
Jigsaw: A Tool for Decomposing and Planning
Programming Problems

Heidi Reichert
North Carolina State University

Department of Computer Science

Raleigh, NC, USA

hreiche@ncsu.edu

Benyamin T. Tabarsi
North Carolina State University

Department of Computer Science

Raleigh, NC, USA

btaghiz@ncsu.edu

Thomas Price
North Carolina State University

Department of Computer Science

Raleigh, NC, USA

twprice@ncsu.edu

Tiffany Barnes
North Carolina State University

Department of Computer Science

Raleigh, NC, USA

tmbarnes@ncsu.edu

Abstract—Many students struggle with decomposition and
planning despite the necessity of these skills in computing edu-
cation. Hence, more tools are needed to scaffold these processes.
In this paper, we present Jigsaw, a standalone visual planning
tool to help students practice decomposition and planning before
writing code. Jigsaw allows students to compose a solution
to a new problem based on previously seen “patterns,” such
as the accumulator pattern for summing values or the filter
pattern for conditional input selection. Students can connect
these patterns together to see how data flows between them
and define a solution plan. Jigsaw’s goal is to scaffold students’
planning processes by presenting relevant patterns for a given
problem. Using a within-subjects design, we evaluated Jigsaw
by observing 17 undergraduate students as they planned for
and implemented two programming assignments. The experi-
mental task included Jigsaw, and the control task did not. This
design aimed to understand how the tool impacted students’
planning and programming process. Subsequently, we conducted
interviews with these students regarding their planning and pro-
gramming experiences with and without Jigsaw. Many students
explicitly mentioned they would employ Jigsaw for planning and
appreciated the scaffolding it provided. Students also admired
the Jigsaw’s novelty in visualizing programming problems. We
conclude with our design takeaways and recommendations for
future work.

Index Terms—planning tool, CS1, decomposition, planning
scaffolding

I. INTRODUCTION

Decomposition and plan composition are fundamental skills

for computing students [1], [2]. Students must learn to solve

new problems by decomposing them down into smaller sub-

goals that they already know how to solve, also called “pat-

terns,” “recipes,” or “tasks,” followed by composing these

pieces into a solution plan [1]. However, these skills are not al-

ways practiced explicitly in CS courses, and students are often

expected to implicitly plan a solution while implementing it in

code, which can make both tasks more challenging. Previous

studies have shown that students struggled to decompose pro-

gramming problems, recognize when patterns may be useful,

and plan out a solution [3]–[5]. These papers have cited the

need for more scaffolding for the planning process in order to

help students identify the patterns that can be composed into

a solution.

To address this, we developed a novel tool called Jigsaw,

where students can compose canonical programming patterns

to plan out the solution to a programming problem. Jigsaw

offers novel features, including a palette of relevant patterns,

scaffolding to connect these patterns to the given problem, and

visualizing how different test inputs change program outputs

at each step of the plan. To evaluate Jigsaw, we conducted

a pilot study with three high school students in a summer

programming internship, as well as a follow-up within-group

study with seventeen undergraduate introductory programming

students to complete two programming assignments in the

language of their choice. One assignment was completed while

planning with Jigsaw (experimental), while the other was

planned according to the students’ preferences (control). After

completing each plan, students were asked to program the

corresponding task. Finally, they were interviewed regarding

their attitudes toward Jigsaw. We did this to understand the

impact of this form of scaffolding, as well as to gather

suggestions to further improve Jigsaw for future deployment

in the classroom.

Through this process, we aimed to answer the following

research question:

• How does providing scaffolding via an interactive visual

tool like Jigsaw impact students’ planning and program-

ming processes?

Our evaluation suggests that students found Jigsaw’s visu-

alization facilitated planning and programming through visu-

alization, although the tool needs to be improved impacting

students’ code correctness or speed. Our results have broader

implications for future studies on supporting students in plan-

ning and decomposition.

236

2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

DOI 10.1109/VL/HCC60511.2024.00034

979-8-3503-6613-6/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

In this section, we start with the theoretical and practical

facets of planning and decomposition. Then, we discuss the

importance of supporting planning in programming. We elab-

orate on this by exploring decomposition and programming

patterns as important factors in formulating a successful plan.

Finally, we note some tools developed for novices to plan their

programming activities.

A. Planning and Decomposition

Planning emphasizes high-level strategies for solutions

without including low-level elements of implementation [6].

Effectively, this entails creating more abstract or general goals

of a program rather than focusing on the specific details of

implementation. In programming, identifying the goal of a

program and being able to plan for completing that goal is

of high importance, especially for novices [7]. This solution

planning step commonly includes the utilization of subgoal

decomposition [8].

Decomposition (i.e., breaking down a problem into manage-

able units) is one of the primary facets of computational think-

ing (CT) [9]. Plans can be defined as “knowledge structures

that organize steps for a particular task (or goal) into chunks,”

where each chunk represents a subgoal [10]. Research has

shown that decomposition and abstraction are strong predictors

of algorithmic thinking, evaluation, and generalization [11],

and decomposition improves code readability and understand-

ability [12].

However, proper decomposition can be demanding for stu-

dents [8], [13] and needs to be explicitly taught to some

students [3], [14], [15]. Research has indicated that although

the quality of decomposition can be enhanced by scaffolding

it, many students lack the skills to decompose problems and

plan after completing introductory programming courses [16].

Thus, there is good potential for tools and methods focusing

on novices’ decomposition skills.

B. Supporting Planning and Decomposition in Programming

Planning is a quality that separates novices from accom-

plished programmers [17]. However, planning as strategic

knowledge is more challenging than learning the syntax of a

programming language for novices [18]. Even though planning

can successfully be taught to programming students [2], the

best ways to help novice programmers learn, and practice

planning need to be further investigated.

Previous studies have explored different approaches, such

as the integration of goals and plans in a visual programming

environment [19], explicit illustration of algorithmic planning

through displaying think-aloud sessions of expert programmers

[18], and designing a planning sheet [7]. A study by Chao et al.

has shown novices’ learning of planning and solution design

can be improved by assisting them in decomposing problems

[16].

In decomposition, many pieces or patterns are reusable.

Coding patterns (also called recipes [20] or schemas [21])

are powerful tools for teaching programming that enable

learners to organize their knowledge [22]. In addition, patterns

make complex programming tasks easier to follow, explain,

and understand [23]. Given these benefits of patterns, prior

studies [24], [25] have developed tools and models that utilize

schemas and patterns for teaching programming and assessing

students’ CT and plan to implementation skills. Rivera et al.,

who studied students’ ability to compose plans using Higher-

Order Functions (HOFS), discovered that students can both

build and implant plans by using HOFS [6].

East et al. [24] devised a model that incorporates patterns for

teaching programming, which gained encouraging preliminary

results and indicated that going over patterns besides syntax

can be very easy for an instructor. Seiter and Foreman [25]

developed a model for examining CT through the lens of

project-wide design pattern variables. Particularly, they created

a model that categorizes CT through the skill level utilized

in design patterns. Once students learn the patterns, they can

reuse them in different programming tasks, although merging

the patterns and plans is challenging for students [26].

The positive impacts of proper decomposition in program-

ming are manifold. First and foremost, decomposition helps

students tackle subproblems rather than dealing with the

problem all at once. This helps students build an understanding

of the main problem, thus solve it more efficiently. Second,

proficiency in decomposition affects students’ other CT skills.

