Check for
Updates

Evaluating How Novices Utilize Debuggers and Code Execution
to Understand Code

Mohammed Hassan
University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA
mhassan3@illinois.edu

ABSTRACT

Background: Previous work has shown that students can under-
stand more complicated pieces of code through the use of common
software development tools (code execution, debuggers) than they
can without them.

Objectives: Given that tools can enable novice programmers to
understand more complex code, we believe that students should
be explicitly taught to do so, to facilitate their plan acquisition and
development as independent programmers. In order to do so, this
paper seeks to understand: (1) the relative utility of these tools, (2)
the thought process students use to choose a tool, and (3) the degree
to which students can choose an appropriate tool to understand a
given piece of code.

Method: We used a mixed-methods approach. To explore the
relative effectiveness of the tools, we used a randomized control
trial study (N = 421) to observe student performance with each
tool in understanding a range of different code snippets. To explore
tool selection, we used a series of think-aloud interviews (N = 18)
where students were presented with a range of code snippets to
understand and were allowed to choose which tool they wanted to
use.

Findings: Overall, novices were more often successful compre-
hending code when provided with access to code execution, perhaps
because it was easier to test a larger set of inputs than the debugger.
As code complexity increased (as indicated by cyclomatic complex-
ity), students become more successful with the debugger. We found
that novices preferred code execution for simpler or familiar code,
to quickly verify their understanding and used the debugger on
more complex or unfamiliar code or when they were confused
about a small subset of the code. High-performing novices were
adept at switching between tools, alternating from a detail-oriented
to a broader perspective of the code and vice versa, when necessary.
Novices who were unsuccessful tended to be overconfident in their
incorrect understanding or did not display a willingness to double
check their answers using a debugger.

Implications: We can likely teach novices to independently
understand code they do not recognize by utilizing code execution
and debuggers. Instructors should teach students to recognize when
code is complex (e.g., large number of nested loops present), and

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICER °24 Vol. 1, August 13—-15, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0475-8/24/08
https://doi.org/10.1145/3632620.3671126

Grace Zeng
University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA
gzeng6@illinois.edu

Craig Zilles
University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA
zilles@illinois.edu

to carefully step through these loops using debuggers. We should
additionally teach students to be cautious to double check their un-
derstanding of the code and to self-assess whether they are familiar
with the code. They can also be encouraged to strategically switch
between execution and debuggers to manage cognitive load, thus
maximizing their problem-solving capabilities.

CCS CONCEPTS

« Social and professional topics — Computing education.

KEYWORDS

code comprehension, debuggers, execution

ACM Reference Format:

Mohammed Hassan, Grace Zeng, and Craig Zilles. 2024. Evaluating How
Novices Utilize Debuggers and Code Execution to Understand Code. In
ACM Conference on International Computing Education Research V.1 (ICER
24 Vol. 1), August 13—15, 2024, Melbourne, VIC, Australia. ACM, New York,
NY, USA, 19 pages. https://doi.org/10.1145/3632620.3671126

1 INTRODUCTION

The ability to read and understand code, to see “the forest for the
trees”, that is, to understand the overall purpose of a piece of code
from its individual lines, is critical for debugging, making changes to
existing code, and coming up with programming solutions [34, 38].
A multi-national, multi-institutional study by the Leeds working
group revealed that most novices fail to develop this crucial skill
by the end of an introductory programming course.

Prior work [20, 21] has found that novice programmers are able
to understand more complex programs through the use of common
programming tools (e.g., code execution, debuggers) than they can
through source code inspection alone. This shouldn’t be surprising
as expert programmers use testing (code execution) and debuggers
to debug, verify, and understand code. We believe that if students are
taught to use these tools to understand code, they can potentially
independently understand larger, more complex, and less familiar
code, helping them to learn new programming patterns and plans,
assisting in their development into expert programmers.

As such, in this paper, we conduct an exploratory study to better
understand how we should approach teaching novice programmers
to use tools for program comprehension. We specifically focus
on two tools. The first is code execution (shown in the middle of
Figure 1), which given a code fragment and input values produces
output values. Notably, code execution does not show the process
of how the actions done on inputs turn into outputs, i.e., “The
dynamic execution of a program is invisible. We can see only the
effect (output) of the program” [40]. Code execution can be used

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3632620.3671126
https://doi.org/10.1145/3632620.3671126
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632620.3671126&domain=pdf&date_stamp=2024-08-12

ICER °24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

Write a short, high-level English language description of the code in the highlighted region. Do not give a line-
by-line description.

Assume that the variable x is a list of integers You can assume that the code compiles and runs without
error.

def RF17(x):
for w in x:
if w% 2 == o:
return w
return -1

Write your high-level explanation here [~]

Below, access to code execution is provided
Input List (using Python list syntax): |[1,2,3,4] ‘

Output: 2

PythonTutor is provided below for this problem. Enter a list of integers for variable x and click 'Visualize'
to step through the code execution line-by-line:

‘ Visualize

Python 3.6

[1,2,3,4]
Print output (drag lower right comer 1o resize)

def Rf17(x):
for w in x:
- ifw%2==0:
return w
return -1

Frames Objects

Rf17(x)

Global frame

result = Rf17([1,2,3,4]) R

print(result) o

w1l

Rf17
Edit Code & Get Al Help
X

<Prev | [Next>
Step 5 of 10

Visualized with pythontutor.com

Figure 1: Student’s view of provided tools, execution & de-
bugger (PythonTutor) embedded on the EiPE question page.
Order of tools presented vary randomly.

to generate a series of input-output pairs that students can use to
deduce the behavior of code [51].

The second, line-by-line debuggers (henceforth referred to as just
“debuggers”), allow users to step forward the execution one step at
a time and see the effect of each step on the state of the machine.
Debuggers can be thought of a “white-box” tool in comparison to
the “black box” of code execution. For this study, we used the widely
used PythonTutor debugger (shown in the bottom of Figure 1),
which additionally permits users to step backwards or jump to an
arbitrary point of the execution by dragging a slider.

While prior work has shown both of these tools to be helpful, it
isn’t immediately clear how we should approach teaching students
to use them. Does one tool dominate the other one, such that we
should focus instruction on just one? Or are there distinct situations
where each tool shines? And if the latter, can we convey to students
how to choose an appropriate tool? This study aims to fill this
gap by exploring novices relative performance using and choice
between these tools.

Specifically, our research aims to address the following research
questions:

RQ1 How do code execution and debuggers vary in effectiveness
toward helping students understand code correctly?

RQ2 What factors influence novices’ choice of tool, and do they
make appropriate decisions?

66

Hassan et al.

To answer these research questions, we conducted a mixed meth-
ods study using students taking an introductory programming
course. In each part, students are provided tool access to solve
‘Explain in Plain-English’ (EiPE) questions (an example of which
is shown at the top of Figure 1). To answer RQ1, we conducted a
randomized control trial with 421 students, where students were
(randomly) given access to only one of the tools to understand one
of a set of EiPE questions. To answer RQ2, we conducted think-
aloud interviews of 18 students that had access to both tools while
they solved a series of EiPE questions.

2 BACKGROUND

Unlike novices, experts exhibit metacognition, recognizing when
it’s necessary to engage in specific strategies for code comprehen-
sion based on their self-awareness of their familiarity with a given
code base. This includes deciding when to perform code tracing,
execute code to see its outputs directly, or use debuggers with break-
points for an in-depth understanding of code they are not familiar
with [10, 18]. When experts encounter code that they do not rec-
ognize, they frequently resort to tracing to help them understand
the code [10]. This adeptness at selecting and applying the most
effective strategy based on their familiarity with the code highlights
an important difference between novice and expert programmers,
one that this study seeks to address by exploring when and why
novices select one strategy over the other.

2.1 Metacognition

Metacognition [46] refers to an individual’s awareness of their
own understanding of a problem and awareness of their progress
through the problem-solving process. Novices often exhibit deficits
in metacognitive skills, demonstrated by a reluctance to abandon in-
correct solutions because of an incorrect belief that they are nearly
done solving a problem, rushing through problems without a thor-
ough understanding, which results in a false sense of achievement,
and an inaccurate perception of their position within the problem-
solving process. Kalley et al. [28] highlights three different types of
metacognition:

¢ Declarative metacognitive knowledge represents one’s
awareness of what they know, awareness of their own abili-
ties and strategies.

e Procedural metacognitive knowledge represents one’s
understanding of how to use these strategies efficiently. For
high performing learners and experts, they can perform these
strategies more accurately and efficiently than novices.

¢ Conditional metacognitive knowledge represents one’s
understanding of when and why to use specific strategies.
High performing learners and experts use these strategies
more easily and with greater flexibility across different situ-
ations and contexts.

How novices lack metacognition in their process of debugging
programs has been investigated. For example, Gugerty et al. studied
how novice and expert programmers modified code to fix a bug.
Both novices and experts begin by reading the code and making an
initial modification to the code in an attempt to fix the bug. Novices
often had an initial incorrect fix (modification) and created more
bugs in the code, contrary to experts who often had an initial correct

Evaluating How Novices Utilize Debuggers and Code Execution to Understand Code

fix. This may demonstrate that experts often created a correct initial
hypothesis of the code after reading it, because they had an idea
of what the bug in the code was and proposed a fix [18]. In an eye-
tracking study, Busjahn et al. found that novices read code more
linearly (top-to-bottom, left-to-right, like reading English text) than
experts, suggesting that experts are more strategic in how they read
code to comprehend programs (e.g., following execution order and
relevant parts of code) [4].

Murphy et al. and Fitzgerald et al. observed productive and unpro-
ductive strategies novice programmers employed when fixing logi-
cal errors within a given code snippet. Some productive behaviors
include mentally executing code on paper, reading library documen-
tation, using line-by-line debuggers, and recognizing prior learned
patterns. Some unproductive behaviors included commenting out
correct line(s) of code, completely changing the given code to get
the right output (bypassing the problem), and copying irrelevant
line(s) of code from other programs [14, 42]. Novice programmers
often lacked systematic strategies toward locating and fixing bugs.
For instance, novices opt to work arbitrarily with print statements
and repeatedly apply random fixes [57]. Some novices lacked the
meta-cognitive awareness that they may use code execution (e.g.,
test print statements) to off-load cognition to debug a program
and instead struggled to mentally execute a large program [13].

Metacognition consists of self-regulation and self-monitoring
throughout the problem-solving process. Self-regulation involves
planning out solutions and monitoring progress, recognizing when
to adjust problem-solving strategies as needed. Self-monitoring,
a subset of self-regulation, refers to the process of observing and
reflecting on one’s cognitive activities, such as their understanding
and problem-solving strategies used so far (e.g., was it helpful?).

