.e., whether the solution was
correct, rather than any elements of the process of programming).
These studies suggest that log data, either alone or triangulated
against other sources of data like pre- and post-intervention tests,
can be an effective source of data for quantitatively evaluating the
impacts and effectiveness of scaffolding.

The use of this data requires an environment that actually col-
lects this data. For this paper and its context, we focus here on BBP
environments. As mentioned earlier, Kong and Pollock developed
such a tool for Scratch, but this is not the only BBP language that
can have its trace logs evaluated. Price et al. introduced iSnap, an ex-
tension to the Snap! programming environment that, among other
features, collects programming logs [53]; this includes records of
a person running their code or dragging out a block. Dong et al.
proposed a set of data-driven detectors that, when provided with
logs of students’ programs, could automatically define thresholds
for progress and struggle during programming [13]. In this study,
they evaluated these detectors via expert review, comparing when
the detectors noted a period of struggle against when an expert
would intervene. Tabarsi et al. further evaluated this system by com-
paring the defined struggle and progress moments against novice
programmers’ think-aloud data [62]. They found that the detectors
had a high accuracy rate in predicting progression moments. We
consequently conclude that trace logs can be used to understand
students’ programming behaviors and performance (for example,
by quantifying students’ progress so as to compare the results of
interventions), as we do below.

3 METHODOLOGY

In this section, we first introduce the participants and the context in
which the study was conducted. Next, we outline the steps taken to
prepare our data for analysis. Subsequently, we elaborate on the use
of SPD to identify moments of struggle and progress. Finally, we
delve into the data analysis phase, discussing the various metrics
employed.

3.1 Participants and Context

For this study, we analyzed the programming log data of 199 stu-
dents enrolled in a middle school in the southeastern United States.!
The students programmed in a BBPE called Cellular [33]. Cellular
extends the capabilities of Snap! (which itself is an extension of

The study was covered by IRB 18022 at NC State University.
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the programming language Scratch [28]) for modeling agent-based
scenarios within a grid of cells [42]. This data was collected on the
last day of a four-day computational thinking lesson, “Food Webs,”
within five sixth-grade science classes.

Given that participant demographics were not gathered when
the study was conducted, we present the demographic profile of
the school in Table 1. This is based on the assumption that the
classroom demographics mirror those of the school.

Table 1: Demographic Profile of the School Population for
the 2019-2020 Academic Year (The Basis for Our Sample Pop-
ulation)

Demographic Category Count | Percentage

Gender Female 371 44.4%
Male 464 55.6%
American Indian 0 0.0%
Asian 52 6.2%
Black 173 20.7%

Race . .
Hispanic 188 225 %
Pacific Islander 1 0.1%
More than One Race 41 49 %
White 380 45.5%

The activity followed a multi-day paradigm in which students
worked with and developed code in the BBPE. On the first day,
students learned Food Webs terminology and components and
practiced writing pseudocode for Food Webs agents’ behaviors,
such as eating and moving. On the second day, students were given
code that already programmed sunlight’s effect on the “Plant” agent
as a producer in Cellular. The third day shifted focus to coding the
“Bunny” agent as a primary consumer. The final day culminated
with students coding the “Fox” agent as a secondary consumer and
experimenting with altering their code to observe the changes in
the simulation. Our study focuses on the fourth day, as it had a
uniform pedagogical structure for all students.

This study employed a between-subjects, controlled quasi-experi-
mental design. It was conducted across five classes on the same
day, categorizing them into experimental (three classes) and control
(two classes) groups. Specifically, the experimental classes were
presented with Parsons problems, and the control classes proceeded
without this intervention. No demographic data was used in creat-
ing the splits in order to ensure balance.

As shown in Figure 2, all students were given a starter code for
the Fox agent to place the agent on the screen and center it within
a particular cell. The students in the control group did not receive
any further scaffolding for the Fox implementation. The students
in the experimental group were given all the blocks they needed
to build the Fox agent code to accomplish the assigned tasks, a
technique often referred to as a Parsons Problem, as discussed in
Section 2.2. The final Fox agent code solution for both groups is
given in Figure 1. The only difference was in the scaffolding they
did (experimental) or did not (control) receive in the starter code.

