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Abstract 

Fungi are key drivers of biogeochemical processes, yet marine fungi remain understudied and under-characterized 
due to primer biases and database gaps. In this study, we conducted a metabarcoding survey targeting the small 
and large subunit rRNA genes and the internal transcribed spacer region of fungi (18S, 28S, and ITS2) in the sediment 
and surface water of salt and brackish marshes in the North Inlet—Winyah Bay estuarine system (Georgetown, South 
Carolina, USA). The universal 18S/16S primer set (515F-Y and 926R) identified few fungal taxa. The ITS2 primer set 
(ITS3mix and ITS4) revealed high diversity among Dikarya but failed to capture the full extent of early diverging fungi 
(EDF). In contrast, the 28S primer set (LR0R and LF402) excelled at identifying EDF lineages, including Chytridiomycota, 
Mucoromycota, Zoopagomycota, and Blastocladiomycota, many of which dominated the brackish marsh sampling 
site but were less prevalent in the salt marsh sampling sites. Over half of the fungal OTUs identified by the 28S primer 
set were from EDF lineages. Copy-normalized 28S qPCR showed that EDF were more abundant in brackish sedi‑
ments than in the salt marsh. Several putative denitrifying fungi, primarily species from Trichoderma and Purpureocil-
lium, were also detected, suggesting overlooked functional guilds that may contribute to estuarine nitrogen cycling. 
A FUNGuild analysis found that most lineages were saprotrophic. Overall, our findings show that EDF are key con‑
tributors to community differences across salinity gradients and may play more important functional roles in coastal 
biogeochemistry than is currently understood. The 28S primer set is ideal for marine fungal metabarcoding because it 
provides comprehensive taxonomic coverage and enables phylogenetic analysis.
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Introduction
Fungi play crucial roles in biogeochemical processes in 
marshes, contributing to carbon remineralization [155, 
156] and phosphorus and nitrogen cycling [7, 107, 112]. 
In aquatic ecosystems, most fungi function as decom-
posers, breaking down complex organic materials such 
as macrophyte litter, dead algae, and other organic 
debris [12]. Like terrestrial fungi, many marine fungi 
produce extracellular enzymes that degrade complex 
organic matter such as lignin and cellulose while also 
assimilating nitrogen in forms such as ammonium or 
nitrate, which are common in plants, phytoplankton, 
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and microbes [31, 112]. Additionally, some fungi play 
a key role in denitrification, removing nitrate from the 
environment and producing nitrous oxide, a potent 
greenhouse gas [74, 83].

Despite the growing interest in marine fungi, our 
understanding of their diversity in marine environments 
remains limited. One reason for this is the infrequent 
use of shotgun metagenomics, as fungal reads often rep-
resent a low percentage of community DNA [113]. To 
address this gap, amplicon-based metabarcoding surveys 
continue to constitute a key method for expanding our 
knowledge of marine fungal diversity. Most studies con-
ducted in marine and coastal ecosystems have focused 
on sequencing the internal transcribed spacer (ITS) 
region—specifically, ITS1, ITS2, or the entire ITS region 
(ITS1, 5.8S, and ITS2)—which has been recognized as 
the recommended DNA barcode marker for fungi by the 
Consortium for the Barcode of Life since 2011 [137]. The 
ITS region generally provides high taxonomic resolu-
tion and has the highest probability of correct identifica-
tion for broadly sampled fungi [137]. Although the ITS 
region provides high taxonomic resolution, challenges 
such as high variability, primer biases that exclude some 
groups, and the lack of early diverging fungal (EDF) 
sequences in ITS databases can complicate alignment 
and classification [62, 124, 127]. In comparison, the large 
subunit (LSU) ribosomal RNA (rRNA) (28S) region has 
received increasing interest because it offers greater taxo-
nomic resolution than the 18S small subunit (SSU) rRNA 
region does [174]. The 28S region also enables phyloge-
netic reconstruction, which could improve the classifica-
tion of novel fungal lineages. Projects such as the Fungal 
28S Ribosomal RNA (LSU) RefSeq Targeted Loci Project 
have facilitated the use of 28S for taxonomic classification 
[129]. Additionally, testing universal primer sets, such 
as the one developed by [108, 109], offers the potential 
to quantify the relative abundance of both prokaryotes 
and eukaryotes, although this approach has rarely been 
applied to fungi and prokaryotes simultaneously [93].

Coastal salt marshes, which are highly productive habi-
tats, provide essential ecosystem services, acting as nurs-
eries for fisheries, protecting shorelines from erosion, 
and reducing nutrient loading in coastal waters [140]. As 
of 2017, 29% (94.7 million) of the U.S. population lived 
along the coastline, with 13.6% residing on the Atlantic 
coast [157]. Salt marshes, which serve as sinks for anthro-
pogenic contamination, are significantly influenced by 
nutrient inputs [40, 89]. These ecosystems store an esti-
mated 100–260 g of carbon per m2 per year through the 
burial of organic carbon by plants and phytoplankton 
[86, 97]. Microbes, including fungi, utilize buried carbon 
for aerobic and anaerobic metabolism, which releases 
sequestered carbon [86], making salt marshes critical 

sites for carbon sequestration [36, 86] and biogeochemi-
cal cycling [155].

While most marine fungi identified belong to Asco-
mycota and Basidiomycota [7], recent environmental 
sequencing data have revealed EDF lineages, such as 
Blastocladiomycota, Zoopagomycota, and Chytridi-
omycota, in coastal environments. However, despite 
these findings, the functions and contributions of these 
early lineages to nutrient cycling in estuarine ecosystems 
remain poorly understood [30, 37, 69, 115, 116]. Further-
more, there is a need to validate the presence of these 
groups using complementary quantitative tools such as 
qPCR.

This study aimed to (1) determine which rRNA region 
is most suitable for studying marine fungal diversity, and 
(2) address the critical knowledge gap of the functions 
and contributions of fungi to nutrient cycling in estua-
rine ecosystems by focusing on the diversity and ecologi-
cal roles of rarely described fungi in marsh ecosystems. 
We conducted a metabarcoding survey targeting the 18S 
SSU, 28S LSU, and ITS2 rRNA regions to analyze fungal 
community composition in the North Inlet–Winyah Bay 
(NI-WB) estuarine system in South Carolina, USA, dur-
ing the summer and winter of 2020 and 2021. We com-
bined this with copy-normalized 28S qPCR to confirm 
the abundance of EDF across sites and sample types and 
used ITS2-based detection to reveal the presence of puta-
tive denitrifying fungi. Our results revealed significant 
variation in fungal identification and diversity between 
primer sets in both salt and brackish marsh surface water 
and sediment samples. We also identified key parameters 
influencing community composition. We hypothesized 
that fungal diversity would vary significantly between 
primers and that salinity and seasonality would have sub-
stantial effects on community composition and diversity. 
By investigating taxa that are often underrepresented 
in traditional surveys, we enhance our understanding 
of their biodiversity and functions within these habi-
tats. Our findings suggest that EDF may play significant 
roles in processes such as organic matter degradation 
and nutrient turnover, ultimately contributing to biogeo-
chemical cycling in marsh environments.

Materials and methods
Study area
The North Inlet-Winyah Bay (NI-WB) estuarine system 
is located in Georgetown, SC, and hosts a National Oce-
anic and Atmospheric Administration (NOAA) National 
Estuarine Research Reserve (NERR) with four long-term 
monitoring sites, part of the NERR System-Wide Moni-
toring Program: Oyster Landing (OL), Clambank (CB), 
Debidue Creek (DB), and Thousand Acre (TA) (Fig.  1; 
[5]). The NI-WB NERR consists of approximately 19,000 
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acres of tidal marshes of varying salinity. Winyah Bay 
(TA sampling site) is a brackish, river-dominated estu-
ary controlled by the Waccamaw, Sampit, Black, and Pee 
Dee Rivers (7.5 ± 10.4 psu) and receives approximately 
557 m3/s freshwater input annually [110]. At TA, which 
is located alongside Winyah Bay, the vegetation in the 
low marsh is dominated by Spartina alterniflora, whereas 
the high marsh is home to Spartina cynosuroides, Juncus 
roemerianus, Typha angustifolia, Scirpus americanus, 
and Eleocharis engelmannii [8, 76, 77, 145, 146]. The 
other three sampling sites—CB, OL, and DB—are located 
in different reaches of the North Inlet estuarine system, 
a relatively pristine, high-salinity, ocean-dominated 
salt marsh (29.6 ± 5.9 psu) also dominated by Spartina 
alterniflora [76, 77].

Sample collection
Seawater and sediment samples (48 of each) were col-
lected from the NI-WB in June 2020, August 2020, 
February 2021, and November 2021 to study seasonal 
fungal diversity across the selected sites (Fig.  1). June 
and August represent summer months, and February 
and November represent winter months. Samples were 
taken near high tide at every sampling date. Water phys-
icochemical parameters (temperature, salinity, pH, and 
chlorophyll a concentration) at each site were monitored 

by the NI-WB NERR using YSI EXO2 sondes (SKU: 
599,502–00) [35] and obtained from the NERR System 
Centralized Data Management Office [102]. At each sam-
pling location, surface sediment samples were taken in 
1.5 mL tubes, and approximately 50 mL of surface water 
was filtered through a 0.22 μm Sterivex filter (EMD Mil-
lipore #SVGP01050, Burlington, MA). Three biological 
replicates were collected at each site during each sam-
pling campaign. Samples were stored on ice in a cooler 
for approximately two hours while being transported to 
the laboratory and stored in a -80  °C freezer until DNA 
extraction.

