2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) | 979-8-3503-6613-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/VL/HCC60511.2024.00034

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

Jigsaw: A Tool for Decomposing and Planning
Programming Problems

Heidi Reichert
North Carolina State University

Department of Computer Science
Raleigh, NC, USA
hreiche @ncsu.edu

Thomas Price
North Carolina State University
Department of Computer Science
Raleigh, NC, USA
twprice @ncsu.edu

Abstract—Many students struggle with decomposition and
planning despite the necessity of these skills in computing edu-
cation. Hence, more tools are needed to scaffold these processes.
In this paper, we present Jigsaw, a standalone visual planning
tool to help students practice decomposition and planning before
writing code. Jigsaw allows students to compose a solution
to a new problem based on previously seen ‘patterns,” such
as the accumulator pattern for summing values or the filter
pattern for conditional input selection. Students can connect
these patterns together to see how data flows between them
and define a solution plan. Jigsaw’s goal is to scaffold students’
planning processes by presenting relevant patterns for a given
problem. Using a within-subjects design, we evaluated Jigsaw
by observing 17 undergraduate students as they planned for
and implemented two programming assignments. The experi-
mental task included Jigsaw, and the control task did not. This
design aimed to understand how the tool impacted students’
planning and programming process. Subsequently, we conducted
interviews with these students regarding their planning and pro-
gramming experiences with and without Jigsaw. Many students
explicitly mentioned they would employ Jigsaw for planning and
appreciated the scaffolding it provided. Students also admired
the Jigsaw’s novelty in visualizing programming problems. We
conclude with our design takeaways and recommendations for
future work.

Index Terms—planning tool, CS1, decomposition, planning
scaffolding

I. INTRODUCTION

Decomposition and plan composition are fundamental skills
for computing students [1], [2]. Students must learn to solve
new problems by decomposing them down into smaller sub-
goals that they already know how to solve, also called “pat-
terns,” “recipes,” or ‘“tasks,” followed by composing these
pieces into a solution plan [1]. However, these skills are not al-
ways practiced explicitly in CS courses, and students are often
expected to implicitly plan a solution while implementing it in
code, which can make both tasks more challenging. Previous
studies have shown that students struggled to decompose pro-
gramming problems, recognize when patterns may be useful,

979-8-3503-6613-6/24/$31.00 ©2024 IEEE
DOI 10.1109/VL/HCC60511.2024.00034

236

Benyamin T. Tabarsi
North Carolina State University
Department of Computer Science

Raleigh, NC, USA
btaghiz@ncsu.edu

Tiffany Barnes
North Carolina State University
Department of Computer Science
Raleigh, NC, USA
tmbarnes @ncsu.edu

and plan out a solution [3]-[5]. These papers have cited the
need for more scaffolding for the planning process in order to
help students identify the patterns that can be composed into
a solution.

To address this, we developed a novel tool called Jigsaw,
where students can compose canonical programming patterns
to plan out the solution to a programming problem. Jigsaw
offers novel features, including a palette of relevant patterns,
scaffolding to connect these patterns to the given problem, and
visualizing how different test inputs change program outputs
at each step of the plan. To evaluate Jigsaw, we conducted
a pilot study with three high school students in a summer
programming internship, as well as a follow-up within-group
study with seventeen undergraduate introductory programming
students to complete two programming assignments in the
language of their choice. One assignment was completed while
planning with Jigsaw (experimental), while the other was
planned according to the students’ preferences (control). After
completing each plan, students were asked to program the
corresponding task. Finally, they were interviewed regarding
their attitudes toward Jigsaw. We did this to understand the
impact of this form of scaffolding, as well as to gather
suggestions to further improve Jigsaw for future deployment
in the classroom.

Through this process, we aimed to answer the following
research question:

« How does providing scaffolding via an interactive visual
tool like Jigsaw impact students’ planning and program-
ming processes?

Our evaluation suggests that students found Jigsaw’s visu-
alization facilitated planning and programming through visu-
alization, although the tool needs to be improved impacting
students’ code correctness or speed. Our results have broader
implications for future studies on supporting students in plan-
ning and decomposition.

II. BACKGROUND

In this section, we start with the theoretical and practical
facets of planning and decomposition. Then, we discuss the
importance of supporting planning in programming. We elab-
orate on this by exploring decomposition and programming
patterns as important factors in formulating a successful plan.
Finally, we note some tools developed for novices to plan their
programming activities.

A. Planning and Decomposition

Planning emphasizes high-level strategies for solutions
without including low-level elements of implementation [6].
Effectively, this entails creating more abstract or general goals
of a program rather than focusing on the specific details of
implementation. In programming, identifying the goal of a
program and being able to plan for completing that goal is
of high importance, especially for novices [7]. This solution
planning step commonly includes the utilization of subgoal
decomposition [8].

Decomposition (i.e., breaking down a problem into manage-
able units) is one of the primary facets of computational think-
ing (CT) [9]. Plans can be defined as “knowledge structures
that organize steps for a particular task (or goal) into chunks,”
where each chunk represents a subgoal [10]. Research has
shown that decomposition and abstraction are strong predictors
of algorithmic thinking, evaluation, and generalization [11],
and decomposition improves code readability and understand-
ability [12].

However, proper decomposition can be demanding for stu-
dents [8], [13] and needs to be explicitly taught to some
students [3], [14], [15]. Research has indicated that although
the quality of decomposition can be enhanced by scaffolding
it, many students lack the skills to decompose problems and
plan after completing introductory programming courses [16].
Thus, there is good potential for tools and methods focusing
on novices’ decomposition skills.

B. Supporting Planning and Decomposition in Programming

Planning is a quality that separates novices from accom-
plished programmers [17]. However, planning as strategic
knowledge is more challenging than learning the syntax of a
programming language for novices [18]. Even though planning
can successfully be taught to programming students [2], the
best ways to help novice programmers learn, and practice
planning need to be further investigated.

Previous studies have explored different approaches, such
as the integration of goals and plans in a visual programming
environment [19], explicit illustration of algorithmic planning
through displaying think-aloud sessions of expert programmers
[18], and designing a planning sheet [7]. A study by Chao et al.
has shown novices’ learning of planning and solution design
can be improved by assisting them in decomposing problems
[16].

In decomposition, many pieces or patterns are reusable.
Coding patterns (also called recipes [20] or schemas [21])
are powerful tools for teaching programming that enable

237

learners to organize their knowledge [22]. In addition, patterns
make complex programming tasks easier to follow, explain,
and understand [23]. Given these benefits of patterns, prior
studies [24], [25] have developed tools and models that utilize
schemas and patterns for teaching programming and assessing
students” CT and plan to implementation skills. Rivera et al.,
who studied students’ ability to compose plans using Higher-
Order Functions (HOFS), discovered that students can both
build and implant plans by using HOFS [6].

East et al. [24] devised a model that incorporates patterns for
teaching programming, which gained encouraging preliminary
results and indicated that going over patterns besides syntax
can be very easy for an instructor. Seiter and Foreman [25]
developed a model for examining CT through the lens of
project-wide design pattern variables. Particularly, they created
a model that categorizes CT through the skill level utilized
in design patterns. Once students learn the patterns, they can
reuse them in different programming tasks, although merging
the patterns and plans is challenging for students [26].