As illustrated in Figure 1, students were asked to start with
making a local variable named “Energy” for tracking the energy
of the Fox agent. Subsequently, students had to add a move block
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inside a forever loop to mimic the movement of a Fox roaming
through a biome. They were also supposed to decrease the Fox’s
energy after each move to replicate energy loss. Finally, they were
supposed to implement three conditions: 1) they had to define a
condition for times when the Fox energy was low, and the fox would
then eat an animal to regain energy; 2) the Fox was supposed to die
if the energy value became negative; and 3) after a certain amount
of time had passed, the Fox would 'reproduce. The abstraction of
energy and the translation of its flow into an algorithm are both
computational thinking concepts. Of 199 participants, we had 106
working on the experimental assignment and 93 on the control.
The starter code for both groups and the difference between them
is highlighted in Figure 2.

switch to costume Fox
point in direction €
scale to cell size

snap to centre of cell

[set Enorgy [to T

4. When energy is low, Fox eats a
bunny for an energy boost

\

1. Define the local variable,
“Energy”, and initialize it

—> 5-Fox dies when energy drops below
zero

—> 6.Fox produces a new Fox every 10
days.

Figure 1: Fox’s Final Code with Assigned Tasks for Students

3.2 Data Preparation

Cellular utilizes the iSnap trace log system, developed by Price et
al. [53], to log student activities during block-based programming!.
The purpose of this trace log system was to be able to record the
actions students took within the programming environment and
to be able to use the trace log to create a series of snapshots about
student code and generate hints for future students writing code
to solve the same programming problem. As part of this process, a
similarity metric was developed to compare student code to existing
previous correct student solutions, and that was then extended by
Dong et al. to create the SPD [13], which we discuss in more detail
in section 3.3.

Following initial data cleaning steps on the log data, we extracted
each student’s last code entry due to the absence of separate student
submissions. Afterward, we made minor adjustments to make the
Cellular submissions compatible with SPD. Finally, one of the re-
searchers defined the rubric given in Table 2 and scored all students’
programs. The rubric items correspond to the correct construction
of a program. Overall, the rubric is a performance metric that mea-
sures the extent to which students were able to implement the
algorithm for energy flow into their own block-based programs.
Consequently, we primarily measured computational thinking out-
comes. When the scoring was completed, we combined the log data
and corresponding scores into a dataset.

3.3 SPD

All students completed their activity in Cellular, which logs student
interactions (e.g., creating a project, adding a sprite, or clicking on
the run button). The rubric scores and log data were input into
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(et Energy | to @

s

switch to costume Fox

point in direction KD
scale to cell size
snap to centre of cell

[ Eat an Animal and Gain [J Energy

Figure 2: Starter Code for Fox Agent: The pink box (left) rep-
resents the starter code for all students, and the red dashed
box (right) features the Parsons Problem exclusive to the
experimental group.

Table 2: Rubric Items for Grading the Activity

Rubric Items

Move Block is inside forever

Energy value is set outside Loop

Energy value is decreased inside Loop

If Energy < Positive Eat Animal and Gain Positive Energy
Code related to rubric #4 is in correct location

If Energy < 0 Die

Code related to rubric #6 is in correct location

If N Days have Passed, Fox agent should Reproduce
Code related to rubric #8 is in the correct location

N=RRCCH RN o S, | IVNY OVY I OF g B S

the SPD?. SPD offers several options, including SourceCheck [54],
Similarity Score, and tree edit distance [74], to compare student log
data with correct, final solutions and measure their progress.

A key novelty of SPD is its adaptation of SourceCheck’s mapping
cost to the similarity score to find the closest solution and break
students’ coding time into struggle or progress periods. To achieve
this, SPD measures how the proximity of the student’s code to the
nearest correct submission improves over time. This is important for

2SPD was originally developed by Dong et al. [13] to be used as an indicator for when
students programming in Snap! might need an intervention based on their progress.
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understanding a student’s coding path, as it allows for quantifying
the proximity to correctness after each code edit. However, our log
data was not fully compatible with SPD’s original configuration and
similarity score due to the differences between Snap! and Cellular.