DNA extraction
In the laboratory, DNA was extracted from the sediment 
via the DNeasy PowerSoil Pro Kit, following the manu-
facturer’s protocol except for the first step (cell lysis). 
The sediment (0.50 ± 0.01 g) was weighed into MN bead 
type A tubes (Macherey–Nagel #740,786.50), which 
were bead-beaten in a Biospec Mini-BeadBeater-16 for 
60  seconds. The remaining extraction steps followed 
the DNeasy PowerSoil Pro kit protocol without further 
modifications.

Water sample DNA was extracted from the Sterivex fil-
ters using the DNeasy PowerWater extraction kit, follow-
ing the kit’s protocol except for the first step (cell lysis). 

Fig. 1  Locations of the sampling sites within North Inlet–Winyah Bay National Estuarine Research Reserve, South Carolina, USA. Image from Google 
Maps
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Using sterilized scissors, half of each Sterivex filter paper 
was cut into 2 mm squares. The filters were placed into 
MN bead tubes type A (Macherey–Nagel #740,786.50) 
and beaten in a Biospec Mini-BeadBeater-16 for 60 s. The 
remaining extraction steps followed the DNeasy Power-
Water kit protocol without further modifications. The 
concentration of the isolated DNA was determined via 
a Qubit fluorometer, and the DNA samples were stored 
at − 20 °C until amplicon sequencing.

Amplicon library construction and sequencing
Three PCR primers were used to target different fungal 
regions within the samples. Two sediment negative con-
trols and two surface water negative controls for each 
primer set were processed through DNA extraction 
and amplicon library construction. The ZymoBIOMICS 
Microbial Community Standard and Standard II (log 
distribution) (ZymoBIOMICS #D6300) were processed 
through DNA extraction and amplicon library construc-
tion, and the ZymoBIOMICS Microbial Community 
DNA Standard and Standard II (log distribution) (Zymo-
BIOMICS #D6311) were included in the amplicon library 
(Supplementary Figure S1). We followed Illumina’s 16S 
library protocol (Illumina #15,044,223 Rev.B; [113]), 
which is a two-step process: the first step involves ampli-
con PCR, and the second step involves index PCR.

To sequence the V4-V5 regions of the 16S and 18S 
rRNA genes, the universal primer set, which should 
amplify both the 16S rRNA and 18S rRNA gene 
sequences, 515F-Y (5’-GTG​YCA​GCMGCC​GCG​
GTAA-3’) and 926R (5’-CCG​YCA​ATTYMTTT​RAG​
TTT-3’) were used [108, 109]. The primers ITS3tagmix 
(Supplementary Table  S1) [151] and ITS4tag001 (5’-
GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACA​
GAC​GAG​TGC​GTT​CCT​SCGC​TTA​TTG​ATA​TGC-3’) 
[152] were used to sequence the ITS2 region. The LR0R 
(5’-ACSCGC​TGA​ACT​TAA​GC-3’) and LF402 (5’-TTC​
CCT​TTY​ARC​AAT​TTC​AC-3’) primers were used to 
sequence the 28S LSU region of fungi [151].

A 10 μL PCR was performed for each sample in tripli-
cate, with the following mixture: 0.1 μL of forward primer 
(10 μM), 0.1 μL of reverse primer (10 μM), 2 μL of 5 × GC 
Buffer (Thermo Scientific #F530S, Vilnius, LT), 0.2 μL of 
10 mM dNTPs (Thermo Scientific #R0181, Vilnius, LT), 
and 0.1 μL of Phusion High-Fidelity DNA Polymerase 
(Thermo Scientific #F530S, Vilnius, LT). The thermal 
cycling settings for the universal primer set were as fol-
lows: initial denaturation at 98 °C for 30 s, followed by 25 
cycles of 98 °C for 10 s, 50 °C for 30 s, and 72 °C for 45 s, 
with a final elongation at 72  °C for 10 min. For the 28S 
primer, the settings were as follows: initial denaturation 
at 98 °C for 30 s, followed by 30 cycles of 98 °C for 10 s, 
53 °C for 30 s, and 72 °C for 45 s, with a final elongation at 

72 °C for 10 min. For the ITS2 primers, the settings were 
as follows: initial denaturation at 98 °C for 30 s, followed 
by 30 cycles of 98 °C for 10 s, 55 °C for 30 s, and 72 °C for 
45 s, with a final elongation at 72 °C for 10 min. All PCR 
products were verified using gel electrophoresis.

The triplicates were pooled and cleaned using sparQ 
PureMag beads at a 1:1 ratio of beads to PCR products 
following the sparQ PureMag bead clean-up protocol 
(Quantabio #95,196/IFU-124.1 REV 03). The cleaned 
PCR products were quantified via the high-sensitivity 
1 × DNA Qubit assay. Different indices were used to iden-
tify each sample after sequencing with the Nextera XT 
DNA Library Preparation Kit (Illumina #FC-131–1096). 
The indexed amplicon libraries were cleaned again via 
the same bead clean-up protocol described above. A total 
of 293 amplicon libraries were pooled to reach a concen-
tration of 2 nM and sent to the Duke Genome Center for 
sequencing in one lane of an S-Prime flow cell (250  bp 
PE) on the Illumina NovaSeq 6000 platform, which gen-
erated a total of 468,658,500 raw reads.

Sequence analysis
A modified protocol from Fuhrman et al. [51] was used 
to analyze the 18S rRNA sequencing results [99, 108, 
109]. The raw reads were quality-filtered via bbduk.sh 
(ktrim = r ordered minlen = 51 minlenfraction = 0.33 
mink = 11 tbo tpe rcomp = f k = 23 hdist = 1 hdist2 = 1 
ftm = 5 pigz = t unpigz = t zl = 4 ow = true) and Trimmo-
matic (ILLUMINACLIP:$adapters:2:30:10 LEADING:3 
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:200). 
Using USEARCH v11.0.667, the filtered forward and 
reverse reads were merged with the “-fastq_mergepairs” 
function. The unmerged reads represented the 18S 
reads, and the merged reads represented the 16S reads. 
The 18S forward and reverse reads do not overlap using 
this primer set. All nonmerged reads were trimmed to 
190  bp via Trimmomatic (CROP:190 MINLEN:190). 
The nonmerged reverse reads were converted to their 
reverse complements with the “seqtk seq -r” function in 
seqtk. An “N” was added to the end of the forward non-
merged sequences as a placeholder for the missing base 
pairs between the nonmerged forward and reverse com-
plement reads, and an “F” was added to the end of the 
nonmerged forward quality scores. Forward and reverse 
complement reads were merged via the “-fastq_merge-
pairs” function and filtered with maxEE set to 1 via the 
“-fastq_filter” function in USEARCH v11.0.667. The 
reads were dereplicated via the “-fastx_unique” func-
tion and clustered into 3,762 97% operational taxonomic 
units (OTUs, “-cluster_otus” function) via USEARCH 
v11.0.667 (Supplementary Table  S2). This function also 
removes chimeric sequences. The nucleotide sequences 
of the 18S primer set were classified —using a naïve 
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Bayesian classifier [123] implemented in QIIME 2 against 
the SILVA SSU 138–99 [25].

For the ITS2 sequencing results, the raw reads were 
merged and trimmed to the ITS2 region via ITSxpress. 
With USEARCH v11.0.667, the merged reads were fil-
tered with maxEE set to 1 via the “-fastq_filter” function. 
The reads were dereplicated via the “-fastx_unique” func-
tion and clustered into 18,389 97% operational taxonomic 
units (OTUs, “-cluster_otus” function) via USEARCH 
v11.0.667 (Supplementary Table  S2). The ITS2 OTUs 
were classified using a combination of a naïve Bayesian 
classifier trained on the UNITE 9.0 database for eukary-
otes [101] using QIIME2 v2022-11 [25] and a homology-
based classification on the UNITE Advanced Analyses on 
the PlutoF platform [1].

For 28S sequencing reads, raw reads were quality-fil-
tered via bbduk.sh (ktrim = r ordered minlen = 51 minlen-
fraction = 0.33 mink = 11 tbo tpe rcomp = f k = 23 hdist = 1 
hdist2 = 1 ftm = 5 pigz = t unpigz = t zl = 4 ow = true) 
and Trimmomatic (ILLUMINACLIP:$adapters:2:30:10 
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 
MINLEN:200). With USEARCH v11.0.667, the filtered 
forward and reverse reads were merged with the “-fastq_
mergepairs” function and filtered with maxEE set to 1 via 
the “-fastq_filter” function. The reads were dereplicated 
via the “-fastx_unique” function and clustered into 8,461 
97% operational taxonomic units (OTUs, “-cluster_otus” 
function) via USEARCH v11.0.667 (Supplementary 
Table  S2). The nucleotide sequences of the 28S primer 
set OTUs were classified via the RDP classifier 2.14 [163, 
164].