The positive impacts of proper decomposition in program-
ming are manifold. First and foremost, decomposition helps
students tackle subproblems rather than dealing with the
problem all at once. This helps students build an understanding
of the main problem, thus solve it more efficiently. Second,
proficiency in decomposition affects students’ other CT skills.
Research has shown that decomposition and abstraction are
strong predictors of algorithmic thinking, evaluation, and gen-
eralization [11]. Third, using decomposition improves code
readability and understandability [12]. Smaller pieces of code,
reasonable flow, and different levels of abstraction are the
features brought by decomposition that make the code easier to
read and simpler to understand. Finally, the benefits of learning
and practicing CT skills are not limited to CS [27], and they
can be used in other domains [28]. Decomposition is not an
exception; students who learn this skill can transfer it to other
areas.

C. Programming Planning Tools

Scaffolding the planning process can encourage students
to learn this skill. Many tools have been developed to aid
students in constructing plans for their problems.For exam-
ple, Metacodenition [29] is a programming environment that
offers students metacognitive scaffolding for programming
exercises throughout the problem-solving process. They found
that students who received scaffolding in the initial steps of
problem-solving (i.e., understanding the problem, designing
a solution, and evaluating a solution) experienced fewer test
case failures compared to those who only had scaffolding in
the implementation stage. TextCode [30] is another IDE de-
signed for novices that pivot their focus toward understanding
the problem statement, decomposing it, writing and trying
different solutions for each subproblem, and combining the
subproblems’ code to compose the complete solution. PlanIT!
[31], a planning tool integrated within the Snap/ programming
environment, aimed to assist students in making plans for
open-ended projects. Students could describe their projects

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

briefly, make a step-by-step to-do list, and determine the
main elements of their projects, such as variables. Students’
interviews revealed that their plans became more actionable
and precise following the use of the tool.

Despite the importance of decomposition, these tools de-
pended on students’ recall of patterns for creating a plan rather
than presenting them with relevant programming patterns,
which necessitates students’ recognition. They also did not
have the feature allowing students to run their plans before
starting the implementation. Wrenn et al. [32] considered this
issue by developing a tool that allowed students to create
and evaluate their own examples without any need to do the
implementation, although it still required students to create the
examples by themselves.

Previous studies [33]-[35] have focused on creating
flowcharts from natural language prompts entered by the
user, which improved students’ performance and problem-
solving skills. However, they did not decompose prompts
into programming patterns. Cunningham et al. [36] proposed
purpose-first programming, which was intended to help con-
versational programmers who needed the skill to communicate
about technical programming topics rather than knowing the
syntax. Their approach, which provided scaffolding through
code patterns that were mergeable into their code, showed
that programmers were motivated to learn and work more
with this approach, allowing them to meet their goals and feel
successful.

Tseng et al. [37] proposed a system that presents pre-
fabricated plans and requires minimal effort by students. It
offered students an example of the concepts being taught,
some programming plans, and the code related to each plan.
Jin et al. [38] assessed the effectiveness of guided planning
and assisted coding in an intelligent tutoring system, which
showed that students’ learning gains were higher with this tool
in comparison to coding-only, planning-only, and interleaved
planning-only and planning-coding environments.

The primary limitation of most of these tools is that they
have predominantly relied on students’ ability to build a plan
from scratch without offering any pre-defined patterns. While
this might not be challenging for experienced developers,
novice programmers may learn more from recognition than
recall of suitable planning components. Another limitation
is that students may be expected to create plans by writing
pseudocode or code snippets, which cannot be tested and
may not fit as a reusable pattern that benefits students in
future implementations. In designing Jigsaw, elaborated upon
in Section III-B, we aimed to address these gaps.

III. TooL DESIGN

Jigsaw is a standalone program planning tool designed to
1) separate the challenges of program design from implemen-
tation, 2) scaffold the planning process using best practices
from literature and 3) allow students to execute their plan with
different inputs before getting into actual implementation. In
this section, we first describe Jigsaw’s user experience, and
then we highlight the specific design goals of Jigsaw and how

these connect to prior literature on planning and computing
education.

A. User Experience

Learning Context: Jigsaw is designed to be used in a
formal learning context, where students have been explicitly
taught programming patterns (e.g., a design recipe approach
[39] or pattern-oriented instruction [40]). The tool assumes stu-
dents have practiced implementing these patterns (e.g., filter,
reduce, accumulate) as code, but may struggle to decompose
larger problems into patterns, and to compose those patterns
together into a solution. Students can use therefore Jigsaw at
the start of a programming problem, to form a plan using these
programming patterns, and then reference that plan throughout
programming. Jigsaw is hosted online and can be accessed via
a direct link through any web browser!, although it is most
effective on a computer or laptop rather than a mobile device.
Accordingly, it can be used within any class that has Internet
access.

As an example, Figure 1 shows Jigsaw’s user interface,
and a completed plan for a simplified version of the rainfall
problem [41] (described in more detail in Section IV-A3).
When planning out a program in Jigsaw, students compose
their plan out of pattern blocks, each representing a common
programming pattern (e.g. “read input until value,” or “filter”
or “sum”). Students can browse through relevant patterns from
a palette at the bottom, and drag patterns they wish to use into
their workspace, similar to many block-based programming
environments.

Each pattern block consists of a title (“Filter > 0), a natural
language description (“Filter values in a loop to include only
non-negative numbers”), a set of inputs (left) and outputs
(right). Inputs and outputs are represented as circles, and
students can connect the output of one block to the input of
another by clicking and dragging. The inputs and outputs of
each block are color-coded to indicate the data type of the
input/output, such as a list (orange), a number (blue), or any
type (gray).

One of our primary design goals (see below), which sets
Jigsaw apart from existing planning tools, is that students’
plans are fully executable. Each plan block shows its current
output given its current input; for example, the “Filter > 0”
block takes as input numbers 5, -3, 7, -200, 9, and
has output 5, 7, 9. As students connect new blocks, Jigsaw
updates their outputs dynamically. For each problem, Jigsaw
includes a test block with multiple test inputs and students
can visualize how these inputs affect both intermediate and
final outputs of the program, in order to verify the correctness
of their plan, and spot potential missed edge cases. While test
cases are technically not a part of the program plan itself, prior
work shows that testing input/output pairs is an important step
in program comprehension and planning [29], [42].

YA version of Jigsaw is accessible via the link:
isnap.csc.ncsu.edu/pbp-planner/dist/#/editor/test.
Note that one may replace ‘test’” with ‘rainfall’ or ‘bottled_water’ to find

versions tailored to the problems referenced in Section IV-A4

following

238

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Jigsaw’s user interface, consisting of a palette (bottom) and a work space where students connect pattern blocks together (middle). Each block has
inputs and outputs (circles), which can be connected, and a preview of the outputs’ values.

Raintall Test

Provides two different test
cases, simulating user input
for two sets of rainfall
measurements.

Read Rainfall Until Value

Read input from the user until
the given stop value is read.

input &

IS)

) s

Ralidall Taxt Fuard Fiindsll Untd Yaloe

Provides two |
aRRR, SiMLA
fow swa s of

et st feom the user untl

Rmad 2
e g + 1) Nl fs rRad.
Aumbery.

2l

Jigsaw’s executable plans are represented similarly to a
dataflow programming language (e.g. LabView [43]), with in-
puts connecting to outputs. This choice enables us to represent
plans as a composition of reusable patterns. This would be
much more difficult in an imperative representation, where
programming patterns often correspond to lines of code that
might be spread throughout a student’s program. For example,
in an imperative language like Java, a “sum” pattern (i.e.,
accumulator) requires a loop to be present, and includes code
before the loop (initializing the variable), in the loop (adding
something to the variable), and after (using the sum value).
Additionally, multiple patterns might use the same loop (e.g.
the “sum” and “count” patterns in Rainfall use the same “read
input until” loop).