We examined several metrics and found tree edit distance ef-
fective in finding the closest solution for Cellular code. Tree edit
distance is a measure of the minimum number of node insertions,
deletions, and relabelings required to transform one tree into the
other [63, 74]. Inspired by Dong et al. definition of absolute progress
[13], we define a metric named “minimum distance” m(t), which
quantifies the shortest distance attained from the closest correct
solution up to any given point. Given d(t) as measured tree edit
distance at each logged action time ¢, m(t) is computed as

m(t) = min(m(t — 1),d(t)) (1)
where d(1) = m(1), serving as the baseline distance for the sub-
sequent comparisons. For ease of reference, we will refer to this
metric as the “SPD score” throughout the remainder of the paper.
Also, while the specific value is not of importance in this study, it
is essential to know a lower number indicates less distance from a
correct solution within this SPD configuration.

SPD can leverage correct code implementations from both stu-
dents’ solutions and instructor-crafted examples. However, the use
of a large quantity of student-derived work is preferable, as it offers
a closer representation of the diverse strategies students might
employ. Since we did not have access to implementations from pre-
vious students, we evaluated the final state of our current students’
code to measure their progress.

3.4 Data Analysis

In the initial phase of our analysis, we used the SPD score in each
student’s log data to determine whether they were working on
the Parsons Problem or not. Then, we defined a list of per-student
metrics to gain insight into each student’s coding path, enabling us
to make comparisons as follows:

e Score. The rubric-based score for each student.

o Active time. Duration of a student’s coding time, excluding
periods of inactivity lasting more than one minute. For pe-
riods of inactivity longer than one minute, only the first 60
seconds are counted as active time.

o Idle time. The sum of a student’s idle durations exceeding
one minute but excluding gaps of more than 5 minutes.

o Number of runs. The number of times the student ran their
program.

o Number of consecutive runs. The number of times the student
ran their program consecutively two times or more without
any action in between.

o Number of category changes. The number of instances the
student switched between block categories.

o Number of consecutive category changes. The frequency of
the two or more consecutive block category switches by a
student without any action in between.

e SPD Score. A metric indicating the minimum code tree edit
distance between the student’s code and the closest correct
solution [13, 54], at each code log generation.
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We conducted the Shapiro-Wilk test to assess the normality of
the distribution of all metrics for both experimental and control
groups independently. All but one of the metrics were non-normal
in both conditions, while the number of runs was normal for just
one. Consequently, the Mann-Whitney U test, suitable for analyzing
non-normal distributions, was applied across all comparisons to
determine the significance of differences between the study’s two
independent groups. We ran this test with a two-tailed approach
to identify any significant differences, irrespective of direction.
Furthermore, since we conducted a number of tests, we performed
Benjamini-Hochberg correction [4] with a significance level (@)
of 0.05 for tests of significance. The results of comparisons are
presented in Table 3.

We demonstrated all metrics (except for score and time) at four
distinct phases throughout each student’s active programming pe-
riod: 1) at the first quartile, 2) at the midpoint, 3) at the third quartile,
and 4) upon completion. By presenting each metric by time quar-
tiles, we aimed to characterize students’ coding behavior (what
they did within each group) over the course of their programming.
To avoid inflating the risk of false discoveries from excessive com-
parisons, we did not test the statistical significance of each metric
across time quartiles for all metrics. However, we made an excep-
tion for the SPD score, as we believed that verifying the trend of
students’ progress was essential for assessing the effectiveness of
the Parsons problem throughout the programming time.

4 RESULTS

This section describes the results corresponding to metrics specified
in Section 3.4. Table 3 provides a comparison of each metric for the
experimental and control groups by the average, median, and the
related research question.

Active Time. The Mann-Whitney U test revealed that active
time differences were statistically significant in the two groups.
(U = 6402.5, p = 5.12e-4). As demonstrated in Table 3, the control
group spent a median of 12.72 minutes, and an average of 12.47
minutes of active time, while the control group spent a median of
13.92 and an average of 13.75 minutes. These results suggest that
the Parsons Problem significantly affects active programming time
among students.

Idle Time. The difference between the two groups’ distribution
of idle times was not statistically significant (U = 4302.5, p = 0.12).
The experimental group had an average idle time of 2.52 and a me-
dian of 1.98 minutes, while the control group had an average of 2.03
and a median of 1.67 minutes, which shows a minimal difference in
students’ tendency to disengage among the two groups.