Research has shown that decomposition and abstraction are

strong predictors of algorithmic thinking, evaluation, and gen-

eralization [11]. Third, using decomposition improves code

readability and understandability [12]. Smaller pieces of code,

reasonable flow, and different levels of abstraction are the

features brought by decomposition that make the code easier to

read and simpler to understand. Finally, the benefits of learning

and practicing CT skills are not limited to CS [27], and they

can be used in other domains [28]. Decomposition is not an

exception; students who learn this skill can transfer it to other

areas.

C. Programming Planning Tools

Scaffolding the planning process can encourage students

to learn this skill. Many tools have been developed to aid

students in constructing plans for their problems.For exam-

ple, Metacodenition [29] is a programming environment that

offers students metacognitive scaffolding for programming

exercises throughout the problem-solving process. They found

that students who received scaffolding in the initial steps of

problem-solving (i.e., understanding the problem, designing

a solution, and evaluating a solution) experienced fewer test

case failures compared to those who only had scaffolding in

the implementation stage. TextCode [30] is another IDE de-

signed for novices that pivot their focus toward understanding

the problem statement, decomposing it, writing and trying

different solutions for each subproblem, and combining the

subproblems’ code to compose the complete solution. PlanIT!

[31], a planning tool integrated within the Snap! programming

environment, aimed to assist students in making plans for

open-ended projects. Students could describe their projects

237

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

briefly, make a step-by-step to-do list, and determine the

main elements of their projects, such as variables. Students’

interviews revealed that their plans became more actionable

and precise following the use of the tool.

Despite the importance of decomposition, these tools de-

pended on students’ recall of patterns for creating a plan rather

than presenting them with relevant programming patterns,

which necessitates students’ recognition. They also did not

have the feature allowing students to run their plans before

starting the implementation. Wrenn et al. [32] considered this

issue by developing a tool that allowed students to create

and evaluate their own examples without any need to do the

implementation, although it still required students to create the

examples by themselves.

Previous studies [33]–[35] have focused on creating

flowcharts from natural language prompts entered by the

user, which improved students’ performance and problem-

solving skills. However, they did not decompose prompts

into programming patterns. Cunningham et al. [36] proposed

purpose-first programming, which was intended to help con-

versational programmers who needed the skill to communicate

about technical programming topics rather than knowing the

syntax. Their approach, which provided scaffolding through

code patterns that were mergeable into their code, showed

that programmers were motivated to learn and work more

with this approach, allowing them to meet their goals and feel

successful.

Tseng et al. [37] proposed a system that presents pre-

fabricated plans and requires minimal effort by students. It

offered students an example of the concepts being taught,

some programming plans, and the code related to each plan.

Jin et al. [38] assessed the effectiveness of guided planning

and assisted coding in an intelligent tutoring system, which

showed that students’ learning gains were higher with this tool

in comparison to coding-only, planning-only, and interleaved

planning-only and planning-coding environments.

The primary limitation of most of these tools is that they

have predominantly relied on students’ ability to build a plan

from scratch without offering any pre-defined patterns. While

this might not be challenging for experienced developers,

novice programmers may learn more from recognition than

recall of suitable planning components. Another limitation

is that students may be expected to create plans by writing

pseudocode or code snippets, which cannot be tested and

may not fit as a reusable pattern that benefits students in

future implementations. In designing Jigsaw, elaborated upon

in Section III-B, we aimed to address these gaps.

III. TOOL DESIGN

Jigsaw is a standalone program planning tool designed to

1) separate the challenges of program design from implemen-

tation, 2) scaffold the planning process using best practices

from literature and 3) allow students to execute their plan with

different inputs before getting into actual implementation. In

this section, we first describe Jigsaw’s user experience, and

then we highlight the specific design goals of Jigsaw and how

these connect to prior literature on planning and computing

education.

A. User Experience

Learning Context: Jigsaw is designed to be used in a

formal learning context, where students have been explicitly

taught programming patterns (e.g., a design recipe approach

[39] or pattern-oriented instruction [40]). The tool assumes stu-

dents have practiced implementing these patterns (e.g., filter,

reduce, accumulate) as code, but may struggle to decompose

larger problems into patterns, and to compose those patterns

together into a solution. Students can use therefore Jigsaw at

the start of a programming problem, to form a plan using these

programming patterns, and then reference that plan throughout

programming. Jigsaw is hosted online and can be accessed via

a direct link through any web browser1, although it is most

effective on a computer or laptop rather than a mobile device.

Accordingly, it can be used within any class that has Internet

access.

As an example, Figure 1 shows Jigsaw’s user interface,

and a completed plan for a simplified version of the rainfall

problem [41] (described in more detail in Section IV-A3).

When planning out a program in Jigsaw, students compose

their plan out of pattern blocks, each representing a common

programming pattern (e.g. “read input until value,” or “filter”

or “sum”). Students can browse through relevant patterns from

a palette at the bottom, and drag patterns they wish to use into

their workspace, similar to many block-based programming

environments.

Each pattern block consists of a title (“Filter ≥ 0”), a natural

language description (“Filter values in a loop to include only

non-negative numbers”), a set of inputs (left) and outputs

(right). Inputs and outputs are represented as circles, and

students can connect the output of one block to the input of

another by clicking and dragging. The inputs and outputs of

each block are color-coded to indicate the data type of the

input/output, such as a list (orange), a number (blue), or any

type (gray).

One of our primary design goals (see below), which sets

Jigsaw apart from existing planning tools, is that students’

plans are fully executable. Each plan block shows its current

output given its current input; for example, the ”Filter ≥ 0”

block takes as input numbers 5, -3, 7, -200, 9, and

has output 5, 7, 9. As students connect new blocks, Jigsaw

updates their outputs dynamically. For each problem, Jigsaw

includes a test block with multiple test inputs and students

can visualize how these inputs affect both intermediate and

final outputs of the program, in order to verify the correctness

of their plan, and spot potential missed edge cases. While test

cases are technically not a part of the program plan itself, prior

work shows that testing input/output pairs is an important step

in program comprehension and planning [29], [42].

1A version of Jigsaw is accessible via the following link:
isnap.csc.ncsu.edu/pbp-planner/dist/#/editor/test.

Note that one may replace ‘test’ with ‘rainfall’ or ‘bottled water’ to find
versions tailored to the problems referenced in Section IV-A4

238

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Jigsaw’s user interface, consisting of a palette (bottom) and a work space where students connect pattern blocks together (middle). Each block has
inputs and outputs (circles), which can be connected, and a preview of the outputs’ values.

Jigsaw’s executable plans are represented similarly to a

dataflow programming language (e.g. LabView [43]), with in-

puts connecting to outputs. This choice enables us to represent

plans as a composition of reusable patterns. This would be

much more difficult in an imperative representation, where

programming patterns often correspond to lines of code that

might be spread throughout a student’s program. For example,

in an imperative language like Java, a “sum” pattern (i.e.,

accumulator) requires a loop to be present, and includes code

before the loop (initializing the variable), in the loop (adding

something to the variable), and after (using the sum value).

Additionally, multiple patterns might use the same loop (e.g.

the “sum” and “count” patterns in Rainfall use the same “read

input until” loop).