A common issue among novices is the tendency to jump right
into coding when they receive an error without first re-interpreting
what the problem is asking, often floundering as they solve for the
wrong problem [37]. Denny et al. found that when students are
asked to understand input-output test cases before writing code,
they are much more likely to understand the problem correctly
before beginning to code, thus improving their metacognitive skills
[8]. Making students aware of the skills or stages they must progress
through via explicit instruction empowers them to monitor their
own progress and reflect on the effectiveness of their strategies and
approaches. Xie et al. [58] and Loksa et al. [36] found that explicit
labeling of skills provided students with a framework to monitor
their progress and evaluate their confidence in mastering related
skills. Teaching programming problem-solving as a sequence of
distinct stages helps learners plan and monitor their progress, eval-
uate the efficacy of their strategies, and encourages reflection when
asking for help. This structured approach supports metacognitive
awareness and promotes better learning outcomes [37].

Research has shown that scaffolding metacognitive skills can
improve learning outcomes. Scaffolding techniques like reflective
prompts, self-assessment, self-questioning, and the use of graphic
organizers have been found effective in helping novices. For exam-
ple, Rum et al. highlighted the positive impact of these scaffolding
techniques on novice programmers’ performance [47]. Michaeli
et al. taught a systematic debugging process in classrooms, which
improved students’ debugging skills by fostering a planned and

67

ICER ’24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

deliberate approach, moving away from typical novices’ trial-and-
error methods [41]. However, the effectiveness of metacognitive
scaffolding highly depends on the level of student engagement;
active participation and response to the scaffolding are crucial for
its success [47]. Wang et al. emphasized the importance of teach-
ing metacognitive strategies to students just starting their degree
program and noted the crucial role of instructors in arousing stu-
dents’ interest and motivation in learning metacognition, to ensure
students are actively engaged with metacognitive practices by ex-
plaining to students that metacognition is a useful skill to learn
[54].

Tools designed to scaffold metacognition in comprehension and
debugging have shown varied levels of effectiveness. For exam-
ple, the study by Hull et al. investigated the impact of metacogni-
tive feedback in the SQL-Tutor system. Despite the integration of
metacognitive feedback, the differences between control and exper-
imental groups were not significant, likely due to low engagement
with the feedback provided [26]. Similarly, SeeC, a tool designed to
assist novice C programmers with debugging, showed that while
students found the tool useful, the overall uptake was low, which
limited its effectiveness [24]. Ardimento et al’s debugging scaf-
folding tool demonstrated improvements in students’ debugging
performance, yet there was no significant impact on students’ self-
efficacy in debugging [2]. Hauswirth et al. discussed the challenges
of metacognitive calibration, where students may engage superfi-
cially with self-assessment tasks, such as mechanically self-rating
skills without deeper consideration just to get it over with. This
suggests that while tools can support metacognitive activities, the
design and implementation must ensure deeper engagement [23].

Two significant issues with metacognitive scaffolding tools are
their limited availability and whether students engage with pro-
vided scaffolds. Custom educational tools designed to enhance
metacognitive skills are not widely available, limiting their im-
pact. Additionally, the effectiveness of these tools can vary among
students, often due to their lack of active engagement with the
provided scaffolding. This lack of engagement can significantly re-
duce the potential benefits of metacognitive interventions provided
within tools. Therefore, in our study, we compare two commonly
available tools, PythonTutor and code execution, both of which can
engage students in different ways.

2.2 Code Comprehension

Students who are adept at providing high-level explanations of code
tend to perform well at writing programs, implying that explaining
code (which necessitates understanding) may be a precursor to
writing code [16, 38]. On the contrary, explaining code at a low
level by restating the code line-by-line does not demonstrate an
understanding of the purpose of the code [56]. “Explain in Plain
English” (EiPE) questions (e.g., Figure 1), which require students to
give a high-level explanation of code, are a common way to evaluate
the skills of understanding and explaining code. A recent theory
toward learning programming suggests that EiPE questions should
be used towards learning common programming patterns [58] to
help students read code written by others.

Expert programmers tend to use a mix of top-down and bottom-
up strategies for code comprehension. The bottom-up model [45]

ICER °24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

Understanding the overall structure of the

| Macrostructure program text.

program.

Relations & references between blocks (e.g.

U -) Relatlonshlps method calls, object creation, data access...).

Regions of Interest (ROI) that syntactically
or semantically build a unit.

| Blocks (Chunks)

Language elements.

| Atoms

|| Text Surface

Duality

Understanding the algorithm underlying a
Sequence of method calls, object sequence
diagrams.

Operations of a block, a method, or a ROI
(chunk from a set of statements).

Operation of a statement.

| Program Execution

Architecture/Structure Dimensions

Hassan et al.

Understanding the goal/purpose of the program
(in the context at hand).

Understanding how subgoals are related to goals,
how function is achieved by subfunctions.

Understanding the function of a block, seen as a
subgoal.

Function of a statement: its purpose can only be
understood in a context.

| Function/Purpose

Relevance/Intention Dimension

Figure 2: The Block Model for assessing types of code comprehension tasks.

is commonly applied when the code initially seems unfamiliar
to the programmer. This model consists of a program model and
a situation model. The program model is a control-flow mental
representation of the program, made by grouping chunks of the
code and leveraging beacons (discussed below) throughout this
process (e.g., identifiers, comments, cues to common patterns or
plans). Afterward, they build a situation model, a data-flow mental
representation of the program, also built by grouping chunks, where
programmers apply their problem domain knowledge.

In Brooks’ top-down model [3], the programmer begins with
an initial hypothesis of the purpose of the entire program based
on their domain knowledge (real-world knowledge of the problem
the program aims to solve) and hierarchically creates subsidiary
hypotheses to explore specific, implementation-level details needed
to verify the parent hypothesis leveraging beacons throughout
the process. Meanwhile, Soloway et al’s top-down model involves
recognizing code fragments (common patterns or plans) that seem
familiar [50].

As tracing code is often regarded as a precursor to writing and
abstracting code [25, 31, 32, 35, 39, 52, 53], tracing is a crucial skill
that novice programmers must learn before they can reliably fix
bugs. Soloway et al. found that if higher-level strategies toward
understanding a program fail, programmers resort to concrete line-
by-line tracing [10]. Code tracing is the act of executing code either
mentally or through bookkeeping on some media, which is com-
monly evaluated through “find the output” or “find the outcome” of
code problems [43]. Being able to trace code does not necessarily
indicate that a student has a high-level understanding of the pur-
pose of the code [33]. Teague et al. [52] found that some students
use tracing to understand code through inductive reasoning, where
students would trace code multiple times and identifying patterns
in the input-output pairs [51].

The Block Model (Figure 2) distinguishes between program com-
prehension tasks pertaining to understanding: 1) text-surface (syn-
tactical structure), 2) execution behavior (algorithmic structure), and
3) purpose (intent, function) [27]. A program’s intent is concerned
with understanding why a programmer has written a program (i.e.,
external context, domain), which is the extrinsic purpose of the
code and is qualitatively different from understanding execution
behavior [44].

An example of a task pertaining to understanding the structural
relationships between subsets of the code in the program execution

68

dimension of the block model can be tracing code for a particular
input to develop an understanding of the execution-state relation-
ship between caller code and called procedural units. An example
of a task pertaining to understanding the algorithm of the whole
program at a high level (i.e., the macrostructure of program execu-
tion dimension) can be identifying a comprehensive set of inputs
to access all control-flow paths of a program [27].

As for understanding intent, an example of such a task could
be selecting suitable variable names within a program. This pro-
cess involves understanding the functional relationship between
(purposeful) sub-goals within the code. These relationships come
together to establish the program’s overarching goal or intent of
the program. Choosing an appropriate name for the whole program
pertains to understanding the macrostructure of the program’s
intent [27].

3 METHOD

We apply a mixed-methods approach to understand the relative
effectiveness of execution and debuggers on novice programming
students’ ability to understand code and how they choose between
the two tools across a range of Explain in Plain English (EiPE)
questions. We describe the method for the randomized control trial
in Section 3.1 and the qualitative interviews in Section 3.2.

The studies were conducted at the University of Illinois at Urbana-
Champaign. The subjects were enrolled in a introductory Python
programming course taught for non-CS, non-engineering, under-
graduate students. Data was collected with informed consent under
the guidance of the university’s IRB.

We used the same set of EiPE questions in both parts of the study.
They are included as Figures 3-12. These questions were designed
to be relatively challenging for this student population, so as to
necessitate tool usage.

3.1 Quantitative Data Collection

We conducted a randomized control trial in the Fall 2023 semester.
As part of a mid-term computerized exam [59] toward the end of
the semester, students in the course were asked to solve an EiPE
question, and on the question page they were provided access to a
tool (either execution or debugger). The EiPE problem was a random
selection from the first eight of the EiPE questions shown, and
which tool they were given was also randomized. To evaluate tool

Evaluating How Novices Utilize Debuggers and Code Execution to Understand Code

ICER ’24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

Assume that the variable x is an integer.

def f19(x):
0=20
while x > @:
if (x %10) % 2 == 0:
o +=1
x //= 10
return o

Figure 3: An EiPE question with the high-level description
of “counts the number of even digits present in a given input
number”

Assume that the variable x is a list of integers.
def f(x):
for i in range(len(x)):
if x[i] < @:
x[i] = -x[i]

return x

Figure 4: An EiPE question with the high-level description
of “replaces all numbers in a given list with their absolute
value.”

Assume that the variable x is a list of integers.
def f(x):

max_num = max(x)
int(str(max_num)[::-1])
x[x.index(max_num)] = rn
return x

rn =

Figure 5: An EiPE question with the high-level description
of “reverses the digits of the largest number in a list”

effectiveness (rather than students’ choice of tool), students were
randomly assigned to only one of the two tools. Practice exams for
this exam included both types of questions (i.e., ones with execution
and ones with a debugger).

The answers to the EiPE questions were graded for correctness,
ambiguity, and being high-level [5]. In addition, the computerized
exam recorded additional information about the question, including:
question duration, inputs selected, and the lines stepped through
using the debugger.