Number of Runs. The Mann-Whitney U test results suggest that
the difference between the experimental and control groups was
significant (U = 3292.5, p = 1.14e-4). According to the data presented
in Table 3, the experimental group had an average of 7.92 runs and
a median of 8 runs, while the control group had an average of 5.6
and a median of 5. Further investigation of the frequency at which
students ran their code across each programming time quartile,
as shown in Figure 3, indicated nuanced differences between the
coding paths of the two groups.
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In the initial three quartiles, the experimental group had a higher
frequency of runs compared to the control group, which may indi-
cate more testing on the experimental group side. However, this
trend reverses in the final quartile, where the experimental group’s
frequency of code execution diminishes, falling below that of the
control group.

The control group demonstrated a persistent increase in the
number of runs from the first through the last quartiles, with a steep
rise from the second to the third quartile. This surge contrasts with
the experimental group’s most notable increase, which occurred
earlier, from the first to the second quartile. These findings outline
a divergent trajectory in the programming behaviors of the two
groups.

B Experimental Group

254 zm Control Group

e N
w» <)
7 !

Average Number of Runs
g
o

0.5 A

0.0-

Q2 Q3

Time Quartiles

Figure 3: Average Number of Runs Across Time Quartiles by
Group

Number of Consecutive Runs. Our test demonstrated the
significance of the difference between the experimental and control
groups for this metric (U = 4111, p = 0.03). The experimental group
ran their code two times or more, with an average of 1.05, while the
control group did so with an average of 0.71 times. The medians for
the two groups were also distinct: 1 for the experimental group and
0 for the control group. A closer examination of consecutive runs
within each quartile of programming time in Figure 4 reinforces
the results associated with the “Number of Runs” metric.

While the overall incidence of consecutive runs was inherently
lower compared to the number of runs, the trend almost mirrors
that of the previously discussed metric with one notable excep-
tion. In the second quartile, the average number of consecutive
runs demonstrated by the control group decreased. This difference
contrasts with the control group’s consistent rise observed in the
number of runs, which also resulted in a greater disparity between
the two groups during this quartile.

Number of Category Changes. The difference between the
number of category changes in the experimental group and the
control group was statistically significant (U = 8984, p = 1.41e-22).
As shown in Table 3, the average number of category changes in the
experimental group, 6.9, was much lower than in the control group,



Scaffolding Novices: Analyzing When and How Parsons Problems Impact Novice Programming

ICER ’24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

Metric ‘ Group ‘ Mean ‘ Median ‘ Mann-Whitney U ‘ Corrected P-Value
Research Question 1: Students’ Programming Behaviors With and Without Scaffolding through Parsons Problems
. . . E 12.47 12.72
Active Time (minutes) C 375 1392 6402.5 5.12e-4
. . E 2.52 1.98
Idle Time (minutes) C 508 o 4302.5 0.12
E 7.92 8.0
# . . -
of Runs C T¢ =0 3292.5 1.14e-4
E 1.05 1.0
# i .
of Consecutive Runs C 071 0 4111 0.03
E 6.9 4
# . -
of Category Changes C TV 55 8984 1.41e-22
. E 1.19 1.0
# of Consecutive Category Changes 8363 4.01e-17
C 3.88 4
Research Question 2: Parsons Problems’ Impact on Students’ Scores
E 78% 89%
Score C an 8% 3791.5 5.5e-3

Table 3: Summary of Descriptive Statistics and Statistical Test for Metrics by Group
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Time Quartiles

Figure 4: Average Number of Consecutive Runs Across Time
Quartiles by Group

24.27. This difference is further reflected in the median values,
where the experimental group had a median of 4 category changes,
contrasting sharply with the median of 22 in the control group.
To further analyze this substantial difference, we drew the box
plot of category change, illustrated in Figure 5(a). This plot demon-
strates a noticeably wider spread of clicking on category tabs within
the control group, as evidenced by the interquartile range (IQR) of
16, which suggests a broader variance in novices’ patterns of chang-
ing block categories. Contrarily, the experimental group exhibited a
narrow spread (IQR = 7.0), suggesting a more homogeneous pattern
of category changing among novices on the Parsons problem.
Looking into the diagram of the average number of category
changes within each time quartile in Figure 5(b) reveals different
patterns among the two groups. While the numbers in the control
group are constantly at least two times higher across all quartiles,
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their busiest period seems to be the second quartile, which is fol-
lowed by two lower values in the subsequent quartiles. In contrast,
the experimental group exhibits a decrease in this behavior from
the beginning to the end.