Because Jigsaw is a standalone program planning tool and

Filter: =0

Filter values in a loop to
include only non-negative
numbers.

1 Ve S

Fiter values in g toog to
inglira paky non -nogativ

239

Sum

Sum values ina loop.

Sum &

5
Final Sum:
2|

Sum, S
Final Sum |

| Maluss fo sum| &

' 7|
o |

Count

Count values in a loop.

) Numaristsr

o -Danaminmtar

Count| S| ||

Einal Gaut [

)| Matuss'to Count S

Sum

Sumn values in a loog.

Colen

Count values in 3 foop.

W vahies 0 Coure &

not a language itself, it is consequently language-agnostic and
can be used in conjunction with most common introductory
programming languages, such as Java, Python, MATLAB
and Snap!/ (which were all used in our evaluation in Sec-
tion IV-A4). Since these languages are imperative, Jigsaw
introduces a special “loop” input/output type, indicated by a
dark circle, connected by dashed lines, and a k& symbol, as
seen in Filter’s input/output (see Figure 1). This indicates a
variable that changes values in a loop, such as the “input” read
from the user in the “Read Rainfall Until Value” block. This
helps students connect Jigsaw’s functional plan representation
to imperative program code. When visualizing the output of
these blocks, Jigsaw shows all values that the variable takes,
in order of iteration (e.g. 5, 7, 9 in the Filter block). If stu-
dents hover over any of these values, Jigsaw highlights other

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

values that were calculated in the same iteration. For example,
hovering over Filter’s “7” would highlight Sum’s “12” (the
sum after the second iteration of the loop: 5 + 7), and Count’s
“2”. Jigsaw’s interface can also support 2 nested loops (using
a 2-dimensional table to represent values), as well as lists (and
lists of lists), and future work may explore how to represent
more complex data types. However, an important principle of
Jigsaw’s design is not to be a complete programming language,
capable of representing arbitrary programs. Jigsaw’s planning
blocks are scoped for CS1 problems, and some CS2 problems,
where students are still learning basic programming patterns;
they cannot be exported into a programming environment.

The version of Jigsaw used in this study is inherently
problem-specific (aligning with our design goals, below),
and therefore appropriate patterns for each problem must be
designed by a researcher or instructor. However, Jigsaw has
since been extended to allow students to define their own
custom pattern blocks, which can map a set of input values to
specified outputs values. This enables Jigsaw to be used on a
wider variety of problems, which cannot be fully mapped to
a set of reusable patterns.

B. Design Goals

Jigsaw’s design was focused around four key design goals
that we identified from prior literature:

1) Center planning on programming patterns: Prior
studies have found that recognizing and implementing reusable
programming patterns is a critical skill for students learning
to program [22], [40]. Therefore, Jigsaw defines planning as
organizing and connecting reusable pattern blocks.

2) Use purpose-first language to contextualize patterns:
By definition, reusable programming patterns are generic (e.g.,
“filter””), not context-specific (e.g., “keep positive rainfall val-
ues”), and this can make it difficult for students to understand
how to apply and combine patterns in the specific context
of a given problem [22], [36]. To address this, Cunningham
et al. argue that programming patterns should be presented
“purpose-first,” where each pattern is described with “domain-
specific,” contextualized natural language [36]. Similarly, Jig-
saw labels patterns with both a reusable label (e.g. “filter”),
with the goal of helping students recognize a pattern, and
a context-specific label (“numbers > 0”) that connects the
pattern to the problem.

3) Enable recognition over recall of patterns: Prior work
has shown that students are much better able to recognize
relevant information, when it is presented to them, than they
are at recalling it without a prompt [44]. Jigsaw therefore pro-
vides students with a palette of relevant programming patterns,
such as “sum,” “count,” “filter,” “always,” and “never,” which
students can insert into their plans as needed. Lidwell et al.
[45] name this as one of their principles of universal design.

This builds on prior work in block-based programming
environments (BBPEs), which present students with a palette
of blocks, allowing them to easily recognize, search and
browse for relevant functions, rather than recalling them from
memory. However, while BBPEs offer a different style of

programming, Jigsaw is intended to guide students in making
plans based on programming patterns.

In the problems we used in our evaluation of Jigsaw (Sec-
tion IV-A3), we only included relevant pattern blocks, since
prior work in Parsons problems has suggested that irrelevant
“distractor” blocks can inhibit learning and increase problem
solving time [46], [47], though future work could explore the
effect of such blocks.

4) Make plans testable and self-evident: Prior work has
shown that a major barrier students face when planning and
programming is that they form an incorrect conceptual model
of what the problem is asking [42], [48]. However, a major
limitation in prior work on tools to scaffold planning and
decomposition, such as flowcharts and pseudocode, is that
there is no way for the student to self-check whether their plan
is correct before moving on to implementation. We, therefore,
designed Jigsaw to allow students to fully execute their plans
and provide test inputs that reveal potential problems in these
plans (e.g. forgetting to filter out negative rainfall readings).
To facilitate debugging incorrect plans, Jigsaw also shows the
output of each plan block, allowing students to easily identify
where their plan went awry.

IV. METHODOLOGY
A. Study Design

1) Pilot Study: This study was administered in two parts:
a pilot study and a formal one. The pilot study was conducted
in the summer of 2022, while the formal study was conducted
in the fall and winter of 2022. For our pilot study, three high
school students who were engaged in a summer internship at a
public university in the US volunteered to participate without
compensation. These students were proficient in Snap/, which
was the language used for their programming sessions. The
pilot study allowed the researchers to smooth out issues with
the assignments and protocol, as well as to develop an initial
codebook for future thematic analysis, to be elaborated upon
in Section IV-B. The pilot study consisted of the same as-
signments, protocols, and interview questions that we discuss
below. However, the pilot population was not in our target
demographic, and we did not consequently include their results
in this study.

2) Participants and Recruitment: Our target population
for using Jigsaw consisted of students in introductory CS
courses—this included CS majors, non-majors, and minors.
Since Jigsaw was designed to be language agnostic, we
intentionally recruited students from diverse introductory pro-
gramming courses. Thus, for our formal study, all participants
were recruited from 100-level CS courses. Seventeen students
signed up to participate in the study. They were enrolled in
either of the introductory programming classes in Java, Python,
or Matlab during the fall of 2022. Recruitment advertisements
were made via email and Moodle, and participants were
compensated with a $30 Amazon gift card.

Students were asked to schedule a 90-minute study session
over Zoom, during which either one or two researchers were
present. Sessions were conducted remotely due to the ongoing

240

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

COVID-19 pandemic. In the event where two researchers
were present, one conducted the study while the other took
notes. Participants were given anonymous IDs for use during
the study and were instructed to turn off their videos before
recording. Data collection was limited to students’ screens and
voices.