3.2 Qualitative Data Collection

We conducted 18 1-hour think aloud sessions. The think-alouds
were conducted over Zoom, screen-recorded, and transcribed ver-
batim. Students who had completed the introductory programming
class during the Fall 2023 semester were recruited by email and
compensated with a $35 gift card for their time. Participants solved

69

Assume that the variable x is a list of integers.
def f(x):
x.sort()
n = len(x)
ifn%2==20:
k1 = x[n // 2]
k2 = x[n // 2 - 1]
k = (k1 +k2) /2
else:
k = x[n // 2]
return k

Figure 6: An EiPE question with the high-level description
of “finds the median number in a given list”

Assume that the variable x is a list of integers.
def Rf17(x):
for w in x:
if w% 2 ==0:
return w
return -1

Figure 7: An EiPE question with the high-level description
of “finds the first even number present in a list of numbers””

Assume that the variable k is a list of integers.
def f(k):
s =20
o = len(k)
while s < o:
if k[s] < o:
k.remove(k[s])
o-=1
s =1
s += 1
k.sort()
return k

Figure 8: An EiPE question with the high-level description of
“sorts list in increasing order removing negative elements.”

a series of ‘Explain in Plain English’ (EiPE) questions. At the be-
ginning of each interview, the participant was asked to fill out a
survey self-rating their prior familiarity with PythonTutor and code
execution on a 6-point scale, to understand if their prior familiarity
with the tool may effect how they choose to use it. As shown in
Figures 13 and 14, most participants indicated they were at least
somewhat familiar with the tools but not highly experienced.

To understand what factors influence novices’ choice of one
tool over another, and under what circumstances they make these

ICER °24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

Hassan et al.

Assume that the variable x is a list of integers.

def f(x):
p=1[1
for i in x:
if i >1:
for m in range(2, i):
if (i % m) == 0:
break
else:

p.append(i)
return len(p) == len(x)

Figure 9: An EiPE question with the high-level description
of “checks if all elements in a list are prime numbers.”

Assume that the variable x is a list of integers.
def f(x):
result = []
for k in x:
if k > 0:
m=k *x 2
if m% 3 ==0:
result.append(m)
return result

Figure 10: An EiPE question with the high-level description
of “doubles each positive number that is divisible by 3.”

decisions, participants were offered access to both PythonTutor and
code execution tools. This design choice mirrors real-world coding
scenarios where developers have access to various tools and must
decide which best suits their immediate needs. These problems were
administered through a web page where each problem page has
PythonTutor and code execution embedded (see Figure 1), where
students can choose inputs and select an ‘execute’ or ‘visualize’
button. The number of inputs and lines of code executed using each
tool were recorded for each task, as well as time spent using each
tool.

As participants were solving the problems, they were left to

independently work on the problems with access to both tools.

They were prompted to switch tools only if the student struggled
or repeatedly incorrectly solved a problem, making no progress for
more than about 5 minutes using a tool. If they struggled for more
than 5 minutes and were not using a tool, they were asked to select
a tool. After the student has completed attempting the problem (i.e.,
gave an explanation of the code and wrote it in the provided answer

box), the interviewer asked the student retrospective questions.

These questions were:
o If they switched between tools, they were asked why they
chose to switch between tools.
o If they selected one tool and not the other, they were asked
why they choose one specific tool.

70

Assume that the variable 1st isa list of integers.
def func_a(lst):

Ist_b = [0] * len(lst)
var_c = 0
var_d = len(lst) - 1

for x in range(var_d):

1st_b[x] = abs(lst[x] - 1st[x + 11)
if 1st_b[x] > var_c:
var_c = lst_b[x]
var_e = 0

for y in range(len(lst_b)):
if 1lst_b[y] == var_c:
var_e += 1

return var_c, var_e

Figure 11: An EiPE question with the high-level description of
“returns the largest difference between two adjacent elements
and the number of times this difference occurs.”

Students were asked to verbalize their raw thought processes
and decisions as they work through the programming tasks. Our
think-alouds followed the protocol of Ericsson et al. for recording
unstructured verbalizations [12]. Their approach aims to minimize
the extra cognitive effort required to verbalize thought processes
to help prevent fatigue from impacting student performance. Par-
ticipants were only asked to say what was currently on their mind
as they were solving the problems and were not asked to explain
nor interpret their thought process for our benefit [12].

3.3 Qualitative Analysis Method

The goal of our analysis was to conduct thematic analysis, identify-
ing, analyzing, and reporting themes within the think-aloud session
transcripts. The initial stage of analysis was inductive open coding
of the think-aloud session transcripts. Special attention was paid to
moments of struggle, decision points regarding tool use, and expres-
sions of confidence or frustration. The think-aloud interviews were
analyzed in conjunction with video footage. This process involves
reading through the transcripts line by line to identify and label
common themes as they naturally emerge from the data. Codes rep-
resenting similar concepts were grouped into categories, forming
the basis for identifying broader themes related to tool preference,
problem-solving strategies, and code comprehension. The constant
comparative method was applied throughout the coding process.
This involved continuously comparing new codes to existing codes
and categories to refine and elaborate on the emerging themes. We
applied reflexivity, where the researchers’ biases were examined in
relation to the data. Reflexive coding involved maintaining a jour-
nal to document our thoughts, assumptions, and decision-making
processes throughout the analysis. First two authors first coded

Evaluating How Novices Utilize Debuggers and Code Execution to Understand Code

Assume that the variable var_a is an integer.

def func_var(var_a):
var_b = 0
var_c = 0

for var_d in range(1, var_a):
var_e = 0
var_f, var_g = 0, 0

for var_h in range(var_d, var_a):
var_e += var_h
if var_h % 2 == 0:

var_f += 1
else:
var_g += 1
if var_e == var_a:
if var_f > var_g:
var_b += 1
elif var_g > var_f:
var_c += 1
break
elif var_e > var_a:
break
if var_b > var_c:
return "A"
elif var_c > var_b:
return "B"
else:
return "C"

Figure 12: An EiPE question with the high-level description
of “checks whether there are more even or odd consecutive
sums from 1 to var_a.”

Students' Prior Familiarity with Python Tutor

35.3%

w
v

w
S

N
b

23.5%

~N
o

17.6%

Percentage

-
7

11.8%

"
S

w

3 4
Familiarity Rating

Figure 13: Think-aloud participants’ self-reported familiarity
with PythonTutor.

71

ICER ’24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

Students' Prior Familiarity with Code Execution
41.18%

N N w w IS
S 3 S v S

Percentage (%)

—
7]

10

Familiarity Rating

Figure 14: Think-aloud participants’ self-reported familiarity
with Code Execution.

the data independently, and then met to compare and discuss their
codes and interpretations, resolving disagreements.

3.4 Limitations

Our data may not be fully representative of the broader student
population. The qualitative portion of our study involved a rela-
tively small sample size due to the extensive data analysis required
for each interview and the significant time commitments for co-
ordinating and conducting these interviews. Participants in the
qualitative segment were self-selected, which may indicate a higher-
than-average level of self-confidence as they chose to participate
in the study, potentially skewing the results.

The average exam score for the participants in the qualitative
portion of the study (N = 18) was approximately 84.07%, while the
average score for the quantitative portion (N = 421) was around
82.2%. This similarity in average exam scores suggests that, in
terms of programming ability, the interviewed participants may
be representative of the larger participant pool involved in the
quantitative analysis.

However, the self-selection bias and small sample size in the
qualitative study may limit the generalizability of our findings.
The higher self-confidence of these participants could influence
their engagement and performance, possibly affecting the study’s
outcomes. Consequently, these factors should be considered when
interpreting the results and their applicability to the general student
population.

Our results may be limited to PythonTutor’s unique visualiza-
tion. Our findings may be specific to PythonTutor and may not
fully apply to other debugging tools. Future work should explore
the effectiveness of different debugging tools and visualizations in
various IDEs to provide a more comprehensive understanding of
how these tools help students understand code.

ICER °24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

Hassan et al.

Average Score by Question and Tool Sorted by Score Difference

100 4
80+
o
o
A 60
1]
o
o
g
< a0+
207 100l Type
BN Execution
B Debugger
04
S .
& & &
& & 2 &
S S & o
@ & & S
K 2 o« 2
& & & &
& & & &
< P » &
) & z N
& & & <
$ s & &
& &° 2 &
‘k@‘ & 3 X
& & & o
& & & &
& & f &8 &
‘bQ' < & &\b &
& & (S &
& P &
o R s
@

0y & ‘) O
& & Sy N
N Q 2 -
& @ 9 $
Lo)
& 5 &F o
s ¢ g ¢
2 2 & &
o & &
o < L @
& & & o
2 2 W &
& > &
) 2 5
g & 4
o« o &
& 3 N
& © @
& N <
& §
& &
& &
& e
< &
&
&
42
2
<F
Question

Figure 15: Bar plot showing average performance on question by tool. Going from left to right are questions in the Figures 8, 6,

4,7,3,9,10,5

Average Score by Cyclomatic Complexity Level

100 X 3 x Execution
X x Debugger
x
95 o
x
x
90 x X
o x
5
» 85
g x
z 80
75
x
70
x
1 2 3 4 5 6

Cyclomatic Complexity Level

Figure 16: Scatter plot showing average performance on ques-
tion by cyclomatic complexity level.

4 QUANTITATIVE RESULTS (RQ1):
PERFORMANCE

4.1 Students often do better with code execution

The average performance of students solving EiPE questions with
access to code execution was 44.9% (Std. Error 1.2), while for debug-
gers was 30.1% (Std. Error 1.7). Overall, students performed better

with code execution to a statistically significant degree (p = 0.00523
< 0.05).

Interestingly, the average number of inputs that students tried
for code execution was 3.63 and for debuggers was 2.55. A t-test
finds this difference between conditions to be significant (p = 0.02
< 0.05). This may imply that overall, the act of trying more inputs
may be more important towards solving EiPE questions and easier
to do with code execution than a debugger.

4.2 Debuggers becomes more useful as code
complexity increases

If we look into the success rates on the various problems (Figure 15),
we see that the relative performance of the two tools differs between
the codes. Code execution is statistically significantly better on
the first two, leftmost problems, and there is a continuum of not
statistically significant differences that bias towards execution to
those that bias toward the debugger.