Quantitative PCR on the 28S region
Fungal 28S primers, LR0Rngs (5’-ACSCGC​TGA​ACT​
TAA​GC-3’) and LF402 (5’-TTC​CCT​TTY​ARC​AAT​TTC​
AC-3’) from Integrated DNA Technologies (Coralville, 
Iowa, USA), were utilized [151]. The 20-µL quantitative 
PCR (qPCR) reactions included 5 µL 2 × SYBR-Green 
Master Mix (Applied Biosystems, Waltham, Massachu-
setts, USA), 5 µL ultrapure water, and 0.6 µL of each 
primer. The remaining reaction volume included the 
appropriate amount of DNA template and ultrapure 
water to ensure the final concentration of template DNA 
was 0.75  ng µL−1. For samples whose template concen-
tration was too low to ensure this, the maximum vol-
ume of template (8.8 µL) was used and corrected during 
data processing. Touchdown qPCR, a method that can 
improve the detection of low-abundance targets in 
environmental samples [175, 176], was performed on 
the QuantStudio™ 3 Real-Time PCR System (Thermo 
Fisher Scientific). Cycling settings were as follows: 50 °C 
for 2  min, per Applied Biosystems SYBR-Green proto-
col to prevent any carry-over contamination; an initial 

denaturation at 95 °C for 3 min; followed by the “touch-
down” cycles of denaturation at 95  °C for 20  s and 
annealing at 66 °C for 10 s, decreasing the annealing tem-
perature by 3 °C for four cycles; this was succeeded by the 
amplification stage that included denaturation at 95  °C 
for 15 s, annealing at 55 °C for 15 s, and extension at 72 °C 
for 60 s, for 60 cycles; with a final melt curve analysis that 
occurred at 95 °C for 15 s, 60 °C for 60 s, then increasing 
to 95 °C at 0.15 °C s−1, measuring every 0.15 °C.

QPCR was conducted with six technical replicates per 
sediment sample, distributed across three independent 
qPCR runs. Occasionally, individual technical replicates 
displayed anomalously high or low quantification cycle 
(Cq) values relative to other replicates. In addition to the 
threshold-based criteria described for standards, outlier 
replicates were identified using Grubb’s test, a statistical 
method widely applied in qPCR workflows, implemented 
with default parameters in the R Statistical Software “out-
liers” package [20, 55, 73]. Due to limitations in template 
DNA availability, a reduced number of technical repli-
cates (≤ 3) were performed for water samples. Ten sur-
face water samples, primarily from TA (n = 8), yielded 
insufficient Cq data or melt curve quality and were there-
fore excluded from downstream quantification of 28S 
rRNA gene copies. For more detail on the qPCR methods 
see the Supplementary Information (Supplementary Fig-
ures S2, S3).

Copy‑normalized fungal abundance calculations
Copy-normalized fungal abundances were quantified by 
first normalizing raw 28S rRNA gene copy numbers from 
qPCR to sample mass or volume (g  or  mL) and scaling 
them by the proportion of fungal reads recovered with 
the 28S primer set. This value was then corrected for the 
fraction of the amount of DNA template used in qPCR 
reactions, yielding an estimate of fungal 28S copies per 
mass or volume. To convert gene copies to cell numbers, 
one representative genome per fungal species was down-
loaded from NCBI, 28S rRNA genes were extracted with 
Barrnap [136], and copy numbers were recorded; the full 
taxonomic ranks of each species were retrieved via the 
NCBI  Entrez efetch API, and mean 28S copy numbers 
were calculated for each taxonomic rank. Sequenced 28S 
OTUs were matched to these reference genomes at the 
lowest possible taxonomic level. Then using the relative 
abundance of the corresponding OTU, the samplelevel 
28S copy estimates were converted into copy-normalized 
fungal genome equivalent counts (GE). We used GE as a 
proxy for fungal abundance because this metric accounts 
for variability in rRNA gene copy number among taxa, 
providing a closer approximation of the actual number 
of fungal cells and facilitating meaningful comparisons 
across diverse lineages. Finally, differences in fungal 
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abundance between brackish and salt marsh sediments 
were assessed with a Kruskal–Wallis test.

Identification of putative fungal denitrifiers
Fungal ITS2 sequences from Maeda et al. [83] and Lazo-
Murphy et al. [74] were used to determine putative deni-
trifying fungi from the ITS2 primer set. ITSx was used 
to trim the reference sequences to the ITS2 region (–pre-
serve T –save_regions ITS2). Then, the “cd-hit-est” func-
tion in CD-HIT [50] was used to match ITS2 OTUs from 
this study to these reference sequences at 100% (-c 1.0 -n 
10). The relative abundance of these OTUs were calcu-
lated via the phyloseq package in R [87].

Phylogenetic analysis
All fungal sequences from the 28S region and two out-
group sequences from the SAR supergroup (Frus-
tulia sp. and Amphora commutata; sequences from 
NCBI) were aligned (using MUSCLE [39]) and manu-
ally trimmed (using Jalview). Maximum-likelihood trees 
were inferred with IQ-TREE 2 v2.2.6 using the option 
-m MFP + MERGE, which first runs ModelFinder Plus to 
search across the full set of time-reversible substitution 
models and select the best-fit model for each partition 
under the Bayesian Information Criterion (BIC) [70, 91]. 
The tree was visualized via the interactive tree of life [75], 
with the respective phylum of each OTU shown in vari-
ous colors via a color strip dataset.

Statistical analyses
The relative abundance of each OTU was calculated via 
the phyloseq package in R [87]. The full OTU abundance 
table was rarefied to a depth of 21,362 reads, chosen as 
the second lowest sequencing depth across all samples to 
maximize comparability while minimizing sample exclu-
sion. [23]. These rarefied OTUs were used to calculate 
Shannon diversity (using the diversity function in the 
vegan package in R), Simpson diversity (using the diver-
sity function in the vegan package in R; [105]), richness 
(using the specnumber function in the vegan package 
in R), and evenness (Shannon diversity divided by the 
log of richness in R) for each sample. Hutcheson t tests 
(using the Hutcheson_t_test function in the ecolTest 
package in R) were performed to determine the signifi-
cance of the differences in Shannon diversity, Simpson 
diversity, and evenness among the different primers. 
P-values were adjusted for multiple comparisons using 
Benjamini-Hochberg (p.adjust function in R stats pack-
age method = “BH”). The environmental parameters of 
the surface water, including salinity, temperature, pH, 
and chlorophyll a content at each station at the day of 
sampling, were investigated via weighted unifrac princi-
pal coordinates analysis (PCoA) to determine their roles 

in shaping the microbial community composition in the 
surface water via the ape package in R. A PERMANOVA 
(vegan package in R) for PCoA was conducted to deter-
mine the significance of the environmental variables.

The raw fungal OTU counts from the 28S region were 
normalized via the transfer matrix method (EdgeR pack-
age in R; [130]). Differential abundance analysis was per-
formed on these normalized OTU counts based on three 
salinity ranges (low: < 10 ppt, moderate: 10–25 ppt, and 
high: > 25 ppt). The normalized counts per million of the 
top 32 (based on relative abundance) differentially regu-
lated OTUs were visualized and grouped by sample type 
(sediment or surface water) and sampling location using 
the ggplot2 package in R [170]. FUNGuild [100, 118] was 
used to hypothesize the function of the fungi that were 
differentially abundant in the salt and brackish marshes 
identified by the 28S primer set.

Results and discussion
Environmental context
The February and November samples were collected at 
nearly the lowest temperatures, whereas the June and 
August samples were collected near the highest tem-
peratures of the entire sampling period (Fig.  2). At CB 
(North Inlet), the water temperature ranged from 6.8 °C 
to 34.2  °C, with averages of 21.2  °C ± 6.3  °C in 2020 and 
20.7  °C ± 6.9  °C in 2021 (Fig.  2A). Salinity ranged from 
6.5 ppt to 34.5 ppt in 2020 and 9.2 ppt to 41.6 ppt in 
2021 (Fig. 2E). The average pH was 7.7 ± 0.2 in 2020 and 
7.6 ± 0.2 in 2021 (Fig.  2I). Chlorophyll a peaked in May 
2020 (77.1  µg/L) and July 2021 (22.2  µg/L) (Fig.  2M). 
Similar trends were observed at DB and OL (both are sit-
uated in the North Inlet; Fig. 2B, C, F, G, J, K), with chlo-
rophyll a maxima occurring in August 2020 and 2021 
(Fig. 2N, O).

The brackish marsh, TA (Winyah Bay), exhib-
ited seasonal variation, with average temperatures of 
20.3  °C ± 6.6  °C in 2020 and 20.7  °C ± 6.9  °C in 2021 
(Fig. 2D). Salinity ranged from 0.1 to 26.7 ppt (Fig. 2H), 
whereas pH values averaged 6.7 ± 0.3 in 2020 and 
7.1 ± 0.4 in 2021 (Fig.  2L). The chlorophyll a maxima 
were observed in August 2020 (172.1 µg/L) and July 2021 
(96.9  µg/L) (Fig.  2P). The August time point was taken 
shortly after the August 2020 phytoplankton bloom 
(Fig. 2).

Fungal community composition identified by the universal 
SSU primer set (18S and 16S rRNA)
In this study, 82.1% of the reads generated by the uni-
versal primer set (9,767,053 in total) were aligned with 
16S OTUs. The remaining reads (1,746,250) mapped to 
18S OTUs, of which only three (one Pleosporaceae, one 
Saccharomycetaceae, and one Malasseziaceae) were 
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identified as fungi (Supplementary Table  S3), none of 
which belongs to EDF. The percentage of these fun-
gal OTUs in the 18S universal primer set library ranged 
from 0.003 to 0.03%. These findings demonstrate that 
this universal primer set is not suitable for assessing fun-
gal diversity, even though it has the potential to assess 
both prokaryotic and eukaryotic microbial communi-
ties simultaneously [88]. This is because the amount of 
fungal DNA is much lower than that of bacterial DNA, 
so the vast majority of the sequencing reads are bac-
terial. Additionally, primer bias may have resulted in 
lower detection of fungal sequences. Universal primers 
are often optimized to preferentially bind to conserved 
regions in bacterial or archaeal 16S rRNA genes, which 
may result in inefficient amplification of eukaryotic 18S 
sequences, particularly fungal taxa [166]. Several studies 
have shown that even minor mismatches at primer bind-
ing sites can lead to large discrepancies in amplification 
efficiency across taxa [88, 144]. In marine environments, 
where fungi often represent a minor fraction of the total 
microbial biomass, such biases may be amplified, lead-
ing to underrepresentation in sequencing results. Fungi-
specific 18S primers are likely better suited for studying 
marine fungal diversity by targeting the small subunit 
(SSU) rRNA [11].