In conjunction with the results associated with the number of
runs, we can see that while running seems to be the predominant
action of the experimental group from the beginning through the
third quartile, the control group is less engaged with running in
the first two quartiles and is most changing block categories.

Number of Consecutive Category Changes. The distribution
of consecutive category changes in the experimental group had a
statistically significant (U = 8363, p = 4.01e-17) difference from the
control group. Table 3 demonstrates that the average number of two
or more consecutive block category changes without intermediate
actions in the experimental group, 1.19, was lower than that of
the control group, 3.88, although the contrast is not as stark as
the previous metric. The median of 1 in the experimental group
compared to 4 in the control group further confirms students’ fewer
switches between categories.

As illustrated in Figure 6, novices’ pattern of consecutive cate-
gory changing across each programming time quartile is not much
different from the trend of category switching. This similarity cor-
roborates the observed differences in category-changing behavior
between the groups.

Score. Our test results indicated a significant difference in the
distributions of the two groups (U = 3791.5, p = 5.5¢-3). The difference
is reflected in a higher average score of 78% in the experimental
group compared to 64% in the control group. Moreover, the median
score in the experimental group was 89% as opposed to 78% in the
control group, further indicating the two groups’ differences.

The score distribution of students in experimental and control
projects is visualized in Figure 7. Scores are divided into five bins
on the x-axis, and the percentage of students within each project
type is depicted on the y-axis. In the first four bins, the number
of students in the experimental group is lower than their other
counterparts. However, the trend reverses in the final score bin,
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where over 66% of the experimental group scored 80-100%, but only
44.1% of the control group scored in this range.

SPD Score. We examined students’ distance from a correct solu-
tion at four quartiles to see if the differences between the experi-
mental and control groups were significant. The Mann-Whitney U
test indicates that the differences were statistically significant in all
four quartiles of time. The results of these tests are demonstrated
in Table 4.

To effectively illustrate students’ progress in their programming
session, Figure 8 displays a graph plotting the average SPD score of
students across eight points of their active coding. These intervals
include the four quartiles of active coding time (as highlighted by
vertical lines) and four midpoints that lie in the middle of each
quartile.

Starting the analysis from the first quartile, as opposed to the
onset of the programming activity, effectively excludes the initial
decline in distance score due to importing code. To ensure a thor-
ough understanding, the initial distance score of the control group
after importing the starter code stood at 28, in contrast to 24 for
the experimental group. As illustrated in Figure 8, the four-unit
gap between the groups grows until the second quartile and then
diminishes, ultimately resulting in the narrowest gap by the end
of the programming period. The steeper decline in the SPD score
of experimental group scores during the first two quartiles implies
the positive impact of the Parsons Problem on students’ progress
toward a valid solution.

5 DISCUSSION

5.1 RQ1: Students’ Programming Behaviors
With and Without Scaffolding through
Parsons Problems

As outlined in Table 3, we used six metrics to compare the coding
behaviors of students engaged with the experimental activity com-
pared to the control activity. Our analysis revealed that students in
the experimental group spent less time while also achieving better
scores on the activity. This suggests that students who received
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Metric Group | Mean | Median | Mann-Whitney U | Corrected P-Value
SPD Score in 1st Time Quartile g ;gg; 1;55 7810 3.51e-12
SPD Score in 2nd Time Quartile g 18;823 175 6926.5 2.19¢-06
SPD Score in 3rd Time Quartile g 166?084 Z 5971.5 0.01
SPD Score in 4th Time Quartile g A;Zi 2 5841 0.02

Table 4: Summary of Descriptive Statistics and Mann-Whitney U Test Results for SPD Score in Different Quartiles of Active

Programming Time by Group

—&— Experimental Group

25 4 —&— Control Group

201
18.32

14.83

Minimum Distance
=
w

10.04

4/8 s/8 718
Total Active Time Fractions

8 2/8 38 6/8

Figure 8: The Average of Students’ SPD Score throughout
Active Coding Time in Experimental and Control Groups.

scaffolding through Parsons problems had a more efficient program-
ming experience. Idle time, however, was consistent across groups,
averaging 2 to 3 minutes within the session, suggesting that both
groups had similar levels of engagement with the activity.