Because Jigsaw is a standalone program planning tool and

not a language itself, it is consequently language-agnostic and

can be used in conjunction with most common introductory

programming languages, such as Java, Python, MATLAB

and Snap! (which were all used in our evaluation in Sec-

tion IV-A4). Since these languages are imperative, Jigsaw

introduces a special “loop” input/output type, indicated by a

dark circle, connected by dashed lines, and a symbol, as

seen in Filter’s input/output (see Figure 1). This indicates a

variable that changes values in a loop, such as the “input” read

from the user in the “Read Rainfall Until Value” block. This

helps students connect Jigsaw’s functional plan representation

to imperative program code. When visualizing the output of

these blocks, Jigsaw shows all values that the variable takes,

in order of iteration (e.g. 5, 7, 9 in the Filter block). If stu-

dents hover over any of these values, Jigsaw highlights other

239

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

values that were calculated in the same iteration. For example,

hovering over Filter’s “7” would highlight Sum’s “12” (the

sum after the second iteration of the loop: 5 + 7), and Count’s

“2”. Jigsaw’s interface can also support 2 nested loops (using

a 2-dimensional table to represent values), as well as lists (and

lists of lists), and future work may explore how to represent

more complex data types. However, an important principle of

Jigsaw’s design is not to be a complete programming language,

capable of representing arbitrary programs. Jigsaw’s planning

blocks are scoped for CS1 problems, and some CS2 problems,

where students are still learning basic programming patterns;

they cannot be exported into a programming environment.

The version of Jigsaw used in this study is inherently

problem-specific (aligning with our design goals, below),

and therefore appropriate patterns for each problem must be

designed by a researcher or instructor. However, Jigsaw has

since been extended to allow students to define their own

custom pattern blocks, which can map a set of input values to

specified outputs values. This enables Jigsaw to be used on a

wider variety of problems, which cannot be fully mapped to

a set of reusable patterns.

B. Design Goals

Jigsaw’s design was focused around four key design goals

that we identified from prior literature:

1) Center planning on programming patterns: Prior

studies have found that recognizing and implementing reusable

programming patterns is a critical skill for students learning

to program [22], [40]. Therefore, Jigsaw defines planning as

organizing and connecting reusable pattern blocks.

2) Use purpose-first language to contextualize patterns:

By definition, reusable programming patterns are generic (e.g.,

“filter”), not context-specific (e.g., “keep positive rainfall val-

ues”), and this can make it difficult for students to understand

how to apply and combine patterns in the specific context

of a given problem [22], [36]. To address this, Cunningham

et al. argue that programming patterns should be presented

”purpose-first,” where each pattern is described with “domain-

specific,” contextualized natural language [36]. Similarly, Jig-

saw labels patterns with both a reusable label (e.g. “filter”),

with the goal of helping students recognize a pattern, and

a context-specific label (“numbers ≥ 0”) that connects the

pattern to the problem.

3) Enable recognition over recall of patterns: Prior work

has shown that students are much better able to recognize

relevant information, when it is presented to them, than they

are at recalling it without a prompt [44]. Jigsaw therefore pro-

vides students with a palette of relevant programming patterns,

such as “sum,” “count,” “filter,” “always,” and “never,” which

students can insert into their plans as needed. Lidwell et al.

[45] name this as one of their principles of universal design.

This builds on prior work in block-based programming

environments (BBPEs), which present students with a palette

of blocks, allowing them to easily recognize, search and

browse for relevant functions, rather than recalling them from

memory. However, while BBPEs offer a different style of

programming, Jigsaw is intended to guide students in making

plans based on programming patterns.

In the problems we used in our evaluation of Jigsaw (Sec-

tion IV-A3), we only included relevant pattern blocks, since

prior work in Parsons problems has suggested that irrelevant

“distractor” blocks can inhibit learning and increase problem

solving time [46], [47], though future work could explore the

effect of such blocks.

4) Make plans testable and self-evident: Prior work has

shown that a major barrier students face when planning and

programming is that they form an incorrect conceptual model

of what the problem is asking [42], [48]. However, a major

limitation in prior work on tools to scaffold planning and

decomposition, such as flowcharts and pseudocode, is that

there is no way for the student to self-check whether their plan

is correct before moving on to implementation. We, therefore,

designed Jigsaw to allow students to fully execute their plans

and provide test inputs that reveal potential problems in these

plans (e.g. forgetting to filter out negative rainfall readings).

To facilitate debugging incorrect plans, Jigsaw also shows the

output of each plan block, allowing students to easily identify

where their plan went awry.

IV. METHODOLOGY

A. Study Design

1) Pilot Study: This study was administered in two parts:

a pilot study and a formal one. The pilot study was conducted

in the summer of 2022, while the formal study was conducted

in the fall and winter of 2022. For our pilot study, three high

school students who were engaged in a summer internship at a

public university in the US volunteered to participate without

compensation. These students were proficient in Snap!, which

was the language used for their programming sessions. The

pilot study allowed the researchers to smooth out issues with

the assignments and protocol, as well as to develop an initial

codebook for future thematic analysis, to be elaborated upon

in Section IV-B. The pilot study consisted of the same as-

signments, protocols, and interview questions that we discuss

below. However, the pilot population was not in our target

demographic, and we did not consequently include their results

in this study.

2) Participants and Recruitment: Our target population

for using Jigsaw consisted of students in introductory CS

courses—this included CS majors, non-majors, and minors.

Since Jigsaw was designed to be language agnostic, we

intentionally recruited students from diverse introductory pro-

gramming courses. Thus, for our formal study, all participants

were recruited from 100-level CS courses. Seventeen students

signed up to participate in the study. They were enrolled in

either of the introductory programming classes in Java, Python,

or Matlab during the fall of 2022. Recruitment advertisements

were made via email and Moodle, and participants were

compensated with a $30 Amazon gift card.

Students were asked to schedule a 90-minute study session

over Zoom, during which either one or two researchers were

present. Sessions were conducted remotely due to the ongoing

240

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

COVID-19 pandemic. In the event where two researchers

were present, one conducted the study while the other took

notes. Participants were given anonymous IDs for use during

the study and were instructed to turn off their videos before

recording. Data collection was limited to students’ screens and

voices.
3) Assignments: During the study session, students were

tasked with working on two assignments. Both assignments

involved elements of reading input, accumulators, and filters.

Both assignments were formatted as a Google document in

view-only mode that was shared with the student and included

starter code to prompt the user, as well as several test cases

for assessing the correctness of the program.
a) Rainfall: The first assignment was a modified version

of Rainfall, a task first designed by Elliot Soloway in 1986

[41]. This was chosen due to its status as a common program-

ming task that has been repeatedly studied for difficulty [49],

[50]. Rainfall asked students to take a set of numeric inputs

from a user one at a time and average and output the non-

negative values. However, we modified the task to remove the

possibility of invalid inputs or no inputs (i.e., a student could

assume all potential inputs would be valid and there would be

no division by zero), thus making it less challenging.
b) Water/Bottle: The second assignment was entitled

Water/Bottle. This task was based on the balanced delimiter

problem featured as a free response question in the 2019 AP

Computer Science A exam [51]. This task asked students to

take a set of string inputs from a user one at a time. However,

in our modification of the delimiter problem, we required

students to assess at every iteration of the loop whether there

was a “bottle” to hold “water” within.

