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Abstract

Spatial aggregation of environmental or trophically transmitted parasites has

the potential to influence host–parasite interactions. The distribution of para-

sites on hosts is one result of those interactions, and the role of spatial aggrega-

tion is unclear. We use a spatially explicit agent-based model to determine

how spatial aggregation of parasites influences the distribution of parasite bur-

dens across a range of parasite densities and host recovery rates. Our model

simulates the random movement of hosts across landscapes with varying spa-

tial configurations of areas occupied by environmental parasites, allowing

hosts to acquire parasites they encounter and subsequently lose them. When

parasites are more spatially aggregated in the environment, the aggregation of

parasite burdens on hosts is higher (i.e., more hosts with few parasites, fewer

hosts with many parasites), but the effect is less pronounced at high parasite

density and fast host recovery rates. In addition, the correlation between indi-

vidual hosts’ final parasite burdens and their cumulative parasite burdens

(including lost parasites) is greater at higher levels of spatial parasite aggrega-

tion. Our work suggests that fine-scale spatial patterns of parasites can play a

strong role in shaping how hosts are parasitized, particularly when parasite

density is low-to-moderate and recovery rates are slow.
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INTRODUCTION

Spatial patterns of parasites and hosts influence their
interactions with each other (Albery et al., 2019; Bonnell
et al., 2018; Mollison & Levin, 1995; Nunn et al., 2011).
In particular, the spatial distribution of macroparasites,
or parasites visible to the naked eye, relative to the hosts
they parasitize can explain heterogeneous infection among
those hosts (Keymer & Anderson, 1979; Lutermann
et al., 2012; Wilson et al., 2002). In a given habitat,

macroparasites may spatially vary in abundance due to
chance or microclimate suitability. This spatial heteroge-
neity is most likely to affect host population parasitism
patterns in the case of multi-host environmental and tro-
phically transmitted parasites, as their spatial distribution
is driven by processes not directly related to the host in
question (e.g., deposition by other host species, location
of infected prey). For example, gravid adult deer ticks
(Ixodes scapularis) are deposited into the environment by
white-tailed deer (Dumas et al., 2022), and subsequent
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juvenile tick abundance is correlated with vegetation,
temperature, and relative humidity (Ginsberg et al., 2020;
Mathisson et al., 2021), and thus, the spatial distribution
of juvenile ticks is independent of the small mammal
hosts they go on to parasitize. In addition, freshwater fish
encounter the parasitic copepod Tracheliastes polycolpus
predominantly in fine-scale microhabitats with simi-
lar stream velocity and substrate size combinations
(Mathieu-Bégné et al., 2022). Yet, the finer-scale spatial
patterns of parasitism and their ecological consequences
are relatively understudied (Albery et al., 2022).

One potential consequence of macroparasite spatial
heterogeneity is the aggregation of parasites on hosts,
that is, the degree to which a host population consists of
few hosts with many parasites and many hosts with few
or no parasites (Shaw et al., 1998; Shaw & Dobson, 1995).
Parasite aggregation on hosts can in turn have further
ecological consequences, like in disease transmission
where the few heavily infected individuals can be poten-
tial super-spreaders (Rabajante, 2023). Specifically for
tick-borne disease, the basic reproductive number of
pathogens (the number of new infections expected from
an infectious individual during its infectious period in
an uninfected population) increases with greater aggre-
gation of ticks on small mammal hosts (Harrison &
Bennett, 2012). Additionally, macroparasite aggregation
can be used to estimate host mortality in wildlife
populations (Wilber et al., 2020).

The causes of parasite aggregation are numerous and
have been investigated both experimentally and observa-
tionally. Keymer and Anderson (1979) found that more
spatially aggregated arrangements of environmental par-
asites led to greater aggregation of host–parasite burdens
in Tribolium confusum. However, parasite density in the
experiment was held constant, and the work has not been
replicated in other systems; thus, the general conditions
most suitable for this pattern to emerge remain unclear.
Observational studies have shown that individual host
characteristics can influence macroparasite burdens. For
example, male white-footed mice harbored more larval
ticks irrespective of tick spatial aggregation, and larger
males with larger home ranges harbored more nymphal
ticks (Devevey & Brisson, 2012). Additionally, more
exploratory Siberian chipmunks had higher tick loads
(Boyer et al., 2010), and reduced immune response was
associated with higher endoparasite burdens in both
Pacific chorus frogs (Johnson & Hoverman, 2014) and
rainbow trout (Tinsley et al., 2020). However, other
observational research finds no role of individual host
attributes in determining burdens, which by the process
of elimination suggests a larger role of spatial aggregation
of parasites in the environment (Lutermann et al., 2012).
In addition, one study shows that local tick density is the