Comparison of the ITS2 and 28S primer sets using 
ZymoBIOMICS standards
When the ZymoBIOMICS DNA standard community is 
evaluated via the ITS2 and 28S primer sets, the expected 
relative abundance ratio of Saccharomyces cerevisiae to 
Cryptococcus neoformans should be 1:1. This ratio was 
closely reflected in the community composition obtained 
via the 28S primer set (Supplementary Figure S1A). How-
ever, when the community was analyzed with the ITS2 
primer set, the relative abundance of C. neoformans was 
64.4% (Supplementary Figure S1B). Although the analy-
sis was based on a single replicate, this discrepancy sug-
gests that the ITS2 primer may not perform as effectively 
as the 28S primer in accurately representing the relative 
abundances of fungal taxa.

For the ZymoBIOMICS Community (cells) Standard, 
where the same expected 1:1 ratio of S. cerevisiae to 
C. neoformans should apply, neither the 28S nor ITS2 
primer sets resulted in C. neoformans reaching 50% rel-
ative abundance (Supplementary Figure S1). This devia-
tion may be caused by a lower rRNA copy number in C. 
neoformans than in S. cerevisiae within the cell mixture 
provided by ZymoBIOMICS. Alternatively, the cell wall 
of C. neoformans may present greater resistance to lysis 
due to the presence of a large polysaccharide capsule, 

Fig. 2  Surface water temperature (yellow; A-D), salinity (blue; E–H), pH (pink; I-L), and chlorophyll a (green; M-P) measurements from CB (A, E, I, M), 
DB (B, F, J, N), OL (C, G, K, O), and TA (D, H, L, P) from January 2020 to January 2022. The red dots indicate the sampling dates. Data were collected 
via the National Estuarine Research Reserve’s (NERR) System-Wide Monioring Program and obtained from the NERR’s Centralized Data Management 
Office
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which has been reported for this species [17]. In addi-
tion to mechanical lysis, lysis can be supplemented with 
enzymatic digestion of the fungal cell wall [72, 172]. 
These findings suggest that our study, along with other 
metabarcoding surveys of environmental samples, 
could exhibit a community compositional bias against 
microorganisms recalcitrant to cell lysis [42, 49].

Fungal community composition identified by the ITS2 
region primer set
A total of 8236 fungal OTUs (clustered at 97% similar-
ity level) were detected in at least one sample from our 
metabarcoding survey targeting the ITS2 region and used 
for subsequent analyses and visualizations (Figs. 3, 4, 7). 
Ascomycota and Basidiomycota dominated all the sam-
ples and constituted, on average, 85.8% and 4.8% of the 

Fig. 3  Relative abundance of the 8236 fungal ITS2 OTUs across all stations: A sediment in June 2020, B surface water in June 2020, C sediment 
in August 2020, D surface water in August 2020, E sediment in February 2021, F surface water in February 2021, G sediment in November 2021, 
and H surface water in November 2021
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fungal community, respectively. Unclassified fungi (only 
classified at the kingdom level as fungi) made up an aver-
age of 6.8% (ranging between 0.0 and 82.8%) of all fungal 
reads. The composition and diversity of the fungal com-
munity assessed by ITS2 sequencing significantly var-
ied between sample types (sediment and surface water; 
PERMANOVA p = 0.001), marsh type (brackish and salt 
marsh; Supplementary Table  S4), and sampling dates 

(except Nov. 2021 vs. June 2020; Supplementary Table S5) 
(Fig. 3). Ascomycota dominated most samples from both 
the sediment and surface water, whereas Basidiomycota 
dominated in only one TA sediment sample in August 
2021 (Fig.  3). The relative abundance of EDF was low 
(< 2.4% on average). Chytridiomycota were present in all 
the samples, with an average relative abundance of 2.5% 
in the sediment and 1.9% in the surface water (Fig.  3). 

Fig. 4  Relative abundance of putative denitrifying fungal ITS2 OTUs across all stations: A sediment in June 2020, B surface water in June 2020, C 
sediment in August 2020, D surface water in August 2020, E sediment in February 2021, F surface water in February 2021, G sediment in November 
2021, and H surface water in November 2021. The putative denitrifying fungi were identified from Maeda et al. [83] and Lazo-Murphy et al. [74]
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Other EDF phyla (Blastocladiomycota, Mucoromycota, 
and Zoopagomycota) were detected, but all were pre-
sent at extremely low levels (< 0.2% relative abundance on 
average).

Most marine studies using primers targeting the ITS2 
region (Table  1) consistently detected Ascomycota, 
Basidiomycota, Chytridiomycota, and a notable pro-
portion of unclassified fungi, each representing over 1% 
relative abundance [32, 38, 71, 80, 113, 115, 126, 162, 
175, 176]. These taxa dominate marine fungal communi-
ties, reflecting the high prevalence of Dikarya (Ascomy-
cota and Basidiomycota) across a range of ecosystems, 
whereas Chytridiomycota typically represents a smaller 
but consistent component. The substantial proportion 
of unclassified fungi underscores the complexity and 
novelty within marine fungal communities, revealing 
limitations in current databases to fully resolve this diver-
sity [7]. Studies targeting the ITS1 region (Table 1) have 
identified more Zoopagomycota than those using the 
ITS2 primer set [10, 28, 78, 79, 149], suggesting that the 
choice of the ITS primer set can significantly influence 
the detection of certain fungal groups. However, similar 
to the ITS2 primer set, the majority of the fungal com-
munity identified by the ITS1 primers included Dikarya, 
Chytridiomycota, and unclassified fungi (Table 1) [10, 27, 
28, 78, 79, 106, 120, 148, 149, 158, 165, 167]. This high-
lights the dominance of these groups across different ITS 
markers, although subtle differences in community com-
position may emerge depending on the primer region 
targeted.

We identified putative denitrifying fungi by match-
ing our ITS2 OTU sequences (at 100% identity level) to 
published fungal taxa known to denitrify [74, 83]. Sedi-
ment samples contained a higher relative abundance of 
these putative denitrifying fungi than the surface water, 
consistent with the expectation that denitrification is 
more active in the low-oxygen, organic-rich conditions 
typically found in benthic environments [85, 90, 134]. 
Members of Trichoderma dominated the putative deni-
trifying fungi (Fig. 4). Trichoderma harzianum was dom-
inant in the brackish marsh samples, reaching up to 4% 
of the relative fungal community, in June 2020, February 
2021, and November 2021 (Fig.  4). This seasonal recur-
rence suggests a potentially stable role for T. harzianum 
in removal of nitrate within brackish marsh sediment. 
Its high abundance, combined with its known capacity 
to reduce nitrate under anaerobic conditions [83], points 
to a potential ecological role in marsh sediment nitro-
gen cycling. The salt marsh samples were more variable 
and dominated by T. harzianum, Trichoderma koningi-
opsis, and Purpureocillium lilacinum, especially during 
August 2020 and November 2021 (Fig. 4). These species 
have also been associated with nitrate reduction and may 

be adapted to higher salinity environments compared to 
their brackish counterparts [74].

While denitrification is usually attributed to prokary-
otes, many studies point to a poorly understood role for 
fungi in marine systems denitrification [74, 83, 138, 147]. 
However, fungi lack the nitrous oxide reductase gene 
(nosZ), so they are unable to complete the final step of 
denitrification (reducing N2O to N2 gas) [4]. As a result, 
fungi likely contribute disproportionately to N2O emis-
sions, a potent greenhouse gas [4, 33, 138]. This has 
important implications for wetland and estuarine nitro-
gen cycling, where fungal denitrification may act as a 
source of N2O. The detection of putative fungal denitri-
fiers, especially in marsh sediments, suggests that fungi 
may contribute to nitrogen loss and gaseous N outputs in 
ways previously underestimated. However, further work, 
including cultivation, transcriptomic, metagenomic, or 
stable isotope labeling approaches, is needed to confirm 
their activity and quantify their contribution to N2O 
fluxes under in situ conditions. These preliminary obser-
vations underscore the importance of considering fungi 
in broader assessments of estuarine nitrogen cycling and 
greenhouse gas production.

Fungal community composition identified by the 28S LSU 
region primer set
A total of 3624 fungal OTUs (clustered at 97% similar-
ity level) were detected in at least one sample from our 
metabarcoding survey targeting the D1 region of the 
large subunit rRNA and were used for downstream anal-
yses (Figs. 5, 6, 7). To investigate the phylogenetic diver-
sity of fungi in the surface water and sediments of North 
Inlet–Winyah Bay, a maximum-likelihood tree was con-
structed using the 3624 fungal OTUs identified by the 
28S primer set, along with two outgroup sequences from 
the SAR supergroup (Frustulia sp. and Amphora com-
mutata; Fig.  5). Over half (51.0%) of the fungal OTUs 
were classified as EDF. Among these EDF lineages, 22.7% 
were identified as Chytridiomycota, 15% as Zoopago-
mycota, 6.9% as Blastocladiomycota, 3.7% as Neocalli-
mastigomycota, and 2.7% as Mucoromycota (Fig. 5). The 
remaining 48.8% of the OTUs were classified as Dikarya 
fungi, with Ascomycota accounting for 37.5% and Basidi-
omycota accounting for 11.3% (Fig. 5). Most Ascomycota 
OTUs were from the classes Dothideomycetes (13.7%) 
and Sordariomycetes (11.7%). Overall, there was strong 
agreement between taxonomic classifications and phy-
logenetic placements. However, phylogenetic analysis 
was used to curate and refine the classifier-based results. 
The seven OTUs that could not be assigned to any fun-
gal phylum by the RDP classifier clustered clearly with 
Ascomycota in the phylogenetic tree (Fig.  5) and were 
accordingly reclassified as Ascomycota based on their 
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placement. These revised classifications were also sup-
ported by NCBI BLASTn results. All results presented 
below reflect this curated classification framework.