These two assignments’ prompts, starter code, and solutions

were available in the programming languages Python, Java,

and MATLAB.
4) Programming Session: Before programming, each stu-

dent was randomly assigned to use the tool for either Rainfall

or Water/Bottle. The session was structured as follows:

1) Prior to planning and programming, students were in-

structed to verbalize their thoughts as they completed

their tasks. Students were shown an approximately

one-minute-long video demonstrating the process of

“thinking-aloud,”, in which one of the researchers spoke

their thoughts aloud while solving a math problem.

2) Before beginning programming, all students were given

an approximately 5-minute presentation via a slide deck

shared and presented by the researcher. The researcher

went over the programming recipes “Read input until,”

“Accumulator,” and “Filter,” which are described in

Table I. Each pattern was explained in plain terms and

included functional sample code in the student’s pro-

gramming language of choice. This code was available

for students to copy and paste.

3) After this, each student worked on Rainfall. Students

whose experimental task was Rainfall first received an

approximately 7-minute tutorial on using Jigsaw. This

tutorial was an interactive demonstration within a demo-

version of the tool, including how to use the tool (i.e.,

dragging out and connecting blocks), and the function-

alities of the blocks. Students were instructed to follow

along on their end using the same demo-version of the

tool, as well as encouraged to ask clarifying questions

during this process. Students whose experimental task

was Water/Bottle were not given the tutorial at this point.

4) Before starting to program the Rainfall, the researcher

shared a link via Zoom chat to a Google document

containing the Rainfall instructions and test cases, as

well as a link to the planning area. For students using

Jigsaw, this was a link to a version of Jigsaw that was

tailored to Rainfall. For students whose control task was

Rainfall, this was a link to a Google document with

embedded links to the programming pattern slide deck.

5) Students were instructed to read the instructions and

plan for at least five minutes. Once five minutes had

passed, the researcher informed the student that they

could begin programming or continue to plan. However,

in the event that a student completed planning before

time had finished, students were given permission to

continue with programming, thus allowing for some

students to begin programming before five minutes had

passed.

6) Students were then allowed 25 minutes to either continue

planning or programming. After 25 minutes, students

were informed that they could either continue program-

ming for up to five more minutes or move on to the next

assignment.

After the completion of Rainfall, this process was repeated

for Water/Bottle. Students who had not used Jigsaw by this

point received the tutorial and scaffolded version of the tool,

while students who had used Jigsaw already received only a

link to a planning document.

5) Interview: Following the completion of their second

assignment, students were requested to stay for an approxi-

mately 10-minute interview using a semi-structured approach.

Students were asked about their planning and programming

experiences, as well as their general attitudes toward planning.

They were also asked to elaborate on their experiences using

the tool, what they found useful and difficult about the tool,

and how they planned differently with and without the tool.

From here on, participants are referred to as PX, where X

represents the numerical order in which their interview was

conducted.

B. Analysis

We utilized both qualitative and quantitative approaches for

data analysis. The former primarily used students’ interview

data and the latter was mainly based on students’ times during

programming and planning.

1) Qualitative Analysis: In order to best understand how

students perceived the usefulness of Jigsaw for planning

scaffolding, we performed qualitative analysis using thematic

analysis on the transcripts [52], [53]. Because of the open-

ended nature of our research question and limited sample size,

241

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE PATTERNS PRESENTED TO STUDENTS DURING THE STUDY SESSION, ALONGSIDE THEIR SHORT DESCRIPTIONS.

Pattern Description

Read Input Until Reading input taken from a user until the user states the stopping criterion; examples include the user typing ‘stop.’

Accumulator
Using variables within a loop; examples include summing a set of numbers, counting the number of times something happens,
or checking conditionals.

Filter Keeping input that only meets certain conditions; an example is non-negative numbers

we considered thematic analysis to be the appropriate avenue

for our analysis.
First, we utilized an inductive approach [53] for creating

our preliminary codebook. This was done via open coding of

the interviews of our pilot study. All three of the interviews

conducted during this study were re-watched and coded by the

two researchers who later conducted the study sessions. From

this open coding and a discussion between the researchers,

during which their respective tags and notes were compared,

a preliminary codebook was created.
This codebook was then refined through the further open

coding of three students in our final study. One of these

interviews, P6, was chosen at random; the other two, P2 and

P9, were chosen by the researchers because of their identified

relevant and interesting themes. All codes were chosen to

relate generally to decomposition, planning, programming, and

attitudes toward Jigsaw.
After creating the codebook, we utilized a deductive ap-

proach [53] to tag the remaining fourteen interviews. The

two researchers who conducted the study sessions acted as

coders. Each researcher watched every student’s interview and

separately tagged the interview according to the codebook.

After repeating this procedure for three or four students’

interviews, the researchers reconvened to compare and discuss

their respective tags. This process was completed within two

days of completing individual coding to ensure the researchers

accurately recalled why they made their coding decisions.

During instances in which tags or quotes did not align with

each other, the researchers would re-assess, discuss, and then

tag the relevant quote together. In all instances of initial

disagreement, the researchers reached a mutually agreed-upon

decision regarding tagging. Because all seventeen interviews

were coded by two researchers and by the fact that every

tagging was discussed almost immediately after the interviews

were re-watched, inter-rater reliability was deemed unneces-

sary and thus not calculated.
When the two researchers found it necessary, the code-

book was further refined. We then grouped these codes into

five sections, roughly aligning with our design goals: these

concerned the scaffolding Jigsaw provided, the relationship

between planning and implementation, the use of Jigsaw to

test and execute code, the visual interface of Jigsaw, and the

impact of Jigsaw-scaffolded plans on students’ programming.

We align our results in Section V-A accordingly.
2) Quantitative Data Collection: As we wanted to under-

stand how scaffolding during planning impacted the ability to

implement students’ programs, we recorded some quantitative

data regarding students’ planning and programming processes.

Because we had only 17 participants and 34 plans/programs,

we do not include any statistical tests in this evaluation and

do not expect to reach any quantitative conclusions; however,

we chose to include descriptive statistics in order to present a

more complete picture of students’ use of Jigsaw.

The amount of time that students spent planning and

programming for each assignment was recorded by one re-

searcher while rewatching all seventeen session recordings.

The researcher also listened to students’ verbalized thoughts

to ensure accuracy, particularly in differentiating planning and

programming times. Programming times did not begin until

a student began typing in a programming environment. All

times were recorded in seconds for precision.

We developed a 5-point rubric for assessing each assign-

ment. Rubrics were completed for each assignment and con-

cerned whether the program ran/compiled, accepted correct

input and produced correct output, implemented the counting

pattern, implemented filtration (for Rainfall) or accumulators

(for Water/Bottle), and successfully completed all provided

test cases (which encompassed all potential edge cases).

All 17 students were able to complete their plans within

Jigsaw successfully. In order to better see how students lever-

aged their plans during implementation necessitated collecting

information on how students engaged with these plans, we

also recorded the number of times that students referred back

to their plans was thus recorded for each student. Students’

references to their plans were considered when they clicked on

or interacted with their plan, or when their verbalized thoughts

indicated they were referring to their plans. Six students held

their plans side-by-side on their screen (i.e., with their plan

adjacent to their IDE); in these cases, the durations during

which they held their plans on their screens were recorded in

seconds. For all cases in which both the plan and the IDE

were on the screen, students did so for both assignments.