primary driver of individual tick burdens in Peromyscus
leucopus (Calabrese et al., 2011). Given these contradic-
tory results, it is likely that burden distributions are
shaped by a combination of host characteristics and para-
site spatial patterns, with the effect of each dependent on
the context.

Due to the limitations of past experimental and obser-
vational work, theoretical modeling is an ideal tool to
better understand the link between parasite spatial aggre-
gation and the aggregation of parasites on host popu-
lations. Experimental research to date has not examined
the robustness and generality of the relationship, and
observational studies cannot feasibly sample the spatial
distribution of parasites and their hosts’ burdens in the
same place simultaneously, as sampling the parasites
themselves would either interfere with how the hosts will
encounter them in the future, or not be representative of
how the hosts encountered them previously. Additionally,
individual host differences can play a role in shaping their
parasite burdens in both approaches. A simulation model
can bypass these problems by explicitly observing the
acquisition of parasites by hosts across a wide parameter
space of purposefully manipulated parasite spatial arrange-
ments (varying in both spatial aggregation and density),
independent of individual variance of host characteristics.
Here, we use an agent-based model to explore the interac-
tion between the spatial aggregation of parasites and the
density of those parasites on the landscape in driving para-
site aggregation on host populations. We predict that more
spatially aggregated parasite distributions will lead to more
aggregated host–parasite burdens when parasite density is
lower. This is because the variation in parasite encounter
rate among hosts by location will be higher compared to
when parasites saturate the landscape, and every host is
frequently encountering parasites. We further expect that
this pattern may be sensitive to changes in the rates at
which hosts acquire and lose parasites. When recovery
from parasites (or loss of parasites) is slower, hosts will
have a greater chance of accumulating high burdens.
Thus, we predict the most aggregated host–parasite bur-
dens will be observed when parasite loss/recovery is slow
and spatial parasite aggregation is high. This is because
many hosts will encounter few parasites (due to spatial
aggregation), and the few hosts that encounter many para-
sites will keep them longer, allowing for higher maximum
burdens.

MATERIALS AND METHODS

To achieve our research objective, we developed a spa-
tially explicit agent-based model. We describe this model
using the Overview, Design Concepts, Details framework
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that was introduced in Grimm et al. (2006) and subse-
quently updated (Grimm et al., 2010, 2020). Our model
was developed and run using R version 4.4.1 (R Core
Team, 2024) with the following packages: tidyverse ver-
sion 2.0.0 (Wickham et al., 2019), som.nn version 1.4.4
(Dominik, 2024), ape version 5.8 (Paradis & Schliep,
2019), future version 1.33.2 (Bengtsson, 2021), and furrr
version 0.3.1 (Vaughan & Dancho, 2022). For comparison,
we also developed a non-spatial model in R based on com-
pound probability distributions (see Appendix S1). The
code is available here: https://doi.org/10.5281/zenodo.
15360216.

Purpose

The model’s purpose is to understand the role of parasite
density and spatial aggregation in shaping the distribu-
tion of parasite burdens among individual hosts in a
population.

Entities, state variables, and scales

The model is composed of three entities—landscape cells,
individual hosts, and parasites (Table 1). The state vari-
ables of landscape cells are their location and whether
they can transmit parasites to hosts (i.e., it is occupied by
an environmentally or trophically transmitted parasite).
Because the model is not specific to any given system, the
landscape cells are of identical, arbitrary size, and
arranged in a 48 × 48 torus. The arrangement of landscape
cells varies among simulations in (1) the proportion of
parasite-occupied cells (our representation of parasite den-
sity); and (2) the spatial aggregation of those cells on the
torus. The state variables of the individual hosts are their
location (landscape cell), the number of parasites they
have ever acquired, and the number of parasites they cur-
rently have (parasite burden). The state variables of para-
sites are the host they are parasitizing and the duration of
their infection. Individual hosts occupy the landscape cells
that match their location, while parasites are simply linked
to their hosts.