The experimental group demonstrated a notable increase in the
number of runs, executing their code approximately 41% more times
on average compared to their control counterparts. Upon examining
traces from several students, we propose two hypotheses for the
increased number of runs. First, students in the experimental group
could construct their code by actively experimenting and trial-and-
error. Additionally, since this group’s active time was lower and
they progressed faster toward a solution, they had more chances
to play with the code, understand the scientific concept they were
learning, and check how code changes impacted execution. As
an example, we observed some students changing the number of
agents, a modification relevant to those curious about the dynamics
of equilibrium in scenarios with an imbalance between predators
(fox) and prey (bunny). Conversely, the other group, as previously
indicated by their slower progress to the final solution in Figure 8,
was more engaged with the implementation process, which might
also describe the reason behind their significantly higher frequency
of category changes.
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The results from the consecutive runs metric revealed that this
behavior was significantly more common among students in the
experimental group. A study by Dong et al. linked frequent code ex-
ecution without intermediary actions to tinkering behaviors, which
can sometimes be a sign of frustration (e.g., as a debugging behavior)
and sometimes be productive (e.g., running the code and attempt-
ing to understand what it is doing) depending on the context [12].
While we lacked a measure to assess frustration or productivity, we
believe a potential reason behind the higher number of consecutive
runs in the experimental group was that Parson’s problems had
more code present in the coding environment from the start, so
the experimental group could run the code to build an understand-
ing of what each part of the code does. On the other hand, this
also implies that the control group had to spend more time finding
blocks and constructing the code (notably in the first half of their
coding time), so they could not spend time early on running the
program to understand the impact of the code blocks and how they
are ordered.

Our analysis also demonstrated significant differences in the av-
erage number of both category-changing and consecutive category-
changing between the two groups. Prior research has referred to
category switching as a highly frequent search-related action in
BBPEs [57], and often as an indicator of struggle [56]. This is in
line with other learning outcomes perceived in the control group
and also suggests that Parsons problems can serve as a beneficial
tool in reducing the cognitive strain of searching for blocks.

5.2 RQ2: Parsons Problems’ Impact on Students’
Scores

In the context of a science classroom where the primary goal is
fostering computational thinking, rather than teaching the partic-
ulars of the programming language, having students spend more
time re-ordering and running code is more relevant to their learn-
ing than having them find where the code is located. Although a
longitudinal study is needed to determine the long-term impacts,
our results suggest that scaffolding via Parsons problems can help
students achieve higher scores. This finding, in conjunction with
faster progress toward a correct solution and spending less time
switching through code categories, corroborates prior research in-
dicating that Parsons problems effectively reduce cognitive load by
lowering the load on student working memory, thereby improving
learning and performance [18, 46].
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5.3 RQ3: Utilizing an Automatic Progress
Detector to Assess Parsons Problems Impact
on Programming Performance

In studies like ours, where final submissions are not collected, or
students may diverge from the main task to explore within the pro-
gramming environment, automated measures like code distance are
highly practical. They enable an understanding of how students’
closest approach to a correct solution evolves throughout their
programming session. However, relying upon them needs an un-
derstanding of how they actually measure students’ work. To delve
deeper into this, we conducted a detailed analysis of trace logs from
two arbitrarily selected students: one from the experimental group,
referred to as “Jill,” and another from the control group, referred to
as “Bob”.

Jill and Bob’s coding area after importing the starter code re-
sembled the code shown in Figure 2. Jill received all of the shown
blocks, and Bob received the code inside the pink box on the left.
Following the import, a notable decrease in their SPD scores was
observed as expected, declining from 397 to 24 for Jill and to 28 for
Bob. Starting from the first seconds of programming, we observed
Jill accurately positioning and snapping the blocks, which led to
a reduction in her SPD score. Notably, her score dropped to two
within just 66 seconds of beginning the task. As demonstrated in
Figure 9(a), her code was fully assembled at this point. The persis-
tence of a 2-unit score, as opposed to zero, may be attributed to the
order of blocks, which does not impact the code’s functionality and
was not considered in our grading rubrics.

Figure 9(b) displays Bob’s code at the same time, around 66
seconds into the task, which shows a stark contrast to Jill's progress
at the same interval. Although complete code was not expected
from Bob at this point, the comparison underscores their completely
different experiences, even in the beginning.