V. RESULTS

A. Qualitative

Through our thematic analysis, we found themes relating to

scaffolding (via a palette of blocks, as in Jigsaw), testing and

executability, and visual interface.

a) Scaffolding: Jigsaw was designed to scaffold learning

decomposition, and seven students discussed the tool’s ability

to do so. P2 mentioned Jigsaw would be helpful for new

programmers, as the tool “kind of gives them the basic blocks

[...] even if they don’t understand why the blocks are there.”

P4 explicitly noticed the relationship between Jigsaw’s pattern

blocks and the patterns presented at the beginning of the

242

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

evaluation session, stating that the tool encouraged them to

consider “Which of those [patterns] I need to implement?”

Jigsaw’s scaffolding may reduce planning effort, which 11

students noted. P2 stated that the tool “[D]id help [me] figure

out how I needed to plan it so it wasn’t all on me.” P6 said

that “[Jigsaw] could be more helpful because it separates the

planning and actual writing of the code.” P3, with regard to

the possibility of using the tool in the future, expressed “I

think I would probably use it because it’s easier than typing my

thoughts. So because you have something to play around with,

it’s easy. It doesn’t take up much time planning.” A common

sentiment was the simplicity of being able to use the already

created blocks; P15 shared that the tool “[D]efinitely helped,

being able to have something quick and easy that was literally

just drag and drop.” This reduction of planning effort may also

have reduced so-called blank page syndrome; as P17 stated,

“It’s sort of intimidating to have just like a blank sheet in front

of you, and you have to be like, ‘Oh, should I draw? Should

I write when I do this?’ Versus [with] the tool is like, ‘Okay,

I just got to start dragging stuff in and figure out how to link

them.’”

Two students, P4 and P7, expressed that they felt restricted

or limited by Jigsaw. Both identified in their interviews as

more advanced programmers and felt that the tool was too

limited in scope to be of use in their planning processes.

These students believed that the extra scaffolding restricted

their freedom to guide their own approach. For example, P4

noted that ”[...] I feel that this type of planning [using blank

document] gives me a little bit more freedom, um, just to like

do things a little different like, you know, whereas here [with

Jigsaw], I only have certain options to do [...].” P7 explicitly

connected this to the lack of blocks, however, which suggests

that a less project-specific design may mitigate these concerns.

Another drawback that at least one student noted is that

Jigsaw’s scaffolding could present too much support. This was

explicitly noted by P17: “I think if you were first starting,

[Jigsaw] would be really helpful, but then I think it would

probably be good practice to not use it all the time. I think it

could end up being like a crutch – like, I could see myself using

this as a crutch.” This is a trade-off inherent in scaffolding:

it is helpful for the less experienced and less for the more

experienced.

b) Planning-implementation relationship: Several stu-

dents suggested that Jigsaw allowed for improved implemen-

tation. This was predominantly because of its structuring of

ideas. P10 stated, “Because it helped me see what the outputs

should have been [...] I was a little bit more prepared for, like,

you know, I could run through it a little bit easier.” In another

example, P17 said that “[Jigsaw] made it more simple for me

to just go through and be like, okay. I did this. I’m done with

this.” In P8’s case, they expressed a belief that the tool would

have helped them catch a significant error that impeded their

progress overall, thus causing the overall process to have been

faster.

c) Testing and Executability: Some students enjoyed

using the provided input blocks to check their work and see

in real time how changes to the input affected the output.

P13 enjoyed how “[Y]ou could edit the inputs and then see

everything else change.” P10 explicitly mentioned the tool as

being useful for testing: “I think it would be really helpful for

test functions like that – that helped a lot, so I didn’t have

to run it a bunch of times.” P11 referred to troubleshooting,

stating “I was able to use it to see if my program was right

or wrong, which is really useful.”

For P12, the program provided two main benefits regarding

testing. One was that using the test cases allowed them to

see, “Oh, this test case doesn’t work, and this one does.”

The other was that the test cases actually helped them clarify

their understanding of the problem. In this case, the interactive

input/output directly helped improve their mental model for

the problem.

As P8 mentioned, they believed that having Jigsaw would

have improved their bug-catching ability. “If I had to write

another program similar to that, I would plan, and I would

probably use the flowchart tool first. If for no other reason

than it would be easier to look back at and understand literally

follow my logic to what I was trying to do earlier, and then

maybe understand why I went wrong.”

d) Visual interface: We found, as prior flowchart tools

have, that visualizing plans is helpful for students. 13 students

noted the tool’s capability to improve visualization, commonly

referring to the tool’s ability to present a physical represen-

tation of the decomposed parts of the program. As P6 stated,

“I feel like this would be more useful than just writing it on

paper, because it visually separates everything, which makes

it super easy and quick to reference back to, especially when

you’re using a single screen like I am right now, and you’re

switching between tabs.” P15 mentioned that visualization

improved organization: “The second time using the tool was

definitely more organized, with an organized plan [...] Being

able to look back, see what things were supposed to be in

order.”

Additionally, we found an easy-to-use UI is important for

overcoming learning curves. Some students like P5 felt that

the tool’s interface, while helpful, took some time to learn:

“There’s a bit of a -– I want to say, a learning curve. It is not

hard to use, but I guess there’s a little bit of a learning curve

just to figure out.” Other students felt the program was fairly

intuitive, particularly given the colors and highlights embedded

within the program. P13 noted that ”[...] it took a while to get

used to [Jigsaw]. But then, once you realize the colors are

actually helpful, and you have to use them to connect the

objects, it helps get the flow of what you need to do.”

e) Plans’ impact on programming: Students engaged

with their Jigsaw-made plans differently than with their per-

sonally designed plans. P11 stated that, ”As far as I remember,

from the one where I had [Jigsaw], it was very smooth. It was

like I did it step by step versus the one where I didn’t have

it.” P10 stated that “It definitely helped me figure out what

order everything needed to be in, and how I needed to think

of things, so it made that process a lot faster.” P13 shared,

“Without the tool, it’s definitely more like a high level of like,

243

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

‘Okay, what do I need to have in my code to make it function?’

[...] And then with the tool, it’s more interactive [...] I think

the visualization of how the data flows through the program

is also kind of helpful.” P10 expressed that the scaffolding

was highly beneficial, and touched on the decompositional

scaffolding of Jigsaw: “Honestly, when we have to write that

out ourselves, I would rather just do the code first, and then

put things in afterwards, because I really am not sure at all,

versus [Jigsaw] gave a lot more of a better skeleton without

really telling me what I was supposed to do. It got me in

the mindset of what I thought I should do. I was already

thinking, ‘Okay, I’m gonna sum this and count this. [...] I

would rather do that flowchart before I code, versus trying

to make my own little plan where I’m not even sure what

the code looks like yet.” P1 shared that Jigsaw streamlined

programming because it encouraged a better understanding of

the programming prompt than planning alone: “I think the

plan with [Jigsaw] made things more fleshed out. So when

I got to writing the program, there [weren’t] more steps to

think through when I was writing the program. And that made

it easier. When I was planning with just a blank document [...]

I sort of had an idea of where to go, but it was definitely more

difficult.”