Process overview and scheduling

The model runs through a series of timesteps that repre-
sent the time period in which the host-relevant parasite
life stage is active (e.g., peak larval tick activity for small
mammals). During each timestep, each individual host
either stays in its landscape cell or moves to an adjacent
one. Then, if the cell a host is occupying is

parasite-occupied, the host has some probability of
acquiring a new parasite, adding to its parasite burden.
Any newly acquired parasite is given a probabilistic infec-
tion duration, or number of timesteps until it is no longer
parasitizing the host. Parasites exist in the model only for
as long as they are linked to a specific host—as this
model represents multi-host environmental or trophically
transmitted parasites, we assume that after parasites are
lost from hosts they move on to their next life stage or
reproduce and die. Finally, any parasites that have
reached the end of their infection duration are removed
from their host’s parasite burden.

Design concepts

The model is intended to explore the mathematical con-
sequences of parasite spatial aggregation as simply as

TABL E 1 List of model entities, parameters, and variables.

Parameter/
variable

Variability
among

simulations

Variability
within

simulations

Landscape cells

Landscape size Constant:
48 × 48 cells

Constant

Proportion of
landscape
parasite-occupied

0.1–0.9 Constant

Spatial
autocorrelation of
parasite-occupied
landscape cells
(Moran’s I)

~0 to ~0.2 Constant value
and spatial
configuration

Individual hosts

Initial location Random
landscape cell

N/A

Probability of
parasite
acquisition on
parasite-occupied
cells

Constant: 0.5 Constant

Recovery rate from
parasites

0.05, 0.15, 0.25 Constant

Environmental parasites

Infection duration Based on host
recovery rate

Each parasite’s
duration from
negative binomial
distribution,
success
probability
= recovery rate

Abbreviation: N/A, not applicable.
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possible to observe patterns clearly. As such, it does not
feature any adaptive behavior by individual hosts or
parasites. Further, individual hosts do not sense their
environment, nor do they interact with one another
(e.g., they can share landscape cells). The model’s pri-
mary aim is to observe parasite burdens among hosts
that emerge from the stochastic movement, parasite
acquisition, and recovery (or parasite loss) that occur
throughout its process. For each host, its burden of par-
asites is recorded at the end of the simulation (which
does not include parasites it has recovered from)—we
refer to this as its “snapshot” burden. In addition, the
cumulative burden of each host is recorded, that is, the
total of all parasites that a host has acquired through
the simulation, including those it has recovered from.
These burdens can then be summarized at the host
population level.

Initialization

At the beginning of a simulation of the model, 96 hosts
are randomly distributed about the 48 × 48 landscape.
Each host has zero parasites at timestep 0. The spatial
arrangement of landscape cells with parasites varies
among different simulations (Figure 1). The density of
parasites, or the proportion of cells with parasites, varies
from 0.1 to 0.9 in intervals of 0.1. This range covers the
parameter space of biological interest—from somewhat
rare to extremely common on the landscape, while ignor-
ing scenarios like parasites being absent or occupying
every cell. The spatial aggregation of parasites was varied
in the model with a “clustering factor” input (used in
Figure 1 for demonstration purposes), but it was mea-
sured with Moran’s I. The Moran’s I values vary from ~0
to 0.2 in inexact intervals as generating a random

F I GURE 1 Examples of landscape arrangements used in simulations. Dark cells are occupied by parasites. “Parasite Density”
refers to the proportion of total cells that are parasite-occupied and increases across panels from left to right. “Clustering
Factor” refers to the clustering factor input for the landscape percolation process described in the text and increases from the top

row to the bottom row. The clustering factor is highly correlated with Moran’s I and is used in this figure for consistency of

values across rows, as Moran’s I is too sensitive to specific configuration to easily present landscapes of exactly equal spatial

autocorrelation.
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landscape with a specific Moran’s I is not feasible. As
Figure 1 shows, this range encompasses random distribu-
tions at low “clustering factor”/Moran’s I and extremely
clumped distributions at high “clustering factor”/Moran’s
I, thus representing almost any parasite spatial arrange-
ment that could be observed in nature (except a uniform
distribution, which is unlikely for parasites to exhibit).
The density and aggregation of parasite-occupied cells
both remain constant within a given simulation.