Throughout the session, Jill remained engaged with the task,
primarily experimenting with blocks, modifying inputs, and exe-
cuting the code, which could improve not only her programming
skills but also her grasp of the scientific concepts underpinning
the assignment. This is visualized in Figure 10(a), where roughly
six minutes into coding, she had added “Flower" to eat the block
and reduced its “if” condition value to 6. On the other side, at a
similar point in time, Bob is still focused on placing blocks and edit-
ing inputs, as illustrated in 10(b). While Bob’s minimum distance
gradually decreased, eventually, he reached a distance of 4 after 9.5
minutes, which was a correct implementation upon review. Over-
all, as we also observed in Figure 8, there is a remarkably sharper
reduction in the SPD scores for the experimental group compared
to the control group during the initial half of the coding period.
While a sharp decrease in SPD scores does not necessarily equate
to code correctness, it does indicate that the experimental group is
contributing code that is more likely to be correct than students in
the control group.

6 LIMITATIONS AND FUTURE WORK

Here, we identify two primary limitations in our study. First, we
relied on extracting students’ final code states for grading due to
the lack of submissions. This approach was not optimal, as many
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Figure 9: Jill’s Code (a student from the experimental group)
and Bob’s Code (a student from the control group) Approxi-
mately One Minute After Starting to Code

students completed the activity and then modified their code to ex-
plore other ideas in the programming environment. We considered
extracting code at the point of the lowest SPD score. However, it
was not feasible to objectively differentiate between students who
restarted their work after completion and those who did so out of
confusion. Second, we did not have the specific demographics of our
participants. Although we attempted to mitigate this by including
the school demographics profile in Table 1, we acknowledge that
these statistics may not accurately represent the demographics of
our study’s population.

As for future work, we recommend that further research replicate
our findings with considerations for students’ demographics and
ensure random design. As classes were assigned to groups rather
than individual students, the teacher/classroom environment may
have had some influence on students’ outcomes. Moreover, while
we recognize the inherent challenges in developing a flawless code
proximity detector, we see designing a Cellular-specific detector as
an intriguing idea worth exploring in future studies. Future work
may also focus on the role of programming scaffolding for other
non-CS classroom contexts, such as English or Social Studies.

The use of SPD-type analyses of trace log data may be used
to help visualize students’ progress in systems meant to provide
progress monitoring for teachers through dashboards or for stu-
dents through progress monitors, as in the Adaptive Immediate
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Figure 10: Jill’s Code (a student from the experimental group)
and Bob’s Code (a student from the control group) Approxi-
mately Six Minutes After Starting to Code

Feedback (AIF) system designed by Marwan et al. [43]. SPD progress
visualizations could allow teachers to see the status of the whole
class without the need for precise auto-graders, student submis-
sions of code, or unit tests. Similar metrics using trace log analysis
may help teachers more quickly assess programming assignments
if precise grades are not needed, and researchers can use them in
the assessment of pedagogical interventions.

7 CONCLUSION

In this study, we investigated the impact of Parsons problems on
students’ coding behaviors, their final scores in a programming
activity, and their progress toward a correct solution. We sought
to understand the impact of this scaffolding strategy by analyzing
the coding log data of 199 sixth-grade students and employing an
automated progress detection (SPD) model. Our analysis indicated
that engaging with Parsons problems improved learning outcomes
for these students.

Students working with Parsons problems spent less time on their
code and achieved relatively higher scores compared to their peers.
Moreover, we noted that Parsons problems effectively reduced the
need for students to alternate between different categories in search
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of appropriate code blocks. The reduction in search time, in con-
junction with this group’s higher number of code runs, implies that
this group had additional opportunities to delve deeper into the
assignment and explore how the code related to its execution. This
aspect is particularly important in integrated classrooms, where
the purpose of programming is to enhance the learning of the main
course topic while introducing important computational thinking
concepts.

Furthermore, we demonstrated a novel methodology to assess
and demonstrate the impacts of our intervention by utilizing the
data-driven SPD. By leveraging trace log analysis in this capacity,
we can reach a better understanding of students’ learning processes
and behaviors throughout programming, allowing researchers to
better pinpoint where interventions are most effective and how
they interact with learning schema.
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