B. Quantitative

In Table V-B, we present the average planning and pro-

gramming times for all four conditions, as there were two

assignments (Rainfall and Water/Bottle) and two scaffolding

options (with or without Jigsaw). 13 students engaged with

Jigsaw equivalently to or more than with their non-scaffolded

plans. Additionally, students who planned on their own for

Rainfall were more likely to engage with their link to the

recipes slide deck they had been presented earlier than those

who planned on their own for Water/Bottle. As mentioned

earlier, all students had access to the link in their provided

documents for planning. Six in eight students who manually

planned for Rainfall referred back to the recipes slides, as

opposed to two in nine students who manually planned for

Water/Bottle. This was the primary difference in planning

between these groups, as approximately equal proportions of

students chose to continue planning regardless of the plan’s

scaffolding.

VI. DISCUSSION

We found that Jigsaw was generally effective at fulfilling

our design goals for three reasons. First, its design centered

purpose-first and clear language, which students noted and

appreciated. Second, Jigsaw supported recognition over recall,

as indicated in part by students’ preference to engage with

Jigsaw over a slide deck presenting the same recipes. Third,

Jigsaw made plans testable, allowing students to debug and

more thoroughly understand the task at hand as they worked.

A. Takeaways

Here, we summarize what we have learned during the

process of tool design and evaluation. We note that these take-

aways are our drawn conclusions from having run the study

and are primarily derived from our participants’ feedback.

a) Intuitive design: Jigsaw was designed to be easy

to use, with an intuitive visual interface for students and

simple, understandable language and descriptions for patterns,

and executable plans. Our participants stated that they did

find the tool to be easy to use. This design facilitated quick

adoption of the tool and allowed students to focus on planning

rather than learning the nuances of a new interface. It also

enabled students to ensure their plans functioned desirably

with different inputs before diving into implementation.

b) Student understanding: Jigsaw helped students rea-

son about their understanding of the program and debug

it. They could see where their expectations diverged from

the actual plan execution. In some cases, Jigsaw streamlined

their programming, as they began programming with a firmer

understanding than they otherwise would have.

c) Planning: Students largely preferred not to plan and

generally noted that they wouldn’t have if they had not been

required to do so. When left to plan themselves, students

largely wrote pseudocode, which corresponded closely with

program code – essentially coding on paper rather than in

an IDE. This allowed those students to sometimes implement

their programs faster, as they had effectively written out a

first draft. By contrast, Jigsaw takes additional time to plan,

and the result of planning with Jigsaw is a flowchart that

is new to students and may be challenging to translate into

a working implementation on the first try. However, this

increased cognitive effort may translate to more engagement

with planning process, the benefits of which we discussed

earlier.

B. Limitations

This study has several limitations. First, we had a limited

data sample for evaluating a prototype of the tool. Only 17

students’ data was analyzed, resulting in 36 programs available

for analysis. When analyzing assignments and the condition of

planning (e.g., Rainfall with Jigsaw), we did not have sufficient

samples to make definitive conclusions regarding the quan-

titative effectiveness of the tool on impacting programming

outcomes. We conducted a qualitative analysis of students’

interviews to address this limitation, but a larger sample size

is needed to corroborate our findings. Also, we did receive

feedback on improving the tool and hope that this may improve

its future use.

Second, social desirability bias2 might have impacted our

results. More specifically, some students could have provided

positive feedback on Jigsaw because of their assumptions that

researchers were interested in the success of the tool. To

mitigate this effect, future research evaluating this tool may

ask for students to provide feedback via a more impersonal

2Social desirability bias is “the tendency to present oneself and one’s social
context in a way that is perceived to be socially acceptable, but not wholly
reflective of one’s reality. In research, the bias denotes a mismatch between
participants’ genuine construction of reality and the presentation of that reality
to researchers.” [54]

244

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE AVERAGE TIME (IN SECONDS) AND GRADE (GRADED FROM A RUBRIC CONSISTING OF FIVE POINTS) FOR EACH OF THE FOUR CONDITIONS.

Assignment Average planning time (s) Average programming time (s) Average grade (out of 5)
Rainfall with Jigsaw (n=9) 344 670 4.78
Rainfall without Jigsaw (n=8) 332 909 4.625
Water/Bottle with Jigsaw (n=8) 328 1438 4
Water/Bottle without Jigsaw (n=9) 326 918 4.72

survey instead of engaging directly with one of the researchers

via an interview.

Third, Jigsaw was designed to be used in a formal, intro-

ductory learning context with an emphasis on programming

patterns, as discussed in Section III-A. Consequently, this

within-users study, while providing insights into how the tool

can be used and may benefit students, does not accurately

capture the context in which we would like this tool to be

used. This study design also prevented us from understanding

to what extent Jigsaw may have impacted the transfer of

knowledge to other problems or situations. Additionally, due

to the nature of the tool, scaling problems can provide issues in

terms of both creating more complex plans as well as taking up

more physical space; consequently, we recommend the tool’s

use particularly for novice programmers and introductory

programming environments.

Fourth, students’ use of the tool was occasionally limited

by technical issues. Although all students were able to use

and access the tool successfully, sometimes troubleshooting

extended the length of the study and affected students’ inter-

actions and satisfaction with the tool. Jigsaw cannot be used

on all browsers (e.g., Safari), and an overly sensitive zoom

feature discouraged some students from engaging with the tool

further. We intend to improve these components of the tool in

future work.

Fifth, we did not conduct pre- and post-assessments with the

students and consequently could not assess specific learning

outcomes. Since we built Jigsaw to be a scaffolding tool, we

hypothesize that our qualitative results in Section V-A bridge

our theory to our execution. However, further studies will be

needed to understand the specific impacts of the theory of

scaffolding on our implemented practices.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented and detailed the creation of

Jigsaw, a tool designed to explicitly teach decompositional

techniques for planning in programming. Because of the

importance of planning and decomposition, we believe that

the design of planning tools like Jigsaw, especially those that

can be used in multiple contexts and programming languages,

could improve the design and quality of the software that

students create and help them develop transferable skills in

decomposition and planning. These skills are critical for the

computational thinking (CT) process, and consequently may

be particularly valuable for more novice programmers.

Explicit planning, whether with a tool like Jigsaw or

another approach, may or may not quantitatively improve

programming outcomes like reducing programming time or

improving programming correctness, particularly for simpler

tasks. However, the open question seems to be whether explicit

planning can create better long-term learning and encourage

good habits when it comes to approaching more complex

tasks; this would require further studies to explore. Our

preliminary results suggest that a visual scaffolding tool like

Jigsaw may encourage good programming habits.

The versions of Jigsaw given to the students in our eval-

uation were inherently problem-specific. However, we have

modified Jigsaw to allow students to define their own custom

pattern blocks. This enables Jigsaw to be used on a wider

variety of problems and potentially scale to more complex

problems.

Ultimately, our goal with Jigsaw is to incorporate an im-

proved version among a wider group of undergraduate students

within the context of an introductory programming class.

Specifically, Jigsaw is intended to exist within a pedagogy in

which decompositional patterns are explicitly taught and re-

peatedly practiced. Such an approach may help change student

attitudes toward planning and its usefulness, and requiring its

practice, even in small cases, may help students develop more

skills and intentions to use planning and planning tools more

regularly.

