
Evaluating Large Language Model Code Generation as an
Autograding Mechanism for “Explain in Plain English” Questions

David H. Smith IV
University of Illinois
Urbana, IL, USA

dhsmith2@illinois.edu

Craig Zilles
University of Illinois
Urbana, IL, USA
zilles@illinois.edu

ABSTRACT
The ability of students to “Explain in Plain English” (EiPE) the
purpose of code is a critical skill for students in introductory pro-
gramming courses to develop. EiPE questions serve as both a mech-
anism for students to develop and demonstrate code comprehension
skills. However, evaluating this skill has been challenging as manual
grading is time consuming and not easily automated. The process
of constructing a prompt for the purposes of code generation for
a Large Language Model, such OpenAI’s GPT-4, bears a striking
resemblance to constructing EiPE responses. In this paper, we ex-
plore the potential of using test cases run on code generated by
GPT-4 from students’ EiPE responses as a grading mechanism for
EiPE questions. We applied this proposed grading method to a cor-
pus of EiPE responses collected from past exams, then measured
agreement between the results of this grading method and human
graders. Overall, we find moderate agreement between the human
raters and the results of the unit tests run on the generated code.
This appears to be attributable to GPT-4’s code generation being
more lenient than human graders on low-level descriptions of code.

CCS CONCEPTS
• Social and professional topics → Computing education.

KEYWORDS
GPT-4, Large Language Models, EiPE, Autograding

ACM Reference Format:
David H. Smith IV and Craig Zilles. 2024. Evaluating Large Language Model
Code Generation as an Autograding Mechanism for “Explain in Plain Eng-
lish” Questions. In Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 2 (SIGCSE 2024), March 20–23, 2024, Port-
land, OR, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3626253.3635542

1 INTRODUCTION AND BACKGROUND
The emergence and widespread popularity of services powered by
“Large Language Models” (LLMs) has sparked concerns amongst ed-
ucators. These concerns appear to primarily stem from the ease with
which these models can be used to generate solutions to queries
from a diverse set of topics [2]. Despite these concerns, there is

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0424-6/24/03.
https://doi.org/10.1145/3626253.3635542

equal excitement for the potential revolution in education this tech-
nology might bring about, particularly in the domain of computer
science education [3]. With the rapid adoption of LLM powered
tools like GitHub Copilot and ChatGPT, success as a programmer
may increasingly hinge on one’s ability to effectively employ these
tools and evaluate the results they produce.

One such area of computer science education that may benefit
from LLMs is the automatic grading of “Explain in Plain English”
(EiPE) questions. In these questions, students are shown a segment
of code and asked to demonstrate their comprehension of that code
by providing a high-level description of its functionality [7]. EiPE
questions typically require short answer responses their grading
has often been manual which limits the ability for students to
practice and receive timely feedback. Existing EiPE autograders
take steps toward addressing this by giving students immediate
feedback on the correctness of a response [4]. Though these graders
perform similarly to a trained teaching assistant, to develop each
EiPE question a large quantity of responses must be labeled which
leads to overhead in the question authoring process.

To address this these limitations, we propose “Code Generation
Based Grading” (CGBG). This grading approach uses a student’s
EiPE response to generate code via an LLM. The generated code
is then tested for correctness through unit tests to determine if a
student’s description of a segment of code was able to generate
functionally equivalant code. In this way, CGBG enables feedback
by providing students the generated code and the results of the unit
tests. It also simplifies the question authoring process by eliminating
the need for human data labeling and replacing it with the simple
authoring of unit tests. As an initial step towards evaluating CGBG’s
effectiveness as an EiPE grading mechanism we evaluate several
implementations of CGBG via the following research questions:

RQ1 What is the agreement between trained human raters and
code generation based grading?

RQ2 What relationships exist between the features of a given
question and the agreement on that question?

2 CODE GENERATION BASED GRADING
The “Code Generation Based Grading” (CGBG) process we propose
is divided into three distinct steps [8]. First, a student’s response to
an EiPE question and a pre-prompt instructing the LLM to generate
a function based on the description are combined. This combined
prompt is used to generate a function via GPT-4 which is then run
against a set of manually defined unit tests. The student’s grades
for their response is then dependent on the success of the unit tests.

This process simplifies the question authoring process for pro-
ducing automatically graded EiPE questions to be more similar to
that of automatically graded code writing questions. This authoring

1824

https://doi.org/10.1145/3626253.3635542
https://doi.org/10.1145/3626253.3635542
https://doi.org/10.1145/3626253.3635542
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626253.3635542&domain=pdf&date_stamp=2024-03-15


SIGCSE 2024, March 20–23, 2024, Portland, OR, USA David H. Smith IV & Craig Zilles

process is simpler than prior EiPE autograders, which require the
creation of human labeled datasets and training of NLP models [1].
This also offers the benefit of allowing the instructor to concretely
define what aspects of the code and edge cases should be described
in the prompt through the unit tests.