The maximum-likelihood phylogenetic tree supported 
the monophyly of Ascomycota and Basidiomycota, con-
firming their shared descent from a common ancestor. 
These results align with those of previous studies [64, 66, 
143], which revealed that Ascomycota and Basidiomy-
cota form a clade of Dikarya fungi, diverging from other 
EDF lineages [64]. In line with earlier findings [66, 103, 
119, 168], over half of the sequences identified in this 
study were from EDF, many of which are polyphyletic 

(Blastocladiomycota, Chytridiomycota, Neocallimastigo-
mycota, and. Zoopagomycota). Previous work has shown 
that EDF in marine environments can represent between 
1.7 and 72% of fungal reads, primarily from Chytridiomy-
cota or Mucoromycota [28, 116, 128].

Across all seasons (Supplementary Table S6) and sam-
ple types (water and sediment; PERMANOVA p = 0.001), 
the 28S rRNA gene revealed significant differences in 
fungal community composition between salt and brack-
ish marshes (Supplementary Table S7). In the salt marsh 
sediment samples, Ascomycota was consistently pre-
dominant and consisted of, on average, 80.0% of the salt 

Fig. 5  A maximum likelihood phylogenetic tree reconstructed with the 3624 28S rRNA OTUs. Sequences from the SAR supergroup (Frustulia sp. 
and Amphora commutata) were included as an outgroup. The color indicates the phylum of each OTU classified by the RDP classifier [163]. Branches 
supported by bootstrap values greater than 80 are marked with a filled circle
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marsh fungal community (Fig.  6). Various Sordariomy-
cetes dominated the sediment samples (Supplementary 
Figures  S5 & S6), whereas Capnodiales and Pleospo-
rales (two Dothideomycetes) dominated the surface 
water samples (Supplementary Figures  S5 & S7). In the 
brackish marsh, while Ascomycota was still the domi-
nant phylum (37.9% on average), Zoopagomycota and 
Chytridiomycota accounted for 23.8% and 21.5% of the 

fungal community, respectively (Fig. 6). Zoopagomycota 
(mostly Entomophthorales, see Supplementary Figure 
S8) were more prevalent in the sediment and surface 
water in the summer of 2020 than in the winter of 2021, 
and their relative abundance reached 52.3% in August 
2020 in Thousand Acre surface water. Chytridiomycota 
were present in most samples, with an average relative 
abundance of 14.1% in the sediment and 9.4% in the 

Fig. 6  Relative abundance of the 3624 fungal 28S OTUs across all stations: A sediment in June 2020, B surface water in June 2020, C sediment 
in August 2020, D surface water in August 2020, E sediment in February 2021, F surface water in February 2021, G sediment in November 2021, 
and H surface water in November 2021



Page 15 of 28Thompson et al. Environmental Microbiome          (2025) 20:129 	

Fig. 7  Calculated Shannon diversity (A and B), Simpson diversity (C and D), and evenness (E & F) indices of fungal OTUs from sediment and surface 
water based on ITS2 and 28S rRNA sequencing. Three stars (***) indicate p-values < 0.001 (from the Benjamini–Hochberg adjusted Hutcheson t tests 
p-value)
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surface water (Fig. 6). Blastocladiomycota (mostly Cate-
nariaceae, see Supplementary Figure S9) was predomi-
nant in the brackish marsh water column, with a relative 
abundance of 10.4%, and was present in most samples, 
with an average relative abundance of 3.1%. Mucoromy-
cota were detected, but were present at low levels (1.1% 
relative abundance on average).

A very small number of studies investigating marine 
fungal communities have utilized the 28S primer set, 
highlighting a gap in the literature [2, 47, 116] (Table 1). 
A previous survey of fungal diversity targeting 28S rRNA 
in coastal sediments approximately three hundred kilo-
meters away in North Carolina revealed similar fungal 
community compositions [116]. Given the similar physi-
cal environments between the sampling sites in our study 
and those in Picard [116], the similar results in terms of 
fungal diversity suggest that surveys targeting 28S rRNA 
are likely reproducible. By applying our 28S analysis pipe-
line to a previous survey of fungal diversity in coastal 
sediments from North Carolina [116] via the updated 
RDP 2.14 classifier [163], we successfully classified all 
fungal OTUs at the phylum level (Supplementary Figure 
S4). Among the studies that have employed this marker, 
taxa from a range of fungal phyla, including Chytridi-
omycota, Mucoromycota, Zoopagomycota, and Dikarya, 
were consistently identified, indicating that the 28S 
region can capture broad phylogenetic diversity. Interest-
ingly, Blastocladiomycota, a lesser-known group of EDF, 
was detected in two [47, 116] results from our pipeline) 
of the three studies focused on marine environments. 
These findings suggest that the 28S primer set has the 
potential to detect not only common marine fungal taxa 
but also more rare and ecologically significant groups. 
Additionally, these studies reported that fewer than 10% 
of fungal reads were unclassified [2, 47, 116], which con-
trasts with the often higher proportion of unclassified 
reads observed with other ribosomal markers in marine 
fungal surveys. This relatively low percentage of unclassi-
fied reads highlights the robustness of the 28S primer set 
in accurately assigning taxonomic identities, further sup-
porting its utility in marine fungal research.

Variation in fungal diversity across primer sets
Diversity was significantly higher with the 28S (LSU) 
primers across all conditions—depth, site, and season 
(p < 0.01; Fig. 7, Supplementary Table S8). In sediment, 
mean Shannon diversity was 0.9 ± 0.9 for the 28S prim-
ers compared to 0.6 ± 0.7 with ITS2. In surface water, 
the 28S primers yielded a mean Shannon diversity of 
0.8 ± 0.8, while ITS2 yielded 0.2 ± 0.5. Simpson diver-
sity followed similar patterns (Fig. 7C, D), and evenness 
was also generally higher with the 28S primers, particu-
larly in surface water (Fig. 7E, F). The ITS2 primer set 

identified more unique taxa at the class, order, family, 
and genus levels (Supplementary Table  S9), whereas 
the 28S primer set yielded higher overall Shannon and 
Simpson diversity. This contrast is likely due to the 
conserved nature of the 28S region, which limits taxo-
nomic resolution but captures a more even community 
structure [14, 81, 151]. In comparison, the ITS2 data, 
while richer in taxa, showed lower evenness due to the 
dominance of a few highly abundant taxa.

The ITS2 primer set detected low relative abun-
dances for Blastocladiomycota (0.0002%), Mucoromy-
cota (0.2%), and Zoopagomycota (0.0008%), which were 
present in the brackish marsh at average abundances 
of 7.1%, 2.2%, and 23.8%, respectively, as revealed by 
the 28S primer set (Supplementary Table  S10). The 
ITS2 set identified a greater proportion of Ascomycota 
in both the brackish (65.6%) and salt marshes (93.6%) 
than did the 28S primer set (37.6% in the brackish and 
79.9% in the salt marshes).The ITS2 primer set identi-
fied significantly more Ascomycota in the salt marsh 
than the 28S primer set (Welch’s t-test, t = − 3.152, 
df = 121.28, p-value = 0.002). Compared with the ITS2 
primer set, the 28S primer set consistently detected 
a significantly greater number of EDF in both the salt 
(Welch’s t-test, t = 24.2, df = 62.3, p-value < 2.2 × 10−16) 
and brackish marsh (Welch’s t-test, t = 16.9, df = 23.2, 
p-value = 1.6 × 10−14) and no unclassified fungi (Fig.  6, 
Supplementary Table S10). Although EDF often consti-
tute less than half of the total fungal reads in marine 
environments, their ecological importance is substan-
tial, contributing to nutrient cycling, decomposition, 
and symbiotic interactions with marine organisms 
such as algae and invertebrates [116]. The underestima-
tion of these lineages in previous studies is frequently 
attributed to the limitations of culture-based methods 
and biases in molecular techniques, particularly when 
targeting ribosomal RNA regions that do not fully cap-
ture the diversity of EDF [116]. While the ITS2 primer 
set identified 8,236 fungal OTUs—more than twice 
as many as did the 28S primer set—it predominantly 
detected Ascomycota and Basidiomycota, with an aver-
age of 6.8% unclassified fungi of all fungal reads and 
22.5% of ITS2 OTUs unclassified above the phylum 
level (Supplementary Table  S10). Previous studies uti-
lizing long 18S-ITS-28S sequences suggest that many 
undescribed taxa belong to EDF lineages [150, 153]. 
Additionally, marine fungal studies employing ITS 
primer sets have reported that 20–80% of fungal OTUs 
are unclassified at the phylum level [32, 79, 80, 126]. 
These discrepancies may stem from limitations in ITS-
region databases [124], as ITS primer sets were devel-
oped primarily from terrestrial sequences, resulting in 
a bias toward terrestrial Dikarya [7].
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The 28S primer set provides several advantages, includ-
ing broader taxonomic coverage, by capturing EDF line-
ages such as Zoopagomycota and Blastocladiomycota, 
which are often underestimated by the ITS2 primer set 
(Table  1; Supplementary Table  S10). This broader phy-
logenetic scope is critical for capturing the full extent of 
fungal diversity in marine ecosystems, where EDF line-
ages play essential ecological roles. Additionally, studies 
utilizing the 28S primer set report a lower proportion of 
unclassified reads—less than 10%—than the higher per-
centages observed with ITS primer sets, likely due to 
biases in databases that are more focused on terrestrial 
fungi [2, 47, 116]. These findings indicate that the 28S 
region is more effective at detecting fungal taxa across 
various habitats and environmental conditions, including 
salinity gradients and seasonal shifts.