Manually inspecting these codes, we generally observe a ten-
dency that, as cyclomatic complexity increases, students assigned
to debuggers start to outperform students assigned to code exe-
cution. Cyclomatic complexity measures the number of distinct
execution paths through a program. Figure 16 plots the student
performance of each tool vs. cyclomatic complexity, and it can be
seen that the two most complex are among the ones where students
do better with the debugger. The notable exception to this trend

Evaluating How Novices Utilize Debuggers and Code Execution to Understand Code

ICER ’24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

score_on_question = average_exam_score + cyclomatic_complexity X debugger_tool

Figure 17: The logistic regression formula

Table 1: Logistic Regression Model: Interaction Between Tools and Code Complexity Level

Coefficient Estimate | Std. Error | z value Pr(>|z|)
(Intercept) -4.34 1.32 -3.30 0.00096 ***
average_exam_score 0.0629 0.0143 4.39 1.13e-05 ***
cyclomatic_complexity -0.413 0.133 -3.110 0.00187 **
debugger_tool -1.75 0.614 -2.85 0.00444 **
cyclomatic_complexity:debugger_tool 0.365 0.180 2.03 0.0423 *

is the problem with the lowest cyclomatic complexity, shown in
Figure 5, which also has higher performance with the debugger.
This particular question has a large amount of nested syntactical
expressions, potentially indicating that debuggers may be more
useful in such cases, as well. Overall, this graph suggests that as
cyclomatic complexity increases, debuggers may be more useful.

To explore this trend, we ran the logistic regression shown in
Figure 17. The dependent variable was whether the student solved
the problem correctly (binary correct/incorrect). This output was
predicted from three independent variables: 1) the tool type (de-
bugger_tool) which is encoded as 1 (debugger) and 0 (execution), 2)
the cyclomatic complexity (an integer between 1 and 6, inclusive),
and 3) the student’s average exam score across the whole semester
(a number from 0 to 100), to control for student ability. We include
an interaction term between tool type and cyclomatic complexity
to confirm the above finding.

The logistic regression model demonstrated moderate to good
fit and predictive ability. The McFadden’s pseudo R-squared values
was approximately 0.12, indicating an acceptable level of explana-
tory power. The Area Under the Curve (AUC) for the Receiver
Operating Characteristic (ROC) curve was observed to be around
0.74, suggesting that the model have a good ability to discriminate
between students who performed well and those who did not. The
Variance Inflation Factor (VIF) values were within acceptable limits
(below 2.5), indicating that multicollinearity was not a significant
concern in this model. Furthermore, the model successfully con-
verged, which supports the reliability of the estimated coefficients.
Overall, these statistics suggest that the model fits the data well
without over-fitting.

The results of the regression (shown in Table 1) indicate that
while debuggers are generally less helpful than code execution, as
shown by a significant negative coefficient (p = 0.004**), and that cy-
clomatic complexity generally reduces students success, debuggers’
effectiveness increases with the cyclomatic complexity of the code.
This is shown by the positive and statistically significant interaction
between cyclomatic complexity and the use of debuggers (p = 0.042
< 0.05), suggesting that for more complex problems, debuggers may
offer more of an advantage.

73

5 QUALITATIVE RESULTS (RQ2): TOOL
SELECTION

Overall, we observe that students generally choose a tool that helps
them correctly understand code. In 72% of the problems attempted
in the think-alouds, students correctly solved the question with the
first tool that they chose.

Students generally expressed reasoning about their choice of
tool that correlates to the findings in Section 4. They chose code
execution on simpler and familiar code and the debugger for more
complex code.

Participant 5: If it’s a simple code, you don’t even
need to go into the visualizations, you're just wasting
your time.

Participant 5: But if it’s a more complex code that
you’re having a harder time understanding, then yeah,
sure. Go into using the visualization tool

In this section, we go into greater detail to explain students tool
choices. In Section 6, we highlight cases where students used both
tools together, and, in Section 7, we present cases where students
were unsuccessful solving problems based on how they selected
between the tools.

5.1 Students prefer execution on code they’re
familiar with to double check understanding

Some students used code execution in the case the code was familiar
to them. These students expressed that they needed to confirm their
understanding of the code and decided to use code execution as a
quick way to double check their understanding.

Participant 2 described how they recall seeing a similar piece of
code in their programming class and, thus, recognized its purpose
easily:

Interviewer: I wanted to ask you why you chose the
execute tool this time.

Participant 2: I was more confident with what I was
doing... but I just wanted to double-check that my
answer was lining up, so I was less concerned with
the process and more concerned with the general
answer... I've seen this question on a test before, so
I kind of remember the general premise of how it’s

ICER °24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

done. I just was— I just wanted to make sure I was
correct. (Figure 7)

The participant seems to express that they did not need a tool to
demonstrate how the code works and rather just wanted to double-
check their understanding by viewing outputs. The detail-oriented
nature of PythonTutor was not necessary because they already
understood the code by recalling what they learned in class. Code
execution was sufficient to check their answer.

Participant 5 used code execution in a similar way:

Participant 5: Let me just double check something.
We'll say 5, 3, -1. Yeah, that’s what I thought.
Interviewer: So what made you choose the execute
tool this time immediately?

Participant 5: It was pretty obvious to me because I
was like, so it was a for loop. I got that. I knew that
straight away. And then I knew if it’s an even number,
because if it’s divisible by two, and then there’s no
remainder, so it’s even return “W’... I feel like I've seen
something similar to this. (Figure 7)

Participant 5 demonstrated a self-awareness that they know
and understand this code, but was cautious to double-check their
understanding. Participant 6 additionally described how this can
more often be the case on what they believe are simpler pieces of
code.

Participant 6: Just one for loop and just like a singu-
lar list. It’s more easy to just use execute since I can
follow it by reading the code.

In these cases, where the code is simple enough for the partici-
pant to recognize an input-output pattern along with tracing the
code by themselves, the act of viewing input-output pairs using
code execution alone was sufficient. When participants were able
to recognize input-output patterns, often on simpler problems, the
detail-oriented nature of PythonTutor was not necessary; trying
inputs on code execution was sufficient.

Participant 5 expressed that, in cases that they are independently
capable of understanding the code by reading it, they may find
PythonTutor distracting and execution preferable.

Participant 5: I feel like, with the whole like visual-
ization, it gets a little confusing for me. I just want to
see what the inputs are and then what the result is.
And then I can do, I guess, like, make my own infer-
ences about what’s going on between. It’s easier to
understand using the execute tool, because it’s less
confusing. Like, visualizations can be a good thing
and a bad thing. it could be a good thing if I'm in-
putting these values, and I'm still not understanding
what’s going on. Otherwise, with execute, I can make
my own inferences, which also enhances my ability
to read code.

Some participants have expressed that they may prefer code
execution if they are able to independently infer the purpose of the
code.

Hassan et al.

5.2 Students prefer the debugger on unfamiliar
and complex code

Participants describe preferring to select PythonTutor over execu-
tion in situations the code looks too complex to them, appearing to
not be familiar with the code.

Participant 2: 'm not sure really what the whole goal
of this is. It just seems like a complicated function.
But let me look through the visualizer [PythonTutor].
I just- I couldn’t use the [execution tool] because it
would overwhelm me too much. (Figure 6)

When they believe the code is complex (e.g., has nested loops),
the code execution tool is often insufficient towards helping them
understand the code. Therefore, they prefer selecting the debugger.

Participant 2: [On code execution] I thought I could
just try all those numbers to see maybe oh ‘all these
numbers are divisible by four’ or something simple
like that but that didn’t really work out. So then I went
to [PythonTutor], because I wanted to look at if I was
missing something, which I ended up; I was missing
something because it kept; it was reiterating at the
beginning of the loop, which I didn’t realize because
there were two nested loops within each other so
that’s where I think having [PythonTutor] helped me,
because it made me look at where it iterated instead
of just the end result (Figure 12)

The participant expressed how the execution tool did not make
clear the nested loop behavior of the code, which is why they pre-
ferred the debugger. They appear to demonstrate a self-awareness
that they do not understand how inputs lead to outputs, and there-
fore chose the debugger to observe this process.

Participant 5 described the challenges of making sense of outputs
that appeared random or unintuitive, therefore preferring Python-
Tutor in those specific situations:

Participant 5: I would use [PythonTutor] 100%, if I
was not understanding- Let’s say I put in these num-
bers, right? But it gave me, like, some whack numbers,
like, some weird numbers... then I would come into
using PythonTutor and really, like, hone in on, like,
what is going on, what I'm missing, why it’s the val-
ues that came out that it came out to be and you know,
what’s really going on in the situation. (Figure 8)

In the examples below, these participants described entering
several inputs on the code execution tool but not seeing any clear
pattern from input-output pairs. Then, when they used the debug-
ger, they were successful in understanding the code.

Participant 6: I tried out arbitrary, random num-
bers, and it would just continue giving me the output
‘False’. That wasn’t very helpful, because I don’t know
what the code is doing to my numbers to return False.
(Figure 9)

Participant 8: Execution is just an output. I don’t
know what’s going on behind the scenes, so going
into PythonTutor allows me to see that. On [code
execution]... I know that I'm not seeing the pattern.
So I just went into PythonTutor. (Figure 5)

Evaluating How Novices Utilize Debuggers and Code Execution to Understand Code

Participants 6 and 8 describe that they struggled to understand
how their chosen inputs led to and related to the function’s outputs
when using code execution alone, therefore needing the debugger.
Participants expressed that code execution did not help them un-
derstand code that did not have an obvious input-output pattern
to them. Therefore, they selected the debugger to understand how
the operations done on inputs lead to outputs.

Overall, participants described how they struggled to recognize
an input-output pattern, especially on more complex pieces of code
with less predictable patterns, and that PythonTutor proved to be
the more effective tool to help them understand the code. Unlike
direct code execution, which offers limited insight into how inputs
lead to outputs, PythonTutor shows this information by visualizing
each step of the code’s execution process.

Additionally, participants express how they prefer using the
debugger on code with poor, similar variable names. They describe
how in this situation, it is more difficult to mentally keep track of
the value of each variable without using the debugger.

Interviewer: So why do you feel like when there’s
three or more variables being updated that you need
the visualizer?

Participant 2: Just because they all get mixed up,
especially when you’re dealing with two nested loops
where they’re both updating Also, they all sound very
similar. Var-E, Var-D, Var-B, stuff like that. That makes
a difference because it’s hard to say out loud. Like if
Var-B was equal to pizza and Var-C was equal to light
bulb, then it might be easier to just think like, oh, pizza
is this and light bulb is this. But Var-B and Var-C, they
all just sound so similar. when those variables are all
named the same thing, I need an extra tool to help me
show how the variables are being updated. (Figure
12)

The participant expresses how execution alone does not make
clear how these variables update, or i.e., how inputs lead to outputs.

5.3 Students independently switch from using
execution to the debugger when the
input-output pattern is initially unclear

Often, participants attempt to use code execution first in an attempt
to understand the code quickly, but struggle to recognize any input-
output pattern, then independently decide to switch to the debugger
to understand how inputs lead to outputs.