We generated landscape arrangements using a perco-
lation algorithm wherein we start with a blank grid and
randomly select one cell to classify as parasite-occupied.
Then we successively assign more parasite-occupied cells
one by one with the probability of a cell being selected
being inversely proportional to its distance to other
parasite-occupied cells. In other words, the algorithm
assigns parasite-occupied cells based on how close they
are to other parasite-occupied cells. The cell assignment
repeats until the given proportion of cells (0.1–0.9) has
been assigned. The “clustering factor” input modifies the
weighting of a cell’s probability of being assigned as
parasite-occupied. When the clustering factor input is
0, there is no increased probability of selection for cells
near previously assigned cells (resulting in a random dis-
tribution). As the clustering factor input increases, the
probability of selecting a cell based on its proximity to
parasite-occupied cells increases.

Input data

Our model does not take any external data as input to
inform model processes.

Submodels

Movement

Host movement in each timestep is simulated as a ran-
dom walk where a host has an equal probability of doing
one of the following: remaining in its location, moving
one cell up, moving one cell right, moving one cell down,
or moving one cell left.

Parasite acquisition

When a host occupies a parasite-occupied cell at the end
of a timestep, the number of parasites it gains is a single
draw from a binomial distribution with a success
probability of 0.5. Thus, a host may gain either one or
zero parasites during a timestep (with hosts remaining in

the same cell for multiple timesteps having the chance to
acquire multiple parasites successively). The probability
of parasite acquisition was held constant both within and
among simulations, as variation in parasite acquisition is
already achieved by the varying parasite densities among
simulations.

Parasite recovery/loss

Upon acquisition of a parasite by a host, each parasite is
given an infection duration in number of timesteps,
which is drawn from a negative binomial distribution
with a success probability of either 5%, 15%, or 25%
(representing recovery probability or rate). This process is
a probabilistic analog to the recovery rate in a traditional
compartmental disease model (e.g., a susceptible-
infected-recovered model like those discussed in Keeling
& Rohani, 2011)—a host has an X probability of losing a
parasite in a given timestep, and thus on average X% of
hosts with parasites will lose one in a given time step.
These probabilities remain constant within a given simu-
lation but vary among different simulations.

Simulations

We generated 144 total landscapes, each representing a
different combination of parasite density and spatial
aggregation (Figure 1). Density varied from 0.1 to 0.9 in
intervals of 0.1, and clustering factor inputs varied from
0 to 15 in intervals of 1, which corresponded to Moran’s
I values of ~0 to ~0.2. For each recovery probability (5%,
15%, or 25%) and each landscape, we ran 10 separate sim-
ulations for 100 timesteps, for a total of 4320 simulations
(144 landscape configurations × three recovery rates × 10
replicates).

For each simulation we calculated the dispersion
(variance: mean ratio) and Hoover index of the host
population’s “snapshot” burdens. The dispersion was cal-
culated because it is simple to calculate across a wide
variety of scenarios, easy to understand, and can be par-
tially representative of the range of burdens observed. We
also calculated the Hoover index, as it is recommended
as a measure of aggregation by McVinish and Lester
(2020) due to its biological interpretation—it represents
the proportion of parasites that would need to be
redistributed among hosts so that each host has an equal
parasite burden. Accordingly, the index ranges from 0 to
1. Notably, a burden distribution may have a high
Hoover index but a low dispersion value if the magnitude
of burdens is low throughout all hosts. We also calculated
the Pearson correlation coefficients between individual
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host “snapshot” and cumulative parasite burdens across
host populations at the end of each simulation. We then
compared dispersion values, Hoover indices, and correla-
tion coefficients among the different landscapes. A subset
of simulations (n = 360) was conducted for 1000
timesteps to assess how patterns in dispersion and corre-
lation coefficients change across longer timeframes,
showing that 100 timesteps was sufficient for parasite
aggregation analyses (Appendix S2). In addition, we ran
a larger set of simulations on the same landscape configu-
rations and recovery rates but with 100 replicates each
instead of 10. This revealed no qualitative differences in
the results of simulations with 10 or 100 replicates per
landscape and recovery rate combination (Appendix S3).
Here, we show the results from the simulations with
10 replicates to more clearly show individual points in
the figures.