The fractions of fungal reads generated by the ITS2 
and 28S primer sets were comparable (nearly half, Sup-
plementary Figure S11), as were the proportions of the 
total number of OTUs (Supplementary Table S2). Nota-
bly, despite the 28S primer set being designed for fungal 
specificity [151], approximately half of the reads were 
nonfungal. This observation underscores a critical con-
sideration for experimental design when targeting fungal 
communities. Specifically, experimental designs includ-
ing sequencing depth per sample should consider allo-
cating resources to generate twice the number of reads 
necessary for fungal-specific analysis to adequately 
account for nontarget amplification.

Copy‑normalized fungal abundance using 28S qPCR
The majority of studies aiming to quantify fungal abun-
dance from environmental samples have relied on 18S 
and ITS primers [141]. This has largely been due to his-
torical precedence as the 18S region is highly conversed 
across dominate terrestrial lineages (Ascomycota and 
Basidiomycota), and as ITS has offered a greater degree 
of species level variability within these lineages [141]. 
Because the 28S region provides a good balance between 
sequence conservation and variation and it enables phy-
logenetic analysis, covered fungal diversity well (Fig.  6), 
and the variation in the number of 28S rRNA genes is 
smaller than that of ITS2 [137] we decided to use the 
28S primers for qPCR. Beyond this choice of marker, our 
study addresses an important but often overlooked issue: 
most previous studies quantifying fungi via qPCR assume 
that all amplicons are fungal, even though unspecific 
amplification can occur with virtually all commonly used 
primers [151]. To overcome this, we used the same 28S 
primer set for both qPCR and metabarcoding, allowing 
us to accurately determine the proportion of qPCR prod-
ucts that are truly fungal. This combined approach pro-
vides a more reliable estimate of fungal abundance and 

can serve as a framework for future qPCR-based quanti-
fication of fungal communities in environmental samples.

Fungal abundances were significantly higher in brackish 
marsh sediments than in salt marsh sediments (Kruskal–
Wallis test, χ2 = 23.3, df = 1, p < 0.001; Fig.  8). For exam-
ple, the brackish site (TA) reached mean abundances up 
to 5.9 × 105 ± 1.6 × 105 (mean ± standard error) genome 
equivalent (GE)/g in June 2020 and 2.9 × 106 ± 5.5 × 105 
GE/g in February 2021, compared to salt marsh sites 
such as CB, which averaged 6.5 × 104 ± 2.2 × 104 GE/g 
in June 2020 and 4.3 × 105 ± 1.1 × 105 GE/g in February 
2021 (Fig.  8, Supplementary Table  S12). In contrast to 
sediments, surface water samples had much lower fungal 
abundances. There was a significant difference between 
surface water samples from the salt marsh sites and the 
brackish marsh site (Kruskal–Wallis test, χ2 = 6.6, df = 1, 
p = 0.01; Fig. 8). The salt marsh DB (DB R3) site had up 
to 1.3 × 105 ± 1.3 × 104 GE/mL in August 2020, while CB 
ranged from 3.9 × 104 GE/mL in August 2020 to ~ 111 
GE/mL in June 2020. The brackish marsh (TA) mean 
abundances ranged between 87 ± 9 GE/mL in replicate 
3 (R3) in February 2021 to 8.9 × 103  GE/mL in replicate 
2 (R2) February 2021, but averaged 4.4 × 103 across all 
brackish marsh surface water samples (Supplementary 
Table S12).

In the water column, bacteria abundances ranged from 
106 to 108 cells per mL [3, 13, 169], approximately three 
to five orders of magnitude higher than the estimated 
fungal abundance observed in the surface water at our 
NI-WB sites, underscoring the dominance of bacterial 
taxa in planktonic microbial communities within coastal 
marsh systems. The large variation in cell counts between 
bacteria and fungi likely reflects fundamental differences 
in growth rates, dispersal strategies, and nutrient utili-
zation between fungi and bacteria, with fungi typically 
associated with particulate or host-derived substrates [7, 
52, 106, 112]. Bacterial abundance in marsh sediments 
reported previously ranges between 1 × 108 and 4 × 108 
GE/g [67, 111, 132], approximately three orders of mag-
nitude greater than our estimated fungal abundance in 
the sediment marsh samples. The closer ratio of fungal to 
bacterial abundance in sediments may reflect the ecologi-
cal niches fungi occupy in benthic environments, such as 
the decomposition of complex organic matter (e.g., plant 
detritus and lignocellulose) [7, 112] and interactions with 
plant roots, particularly in Spartina-dominated marshes 
[19, 22]. The reduced disparity suggests that fungi are 
not merely minor constituents of the sediment microbial 
community, but may contribute meaningfully to nutrient 
cycling and organic matter transformation. Thus, while 
bacteria numerically dominate both compartments, the 
higher proportional abundance of fungi in sediments 
compared to surface water implies a potentially greater 
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Fig. 8  Copy-normalized fungal abundances (genome equivalent per g or mL) estimated using 28S qPCR for A sediment and B surface water 
samples across salt marsh sites – Clambank (CB), Debidue Creek (DB), and Oyster Landing (OL)—and a brackish marsh site – Thousand Acre (TA)—
from North Inlet – Winyah Bay. Brackish marsh (TA) samples are shaded. The error bars represent the standard error between technical replicates. In 
samples where only one technical replicate was performed no error bars were included
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ecological role for fungal taxa in benthic marsh processes 
compared to their role in the overlying water column.

The observed differences in fungal community size 
and composition between brackish and salt marsh sedi-
ments highlight the influence of salinity and organic 
matter availability in coastal estuaries. Brackish marsh, 
characterized by lower salinity and greater freshwater 
and terrestrial inputs (resulting in higher nutrient con-
centrations; Fig. 2), appear to support larger fungal pop-
ulations and higher relative abundances of EDF, such as 
Chytridiomycota and Zoopagomycota (Figs. 6, 8). Such 
groups may play key roles in decomposing complex 
organic matter and linking aquatic and terrestrial nutri-
ent cycles in these transitional habitats [9, 54, 100, 118, 
154]. In salt marsh sediments, the lower overall fun-
gal abundances and dominance of Ascomycota (Fig.  6, 
8) likely reflect stronger salinity constraints on fungal 
growth and survival. Many fungal lineages, particularly 
terrestrial-derived taxa, exhibit reduced growth rates, 
spore germination, or enzymatic activity at seawater 
salinity levels, with only a subset of halotolerant or halo-
philic fungi thriving under such conditions [56, 68, 135]. 
This interpretation differs from the patterns highlighted 
by the PCoA analysis (Fig.  9), which mainly emphasize 
shifts in community composition along salinity gradients. 
The qPCR data provide a complementary perspective, 
indicating that salinity not only shapes fungal community 
structure but also reduces absolute fungal abundance, a 
measure of their physiological well-being and biomass 
potential in high-salinity environments. Differences 
between sediments and surface waters further under-
score the importance of benthic habitats as hotspots of 

fungal biomass and potential activity in coastal estuar-
ies. While surface waters contained far fewer fungal cells, 
sediments may serve as reservoirs of active decomposers 
and propagules for dispersal [7]. Together, the findings 
suggest that shifts in salinity regimes—driven by sea-level 
rise or freshwater diversion [41, 63, 173]—could substan-
tially alter the structure and function of coastal fungal 
communities, with important implications for carbon 
cycling and ecosystem resilience.

Fungal lineages drive community composition differences 
across salinity gradients
There were significant differences in fungal commu-
nity composition between salinity ranges in both sedi-
ment and surface water (Fig.  9). These differences were 
observed in the sediment between high (> 25 ppt) and 
low (< 10 ppt) salinities, as well as between high and 
middle (10–25 ppt) salinities. In surface water, differ-
ences were found between middle and low salinities 
and between high and moderate salinities (Supplemen-
tary Table  S13, S14, Supplementary Figure S11). Salin-
ity significantly influenced fungal community structure, 
explaining 2.1% of the total variation (PERMANOVA, 
R2 = 2.1%, p = 0.001). Other significant factors included 
temperature (R2 = 5.4%), pH (R2 = 5.5%), chlorophyll a 
(R2 = 1.7%), sampling date (R2 = 3.3%), and marsh type 
(salt vs. brackish marsh, R2 = 10.9%) (all p = 0.001). Sam-
pling station and sample type (sediment vs. surface 
water) also accounted for significant variation in com-
munity composition (R2 = 8.3%), particularly for the 28S 
primer set (Fig. 9).