ACKNOWLEDGMENTS

This material is based upon work supported by the National

Science Foundation under Grant 1917885. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

REFERENCES

[1] K. Fisler, S. Krishnamurthi, and J. Siegmund, “Modernizing plan-
composition studies,” in Proceedings of the 47th ACM Technical Sym-

posium on Computing Science Education, 2016, pp. 211–216.
[2] F. E. V. Castro, S. Krishnamurthi, and K. Fisler, “The impact of a

single lecture on program plans in first-year CS,” in Proceedings of the

17th Koli Calling International Conference on Computing Education

Research. Koli Finland: ACM, Nov. 2017, pp. 118–122. [Online].
Available: https://dl.acm.org/doi/10.1145/3141880.3141897

[3] F. E. V. Castro and K. Fisler, “Qualitative analyses of movements
between task-level and code-level thinking of novice programmers,”
in Proceedings of the 51st ACM Technical Symposium on Computer

Science Education, 2020, pp. 487–493.
[4] E. S. Wiese, M. Yen, A. Chen, L. A. Santos, and A. Fox, “Teaching

students to recognize and implement good coding style,” in Proceedings

of the Fourth (2017) ACM Conference on Learning@ Scale, 2017, pp.
41–50.

[5] K. Fisler and F. E. V. Castro, “Sometimes, rainfall accumulates: Talk-
alouds with novice functional programmers,” in Proceedings of the 2017

acm conference on international computing education research, 2017,
pp. 12–20.

245

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

[6] E. Rivera, S. Krishnamurthi, and R. Goldstone, “Plan composition using
higher-order functions,” in Proceedings of the 2022 ACM Conference on

International Computing Education Research-Volume 1, 2022, pp. 84–
104.

[7] J. Tsan, D. Eatinger, A. Pugnali, D. Gonzalez-Maldonado, D. Franklin,
and D. Weintrop, “Scaffolding Young Learners’ Open-Ended
Programming Projects with Planning Sheets,” in Proceedings of

the 27th ACM Conference on on Innovation and Technology in

Computer Science Education Vol. 1, ser. ITiCSE ’22. New York, NY,
USA: Association for Computing Machinery, Jul. 2022, pp. 372–378.
[Online]. Available: https://doi.org/10.1145/3502718.3524769

[8] R. Nata, New Directions in Higher Education. Nova Publishers, 2005.
[9] V. J. Shute, C. Sun, and J. Asbell-Clarke, “Demystifying computational

thinking,” Educational research review, vol. 22, pp. 142–158, 2017.
[10] C.-C. Yu and S. P. Robertson, “Plan-based representations of Pascal

and Fortran code,” in Proceedings of the SIGCHI conference on Human

factors in computing systems, 1988, pp. 251–256.
[11] M.-J. Tsai, J.-C. Liang, S. W.-Y. Lee, and C.-Y. Hsu, “Structural

Validation for the Developmental Model of Computational Thinking,”
Journal of Educational Computing Research, vol. 60, no. 1, pp. 56–73,
Mar. 2022, publisher: SAGE Publications Inc. [Online]. Available:
https://doi.org/10.1177/07356331211017794

[12] A. Bogdanovych and T. Trescak, “Coding Style and Decomposition,”
in Learning Java Programming in Clara‘s World, A. Bogdanovych and
T. Trescak, Eds. Cham: Springer International Publishing, 2021, pp. 83–
100. [Online]. Available: https://doi.org/10.1007/978-3-030-75542-3 4

[13] C. Charitsis, C. Piech, and J. C. Mitchell, “Detecting the Reasons
for Program Decomposition in CS1 and Evaluating Their Impact,”
in Proceedings of the 54th ACM Technical Symposium on Computer

Science Education V. 1. Toronto ON Canada: ACM, Mar. 2023,
pp. 1014–1020. [Online]. Available: https://dl.acm.org/doi/10.1145/
3545945.3569763

[14] C. C. Selby, “Promoting computational thinking with programming,” in
Proceedings of the 7th Workshop in Primary and Secondary Computing

Education. Hamburg Germany: ACM, Nov. 2012, pp. 74–77. [Online].
Available: https://dl.acm.org/doi/10.1145/2481449.2481466

[15] A. Keen and K. Mammen, “Program Decomposition and Complexity
in CS1,” in Proceedings of the 46th ACM Technical Symposium on

Computer Science Education, ser. SIGCSE ’15. New York, NY, USA:
Association for Computing Machinery, Feb. 2015, pp. 48–53. [Online].
Available: https://doi.org/10.1145/2676723.2677219

[16] P.-Y. Chao, “Exploring students’ computational practice, design
and performance of problem-solving through a visual programming
environment,” Computers & Education, vol. 95, pp. 202–215,
Apr. 2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0360131516300161

[17] F. K. Bailie, “Improving the modularization ability of novice
programmers,” ACM SIGCSE Bulletin, vol. 23, no. 1, pp. 277–282,
Mar. 1991. [Online]. Available: https://dl.acm.org/doi/10.1145/107005.
107065

[18] Y.-T. Lin, M. K.-C. Yeh, and S.-R. Tan, “Teaching Programming by
Revealing Thinking Process: Watching Experts’ Live Coding Videos
With Reflection Annotations,” IEEE Transactions on Education, vol. 65,
no. 4, pp. 617–627, Nov. 2022, conference Name: IEEE Transactions
on Education.

[19] M. Hu, M. Winikoff, and S. Cranefield, “Teaching novice programming
using goals and plans in a visual notation,” in Proceedings of the

Fourteenth Australasian Computing Education Conference - Volume 123,
ser. ACE ’12. AUS: Australian Computer Society, Inc., Jan. 2012, pp.
43–52.

[20] K. Beck, R. Crocker, G. Meszaros, J. O. Coplien, L. Dominick,
F. Paulisch, and J. Vlissides, “Industrial experience with design patterns,”
in Proceedings of IEEE 18th International Conference on Software

Engineering. IEEE, 1996, pp. 103–114.
[21] M. E. Caspersen and J. Bennedsen, “Instructional design of a program-

ming course: a learning theoretic approach,” in Proceedings of the third

international workshop on Computing education research, 2007, pp.
111–122.

[22] K. Cunningham, “The novice programmer needs a plan,” in 2018

IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC). IEEE, 2018, pp. 269–270.
[23] L. Sterling, “Patterns for Prolog Programming,” in Computational

Logic: Logic Programming and Beyond: Essays in Honour of Robert A.

Kowalski Part I, ser. Lecture Notes in Computer Science, A. C. Kakas

and F. Sadri, Eds. Berlin, Heidelberg: Springer, 2002, pp. 374–401.
[Online]. Available: https://doi.org/10.1007/3-540-45628-7 15

[24] J. P. East, S. R. Thomas, E. Wallingford, W. Beck, and J. Drake,
“Pattern Based Programming Instruction,” Jun. 1996, pp. 1.349.1–
1.349.10, iSSN: 2153-5965. [Online]. Available: https://peer.asee.org/
pattern-based-programming-instruction

[25] L. Seiter and B. Foreman, “Modeling the learning progressions of
computational thinking of primary grade students,” in Proceedings of the

ninth annual international ACM conference on International computing

education research, 2013, pp. 59–66.

[26] E. Soloway, “Learning to program = learning to construct mechanisms
and explanations,” Communications of the ACM, vol. 29, no. 9, pp. 850–
858, Sep. 1986. [Online]. Available: https://doi.org/10.1145/6592.6594

[27] M. Mohaghegh and M. Mccauley, “Computational Thinking: The Skill
Set of the 21st Century,” nternational Journal of Computer Science and

Information Technologie, vol. 7, pp. 1524–1530, Jun. 2016.