3) Assignments: During the study session, students were
tasked with working on two assignments. Both assignments
involved elements of reading input, accumulators, and filters.
Both assignments were formatted as a Google document in
view-only mode that was shared with the student and included
starter code to prompt the user, as well as several test cases
for assessing the correctness of the program.

a) Rainfall: The first assignment was a modified version
of Rainfall, a task first designed by Elliot Soloway in 1986
[41]. This was chosen due to its status as a common program-
ming task that has been repeatedly studied for difficulty [49],
[50]. Rainfall asked students to take a set of numeric inputs
from a user one at a time and average and output the non-
negative values. However, we modified the task to remove the
possibility of invalid inputs or no inputs (i.e., a student could
assume all potential inputs would be valid and there would be
no division by zero), thus making it less challenging.

b) Water/Bottle: The second assignment was entitled
Water/Bottle. This task was based on the balanced delimiter
problem featured as a free response question in the 2019 AP
Computer Science A exam [51]. This task asked students to
take a set of string inputs from a user one at a time. However,
in our modification of the delimiter problem, we required
students to assess at every iteration of the loop whether there
was a “bottle” to hold “water” within.

These two assignments’ prompts, starter code, and solutions
were available in the programming languages Python, Java,
and MATLAB.

4) Programming Session: Before programming, each stu-
dent was randomly assigned to use the tool for either Rainfall
or Water/Bottle. The session was structured as follows:

1) Prior to planning and programming, students were in-
structed to verbalize their thoughts as they completed
their tasks. Students were shown an approximately
one-minute-long video demonstrating the process of
“thinking-aloud,”, in which one of the researchers spoke
their thoughts aloud while solving a math problem.

2) Before beginning programming, all students were given
an approximately 5-minute presentation via a slide deck
shared and presented by the researcher. The researcher
went over the programming recipes “Read input until,”
“Accumulator,” and “Filter,” which are described in
Table I. Each pattern was explained in plain terms and
included functional sample code in the student’s pro-
gramming language of choice. This code was available
for students to copy and paste.

3) After this, each student worked on Rainfall. Students
whose experimental task was Rainfall first received an
approximately 7-minute tutorial on using Jigsaw. This
tutorial was an interactive demonstration within a demo-

241

version of the tool, including how to use the tool (i.e.,
dragging out and connecting blocks), and the function-
alities of the blocks. Students were instructed to follow
along on their end using the same demo-version of the
tool, as well as encouraged to ask clarifying questions
during this process. Students whose experimental task
was Water/Bottle were not given the tutorial at this point.

4) Before starting to program the Rainfall, the researcher
shared a link via Zoom chat to a Google document
containing the Rainfall instructions and test cases, as
well as a link to the planning area. For students using
Jigsaw, this was a link to a version of Jigsaw that was
tailored to Rainfall. For students whose control task was
Rainfall, this was a link to a Google document with
embedded links to the programming pattern slide deck.

5) Students were instructed to read the instructions and
plan for at least five minutes. Once five minutes had
passed, the researcher informed the student that they
could begin programming or continue to plan. However,
in the event that a student completed planning before
time had finished, students were given permission to
continue with programming, thus allowing for some
students to begin programming before five minutes had
passed.

6) Students were then allowed 25 minutes to either continue
planning or programming. After 25 minutes, students
were informed that they could either continue program-
ming for up to five more minutes or move on to the next
assignment.

After the completion of Rainfall, this process was repeated
for Water/Bottle. Students who had not used Jigsaw by this
point received the tutorial and scaffolded version of the tool,
while students who had used Jigsaw already received only a
link to a planning document.

5) Interview: Following the completion of their second
assignment, students were requested to stay for an approxi-
mately 10-minute interview using a semi-structured approach.
Students were asked about their planning and programming
experiences, as well as their general attitudes toward planning.
They were also asked to elaborate on their experiences using
the tool, what they found useful and difficult about the tool,
and how they planned differently with and without the tool.
From here on, participants are referred to as PX, where X
represents the numerical order in which their interview was
conducted.

B. Analysis

We utilized both qualitative and quantitative approaches for
data analysis. The former primarily used students’ interview
data and the latter was mainly based on students’ times during
programming and planning.

1) Qualitative Analysis: In order to best understand how
students perceived the usefulness of Jigsaw for planning
scaffolding, we performed qualitative analysis using thematic
analysis on the transcripts [52], [53]. Because of the open-
ended nature of our research question and limited sample size,

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE PATTERNS PRESENTED TO STUDENTS DURING THE STUDY SESSION, ALONGSIDE THEIR SHORT DESCRIPTIONS.

Pattern Description

Read Input Until

Reading input taken from a user until the user states the stopping criterion; examples include the user typing ‘stop.’

Accumulator - -
or checking conditionals.

Using variables within a loop; examples include summing a set of numbers, counting the number of times something happens,

Filter

Keeping input that only meets certain conditions; an example is non-negative numbers

we considered thematic analysis to be the appropriate avenue
for our analysis.

First, we utilized an inductive approach [53] for creating
our preliminary codebook. This was done via open coding of
the interviews of our pilot study. All three of the interviews
conducted during this study were re-watched and coded by the
two researchers who later conducted the study sessions. From
this open coding and a discussion between the researchers,
during which their respective tags and notes were compared,
a preliminary codebook was created.

This codebook was then refined through the further open
coding of three students in our final study. One of these
interviews, P6, was chosen at random; the other two, P2 and
P9, were chosen by the researchers because of their identified
relevant and interesting themes. All codes were chosen to
relate generally to decomposition, planning, programming, and
attitudes toward Jigsaw.

After creating the codebook, we utilized a deductive ap-
proach [53] to tag the remaining fourteen interviews. The
two researchers who conducted the study sessions acted as
coders. Each researcher watched every student’s interview and
separately tagged the interview according to the codebook.
After repeating this procedure for three or four students’
interviews, the researchers reconvened to compare and discuss
their respective tags. This process was completed within two
days of completing individual coding to ensure the researchers
accurately recalled why they made their coding decisions.
During instances in which tags or quotes did not align with
each other, the researchers would re-assess, discuss, and then
tag the relevant quote together. In all instances of initial
disagreement, the researchers reached a mutually agreed-upon
decision regarding tagging. Because all seventeen interviews
were coded by two researchers and by the fact that every
tagging was discussed almost immediately after the interviews
were re-watched, inter-rater reliability was deemed unneces-
sary and thus not calculated.

When the two researchers found it necessary, the code-
book was further refined. We then grouped these codes into
five sections, roughly aligning with our design goals: these
concerned the scaffolding Jigsaw provided, the relationship
between planning and implementation, the use of Jigsaw to
test and execute code, the visual interface of Jigsaw, and the
impact of Jigsaw-scaffolded plans on students’ programming.
We align our results in Section V-A accordingly.

2) Quantitative Data Collection: As we wanted to under-
stand how scaffolding during planning impacted the ability to
implement students’ programs, we recorded some quantitative
data regarding students’ planning and programming processes.

Because we had only 17 participants and 34 plans/programs,
we do not include any statistical tests in this evaluation and
do not expect to reach any quantitative conclusions; however,
we chose to include descriptive statistics in order to present a
more complete picture of students’ use of Jigsaw.

The amount of time that students spent planning and
programming for each assignment was recorded by one re-
searcher while rewatching all seventeen session recordings.
The researcher also listened to students’ verbalized thoughts
to ensure accuracy, particularly in differentiating planning and
programming times. Programming times did not begin until
a student began typing in a programming environment. All
times were recorded in seconds for precision.

We developed a 5-point rubric for assessing each assign-
ment. Rubrics were completed for each assignment and con-
cerned whether the program ran/compiled, accepted correct
input and produced correct output, implemented the counting
pattern, implemented filtration (for Rainfall) or accumulators
(for Water/Bottle), and successfully completed all provided
test cases (which encompassed all potential edge cases).