However, a major consideration with this grading approach is
how to account for the non-deterministic nature of GPT-4’s re-
sponses. Through the model’s temperature parameter, the “cre-
ativity” of the model can be controlled. A prompt made with a
temperature of zero will always produce the same response. By in-
creasing the temperature value the responses will gradually become
less deterministic and more creative with the model’s interpretation
of the prompt. For the purposes of grading, we want to account for
the possibility of a student being marked incorrect not because their
prompt was poorly formed but simply because the model generated
an overly creative response. With this in mind, we compare the
following three grading approaches:

• Single Response A single response at 0.0 temperature is
used for grading.

• Best of 5: Five responses are generated at 0.5 temperature.
A prompt is graded as correct if at least one response passes
all unit tests.

• Majority Vote: Five responses are generated at 0.5 temper-
ature. A prompt is graded as correct if at least 3 of the 5
responses pass all unit tests.

3 METHODS
To evaluate the alignment between human graders and each of
the proposed CGBG approaches, we conduct an analysis using
historical data from a large introductory Python course taught at a
large university in the United States. EiPE questions are an integral
part of the course with students receiving explicit instruction on
how to form adequate responses. When these questions appear on
exams, they are graded manually by two trained teaching assistants
(TAs). These TAs independently assessed responses using a rubric
which covered which evaluated responses on three dimensions: 1)
the functional correctness of the student’s description, 2) a lack
of ambiguity in the description, and 3) the description providing
a high-level description of the codes purpose rather than a “line-
by-line” description. After grading the responses the TAs met to
consolidate their grades and reconcile any differences. A total of
6380 responses to 42 EiPE questions from past exams were subject
to each of the three CGBG approaches. Cohen’s κ was used to
measure agreement between the human graders and each of the
CGBG approaches across the 42 questions [6].

4 RESULTS AND DISCUSSION
The CGBG approaches introduced in this paper all achieve a moder-
ate agreement with human raters with very little difference between
them (Figure 1). Closely analyzing which questions fell into cate-
gories of high (𝜅 ≥ 0.6), medium (0.4 < 𝜅 < 0.6), and low (𝜅 < 0.4)
agreement revealed the primarily limitation of this approach is its
inability to distinguish between high and low level descriptions.
This limitation is most prominent on EiPE questions that require
students to describe a short segment of code (1-2 lines). For example,
consider the following segment of code:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

De
ns

ity

Single Response Best of 5 Majority Vote

0.0 0.2 0.4 0.6 0.8 1.0
Cohen's 

0

5

10

15

Qu
es

tio
n 

Co
un

t

Single Response Best of 5 Majority Vote

Figure 1: The distribution of agreements between each CGBG
approach and human graders for each of the EiPE questions
being evaluated.

1 def foo(x):

2 return x % 2 == 0

A low level description might be “determines if x mod 2 equals 0”
whereas a high level description would be “determines if x is even”.
As such, CGBG might be best suited for cases where instructors
don’t place as strong an emphasis on obtaining high-level descrip-
tions. It may also be well suited for longer, more complex segments
of code where heuristics such as limiting the length of students’
responses could be used to nudge students towards higher level
descriptions of the code.

There are several affordances this grading approach provides.
Historically, deploying EiPE questions and evaluating their re-
sponses has either involved manual grading or the training of a
model for each question. The use of CGBG reduces the authoring
process to creating a sample code segment and a series of test cases.
EiPE autograders have also faced challenges relating to a lack of
transparency in their underlying grading mechanisms which can
cause students to distrust the results they produce [5]. The pro-
posed CGBG approaches aim to address this issue by providing
students with the generated code as feedback along with the results
of tests cases run on that same code. Future work will explore the
impact of this feedback on students’ ability to correct short coming
in their responses and improve subsequent submissions.

REFERENCES
[1] Sushmita Azad. 2020. Lessons learnt developing and deploying grading mechanisms

for EiPE code-reading questions in CS1 classes. Ph. D. Dissertation.
[2] Debby RE Cotton, Peter A Cotton, and J Reuben Shipway. 2023. Chatting and

cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in
Education and Teaching International (2023), 1–12.

[3] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2022. Conversing with Copilot:
Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language.
arXiv preprint arXiv:2210.15157 (2022).

[4] Max Fowler, Binglin Chen, Sushmita Azad, Matthew West, and Craig Zilles. 2021.
Autograding" Explain in Plain English" questions using NLP. In Proceedings of the
52nd ACM Technical Symposium on Computer Science Education. 1163–1169.

[5] Silas Hsu, Tiffany Wenting Li, Zhilin Zhang, Max Fowler, Craig Zilles, and Karrie
Karahalios. 2021. Attitudes surrounding an imperfect AI autograder. In Proceedings
of the 2021 CHI conference on human factors in computing systems. 1–15.

[6] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia medica
22, 3 (2012), 276–282.

[7] Laurie Murphy, Renée McCauley, and Sue Fitzgerald. 2012. ’Explain in plain Eng-
lish’questions: implications for teaching. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education. 385–390.

[8] David H Smith IV and Craig Zilles. 2023. Code Generation Based Grading: Evalu-
ating an Auto-grading Mechanism for" Explain-in-Plain-English" Questions. arXiv
preprint arXiv:2311.14903 (2023).

1825


	Abstract
	1 Introduction and Background
	2 Code Generation Based Grading
	3 Methods
	4 Results and Discussion
	References