Interviewer: So I noticed that first you chose the
code execution tool, and then after that you switched
to the visualizer. What made you do that?
Participant 3: Well, I wanted to start with whatever’s
quickest first [to] see if that’ll help me understand,
and since it didn’t, then I went into the more thorough
thing.

Interviewer: Why was the execute tool not helpful
enough?

Participant 3: So since execute doesn’t, like, show
the work, I wasn’t able to see list P. But since I was
able to see list P within visualize, I saw what was

75

ICER ’24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

getting put into the list. And that helped me see, ‘oh,
it’s only the prime numbers that are getting put in
the list” (Figure 9)

Participant 3 demonstrates self-awareness that they needed more
information about the code’s execution process, thus independently
selecting the debugger after failing to understand it using code
execution alone. They describe that PythonTutor’s visualization
of the elements being appended to a new list guided them to the
correct purpose, whereas a simple input and output tool would not
have been able to effectively show this process.

5.4 Students prefer the debugger when they’re
self-aware/identify a specific part of the
code they’re not familiar with

Participants also prefer to use PythonTutor in the case they gener-
ally understand how the code works, but would like to address a
specific misunderstanding or understand a specific line(s) of code
that they are not familiar with.

Participant 5: I had to go use PythonTutor and really
crack down on, like, what I wasn’t understanding

The participant below states how they are unfamiliar with how
the code executes one specific line (return -1), but is otherwise
demonstrating an understanding of the rest of the code. Thus, they
use the debugger to step through the specific line they do not
understand.

Participant 4: From what I learned, it’s asking if w
is an even number, and if it is an even number, then
it returns that value. But I will go ahead and use the
visual tool because I am confused on the return minus
one part. This is why I really used the PythonTutor,
to see if it was an odd number will it return negative
one. (Figure 7)

Interviewer: ... what lead you to choosing Python-
Tutor?

Participant 4: So here I knew that, well, [knew what
was going on. I just had to verify one last thing, the
return negative one. So the PythonTutor helped me
verify that. The [debugger] was more useful when I
was stuck on one specific part of code.

They appeared to demonstrate a self-awareness of what they cor-
rectly understood and what they did not understand about the code,
thus choosing PythonTutor to address their specific unfamiliarity
or their specific misunderstanding.

6 STRATEGIES SUCCESSFUL PARTICIPANTS
USED UTILIZING BOTH TOOLS
In addition, we saw some instances where students strategically

switched between the tools to efficiently understand code using
both tools.

ICER °24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

6.1 Students switch from the debugger to
execution to initially break-down &
familiarize with code then confirm
understanding with more inputs

In the first case, shown below, the participant expresses how they
prefer to use the debugger initially to familiarize themselves with
how the code works, then, afterwards, use code execution to confirm
their understanding.

They express how using execution at the beginning can be over-
whelming for them and why they would prefer to use the debugger
at first.

Interviewer: Is there anything else you wanted to
also share about the PythonTutor versus the executor?
Participant 2: At the beginning, I just, I couldn’t use
the [execution tool’s] bird’s eye view because it would
overwhelm me too much.

[PythonTutor] was a good kind of kickstarter to get
me thinking in code instead of just thinking, ‘oh my
gosh look at all these numbers and letters.” That thing
in the side where it shows you what all the variables
are at that point in time definitely helped me ... sim-
plify it to a step-by-step thing instead of trying to
analyze it all at once, breaking it down to it into its
lowest parts line by line. So, thinking code, like, just
to make it easier for me to understand.

Then afterwards, they used code execution to confirm their un-
derstanding after sufficiently familiarizing themselves from using

the debugger.

... But then once I get to the end, the [code execution
tool] bird’s eye view is more helpful because I look at
where did I start? What did I input? What variables
came from that? And then what did I end with? I
ended with A because of this and then this. And I
look at all of it holistically instead of the line by line
like I did at the beginning.

The debugger helps students become familiar with the code,
then, as described earlier in the paper, they use code execution
to then confirm their understanding with more inputs. This may
demonstrate they are setting expectations of how inputs lead to
outputs, thus making it easier to test, confirm, and revise later
hypotheses using code execution with more inputs.

6.2 Top-down reasoning: Students switch from
execute to the debugger to initially identify
all possible distinct input-output behaviors
then understand them

We observed a complementary case where they prefer to have a
‘general overall scope’ first with code execution.

Participant 6: I started with the execute tool because
I wanted to get like a general overall scope of, like,
what the function would output just to, like, familiar-
ize myself with the function. (Figure 3)

76

Hassan et al.

They express how they use code execution initially to identify
all possible distinct input-output behaviors, then use the debugger
to help them understand these behaviors.

I feel like having a bunch of different outputs first
shows what the code does to alter the inputted value.
And if T have that information, I'm able to understand
what to input for it to visualize for different scenarios.

Then, they dived down into the details with the debugger to
address specific uncertainties in their understanding.

But after I did the execute function a couple of times, it
was hard for me to find an exact pattern because I had
confusion on line four. It’s a statement. And so to clear
up my confusion, I wanted to use the visualize tool
to look deeper into line four, the line I was confused
with, and see a step-by-step way of what changes line
four would make to my answer.

They express how using the debugger initially may be over-
whelming for them, as they do not have a clear sense of what
inputs would be useful to help them understand more distinct be-
haviors of the code. Knowing what output to expect makes the
process of understanding PythonTutor’s step-through easier.

Because if I went straight to visualize, and I just put
in things, I don’t know what to expect for different
values until I go through every single step again.

With code execution, they could identify what inputs lead to
distinct, unique execution behaviors, then understand those distinct
behaviors using the debugger.

I use execute first to tell me if they have different out-
puts. And thenI can use that information to know that
I only have to visualize the ones that have different
outputs. It kind of cuts down what is- like, cuts down
all the unnecessary things to test. And then only test
the necessary things. The ones that have different out-
puts. To understand what the code is doing, I want to
find different inputs that create different outputs. And
if I realize that there are some inputs that create the
same output, then it doesn’t makes sense to visualize
them both, since they are, like, the same. So I wouldn’t
do a repeat. Instead, I will try to visualize different
scenarios, since those help me understand what the
code does best.

The advantages of this top-down-like strategy is that they can 1)
understand what output to expect as they walkthrough PythonTu-
tor, making the process of understanding the walkthrough easier,
and 2) identify all distinct, different input-output execution behav-
iors quickly before testing them in the debugger.

7 UNSUCCESSFUL STRATEGIES

Here we describe reasons participants were unable to correctly
understand code despite using the tools. Generally, unsuccessful
participants did not (carefully) use PythonTutor to step through
lines of code that they did not initially understand, where viewing
the output from code execution alone was insufficient to help them
address their misunderstanding. When the interviewer prompted

Evaluating How Novices Utilize Debuggers and Code Execution to Understand Code

them to carefully step through parts of the program they misun-
derstood, they were often successful in understanding the code.

7.1 Preferring execution on extremely complex
code that is too tedious to walkthrough,
failing to recognize input-output patterns

On severely complex pieces of code that contain too many steps to
walkthrough, a few participants preferred to use code execution as
they perceived the excessive number of steps to be ‘too distracting’
and ‘overwhelming to understand’ As a result, they answer it in-
correctly as they failed to understand how inputs relate to outputs
from execution alone.

Participant 8: (Answers incorrectly using execution)
Interviewer: Why did you choose execution?
Participant 8: Honestly, just for time’s sake because
I did see it was like 27 steps. (Figure 11)

When the interviewer prompted them to use PythonTutor, they
are then able to correctly understand the code.

Interviewer: Could you try that question again but
using PythonTutor?

Participant 8: ... I see how these two [differences
equal] nine, And the output is 9 and 1. I guess it’s
just, like, the highest... Times, like, highest difference
between numbers (answers correctly).

Interviewer: So which tool did you think was more
helpful in this case?

Participant 8: PythonTutor because it was a lot more
clear in the lists ... It was a good visualizer because it
would take a long time for me just to hand generate
the different lists, well, the second list, and then the
final output. So PythonTutor is able to do that all for
me. This is the first list and I see like there’s two lists.
There’s list underscore b and then there’s just list. So
I was able to see, like, every single number in every
single list and the final output. So it’s very convenient
... For code execution, I think... It just shows the output,
it doesn’t really explain it.

They described how they realized that PythonTutor was a more
useful tool upon attempting to use it, and how viewing the output
of execution alone was insufficient.

7.2 Participants failing to notice & address
misunderstandings using execution, thus
not independently selecting PythonTutor

Occasionally, participants believed they had correctly understood
the code and thus chose code execution to double check their under-
standing. However, these participants did not fully understand its
purpose from viewing outputs alone. These participants appeared
to not independently realize that they did not correctly understand
the code, thus not selecting PythonTutor. When the interviewer
asked these participants to use PythonTutor, they realized their
misunderstanding and corrected their answer.

For example, Participant 18 believed that they had sufficiently
understood the code and chose code execution to check their answer.
They expressed how they did not feel the need to use PythonTutor.

77

ICER ’24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

Interviewer: So, why do you choose code execution
immediately?

Participant 18: Well, I definitely thought I had a
much better understanding of this problem. And so
I kind of figured that from looking at it, it has some-
thing to do with, like, being divisible by three. So
because I felt like I kind of knew what was going on,
I didn’t really need to see it worked out, I could just
kind of, like, punch in some numbers. (Figure 10)
Interviewer: But then, like, how did your thought
process change when I told you to use PythonTutor?
Participant 18: Well, I realized because, like, I wasn’t
really getting to the answer that was needed; that I
needed to take a deeper look into it and try and get a
better understanding of what was going on... Earlier I
was definitely just kind of overlooking; like, I realized
that the numbers were being multiplied by two. So,
that was something that the visualization was, like, I
need to be paying attention to that.

Reflecting on their thought process after using PythonTutor, they
explain how PythonTutor helped them catch details of the code
they initially missed when using code execution:

Interviewer: How do you revise your explanation?
Participant 18: I would change it from what I have
now to function is filtering the list X and is returning
multiples of 3.

Interviewer: What tool do you think was more useful
in this problem?

Participant 18: Definitely PythonTutor, just because
I got kind of close, but I was still kind of missing the
visualization of what was going on. Because as soon
as I plugged in the numbers on the PythonTutor, I
realized that it was filtering through [the list] rather
than just returning the multiples of three.