All 17 students were able to complete their plans within
Jigsaw successfully. In order to better see how students lever-
aged their plans during implementation necessitated collecting
information on how students engaged with these plans, we
also recorded the number of times that students referred back
to their plans was thus recorded for each student. Students’
references to their plans were considered when they clicked on
or interacted with their plan, or when their verbalized thoughts
indicated they were referring to their plans. Six students held
their plans side-by-side on their screen (i.e., with their plan
adjacent to their IDE); in these cases, the durations during
which they held their plans on their screens were recorded in
seconds. For all cases in which both the plan and the IDE
were on the screen, students did so for both assignments.

V. RESULTS
A. Qualitative

Through our thematic analysis, we found themes relating to
scaffolding (via a palette of blocks, as in Jigsaw), testing and
executability, and visual interface.

a) Scaffolding: Jigsaw was designed to scaffold learning
decomposition, and seven students discussed the tool’s ability
to do so. P2 mentioned Jigsaw would be helpful for new
programmers, as the tool “kind of gives them the basic blocks
[...] even if they don’t understand why the blocks are there.”
P4 explicitly noticed the relationship between Jigsaw’s pattern
blocks and the patterns presented at the beginning of the

242

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

evaluation session, stating that the tool encouraged them to
consider “Which of those [patterns] I need to implement?”

Jigsaw’s scaffolding may reduce planning effort, which 11
students noted. P2 stated that the tool “/D]id help [me] figure
out how I needed to plan it so it wasn’t all on me.” P6 said
that “[Jigsaw] could be more helpful because it separates the
planning and actual writing of the code.” P3, with regard to
the possibility of using the tool in the future, expressed “I
think I would probably use it because it’s easier than typing my
thoughts. So because you have something to play around with,
it’s easy. It doesn’t take up much time planning.” A common
sentiment was the simplicity of being able to use the already
created blocks; P15 shared that the tool “[DJefinitely helped,
being able to have something quick and easy that was literally
Jjust drag and drop.” This reduction of planning effort may also
have reduced so-called blank page syndrome; as P17 stated,
“It’s sort of intimidating to have just like a blank sheet in front
of you, and you have to be like, ‘Oh, should I draw? Should
I write when I do this?’ Versus [with] the tool is like, ‘Okay,
I just got to start dragging stuff in and figure out how to link
them.”

Two students, P4 and P7, expressed that they felt restricted
or limited by Jigsaw. Both identified in their interviews as
more advanced programmers and felt that the tool was too
limited in scope to be of use in their planning processes.
These students believed that the extra scaffolding restricted
their freedom to guide their own approach. For example, P4
noted that ”[...] I feel that this type of planning [using blank
document] gives me a little bit more freedom, um, just to like
do things a little different like, you know, whereas here [with
Jigsaw], I only have certain options to do [...].” P7 explicitly
connected this to the lack of blocks, however, which suggests
that a less project-specific design may mitigate these concerns.

Another drawback that at least one student noted is that
Jigsaw’s scaffolding could present too much support. This was
explicitly noted by P17: “I think if you were first starting,
[Jigsaw] would be really helpful, but then I think it would
probably be good practice to not use it all the time. I think it
could end up being like a crutch — like, I could see myself using
this as a crutch.” This is a trade-off inherent in scaffolding:
it is helpful for the less experienced and less for the more
experienced.

b) Planning-implementation relationship: Several stu-
dents suggested that Jigsaw allowed for improved implemen-
tation. This was predominantly because of its structuring of
ideas. P10 stated, “Because it helped me see what the outputs
should have been [...] I was a little bit more prepared for, like,
you know, I could run through it a little bit easier.” In another
example, P17 said that “[Jigsaw] made it more simple for me
to just go through and be like, okay. I did this. I'm done with
this.” In P8’s case, they expressed a belief that the tool would
have helped them catch a significant error that impeded their
progress overall, thus causing the overall process to have been
faster.

c) Testing and Executability: Some students enjoyed
using the provided input blocks to check their work and see

in real time how changes to the input affected the output.
P13 enjoyed how “[Y]ou could edit the inputs and then see
everything else change.” P10 explicitly mentioned the tool as
being useful for testing: “I think it would be really helpful for
test functions like that — that helped a lot, so I didn’t have
to run it a bunch of times.” P11 referred to troubleshooting,
stating “I was able to use it to see if my program was right
or wrong, which is really useful.”

For P12, the program provided two main benefits regarding
testing. One was that using the test cases allowed them to
see, “Oh, this test case doesn’t work, and this one does.”
The other was that the test cases actually helped them clarify
their understanding of the problem. In this case, the interactive
input/output directly helped improve their mental model for
the problem.

As P8 mentioned, they believed that having Jigsaw would
have improved their bug-catching ability. “If I had to write
another program similar to that, I would plan, and I would
probably use the flowchart tool first. If for no other reason
than it would be easier to look back at and understand literally
follow my logic to what I was trying to do earlier, and then
maybe understand why I went wrong.”

d) Visual interface: We found, as prior flowchart tools
have, that visualizing plans is helpful for students. 13 students
noted the tool’s capability to improve visualization, commonly
referring to the tool’s ability to present a physical represen-
tation of the decomposed parts of the program. As P6 stated,
“I feel like this would be more useful than just writing it on
paper, because it visually separates everything, which makes
it super easy and quick to reference back to, especially when
you’re using a single screen like I am right now, and you’re
switching between tabs.” P15 mentioned that visualization
improved organization: “The second time using the tool was
definitely more organized, with an organized plan [...] Being
able to look back, see what things were supposed to be in
order.”

Additionally, we found an easy-to-use UI is important for
overcoming learning curves. Some students like P5 felt that
the tool’s interface, while helpful, took some time to learn:
“There’s a bit of a -— I want to say, a learning curve. It is not
hard to use, but I guess there’s a little bit of a learning curve
just to figure out.” Other students felt the program was fairly
intuitive, particularly given the colors and highlights embedded
within the program. P13 noted that ”/...] it took a while to get
used to [Jigsaw]. But then, once you realize the colors are
actually helpful, and you have to use them to connect the
objects, it helps get the flow of what you need to do.”

e) Plans’ impact on programming: Students engaged
with their Jigsaw-made plans differently than with their per-
sonally designed plans. P11 stated that, "As far as I remember,
from the one where I had [Jigsaw], it was very smooth. It was
like I did it step by step versus the one where I didn’t have
it.” P10 stated that “It definitely helped me figure out what
order everything needed to be in, and how I needed to think
of things, so it made that process a lot faster.” P13 shared,
“Without the tool, it’s definitely more like a high level of like,

243

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

‘Okay, what do I need to have in my code to make it function?’
[...] And then with the tool, it’s more interactive [...] I think
the visualization of how the data flows through the program
is also kind of helpful.” P10 expressed that the scaffolding
was highly beneficial, and touched on the decompositional
scaffolding of Jigsaw: “Honestly, when we have to write that
out ourselves, I would rather just do the code first, and then
put things in afterwards, because I really am not sure at all,
versus [Jigsaw] gave a lot more of a better skeleton without
really telling me what I was supposed to do. It got me in
the mindset of what I thought I should do. I was already
thinking, ‘Okay, I'm gonna sum this and count this. [...] I
would rather do that flowchart before I code, versus trying
to make my own little plan where I'm not even sure what
the code looks like yet.” P1 shared that Jigsaw streamlined
programming because it encouraged a better understanding of
the programming prompt than planning alone: “I think the
plan with [Jigsaw] made things more fleshed out. So when
I got to writing the program, there [weren’t] more steps to
think through when I was writing the program. And that made
it easier. When I was planning with just a blank document |[...]
I sort of had an idea of where to go, but it was definitely more
difficult.”