Fig. 9  Weighted unifrac principal coordinate analysis ordinations based on fungal 28S 97% OTUs (A & B) from all four study sites, comparing 
summer and winter in the surface water (A) and sediment (B)
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The 28S primer set revealed that Ascomycota was 
the dominant phylum in most of the salt marsh sam-
ples, whereas EDF were more abundant in the brack-
ish marsh samples. Salinity was clearly a key factor 
driving variations in fungal community composition 
(Fig.  9, PERMANOVA, R2 = 2.1%, p = 0.001), which is 
consistent with previous studies showing the impact of 
salinity on fungal diversity and community structure 
in marine and estuarine environments [94, 131, 160]. 
Salinity acts as a selective environmental filter, favor-
ing fungi with specific physiological adaptations to 
osmotic stress, ionic imbalance, and desiccation [94, 
114], thereby reducing overall fungal diversity while 
promoting the dominance of salt-tolerant species. This 
results in a fungal community that is often less diverse 
but highly specialized, reflecting the challenging con-
ditions of high-salinity environments. Elevated salin-
ity environments exert osmotic stress that can lead to 
cellular dehydration, membrane destabilization, and 
protein denaturation [114]. Fungi that persist under 
such conditions possess osmotolerance mechanisms, 
such as the accumulation of compatible solutes (e.g., 
glycerol, mannitol, trehalose), the expression of high-
affinity ion transporters, and structural adaptations to 
membranes and cell walls that mitigate ionic toxicity 
and maintain cellular turgor [29, 44, 114]. Significant 
differences in diversity were identified between high 
salinity levels (> 25 ppt) and low salinity levels (< 10 
ppt) in sediment, as well as between mid-range salin-
ity levels (10–25 ppt) and low salinity levels in sur-
face water (Supplementary Figure S11, Supplementary 
Table S14).

EDF play crucial roles in driving differences across 
salinity levels (Fig. 10). OTUs from EDF, such as Zoop-
agomycota (Basidiobolus), Chytridiomycota (Spizello-
myces, Entophlyctis, Olpidium, and Oedogoniomyces), 
Mucoromycota (Diversispora), and Blastocladiomycota 
(Catenomyces), along with Basidiomycota, were more 
differentially abundant in the brackish marsh site than 
were Dikarya fungi (Supplementary Table S13; Fig. 10). 
Moreover, Sordariomycetes and Dothideomycetes 
(Ascomycota) were more differentially abundant in 
the salt marsh sites (Fig. 10; Supplementary Figure S5). 
OTUs, such as Basidiobolus, Oedogoniomyces, Crypto-
coccus, and Magnaporthe, which are abundant in both 
environments, were differentially abundant in both 
surface water and sediment. These findings suggest 
that salinity is a critical factor influencing the ecologi-
cal dynamics of fungal communities. Below, we discuss 
the ecological implications of this salinity divide for 
fungal communities using FUNGuild to determine the 
putative roles of these fungi in the marsh.

Dikarya
Ascomycota is the largest fungal phylum, with over 
64,000 known species [171]. It dominates most marsh 
ecosystems, contributing up to 95% of the fungal commu-
nity composition [21, 76, 77, 94, 161], and is a predictor 
of carbon, nitrogen, and phosphorus cycling processes in 
salt marshes [76, 77]. Most Ascomycota fungi are meta-
bolically versatile saprotrophs that secrete extracellular 
enzymes to break down complex organic matter [159]. 
Aniptodera sp., Nectria sp., Kirschsteiniothelia sp., Pyr-
enochaeta sp., and Mycosphaerella sp. showed higher in 
both relative and absolute abundances in brackish than 
salt marsh sediments (Fig.  10, Supplementary Figure 
S12). These genera have been linked to the early stages of 
Spartina leaf decay [6, 18, 82]. For example, Aniptodera 
sp. averaged ~ 113 GE/g in brackish marsh sediment com-
pared to 0 GE/g or mL in salt marsh sediment (Wilcoxon 
rank-sum test, W = 35, p = 0.004), while Pyrenochaeta 
sp. and Kirschsteiniothelia sp. were ~ 23,131 and ~ 11,463 
GE/g, respectively, in brackish sediments but dropped 
to ~ 338 and ~ 33 GE/g in salt marsh sediments (Wilcoxon 
rank-sum test, W = 32, p = 0.1 (Pyrenochaeta sp.; W = 34, 
p = 0.02 (Kirschsteiniothelia sp.); Supplementary Figure 
S12). Conversely, Lulworthia sp., Ophiosphaerella sp., 
and Ramulispora sp. were differentially more abundant 
in salt marsh sediments (Fig. 10), suggesting these sapro-
trophic fungi may be better adapted to saline conditions. 
For instance, Ramulispora sp. had a mean abundance 
of ~ 19,399 GE/g in salt marsh sediments but only ~ 588 
GE/g in brackish sediment, indicating some genera may 
thrive under a range of salinity conditions (Wilcoxon 
rank-sum test, W = 17, p = 0.7, Supplementary Figure 
S12).

Plant diversity plays a key role in shaping the abun-
dance and richness of pathogenic fungi. In our study, 
we detected a greater abundance of pathogenic fungi, 
such as Pithomyces sp. and Magnaporthe sp., in brack-
ish marsh sediment than in salt marshes (Fig. 10, Supple-
mentary Figure S12). Pithomyces sp. had ~ 10,702 GE/g 
in the brackish marsh sediments and ~ 332 GE/g in the 
salt marsh sediments (Wilcoxon rank-sum test, W = 28, 
p = 0.3). Magnaporthe sp. was differentially abundant in 
the brackish marsh surface water (Fig.  10) and did not 
have sufficient qPCR results. This difference is likely due 
to the greater plant diversity in the brackish marsh, which 
offers a wider range of potential hosts for these fungi. In 
contrast, the monoculture of Spartina alterniflora in salt 
marshes limits fungal host availability, resulting in lower 
pathogenic fungal abundance [16, 26, 92, 177]. Previous 
studies have consistently shown that diverse plant com-
munities create more opportunities for pathogen‒host 
interactions, increasing the diversity and richness of 
pathogens, including fungi, across ecosystems [16, 92]. 



Page 21 of 28Thompson et al. Environmental Microbiome          (2025) 20:129 	

This highlights the strong link between plant diversity 
and microbial community structure, particularly in estu-
arine environments.

Basidiomycota, the second-largest fungal phy-
lum, includes approximately 40,000 species, including 

mushrooms, plant pathogens, symbiotic fungi, and sap-
rotrophic fungi [61]. In our study, Basidiomycota were 
present in all the salt and brackish marsh samples, par-
ticularly in the sediments from June 2020 to November 
2021. Among the Basidiomycota, Agaricomycetes was 

Fig. 10  The normalized abundance (counts per million, calculated by EdgeR) of the 32 most abundant operational taxonomic units (rows) 
that were differentially abundant across low (< 10 ppt), middle (10–25 ppt), and high (> 25 ppt) salinity ranges. The data are from all samples 
(columns) collected from North Inlet–Winyah Bay salt and brackish marsh sediment and surface water via the 28S primer
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the dominant class across both the sediment and sur-
face water samples during most seasons (Supplementary 
Figure S13). Agaricomycetes are well known for their 
ability to degrade plant material, particularly lignin and 
cellulose, which are the toughest components of plant 
cell walls [45]. This class includes a wide range of sapro-
trophic fungi, such as mushrooms and polypores, that 
play crucial roles in nutrient cycling by breaking down 
organic matter [45]. In salt and brackish marshes, where 
plant detritus is abundant, Agaricomycetes likely contrib-
ute significantly to the decomposition of plant material, 
thus driving carbon cycling and organic matter turnover. 
All the differentially abundant genera within the Basidi-
omycota phylum were from the Agaricomycetes class 
(Fig. 10). However, in November 2021, Tremellomycetes 
became the dominant class in sediments at CB and OL, 
indicating possible seasonal shifts in fungal community 
composition (Supplementary Figure S13). Despite this, 
the consistent presence of Agaricomycetes highlights 
their essential ecological function as decomposers in 
these marsh ecosystems.

Cryptococcus sp. was more abundant in salt marsh 
sediments (~ 6720 GE/g on average in the salt marsh 
and ~ 1116 GE/g on average in the brackish marsh; Wil-
coxon rank-sum test, W = 14, p = 0.4; Supplementary Fig-
ure S12), whereas Datronia sp. (~ 134 GE/g on average in 
the brackish marsh and ~ 63 GE/g on average in the salt 
marsh; Wilcoxon rank-sum test, W = 27, p = 0.4; Supple-
mentary Figure S12) and Rhizopogon sp. (~ 3353 GE/g on 
average in the brackish marsh and ~ 717 GE/g on aver-
age in the salt marsh; Wilcoxon rank-sum test, W = 28, 
p = 0.4; Supplementary Figure S12) were more abundant 
in brackish marsh sediments (Fig.  10). Cryptococcus sp. 
and Datronia sp. are saprotrophic fungi that degrade leaf 
and woody material [100, 118]. Rhizopogon sp., a symbio-
trophic fungus associated with Pinaceae species, likely 
originates from nearby coastal pine forests (dominated 
by Pinus taeda) [5, 100, 118]. The presence of Rhizopo-
gon and Datronia DNA in brackish marsh sediments 
may represent spores from nearby pine trees. Addition-
ally, Malasseziaceae, commonly found in marine envi-
ronments [7], was detected at low abundance across all 
primers used in this study (average relative abundance: 
0.0004% from ITS, 0.32% from 28S, and 0.33% from 18S; 
Supplementary Figures S14 & S15).