Before using PythonTutor, the participant did not fully under-
stand the function’s process of filtering through the list and mis-
interpreted the code as returning values rather than a list. Only
when they were asked to use PythonTutor did they realize this list-
filtering process. Code execution alone was insufficient for them to
realize that they misunderstood this process.

7.3 On PythonTutor, they do not step through
complex loops carefully & not entirely
line-by-line, skipping around too quickly

Some participants using PythonTutor would skip through the entire

code, or entire nested loops quickly, not stepping through the entire

program carefully one step at a time (e.g., Figure 18). As a result,
they appear confused about why the value of variables was present
in the visualization.

For example, Participant 10 below uses PythonTutor, and skips
immediately to the end of execution, observing just what is returned
and then explains the code incorrectly.

Participant 10: (skips quickly in PythonTutor, Figure
18) Returns false. Then if I change that to 7, returns

ICER °24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

Python 3.6

def f(x):
p=10
for i in x:
ifi>1:
for m in range(2, i):
if (i % m) == 0:
break
else:
p.append (i)
return len(p) == len(x)

g result = f([3, 5, 7])

print(result)
de & Get Al Help
S
L
<Prev Next>
Step 2 of 38

Visualized with pythontutor.com

Hassan et al.

Frames Objects

Global frame
-

z —tx)
f o

(a) Animation start

Python 3.6 Print output (drag lower right corner to resize)

def f(x):

p=1
for i in x:
if i > 1:
ad for m in range(2, i): Global frame functior
if (i %m ==6: f(x)

break
else:

p.append (i) il 3|57
return len(p) == len(x) =

Frames Objects

n

result = f([3, 5, 7])
print(result)

Edit Code & Get Al Help

<Prev Next>
Step 15 of 38

Visualized with pythontutor.com

(b) 2nd step

Python 3.6 Print output (drag lower right corner to resize!
True
def f(x):
p=10
for i in x:

i1 Frames Objects
for m in range(2, i): Global frame ___, function
if (i % m) == 0: - '1/' f(x)
break
else: result True
p.append(i)
return len(p) == len(x)

result = f([3, 5, 7])
print(result)
Edit Code & Get Al Help

cuted

<Prev
Done running (38 steps)

Visualized with pythontutor.com

(c) 3rd step

Figure 18: Example of participant skipping quickly through PythonTutor and failing to understand the code as a result.

true (answers incorrectly: “returns true if all values
are odd”) (Figure 9)

When asked to try again, they step through the entire program
carefully, line-by-line, follow and interpret the step-by-step visual-
ization, then answer the question correctly.

Participant 10: (steps through, carefully, clicking
‘next’ step by step) So we defined a function which
we got was 3. We make a new empty list. And then
for every object that is greater, which is true, so it
goes on to n in the range of 2 to i. And the first range
would be 2. So if this is even, the function breaks. Else
it appends it to the new list. Let’s try with a different
number. So we start with 7 and then we go to 3. I will
list it below here. We see if it’s... Prime value if all
values are prime.

They describe how the value of variables change, then answer
the question correctly.

Overall, these participants may lack the independent self-awareness
that would have aided in honing in on specific sections of code that
they did not initially understand. In these cases, these participants
needed prompting to be more cautious to step through lines of code
they specifically misunderstood.

7.4 On PythonTutor, they do not attempt to
explain relationships between variables

Another reason participants fail to understand PythonTutor’s vi-
sualization is because they attempt to describe the value of each
variable in isolation, not attempting to compare and relate variables
that depend on each other (e.g., variables which are assigned to
some mathematical combination of other variables).

For example, participant 3 tried multiple inputs and walking
through the code in PythonTutor, expressing confusion.

Participant 3: I'm confused at what this pattern is.
Should be a 5 at 13. No. I really don’t understand what

Evaluating How Novices Utilize Debuggers and Code Execution to Understand Code

this is. 87 Yet, more values is... A longer list is not
going to help me. I just don’t understand the code.

When the interviewer prompted them to try to explain the rela-
tionships between variables, they begin to understand PythonTu-
tor’s visualizations.

Interviewer: try to relate all the parts together. Try
to compare, let’s say the list B to list and compare that
to the actual line of code there and see if that helps at
all. ... The problem I'm seeing here is that you’re not
kind of, like, relating the parts together. ... You’re not
relating those two variables together

Participant 3: So we got list B range variable D and I
get D equals list X minus X plus 1. Minus the absolute
value of X plus 1. Wait a second. Hold on. So it’s just
the differences between these two. Is it not? ... Now
it counts the amount of zeros, so the output will be
2. No, it’s only 1. I don’t understand why it’s only
1. Oh, because it changes? No. Yeah, it becomes the
greatest one. Okay, I see. T understand now. It becomes
the greatest difference. So variable C is the greatest
difference from list. And the whole function returns
the greatest difference in the list. And, then, however
many of the two numbers next to each other equal
the greatest difference in the list.

Interviewer: How did you go about figuring this out
now?

Participant3: So what you said pretty much helped
me comparing list B to list. Because I wasn’t really
sure what list B was counting. And then once I started
looking at lists. right here, list B, and then looking at
lists, I was thinking of just list B here. Once I started
looking at the difference, I started noticing. That’s
basically it. So I think I got that one.

Upon prompting, they explain the purpose of the mathematical
expressions present in variable assignments, which is that it finds
consecutive differences, then relate it to the find the maximum
pattern.

8 DISCUSSION & CONCLUSION

Similar to prior work on metacognitive strategies and tool scaffolds,
the effectiveness of PythonTutor’s scaffolds in our study appeared
heavily influenced by the students’ active engagement with the
tool. Prior work on metacognitive scaffolding show that it only im-
proves learning outcomes if students actively engage and respond
to presented scaffolds [23, 26, 47, 54]. Additionally, prior work on vi-
sualization tools found that higher engagement with visualizations
significantly improves individual learning outcomes [6, 9, 17].

This aligns with our findings, where participants who stepped
through the code slowly and through all lines using PythonTutor
succeeded in understanding the code, while those who skipped
steps or did not attempt to understand variable relationships (not
carefully analyzing its visualization) struggled. In conclusion, we
should encourage students to interact thoughtfully with these tools,
asking them to reflect on their understanding, whether they are
carefully stepping through the code when needed, and whether
they are carefully analyzing PythonTutor’s visualization.

79

ICER ’24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

In the sections that follow, we discuss findings and present four
recommendations of how they could impact instruction, in Sec-
tions 8.1-8.4. In Section 8.5, we conclude by suggesting the shape
of an integrated approach for teaching students to independently
understand code.

8.1 Teach Students to Leverage Commonly
Available Tools to Understand Code

Often our participants were successful understanding code when
given access to code execution and debuggers. This demonstrates
that even novices are much more likely to be successful indepen-
dently understanding code when given access to these widely avail-
able tools. This means that in introductory programming classes,
instructors should be attentive towards teaching their students to
utilize these tools not only within the course but additionally re-
mind them to use these tools independently beyond the class. Such
instruction can ensure that our students can learn to independently
read, comprehend, and learn about programs in the long run.

8.2 Teach Students to Cautiously Double Check
their Understanding

While most of our interviewed participants were successful under-
standing code using the tools, we occasionally had participants
who failed to understand code despite being given access to the
tools. These participants often failed because they did not carefully
attempt to double check their understanding of the code. These
participants often attempted to understand the code in the quickest
way possible using execution, appearing to lack a willingness to
step through the code carefully using debuggers.

Some unsuccessful participants appeared overconfident in their
incorrect understanding of the code, not feeling the need to dou-
ble check using the debugger. This may be a sign of participants
lacking metacognition or failing to accurately assess their under-
standing and skills [15]. Our successful participants, on the other
hand, appeared cautious to double check their understanding, either
targeting to understand specific lines of code using PythonTutor or
their understanding of the output using code execution.

Participants who lacked the willingness to carefully step through
the code may have not been motivated to walk through this tedious
process, often expressing they wanted to quickly understand the
code and mentioning they did not want to go through over e.g., 100
steps to understand it. Ko et al. [30] observed that students can be
intimidated by debuggers because of their overwhelming interfaces
and the lack of instruction on how to effectively use them. While
a few of our participants also seemed overwhelmed and initially
intimidated by the tedious process of using a debugger, they often
quickly got acquainted with and successfully understood the code
upon prompting from the interviewer to step through the code
carefully using PythonTutor.

8.3 Teach Students to Carefully Step Through
Nested Loops

We find that while code execution alone was generally sufficient
for students to successfully understand code, debuggers became

ICER °24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

increasingly more effective on code with higher cyclomatic com-
plexity levels, indicating that debuggers become more useful on
code with more nested loops. This result may be less surprising
as code with nested loops tend to have less obvious input-output
patterns to our participants. This indicates that we should teach
novices to be extra cautious to carefully step through code with
nested loops as viewing the output alone may not make the execu-
tion behavior of nested loops apparent.

This finding may be supported by the Cognitive Complexity of
Computer Programs (CCCP) framework [11], which indicates that
code that consists of a greater number of programming plans (com-
mon programming patterns) present, particularly when operations
done by different patterns are interleaved, tend to be more complex
to comprehend. Therefore, debuggers, the more detail-oriented tool,
become more necessary for helping students understand these com-
plex patterns. This may indicate that we should teach students to
recognize code that appears complex (e.g., nested loops) and to be
self-aware of when they should take a more careful, step-by-step
approach toward comprehending such complex loops.

8.4 Teach Students to Familiarize with Code
then Target Specific Misunderstandings

We additionally observe students strategically utilizing both tools
to help them understand our most complex programs, such as ini-
tially familiarizing with the code with either PythonTutor or code
execution and then completing their understanding using the other
tool. Expert programmers are known to apply more bottom-up
oriented strategies for understanding code they are less familiar
with [45], decomposing code into chunks, tracing, and grouping
chunks together. On the other hand, for code they recognize, they
apply more top-down oriented strategies, creating and confirming
initial hypotheses of what the code achieves. We may view our stu-
dents’ problem solving process in a similar way, striking a balance
between both efficient and detail-oriented methods to understand
code.

They begin with establishing some understanding of the code’s
execution behavior, then further solidify their understanding to
recognize its intent. Future work should investigate teaching strate-
gies to help students both mitigate cognitive overwhelm of complex
programs but still be capable of understanding code they do not
recognize, especially as novices are very likely to encounter code
they do not recognize.