B. Quantitative

In Table V-B, we present the average planning and pro-
gramming times for all four conditions, as there were two
assignments (Rainfall and Water/Bottle) and two scaffolding
options (with or without Jigsaw). 13 students engaged with
Jigsaw equivalently to or more than with their non-scaffolded
plans. Additionally, students who planned on their own for
Rainfall were more likely to engage with their link to the
recipes slide deck they had been presented earlier than those
who planned on their own for Water/Bottle. As mentioned
earlier, all students had access to the link in their provided
documents for planning. Six in eight students who manually
planned for Rainfall referred back to the recipes slides, as
opposed to two in nine students who manually planned for
Water/Bottle. This was the primary difference in planning
between these groups, as approximately equal proportions of
students chose to continue planning regardless of the plan’s
scaffolding.

VI. DISCUSSION

We found that Jigsaw was generally effective at fulfilling
our design goals for three reasons. First, its design centered
purpose-first and clear language, which students noted and
appreciated. Second, Jigsaw supported recognition over recall,
as indicated in part by students’ preference to engage with
Jigsaw over a slide deck presenting the same recipes. Third,
Jigsaw made plans testable, allowing students to debug and
more thoroughly understand the task at hand as they worked.

A. Takeaways

Here, we summarize what we have learned during the
process of tool design and evaluation. We note that these take-

aways are our drawn conclusions from having run the study
and are primarily derived from our participants’ feedback.

a) Intuitive design: Jigsaw was designed to be easy
to use, with an intuitive visual interface for students and
simple, understandable language and descriptions for patterns,
and executable plans. Our participants stated that they did
find the tool to be easy to use. This design facilitated quick
adoption of the tool and allowed students to focus on planning
rather than learning the nuances of a new interface. It also
enabled students to ensure their plans functioned desirably
with different inputs before diving into implementation.

b) Student understanding: Jigsaw helped students rea-
son about their understanding of the program and debug
it. They could see where their expectations diverged from
the actual plan execution. In some cases, Jigsaw streamlined
their programming, as they began programming with a firmer
understanding than they otherwise would have.

c¢) Planning: Students largely preferred not to plan and
generally noted that they wouldn’t have if they had not been
required to do so. When left to plan themselves, students
largely wrote pseudocode, which corresponded closely with
program code — essentially coding on paper rather than in
an IDE. This allowed those students to sometimes implement
their programs faster, as they had effectively written out a
first draft. By contrast, Jigsaw takes additional time to plan,
and the result of planning with Jigsaw is a flowchart that
is new to students and may be challenging to translate into
a working implementation on the first try. However, this
increased cognitive effort may translate to more engagement
with planning process, the benefits of which we discussed
earlier.

B. Limitations

This study has several limitations. First, we had a limited
data sample for evaluating a prototype of the tool. Only 17
students’ data was analyzed, resulting in 36 programs available
for analysis. When analyzing assignments and the condition of
planning (e.g., Rainfall with Jigsaw), we did not have sufficient
samples to make definitive conclusions regarding the quan-
titative effectiveness of the tool on impacting programming
outcomes. We conducted a qualitative analysis of students’
interviews to address this limitation, but a larger sample size
is needed to corroborate our findings. Also, we did receive
feedback on improving the tool and hope that this may improve
its future use.

Second, social desirability bias?> might have impacted our
results. More specifically, some students could have provided
positive feedback on Jigsaw because of their assumptions that
researchers were interested in the success of the tool. To
mitigate this effect, future research evaluating this tool may
ask for students to provide feedback via a more impersonal

2Social desirability bias is “the tendency to present oneself and one’s social
context in a way that is perceived to be socially acceptable, but not wholly
reflective of one’s reality. In research, the bias denotes a mismatch between
participants’ genuine construction of reality and the presentation of that reality
to researchers.” [54]

244

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

TABLE 11
THE AVERAGE TIME (IN SECONDS) AND GRADE (GRADED FROM A RUBRIC CONSISTING OF FIVE POINTS) FOR EACH OF THE FOUR CONDITIONS.

Assignment Average planning time (s) | Average programming time (s) | Average grade (out of 5)
Rainfall with Jigsaw (n=9) 344 670 4.78

Rainfall without Jigsaw (n=8) 332 909 4.625

Water/Bottle with Jigsaw (n=8) 328 1438 4

Water/Bottle without Jigsaw (n=9) | 326 918 4.72

survey instead of engaging directly with one of the researchers
via an interview.

Third, Jigsaw was designed to be used in a formal, intro-
ductory learning context with an emphasis on programming
patterns, as discussed in Section III-A. Consequently, this
within-users study, while providing insights into how the tool
can be used and may benefit students, does not accurately
capture the context in which we would like this tool to be
used. This study design also prevented us from understanding
to what extent Jigsaw may have impacted the transfer of
knowledge to other problems or situations. Additionally, due
to the nature of the tool, scaling problems can provide issues in
terms of both creating more complex plans as well as taking up
more physical space; consequently, we recommend the tool’s
use particularly for novice programmers and introductory
programming environments.

Fourth, students’ use of the tool was occasionally limited
by technical issues. Although all students were able to use
and access the tool successfully, sometimes troubleshooting
extended the length of the study and affected students’ inter-
actions and satisfaction with the tool. Jigsaw cannot be used
on all browsers (e.g., Safari), and an overly sensitive zoom
feature discouraged some students from engaging with the tool
further. We intend to improve these components of the tool in
future work.

Fifth, we did not conduct pre- and post-assessments with the
students and consequently could not assess specific learning
outcomes. Since we built Jigsaw to be a scaffolding tool, we
hypothesize that our qualitative results in Section V-A bridge
our theory to our execution. However, further studies will be
needed to understand the specific impacts of the theory of
scaffolding on our implemented practices.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented and detailed the creation of
Jigsaw, a tool designed to explicitly teach decompositional
techniques for planning in programming. Because of the
importance of planning and decomposition, we believe that
the design of planning tools like Jigsaw, especially those that
can be used in multiple contexts and programming languages,
could improve the design and quality of the software that
students create and help them develop transferable skills in
decomposition and planning. These skills are critical for the
computational thinking (CT) process, and consequently may
be particularly valuable for more novice programmers.

Explicit planning, whether with a tool like Jigsaw or
another approach, may or may not quantitatively improve
programming outcomes like reducing programming time or

improving programming correctness, particularly for simpler
tasks. However, the open question seems to be whether explicit
planning can create better long-term learning and encourage
good habits when it comes to approaching more complex
tasks; this would require further studies to explore. Our
preliminary results suggest that a visual scaffolding tool like
Jigsaw may encourage good programming habits.

The versions of Jigsaw given to the students in our eval-
uation were inherently problem-specific. However, we have
modified Jigsaw to allow students to define their own custom
pattern blocks. This enables Jigsaw to be used on a wider
variety of problems and potentially scale to more complex
problems.