Early diverging fungi
Zoopagomycota was the dominant EDF phylum in 
many brackish marsh samples, particularly in June and 
August 2020, in both sediment and surface water (Fig. 6). 
Entomophthorales was the dominant Zoopagomycota 
order in North Inlet–Winyah Bay (Supplementary Fig-
ures  S8). Zoopagomycota are nonzoosporic fungi (i.e., 

they do not produce free-swimming spores) [98], and 
most are animal parasites, although some are sapro-
trophs [118]. We found five Basidiobolus OTUs that were 
significantly more abundant in brackish marsh sediment 
(~ 38,925 GE/g; Supplementary Figure S12) than in salt 
marsh sediment (~ 213 GE/g; Wilcoxon rank-sum test, 
W = 39, p = 0.003; Supplementary Figure S12) (Fig.  10). 
Basidiobolus sp. are often saprotrophic fungi known 
to degrade plant material [100, 118]. Tidal marshes are 
among the most productive ecosystems worldwide [104], 
often releasing large accumulations of dead organic mate-
rial to the surrounding surface waters and sediment (e.g., 
wrack; [57]). In this system, Basidiobolus may contribute 
to the breakdown of fibrous plant tissues [65, 84], such 
as leaf litter and rhizomes. Their activity could be inte-
gral to early stages of detrital decay and carbon turnover 
in brackish marsh sediment, supporting microbial food 
webs and nutrient recycling. Previous studies have also 
revealed Basidiobolus sp. to be dominant in North Caro-
lina coastal sediments, albeit in euhaline settings [116].

Chytridiomycota were present in all samples collected 
from NI-WB but were particularly prominent in the sedi-
ment of the brackish marsh in August 2020 and in the 
surface water of the brackish marsh in June 2020 and 
February 2021 (Fig. 6; Supplementary Figure S16). Some 
lineages, particularly those in Blastocladiomycota and 
Chytridiomycota, are known to cause infectious diseases 
in various hosts, including phytoplankton (particularly 
diatoms and Cyanobacteriota), amphibians, and salt-
marsh plants [43, 48, 53, 125, 142]. Chytridiomycota are 
abundant in many coastal ecosystems [34]. The samples 
taken in June and August 2020, shortly after algal blooms 
(Fig.  2), likely provided a host for these Chytridiomy-
cota. Entophlyctis sp. are known to parasitize algae [100, 
118]. Two Entophlyctis sp. OTUs were significantly more 
abundant in the brackish marsh (~ 3583 GE/g or mL in 
the brackish marsh and ~ 4 GE/g or mL in the salt marsh; 
Wilcoxon rank-sum test, W = 30, p = 0.02; Supplementary 
Figure S12, Fig. 10). Entophlyctis sp. have been previously 
found to parasitize algae in various freshwater systems 
[133, 139]. Entophlyctis sp. OTUs may be parasitizing 
algae in NI-WB.

Spizellomyces sp. is commonly a saprotrophic fungus 
known for degrading pollen [100, 118], with approxi-
mately 29% of known Chytridiomycota being pollen sap-
rotrophs [118]. One Spizellomyces sp. OTU was abundant 
in the brackish marsh sediment (~ 118,700 GE/g in the 
brackish marsh sediment and ~ 0 GE/g in the salt marsh 
sediment; Wilcoxon rank-sum test, W = 25, p = 0.3; Sup-
plementary Figure S12). In this estuarine system, Spizel-
lomyces may contribute to the seasonal turnover of pollen 
that accumulates in marsh sediment from inflowing riv-
ers [15, 24, 96]. Its increased abundance in the brackish 
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site suggests that pollen inputs, potentially from a more 
diverse plant community, provide a specialized niche for 
this taxon. Spizellomyces has been previously found to 
degrade pollen in soils [46, 58] and found in marshland 
sediments [58]. Oedogoniomyces sp., another likely sapro-
trophic fungus known for degrading plant and algal mate-
rial [100, 118], was also significantly more abundant in 
the brackish marsh than in the salt marsh (~ 46,320 GE/g 
or mL in the brackish marsh and ~ 103 GE/g or mL in the 
salt marsh,Wilcoxon rank-sum test, W = 38, p = 0.006; 
Supplementary Figure S12) (Fig.  10). Brackish marshes 
support more diverse plant ecosystems than salt marshes 
do [5, 8, 76, 77, 145, 146], which results in a wider vari-
ety of organic matter inputs (e.g., decaying leaves, roots, 
pollen, and other plant debris). Saprotrophic fungi, such 
as Spizellomyces sp. and Oedogoniomyces sp., thrive on 
organic matter, including macrophyte and algal material. 
A more diverse plant community produces a richer and 
more varied substrate for these fungi to degrade, leading 
to their increased abundance in the brackish marsh.

Blastocladiomycota were present in most of the sedi-
ment and surface water samples from NI-WB, with a par-
ticularly high relative abundance in the brackish marsh 
surface water in August 2020 and February 2021 (Fig. 6). 
The family Catenariaceae was the dominant Blastocladi-
omycota group identified in NI-WB (Supplementary Fig-
ures  S9). Blastocladiomycota are primarily found in soil 
and freshwater environments as saprotrophs and para-
sites of invertebrates, plants, algae, oomycetes, and other 
blastoclads [121]. Fewer than 200 species of Blastocladi-
omycota have been documented [95]. Three Catenomy-
ces sp. OTUs were more abundant in the sediment and 
surface water of the brackish marsh than in those of the 
salt marsh (~ 25,222 GE/g or mL in the brackish marsh 
and ~ 27 GE/g or mL in the salt marsh; Wilcoxon rank-
sum test, W = 33, p = 0.06; Supplementary Figure S12). 
Catenomyces sp. are often saprotrophs that degrade plant 
material in soil ecosystems [100, 118]. Since Blastocladi-
omycota are found primarily in freshwater systems, we 
hypothesize that they may outcompete Ascomycota for 
organic matter in low-salinity environments.

Mucoromycota were highly abundant in brackish 
marsh sediment in February 2021 (Fig.  6). Diversispo-
raceae was the dominant Mucoromycota family in the 
brackish sediment in February 2021 (Supplementary 
Figure S17), whereas Mucoraceae (Supplementary Fig-
ure S12) and Endogonaceae (Supplementary Figure S12) 
dominated the remaining samples (Supplementary Fig-
ure S18). One Diversispora sp. OTU was abundant in 
the brackish marsh sediment (~ 167,594 GE/g in the 
brackish marsh sediment and ~ 0 GE/g in the salt marsh 
sediment;Wilcoxon rank-sum test, W = 23.5, p = 0.5; 
Fig. 10; Supplementary Figure S12). Diversispora sp. are 

typically endosymbiotrophs that form symbiotic relation-
ships with plant roots [100, 118]. Mucoromycota are pri-
marily soil saprotrophs, comprising approximately 80% 
of the group [118], although 1.5% are known to be endo-
phytes [118].

While EDFs have long been understudied in coastal 
marshes compared to Dikarya, our results suggest that 
EDFs, including Zoopagomycota, Chytridiomycota, Blas-
tocladiomycota, and Mucoromycota, likely contribute 
critical but poorly characterized functions in brackish 
and salt marsh ecosystems. These phyla dominate the 
fungal community (Figs. 5, 6). Specifically, they may act 
as saprotrophs degrading complex plant and algal mate-
rial (e.g., Basidiobolus, Spizellomyces, Oedogoniomyces, 
Catenomyces), parasites regulating algal populations (e.g., 
Entophlyctis), and symbiotrophs forming root associa-
tions (e.g., Diversispora) [100, 118]. Many of these EDFs 
remain uncultured and poorly described, but using FUN-
Guild [100, 118], we inferred their likely ecological roles 
and functional guilds based on taxonomic identity. These 
functional roles would directly influence carbon turno-
ver, nutrient release, and food web dynamics, especially 
in the brackish marsh with higher plant diversity and 
more varied organic inputs. By explicitly linking EDF tax-
onomic diversity to these key ecosystem processes, our 
study helps fill an important functional knowledge gap 
and underscores the need for deeper experimental and 
cultivation-based work to validate the ecological roles 
of these mostly uncultured EDF lineages in estuarine 
ecosystems.

Conclusions
This study shows that the primer set targeting the D1 
region of the 28S large subunit rRNA gene can identify 
a broader and richer marine fungal community, includ-
ing many EDF, in salt and brackish marsh surface water 
and sediments than the commonly used ITS2 primer set. 
This difference likely stems from gaps in EDF represen-
tation in ITS2 databases [11] and the bias of the ITS2 
primer set toward terrestrial Dikarya [7]. This study rep-
resents a significant advancement in our understanding 
of marine fungal diversity by demonstrating that the 28S 
large subunit rRNA primer set can reveal a richer com-
munity of fungi, particularly EDF lineages, in salt and 
brackish marshes. Phylogenetic analyses and copy-nor-
malized qPCR confirmed that EDF are key contributors 
to the distinct fungal communities between brackish and 
salt marshes, with notably higher EDF cell abundances 
in brackish sediments. Meanwhile, the ITS2 region 
revealed the unexpected presence of several putative 
denitrifying fungi, including Trichoderma and Purpureo-
cillium species, emphasizing its value for detecting func-
tional guilds related to nitrogen cycling. Together, these 
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metabarcoding and qPCR results underscore the over-
looked saprotrophic and functional roles of EDF in estua-
rine ecosystems and demonstrate the complementary 
strengths of each marker. Collectively, these results dem-
onstrate that the 28S large subunit rRNA primer set is a 
more robust and comprehensive tool for characterizing 
the full extent of marine fungal diversity, particularly for 
uncovering EDF lineages that remain underrepresented 
by ITS2-based approaches.
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