8.5 We can Teach Novices Techniques to
Comprehend Programs While they Lack
Advanced Schemas, Potentially Developing
Schemas During the Process

One of the reasons experts excel at understanding code is because
they have extensive knowledge of programming plans (schemas)
from prior experience, allowing them to efficiently recognize famil-
iar programs [49]. Novices, on the other hand, lack or have fragile
knowledge of programming plans, failing to recognize and apply
them across differing syntactical implementations [55], leading
them to struggle to understand code. As we found in this paper,

80

Hassan et al.

Assume that the variable x is a list of strings.

‘ “Explain the purpose of the variable h”

h =0
for ¢ in "aeiou"?

if ¢ in w:

h+:_]__/

Counts
number
of
distinct
vowels

Correct Answer: Returns the index of the string with the
greatest amount of distinct vowels

Figure 19: The role of variables intervention get students
to identify sub-goals to understand within programs, in the
form of lines of code pertaining to variable operations.

(pre-) (first) (second) (third)
c=0 c=1 c=2 c=3
Xx =0 x=S1 x=S1+S2 x=S1+3S2+S3

return ST + S2 + S3 / 3
Student: is it an average of the values?

Figure 20: The abstract tracing intervention help students
understand relationship between variables, by noting down
values as uncollapsed symbols.

we could teach novices to make use of debuggers and code execu-
tion to understand and learn about unfamiliar programs while they
currently lack expert-level schemas that can take a long time to de-
velop, potentially allowing them to develop schemas independently
throughout the process.

While it is beneficial to teach students common programming
patterns/plans, we should additionally teach them strategies to un-
derstand programs that they are not familiar with. Across popular
platforms such as GitHub, as well as within numerous industrial
companies, there exists a vast expanse of domains and topics. This
diversity leads to an almost infinite array of programming plans/pat-
terns [7]. Thus novices are likely to encounter new programming
patterns that have not been included in their coursework. We end
this paper by proposing a starting framework of interventions ben-
eficial for both novices and educators towards helping novices,
who lack advanced plan knowledge, to comprehend programs and
potentially learn new plans in the process.

We have discovered that debuggers may be more useful than code
execution in situations the program is more complex and when the
student is less familiar with the code, implying that more detailed,
line-by-line methods of comprehension may be more useful in
situations the code is unfamiliar and more complex. This aligns with
prior code comprehension research on how experts perform a line-
by-line, concrete trace of code they do not recognize [10], and prior
eye-tracking studies where eyes transitions more rapidly on more
complex, unfamiliar programs [29, 48]. Thus, we should instruct
novices to understand unfamiliar programs using debuggers.

Evaluating How Novices Utilize Debuggers and Code Execution to Understand Code

Relations & references b

| Relationships

h =0
for ¢ in "aeiou™ (B) Blocks (Chunks)
if ¢ in w:
h += 1

| Atoms

Regions of Interest (R
or semantically build &

| Text Surface
uality

mohalﬁmed@mohammed-Yoga—6—13
Python 3.10.12 (main, Nov 2

Code

Execution ype "help", "copyright", "

>>> print("Code Execution")
Code Execution

Switch to execution

Decompose m

by Variable

upon

overwhelm) SRS E:l:g?::?edxi:g the overall structure of the

Architecture/Structure Dimensions

ICER ’24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

End, repeat cycle as
needed per variable
nderstanding the g program
(in the context at han|
nderstanding how ¢

Abstract tracing

Operations of a block, a method, or a ROI
(chunk from a set of statements).

Operation of a statement. g rou pl ng 1 only be
explaining
' Program Execution variable
nsion

relationships

Debugger
& Concrete
Tracing

for familiar, simpler

On relevant lines of code pertaining to
operations on variable: Choose diverse set of
inputs by disproving intermediate hypotheses

Switch to
debuggers/tracing for
unfamiliar, complex

Figure 21: Proposed framework of code comprehension interventions for novices, grounded in the block model [27] and the
Cognitive Complexity of Computer Programs (CCCP) framework [11]. MPI stands for Maximal Plan Interactivity [11], which is
a part of the CCCP, a code complexity metric based on the number of programming plans present and their level of interleaving,
and the programmer’s level of familiarity with the code. Debuggers may help novices understand code with higher MPI levels
(unfamiliar and complex). The role of variables intervention allows for novices to focus on smaller atoms/chunks to mitigate
overwhelm caused by complex programs, and can work their way up to understand relationships between smaller chunks.

As we found in this paper, utilizing debuggers on large, complex
programs can be overwhelming. Experts are known to decompose
programs, comprehend individual segments, and relate segments
together in a bottom-up fashion in situations the program is un-
familiar to mitigate cognitive overwhelm [45]. In our prior work
[19-22], we have identified a set of interventions that students
can learn to independently apply to decompose code and explain
relationship between program segments:

e Role of Variables [19]: Understand programs one variable at
a time to mitigate cognitive overwhelm, possible sub-goal
labeling technique (Figure 19).

o Abstract Tracing [19]: Understand high-level relationships
between variables in cases concrete tracing alone is insuffi-
cient (Figure 20).

o Concrete Tracing [19, 20, 22]: Mental line-by-line execution
with inputs, assuming a sufficiently diverse set of inputs
selected.

As shown in our proposed framework in Figure 21, novices
should start by breaking down the code into smaller chunks or
atoms, which can mitigate cognitive overwhelm caused by overly
complex programs they don’t recognize (step 1). Then, for these
smaller chunks or atoms, novices can use code execution if these

81

atoms seem familiar and simple. If the chunks are complex or un-
familiar, they should use debuggers. They can strategically switch
between these methods based on their comfort level and the com-
plexity of the code (step 2). After understanding individual seg-
ments, novices should attempt to explain the broader purpose of
the comprehended segment, relating it to other dependent or related
variables (step 3). Afterwards, repeat these three steps as needed
on other variables, grouping together relationships to build a more
comprehensive understanding of the code.

Students should reflect on their familiarity with the program
to decide whether to use execution or debuggers, practicing self-
monitoring as part of metacognition [37]. Additionally, they should
rigorously verify their understanding by attempting to disprove
their intermediate hypotheses about code segments, which is an-
other form of self-monitoring [19]. This approach aligns with con-
structivist teaching principles [1], where students reflect on how
their prior knowledge and experience interact with the current prob-
lem they are solving. These strategies can inform future teaching
practices and be easily integrated into Intelligent Tutoring Systems,
such as those utilizing Large Language Models.

ICER °24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. DUE 21-21424 and Mohammed
Hassan’s SURGE fellowship at the University of Illinois.

REFERENCES

(1]

2

[7

[

8

=

=

[10

[11]

[12]

[13]

[14]

M Alam. 2017. Constructivism and the classroom curriculum. The International
Journal of Indian Psychology 5, 1 (2017), 1-29.

Pasquale Ardimento, Mario Luca Bernardi, Marta Cimitile, and Giuseppe De
Ruvo. 2019. Reusing bugged source code to support novice programmers in
debugging tasks. ACM Transactions on Computing Education (TOCE) 20, 1 (2019),
1-24.

Ruven Brooks. 1983. Towards a theory of the comprehension of computer
programs. International journal of man-machine studies 18, 6 (1983), 543-554.
Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Pater-
son, Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye movements in
code reading: Relaxing the linear order. In 2015 IEEE 23rd International Conference
on Program Comprehension. IEEE, 255-265.

Binglin Chen, Sushmita Azad, Rajarshi Haldar, Matthew West, and Craig Zilles.
2020. A Validated Scoring Rubric for Explain-in-Plain-English Questions. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(SIGCSE).

Samantha S Cohen, Jens Madsen, Gad Touchan, Denise Robles, Stella FA Lima,
Simon Henin, and Lucas C Parra. 2018. Neural engagement with online educa-
tional videos predicts learning performance for individual students. Neurobiology
of learning and memory 155 (2018), 60—64.

Paolo Dello Vicario and Valentina Tortolini. 2021. Evaluating a programming
topic using GitHub data: what we can learn about machine learning. International
Journal of Web Information Systems 17, 1 (2021), 54-64.

Paul Denny, James Prather, Brett A Becker, Zachary Albrecht, Dastyni Loksa, and
Raymond Pettit. 2019. A closer look at metacognitive scaffolding: Solving test
cases before programming. In Proceedings of the 19th Koli Calling international
conference on computing education research. 1-10.

Siti Rosminah MD Derus and Ahmad Zamzuri Mohamad Ali. 2015. Utilizing
program visualization in learning hardware programming: Effects of engage-
ment level. In 2015 International Conference on Information and Communication
Technology Convergence (ICTC). IEEE, 491-496.

Frangoise Détienne and Elliot Soloway. 1990. An empirically-derived control
structure for the process of program understanding. International Journal of
Man-Machine Studies 33, 3 (1990), 323-342.

Rodrigo Duran, Juha Sorva, and Sofia Leite. 2018. Towards an analysis of pro-
gram complexity from a cognitive perspective. In Proceedings of the 2018 ACM
Conference on International Computing Education Research. 21-30.

K. Anders Ericsson and Herbert A. Simon. 1980. Verbal reports as data. Psycho-
logical Review 87 (1980), 215 — 251.

Sue Fitzgerald, Gary Lewandowski, Renee McCauley, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers. Computer Science Education 18,
2 (2008), 93-116.

Sue Fitzgerald, Renée McCauley, Brian Hanks, Laurie Murphy, Beth Simon, and
Carol Zander. 2009. Debugging from the student perspective. IEEE Transactions
on Education 53, 3 (2009), 390-396.

[15] John H Flavell. 1979. Metacognition and cognitive monitoring: A new area of

[16]

[17]

(18]

[19]

[20]

[21]

cognitive-developmental inquiry. American psychologist 34, 10 (1979), 906.
Max Fowler, David H Smith IV, Mohammed Hassan, Seth Poulsen, Matthew West,
and Craig Zilles. 2022. Reevaluating the relationship between explaining, tracing,
and writing skills in CS1 in a replication study. Computer Science Education (2022),
1-29.

Scott Grissom, Myles F McNally, and Tom Naps. 2003. Algorithm visualization
in CS education: comparing levels of student engagement. In Proceedings of the
2003 ACM symposium on Software visualization. 87-94.

Leo Gugerty and Gary Olson. 1986. Debugging by skilled and novice program-
mers. In Proceedings of the SIGCHI conference on human factors in computing
systems. 171-174.

Mohammed Hassan, Kathryn Cunningham, and Craig Zilles. 2023. Evaluat-
ing Beacons, the Role of Variables, Tracing, and Abstract Tracing for Teaching
Novices to Understand Program Intent. In Proceedings of the 2023 ACM Conference
on International Computing Education Research-Volume 1. 329-343.