Ultimately, our goal with Jigsaw is to incorporate an im-
proved version among a wider group of undergraduate students
within the context of an introductory programming class.
Specifically, Jigsaw is intended to exist within a pedagogy in
which decompositional patterns are explicitly taught and re-
peatedly practiced. Such an approach may help change student
attitudes toward planning and its usefulness, and requiring its
practice, even in small cases, may help students develop more
skills and intentions to use planning and planning tools more
regularly.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant 1917885. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] K. Fisler, S. Krishnamurthi, and J. Siegmund, “Modernizing plan-
composition studies,” in Proceedings of the 47th ACM Technical Sym-
posium on Computing Science Education, 2016, pp. 211-216.

[2] F. E. V. Castro, S. Krishnamurthi, and K. Fisler, “The impact of a
single lecture on program plans in first-year CS,” in Proceedings of the
17th Koli Calling International Conference on Computing Education
Research. Koli Finland: ACM, Nov. 2017, pp. 118-122. [Online].
Available: https://dl.acm.org/doi/10.1145/3141880.3141897

[3] F. E. V. Castro and K. Fisler, “Qualitative analyses of movements
between task-level and code-level thinking of novice programmers,”
in Proceedings of the 51st ACM Technical Symposium on Computer
Science Education, 2020, pp. 487-493.

[4] E. S. Wiese, M. Yen, A. Chen, L. A. Santos, and A. Fox, “Teaching
students to recognize and implement good coding style,” in Proceedings
of the Fourth (2017) ACM Conference on Learning@ Scale, 2017, pp.
41-50.

[5] K. Fisler and FE. E. V. Castro, “Sometimes, rainfall accumulates: Talk-
alouds with novice functional programmers,” in Proceedings of the 2017
acm conference on international computing education research, 2017,
pp. 12-20.

245

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

E. Rivera, S. Krishnamurthi, and R. Goldstone, “Plan composition using
higher-order functions,” in Proceedings of the 2022 ACM Conference on
International Computing Education Research-Volume 1, 2022, pp. 84—
104.

J. Tsan, D. Eatinger, A. Pugnali, D. Gonzalez-Maldonado, D. Franklin,
and D. Weintrop, “Scaffolding Young Learners’ Open-Ended
Programming Projects with Planning Sheets,” in Proceedings of
the 27th ACM Conference on on Innovation and Technology in
Computer Science Education Vol. 1, ser. ITICSE ’22. New York, NY,
USA: Association for Computing Machinery, Jul. 2022, pp. 372-378.
[Online]. Available: https://doi.org/10.1145/3502718.3524769

R. Nata, New Directions in Higher Education. Nova Publishers, 2005.
V. J. Shute, C. Sun, and J. Asbell-Clarke, “Demystifying computational
thinking,” Educational research review, vol. 22, pp. 142-158, 2017.
C.-C. Yu and S. P. Robertson, “Plan-based representations of Pascal
and Fortran code,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, 1988, pp. 251-256.

M.-J. Tsai, J.-C. Liang, S. W.-Y. Lee, and C.-Y. Hsu, “Structural
Validation for the Developmental Model of Computational Thinking,”
Journal of Educational Computing Research, vol. 60, no. 1, pp. 56-73,
Mar. 2022, publisher: SAGE Publications Inc. [Online]. Available:
https://doi.org/10.1177/07356331211017794

A. Bogdanovych and T. Trescak, “Coding Style and Decomposition,”
in Learning Java Programming in Clara‘s World, A. Bogdanovych and
T. Trescak, Eds. Cham: Springer International Publishing, 2021, pp. 83—
100. [Online]. Available: https://doi.org/10.1007/978-3-030-75542-3_4
C. Charitsis, C. Piech, and J. C. Mitchell, “Detecting the Reasons
for Program Decomposition in CS1 and Evaluating Their Impact,”
in Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. Toronto ON Canada: ACM, Mar. 2023,
pp. 1014-1020. [Online]. Available: https://dl.acm.org/doi/10.1145/
3545945.3569763

C. C. Selby, “Promoting computational thinking with programming,” in
Proceedings of the 7th Workshop in Primary and Secondary Computing
Education. Hamburg Germany: ACM, Nov. 2012, pp. 74-77. [Online].
Available: https://dl.acm.org/doi/10.1145/2481449.2481466

A. Keen and K. Mammen, “Program Decomposition and Complexity
in CS1,” in Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, ser. SIGCSE °15. New York, NY, USA:
Association for Computing Machinery, Feb. 2015, pp. 48-53. [Online].
Available: https://doi.org/10.1145/2676723.2677219

P-Y. Chao, “Exploring students’ computational practice, design
and performance of problem-solving through a visual programming
environment,” Computers & Education, vol. 95, pp. 202-215,
Apr. 2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0360131516300161

F. K. Bailie, “Improving the modularization ability of novice
programmers,” ACM SIGCSE Bulletin, vol. 23, no. 1, pp. 277-282,
Mar. 1991. [Online]. Available: https://dl.acm.org/doi/10.1145/107005.
107065

Y.-T. Lin, M. K.-C. Yeh, and S.-R. Tan, “Teaching Programming by
Revealing Thinking Process: Watching Experts’ Live Coding Videos
With Reflection Annotations,” IEEE Transactions on Education, vol. 653,
no. 4, pp. 617-627, Nov. 2022, conference Name: IEEE Transactions
on Education.

M. Hu, M. Winikoff, and S. Cranefield, “Teaching novice programming
using goals and plans in a visual notation,” in Proceedings of the
Fourteenth Australasian Computing Education Conference - Volume 123,
ser. ACE "12. AUS: Australian Computer Society, Inc., Jan. 2012, pp.
43-52.

K. Beck, R. Crocker, G. Meszaros, J. O. Coplien, L. Dominick,
F. Paulisch, and J. Vlissides, “Industrial experience with design patterns,”
in Proceedings of IEEE 18th International Conference on Software
Engineering. 1EEE, 1996, pp. 103-114.

M. E. Caspersen and J. Bennedsen, “Instructional design of a program-
ming course: a learning theoretic approach,” in Proceedings of the third
international workshop on Computing education research, 2007, pp.
111-122.

K. Cunningham, “The novice programmer needs a plan,” in 2018
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 1IEEE, 2018, pp. 269-270.

L. Sterling, “Patterns for Prolog Programming,” in Computational
Logic: Logic Programming and Beyond: Essays in Honour of Robert A.
Kowalski Part I, ser. Lecture Notes in Computer Science, A. C. Kakas

246

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

[38]

and F. Sadri, Eds. Berlin, Heidelberg: Springer, 2002, pp. 374—401.
[Online]. Available: https://doi.org/10.1007/3-540-45628-7_15

J. P. East, S. R. Thomas, E. Wallingford, W. Beck, and J. Drake,
“Pattern Based Programming Instruction,” Jun. 1996, pp. 1.349.1-
1.349.10, iSSN: 2153-5965. [Online]. Available: https://peer.asee.org/
pattern-based- programming-instruction

L. Seiter and B. Foreman, “Modeling the learning progressions of
computational thinking of primary grade students,” in Proceedings of the
ninth annual international ACM conference on International computing
education research, 2013, pp. 59-66.

E. Soloway, “Learning to program = learning to construct mechanisms
and explanations,” Communications of the ACM, vol. 29, no. 9, pp. 850—
858, Sep. 1986. [Online]. Available: https://doi.org/10.1145/6592.6594
M. Mohaghegh and M. Mccauley, “Computational Thinking: The Skill
Set of the 21st Century,” nternational Journal of Computer Science and
Information Technologie, vol. 7, pp. 1524-1530, Jun. 2016.