[28] L. A. Mesiti, A. Parkes, S. C. Paneto, and C. Cahill, “Building
Capacity for Computational Thinking in Youth through Informal
Education,” Journal of Museum Education, vol. 44, no. 1, pp. 108–121,
Jan. 2019. [Online]. Available: https://www.tandfonline.com/doi/full/10.
1080/10598650.2018.1558656

[29] Y. Pechorina, K. Anderson, and P. Denny, “Metacodenition: Scaffolding
the Problem-Solving Process for Novice Programmers,” in Proceedings

of the 25th Australasian Computing Education Conference, ser. ACE
’23. New York, NY, USA: Association for Computing Machinery, Jan.
2023, pp. 59–68. [Online]. Available: https://doi.org/10.1145/3576123.
3576130

[30] F. Corno, L. De Russis, and J. Pablo Sáenz, “TextCode: A Tool
to Support Problem Solving Among Novice Programmers,” in 2021

IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), Oct. 2021, pp. 1–5, iSSN: 1943-6106.

[31] A. Milliken, W. Wang, V. Cateté, S. Martin, N. Gomes, Y. Dong,
R. Harred, A. Isvik, T. Barnes, T. W. Price, and C. Martens, “PlanIT! A
New Integrated Tool to Help Novices Design for Open-ended Projects,”
in SIGCSE ’21: The 52nd ACM Technical Symposium on Computer

Science Education, Virtual Event, USA, March 13-20, 2021, M. Sherriff,
L. D. Merkle, P. A. Cutter, A. E. Monge, and J. Sheard, Eds. ACM,
2021, pp. 232–238.

[32] J. Wrenn and S. Krishnamurthi, “Executable Examples for Programming
Problem Comprehension,” in Proceedings of the 2019 ACM Conference

on International Computing Education Research, ser. ICER ’19. New
York, NY, USA: Association for Computing Machinery, Jul. 2019, pp.
131–139. [Online]. Available: https://dl.acm.org/doi/10.1145/3291279.
3339416

[33] D. Hooshyar, R. B. Ahmad, R. G. Raj, M. H. N. M. Nasir, M. Yousef,
S.-J. Horng, and J. Rugelj, “A flowchart-based multi-agent system for as-
sisting novice programmers with problem solving activities,” Malaysian

Journal of Computer Science, vol. 28, no. 2, pp. 132–151, 2015.

[34] D. Hooshyar, R. B. Ahmad, M. Yousefi, F. D. Yusop, and S.-J. Horng,
“A flowchart-based intelligent tutoring system for improving problem-
solving skills of novice programmers,” Journal of computer assisted

learning, vol. 31, no. 4, pp. 345–361, 2015.

[35] D. Hooshyar, R. B. Ahmad, M. Yousefi, M. Fathi, S.-J. Horng, and
H. Lim, “Sits: A solution-based intelligent tutoring system for students’
acquisition of problem-solving skills in computer programming,” Inno-

vations in Education and Teaching International, vol. 55, no. 3, pp.
325–335, 2018.

[36] K. Cunningham, B. J. Ericson, R. Agrawal Bejarano, and M. Guzdial,
“Avoiding the Turing tarpit: Learning conversational programming by
starting from code’s purpose,” in Proceedings of the 2021 CHI Confer-

ence on Human Factors in Computing Systems, 2021, pp. 1–15.

[37] C.-C. Tseng, P.-Y. Chao, and K. R. Lai, “An Analysis of Goal Orientation
Pattern and Self-Efficacy for Explanation of Programming Plans,” in
2015 IEEE 15th International Conference on Advanced Learning Tech-

nologies, Jul. 2015, pp. 76–77, iSSN: 2161-377X.

[38] W. Jin, A. Corbett, W. Lloyd, L. Baumstark, and C. Rolka, “Evaluation
of Guided-Planning and Assisted-Coding with Task Relevant Dynamic
Hinting,” in Intelligent Tutoring Systems, ser. Lecture Notes in Computer
Science, S. Trausan-Matu, K. E. Boyer, M. Crosby, and K. Panourgia,
Eds. Cham: Springer International Publishing, 2014, pp. 318–328.

[39] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi, How to

design programs: an introduction to programming and computing. MIT
Press, 2018.

246

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

[40] O. Muller, D. Ginat, and B. Haberman, “Pattern-oriented instruction and
its influence on problem decomposition and solution construction,” in
Proceedings of the 12th annual SIGCSE conference on Innovation and

technology in computer science education, 2007, pp. 151–155.
[41] E. Soloway, “Learning to program= learning to construct mechanisms

and explanations,” Communications of the ACM, vol. 29, no. 9, pp. 850–
858, 1986.

[42] J. Prather, R. Pettit, B. A. Becker, P. Denny, D. Loksa, A. Peters,
Z. Albrecht, and K. Masci, “First things first: Providing metacognitive
scaffolding for interpreting problem prompts,” in Proceedings of the

50th ACM technical symposium on computer science education, 2019,
pp. 531–537.

[43] J. Kodosky, “Labview,” Proceedings of the ACM on Programming

Languages, vol. 4, no. HOPL, pp. 1–54, 2020.
[44] W. D. Hoyer and S. P. Brown, “Recognition over recall,” Journal of

Consumer Research, vol. 17, pp. 141–148, 1990.
[45] W. Lidwell, K. Holden, and J. Butler, Universal principles of design,

revised and updated: 125 ways to enhance usability, influence percep-

tion, increase appeal, make better design decisions, and teach through

design. Rockport Pub, 2010.
[46] K. J. Harms, J. Chen, and C. L. Kelleher, “Distractors in parsons

problems decrease learning efficiency for young novice programmers,”
in Proceedings of the 2016 ACM Conference on International Computing

Education Research, 2016, pp. 241–250.
[47] D. H. Smith IV and C. Zilles, “Discovering, autogenerating, and eval-

uating distractors for python parsons problems in cs1,” in Proceedings

of the 54th ACM Technical Symposium on Computer Science Education

V. 1, 2023, pp. 924–930.
[48] P. Denny, J. Prather, B. A. Becker, Z. Albrecht, D. Loksa, and R. Pettit,

“A closer look at metacognitive scaffolding: Solving test cases before
programming,” in Proceedings of the 19th Koli Calling international

conference on computing education research, 2019, pp. 1–10.
[49] O. Seppälä, P. Ihantola, E. Isohanni, J. Sorva, and A. Vihavainen, “Do

we know how difficult the rainfall problem is?” in Proceedings of the

15th Koli Calling Conference on Computing Education Research, 2015,
pp. 87–96.

[50] K. Fisler, “The recurring rainfall problem,” in Proceedings of the tenth

annual conference on International computing education research, 2014,
pp. 35–42.

[51] C. Board, “Ap® computer science a free-response questions,” 2019.
[52] M. Maguire and B. Delahunt, “Doing a thematic analysis: A practical,

step-by-step guide for learning and teaching scholars.” All Ireland

Journal of Higher Education, vol. 9, no. 3, 2017.
[53] V. Braun and V. Clarke, “Using thematic analysis in psychology,”

Qualitative research in psychology, vol. 3, no. 2, pp. 77–101, 2006.
[54] N. Bergen and R. Labonté, ““everything is perfect, and we have no

problems”: detecting and limiting social desirability bias in qualitative
research,” Qualitative health research, vol. 30, no. 5, pp. 783–792, 2020.

247

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