Mohammed Hassan and Craig Zilles. 2021. Exploring ‘reverse-tracing’ Questions
as a Means of Assessing the Tracing Skill on Computer-based CS 1 Exams. In
Proceedings of the 17th ACM Conference on International Computing Education
Research. 115-126.

Mohammed Hassan and Craig Zilles. 2022. On Students’ Ability to Resolve their
own Tracing Errors through Code Execution. In Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education. 251-257.

82

[22]

[23

[24

[25

[26

[27

™
&

[29

[30

[31

@
&,

[33

[34

[35

[36

(37

[38

[43

[44

Hassan et al.

Mohammed Hassan and Craig Zilles. 2023. On Students’ Usage of Tracing for
Understanding Code. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1. 129-136.

Matthias Hauswirth and Andrea Adamoli. 2017. Metacognitive calibration when
learning to program. In Proceedings of the 17th Koli Calling International Confer-
ence on Computing Education Research. 50-59.

Matthew Heinsen Egan and Chris McDonald. 2021. An evaluation of SeeC: a
tool designed to assist novice C programmers with program understanding and
debugging. Computer Science Education 31, 3 (2021), 340-373.

Nanna Suryana Herman, Sazilah Binti Salam, Edi Noersasongko, et al. 2011. A
study of tracing and writing performance of novice students in introductory
programming. In International Conference on Software Engineering and Computer
Systems. Springer, 557-570.

Alison Hull and Benedict du Boulay. 2015. Motivational and metacognitive
feedback in SQL-Tutor. Computer Science Education 25, 2 (2015), 238-256.

Cruz Izu, Carsten Schulte, Ashish Aggarwal, Quintin Cutts, Rodrigo Duran,
Mirela Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio Mirolo,
et al. 2019. Fostering program comprehension in novice programmers-learning
activities and learning trajectories. In Proceedings of the Working Group Reports
on Innovation and Technology in Computer Science Education. 27-52.

Eva Kallay. 2012. Learning strategies and metacognitive awareness as predic-
tors of academic achievement in a sample of Romanian second-year students.
Cognition, Brain, Behavior 16, 3 (2012), 369.

Philipp Kather, Rodrigo Duran, and Jan Vahrenhold. 2021. Through (tracking)
their eyes: Abstraction and complexity in program comprehension. ACM Trans-
actions on Computing Education (TOCE) 22, 2 (2021), 1-33.

Minhyuk Ko, Dibyendu Brinto Bose, Hemayet Ahmed Chowdhury, Mohammed
Seyam, and Chris Brown. 2023. Exploring the Barriers and Factors that Influence
Debugger Usage for Students. In 2023 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 168-172.

Amruth N Kumar. 2013. A study of the influence of code-tracing problems on
code-writing skills. In Proceedings of the 18th ACM conference on Innovation and
technology in computer science education. 183-188.

Amruth N Kumar. 2015. Solving code-tracing problems and its effect on code-
writing skills pertaining to program semantics. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education. 314-319.
RF Lister. 2007. The neglected middle novice programmer: Reading and writing
without abstracting. National Advisory Committee on Computing Qualifications
(2007).

Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship Between Explaining, Tracing and Writing Skills in Introductory
Programming. In Proceedings of the 14th Annual ACM SIGCSE Conference on
Innovation and Technology in Computer Science Education (Paris, France) (ITiCSE
’09). ACM, New York, NY, USA, 161-165. https://doi.org/10.1145/1562877.1562930
Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further evidence of
a relationship between explaining, tracing and writing skills in introductory
programming. Acm sigese bulletin 41, 3 (2009), 161-165.

Dastyni Loksa, Amy] Ko, Will Jernigan, Alannah Oleson, Christopher] Mendez,
and Margaret M Burnett. 2016. Programming, problem solving, and self-
awareness: Effects of explicit guidance. In Proceedings of the 2016 CHI conference
on human factors in computing systems. 1449-1461.

Dastyni Loksa, Lauren Margulieux, Brett A Becker, Michelle Craig, Paul Denny,
Raymond Pettit, and James Prather. 2022. Metacognition and self-regulation in
programming education: Theories and exemplars of use. ACM Transactions on
Computing Education (TOCE) 22, 4 (2022), 1-31.

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. In Proceedings of the Fourth International Workshop on Computing Education
Research. ACM, 101-112.

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. In Proceedings of the fourth international workshop on computing education
research. 101-112.

Lauri Malmi, Ian Utting, and Andrew J Ko. 2019. Tools and environments. (2019).
Tilman Michaeli and Ralf Romeike. 2019. Improving debugging skills in the
classroom: The effects of teaching a systematic debugging process. In Proceedings
of the 14th workshop in primary and secondary computing education. 1-7.

Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky-a
qualitative analysis of novices’ strategies. ACM SIGCSE Bulletin 40, 1 (2008),
163-167.

Greg L Nelson, Benjamin Xie, and Amy J Ko. 2017. Comprehension first: eval-
uating a novel pedagogy and tutoring system for program tracing in CS1. In
Proceedings of the 2017 ACM conference on international computing education
research. 2-11.

Nancy Pennington. 1987. Comprehension strategies in programming. In Empirical
Studies of Programmers: Second Workshop, 1987. 100-113.

https://doi.org/10.1145/1562877.1562930

Evaluating How Novices Utilize Debuggers and Code Execution to Understand Code

[45]

Nancy Pennington. 1987. Stimulus structures and mental representations in
expert comprehension of computer programs. Cognitive psychology 19, 3 (1987),
295-341.

[46] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and

[47]

Maxine Cohen. 2018. Metacognitive difficulties faced by novice programmers
in automated assessment tools. In Proceedings of the 2018 ACM Conference on
International Computing Education Research. 41-50.

Siti Nurulain Mohd Rum and Maizatul Akmar Ismail. 2017. Metocognitive support
accelerates computer assisted learning for novice programmers. Journal of
Educational Technology & Society 20, 3 (2017), 170-181.

[48] José Aldo Silva Da Costa and Rohit Gheyi. 2023. Evaluating the Code Com-

[49]

[50]

[51]
[52]

prehension of Novices with Eye Tracking. In Proceedings of the XXII Brazilian
Symposium on Software Quality. 332-341.

Elliot Soloway. 1986. Learning to program= learning to construct mechanisms
and explanations. Commun. ACM 29, 9 (1986), 850-858.

Elliot Soloway, Beth Adelson, and Kate Ehrlich. 1988. Knowledge and processes
in the comprehension of computer programs. The nature of expertise (1988),
129-152.

Donna Teague. 2015. Neo-Piagetian theory and the novice programmer. Diss.
Queensland University of Technology (2015).

Donna Teague, Malcolm Corney, Alireza Ahadi, and Raymond Lister. 2013. A
qualitative think aloud study of the early neo-piagetian stages of reasoning in
novice programmers. In Proceedings of the 15th Australasian Computing Education
Conference [Conferences in Research and Practice in Information Technology, Volume

83

[53

[54

[55

[56

[57

[58

[59

]

]

ICER ’24 Vol. 1, August 13-15, 2024, Melbourne, VIC, Australia

136]. Australian Computer Society, 87-95.

Anne Venables, Grace Tan, and Raymond Lister. 2009. A closer look at tracing,
explaining and code writing skills in the novice programmer. In Proceedings of the
fifth international workshop on Computing education research workshop. 117-128.
Ye Wang. 2019. Study of Metacognitive Strategies’ Impacts on C Language Pro-
gramming Instruction. In 2nd International Conference on Contemporary Education,
Social Sciences and Ecological Studies (CESSES 2019). Atlantis Press, 112-116.
Renske Weeda, Sjaak Smetsers, and Erik Barendsen. 2023. Unraveling novices’
code composition difficulties. Computer Science Education (2023), 1-28.
Jacqueline Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins,
P K Ajith Kumar, and Christine Prasad. 2006. An Australasian study of Reading
and Comprehension Skills in Novice Programmers, using the Bloom and SOLO
Taxonomies. Eighth Australasian Computing Education Conference (ACE2006)
(2006).

Jacqueline Whalley, Amber Settle, and Andrew Luxton-Reilly. 2021. Novice
Reflections on Debugging. In Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education. 73-79.

Benjamin Xie, Dastyni Loksa, Greg L Nelson, Matthew J Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Andrew] Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205-253.

Craig Zilles, Matthew West, Geoffrey Herman, and Timothy Bretl. 2019. Every
university should have a computer-based testing facility. In Proceedings of the
11th International Conference on Computer Supported Education (CSEDU).

	Abstract
	1 Introduction
	2 Background
	2.1 Metacognition
	2.2 Code Comprehension

	3 Method
	3.1 Quantitative Data Collection
	3.2 Qualitative Data Collection
	3.3 Qualitative Analysis Method
	3.4 Limitations

	4 Quantitative Results (RQ1): Performance
	4.1 Students often do better with code execution
	4.2 Debuggers becomes more useful as code complexity increases

	5 Qualitative Results (RQ2): Tool Selection
	5.1 Students prefer execution on code they're familiar with to double check understanding
	5.2 Students prefer the debugger on unfamiliar and complex code
	5.3 Students independently switch from using execution to the debugger when the input-output pattern is initially unclear
	5.4 Students prefer the debugger when they're self-aware/identify a specific part of the code they're not familiar with

	6 Strategies Successful Participants used Utilizing Both Tools
	6.1 Students switch from the debugger to execution to initially break-down & familiarize with code then confirm understanding with more inputs
	6.2 Top-down reasoning: Students switch from execute to the debugger to initially identify all possible distinct input-output behaviors then understand them

	7 Unsuccessful Strategies
	7.1 Preferring execution on extremely complex code that is too tedious to walkthrough, failing to recognize input-output patterns
	7.2 Participants failing to notice & address misunderstandings using execution, thus not independently selecting PythonTutor
	7.3 On PythonTutor, they do not step through complex loops carefully & not entirely line-by-line, skipping around too quickly
	7.4 On PythonTutor, they do not attempt to explain relationships between variables

	8 Discussion & Conclusion
	8.1 Teach Students to Leverage Commonly Available Tools to Understand Code
	8.2 Teach Students to Cautiously Double Check their Understanding
	8.3 Teach Students to Carefully Step Through Nested Loops
	8.4 Teach Students to Familiarize with Code then Target Specific Misunderstandings
	8.5 We can Teach Novices Techniques to Comprehend Programs While they Lack Advanced Schemas, Potentially Developing Schemas During the Process

	Acknowledgments
	References