L. A. Mesiti, A. Parkes, S. C. Paneto, and C. Cahill, “Building
Capacity for Computational Thinking in Youth through Informal
Education,” Journal of Museum Education, vol. 44, no. 1, pp. 108-121,
Jan. 2019. [Online]. Available: https://www.tandfonline.com/doi/full/10.
1080/10598650.2018.1558656

Y. Pechorina, K. Anderson, and P. Denny, “Metacodenition: Scaffolding
the Problem-Solving Process for Novice Programmers,” in Proceedings
of the 25th Australasian Computing Education Conference, ser. ACE
’23. New York, NY, USA: Association for Computing Machinery, Jan.
2023, pp. 59-68. [Online]. Available: https://doi.org/10.1145/3576123.
3576130

F. Corno, L. De Russis, and J. Pablo Sdenz, “TextCode: A Tool
to Support Problem Solving Among Novice Programmers,” in 2021
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Oct. 2021, pp. 1-5, iSSN: 1943-6106.

A. Milliken, W. Wang, V. Cateté, S. Martin, N. Gomes, Y. Dong,
R. Harred, A. Isvik, T. Barnes, T. W. Price, and C. Martens, ‘“PlanIT! A
New Integrated Tool to Help Novices Design for Open-ended Projects,”
in SIGCSE ’21: The 52nd ACM Technical Symposium on Computer
Science Education, Virtual Event, USA, March 13-20, 2021, M. Sherriff,
L. D. Merkle, P. A. Cutter, A. E. Monge, and J. Sheard, Eds. ACM,
2021, pp. 232-238.

J. Wrenn and S. Krishnamurthi, “Executable Examples for Programming
Problem Comprehension,” in Proceedings of the 2019 ACM Conference
on International Computing Education Research, ser. ICER "19. New
York, NY, USA: Association for Computing Machinery, Jul. 2019, pp.
131-139. [Online]. Available: https://dl.acm.org/doi/10.1145/3291279.
3339416

D. Hooshyar, R. B. Ahmad, R. G. Raj, M. H. N. M. Nasir, M. Yousef,
S.-J. Horng, and J. Rugelj, “A flowchart-based multi-agent system for as-
sisting novice programmers with problem solving activities,” Malaysian
Journal of Computer Science, vol. 28, no. 2, pp. 132-151, 2015.

D. Hooshyar, R. B. Ahmad, M. Yousefi, F. D. Yusop, and S.-J. Horng,
“A flowchart-based intelligent tutoring system for improving problem-
solving skills of novice programmers,” Journal of computer assisted
learning, vol. 31, no. 4, pp. 345-361, 2015.

D. Hooshyar, R. B. Ahmad, M. Yousefi, M. Fathi, S.-J. Horng, and
H. Lim, “Sits: A solution-based intelligent tutoring system for students’
acquisition of problem-solving skills in computer programming,” Inno-
vations in Education and Teaching International, vol. 55, no. 3, pp.
325-335, 2018.

K. Cunningham, B. J. Ericson, R. Agrawal Bejarano, and M. Guzdial,
“Avoiding the Turing tarpit: Learning conversational programming by
starting from code’s purpose,” in Proceedings of the 2021 CHI Confer-
ence on Human Factors in Computing Systems, 2021, pp. 1-15.

C.-C. Tseng, P.-Y. Chao, and K. R. Lai, “An Analysis of Goal Orientation
Pattern and Self-Efficacy for Explanation of Programming Plans,” in
2015 IEEE 15th International Conference on Advanced Learning Tech-
nologies, Jul. 2015, pp. 76-77, iSSN: 2161-377X.

W. Jin, A. Corbett, W. Lloyd, L. Baumstark, and C. Rolka, “Evaluation
of Guided-Planning and Assisted-Coding with Task Relevant Dynamic
Hinting,” in Intelligent Tutoring Systems, ser. Lecture Notes in Computer
Science, S. Trausan-Matu, K. E. Boyer, M. Crosby, and K. Panourgia,
Eds. Cham: Springer International Publishing, 2014, pp. 318-328.
M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi, How to
design programs: an introduction to programming and computing. MIT
Press, 2018.

[40] O. Muller, D. Ginat, and B. Haberman, “Pattern-oriented instruction and
its influence on problem decomposition and solution construction,” in
Proceedings of the 12th annual SIGCSE conference on Innovation and
technology in computer science education, 2007, pp. 151-155.

[41] E. Soloway, “Learning to program= learning to construct mechanisms
and explanations,” Communications of the ACM, vol. 29, no. 9, pp. 850—
858, 1986.

[42] J. Prather, R. Pettit, B. A. Becker, P. Denny, D. Loksa, A. Peters,
Z. Albrecht, and K. Masci, “First things first: Providing metacognitive
scaffolding for interpreting problem prompts,” in Proceedings of the
50th ACM technical symposium on computer science education, 2019,
pp. 531-537.

[43] J. Kodosky, “Labview,” Proceedings of the ACM on Programming
Languages, vol. 4, no. HOPL, pp. 1-54, 2020.

[44] W. D. Hoyer and S. P. Brown, “Recognition over recall,” Journal of
Consumer Research, vol. 17, pp. 141-148, 1990.

[45] W. Lidwell, K. Holden, and J. Butler, Universal principles of design,
revised and updated: 125 ways to enhance usability, influence percep-
tion, increase appeal, make better design decisions, and teach through
design. Rockport Pub, 2010.

[46] K. J. Harms, J. Chen, and C. L. Kelleher, “Distractors in parsons
problems decrease learning efficiency for young novice programmers,”
in Proceedings of the 2016 ACM Conference on International Computing
Education Research, 2016, pp. 241-250.

[47] D. H. Smith IV and C. Zilles, “Discovering, autogenerating, and eval-
uating distractors for python parsons problems in csl,” in Proceedings
of the 54th ACM Technical Symposium on Computer Science Education
V. 1, 2023, pp. 924-930.

[48] P. Denny, J. Prather, B. A. Becker, Z. Albrecht, D. Loksa, and R. Pettit,
“A closer look at metacognitive scaffolding: Solving test cases before
programming,” in Proceedings of the 19th Koli Calling international
conference on computing education research, 2019, pp. 1-10.

[49] O. Seppild, P. Thantola, E. Isohanni, J. Sorva, and A. Vihavainen, “Do
we know how difficult the rainfall problem is?” in Proceedings of the
15th Koli Calling Conference on Computing Education Research, 2015,
pp. 87-96.

[50] K. Fisler, “The recurring rainfall problem,” in Proceedings of the tenth
annual conference on International computing education research, 2014,
pp. 35-42.

[51] C. Board, “Ap® computer science a free-response questions,” 2019.

[52] M. Maguire and B. Delahunt, “Doing a thematic analysis: A practical,
step-by-step guide for learning and teaching scholars.” All Ireland
Journal of Higher Education, vol. 9, no. 3, 2017.

[53] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative research in psychology, vol. 3, no. 2, pp. 77-101, 2006.

[54] N. Bergen and R. Labonté, ““everything is perfect, and we have no
problems”: detecting and limiting social desirability bias in qualitative
research,” Qualitative health research, vol. 30, no. 5, pp. 783-792, 2020.

247

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 23,2025 at 18:31:47 UTC from IEEE Xplore. Restrictions apply.