RESULTS

Increases in parasite spatial aggregation (Moran’s I) were
associated with increases in host–parasite aggregation as
measured by the dispersion of “snapshot” parasite

burdens (Figure 2). However, the positive effect of spatial
aggregation on parasite burden dispersion was weaker at
higher parasite densities. For example, at low Moran’s
I (~0), all parasite density values led to dispersion values
less than 2. But at higher Moran’s I (~0.12–0.18) land-
scapes with 10% of their cells parasite-occupied resulted in
some dispersion values over 6 at the 0.05 recovery rate,
while the dispersions of landscapes with 90% of cells
parasite-occupied were still less than 2. This effect was
dampened with recovery rate, where higher recovery rates
led to a reduced increase in dispersion with parasite spatial
aggregation, and reduced dispersion values in general. The
dispersion values observed from simulations with no para-
site spatial aggregation (i.e., the points on the left of
each panel) roughly approximate those that might be
observed from a non-spatial model; while there are
slight differences among spatial and non-spatial
implementations, they are not meaningful relative to
parasite density or aggregation (see Appendix S1).

Parasite burden Hoover index patterns were generally
similar to those of parasite burden dispersion (Figure 3).
As parasite spatial aggregation increased, so did the
Hoover index. Again, the positive effect of spatial aggre-
gation on dispersion was weaker at higher parasite

F I GURE 2 The dispersion (variance:mean ratio) of the distribution of “snapshot” parasite burdens of the host population at the end of

simulations increases with increasing parasite spatial aggregation, but less so at higher parasite densities. The spatial aggregation of parasites

on the landscape, as represented by Moran’s I, increases along the X-axis. Darker colors represent simulations with lower parasite densities,

and lighter colors represent higher densities. Each point represents the outcome of one simulation, and the lines represent the average trend

for that parasite density level. Each panel displays results from simulations with different recovery rates.
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density. For example, at the 0.05 recovery rate, land-
scapes with 10% of their cells occupied by parasites led to
Hoover indices around 0.5 at low spatial aggregation (~0
Moran’s I) but around 0.8 at high spatial aggregation
(~0.12 Moran’s I). Landscapes with 90% parasite-occupied
cells, however, led to Hoover indices around 0.15 for all
levels of spatial aggregation. In general, as parasite den-
sity on the landscape decreased, the Hoover index of
“snapshot” burdens increased. At faster recovery rates,
Hoover index values remain similar or slightly increase
compared to equivalently parameterized simulations at
slower recovery rates. This suggests the aggregation of
parasite burdens as measured by Hoover’s index was
observed with a smaller range of values between the least
and most parasitized individuals for faster rates of
recovery.

In almost every simulation, the correlation between
hosts’ “snapshot” and cumulative burdens was positive
(Figure 4). In other words, hosts with high parasite bur-
dens at the end of a simulation typically also had high
parasite burdens throughout the simulation, including
parasites that were lost. The strength of the correlation
increased with higher parasite spatial aggregation. Slower
recovery rates also led to higher correlation coefficients,

as it directly reduces the difference between “snapshot”
and cumulative burdens (i.e., fewer parasites acquired
near the end of the simulation are lost). At a 0.05 recov-
ery rate, correlation coefficients ranged from ~0.5 at low
Moran’s I to ~0.85 at high Moran’s I, but at a 0.25 recov-
ery rate they only ranged from ~0.25 to ~0.6 at similar
Moran’s I values. Finally, landscapes with higher parasite
density had slightly lower correlation coefficients
between “snapshot” and cumulative burdens.

DISCUSSION

We assessed how the spatial aggregation of parasites
influenced the distribution of parasite burdens among a
host population across a range of parasite densities using
an agent-based model. Host burdens were highly aggre-
gated when parasite spatial aggregation was high, but less
so as the proportion of the landscape occupied by para-
sites increased. This suggests that the spatial arrangement
of environmental or trophically transmitted parasites is
most important at low-to-moderate parasite density.
Further, spatial aggregation of parasites on the landscape
led to high correlation between the parasite burdens of

F I GURE 3 The Hoover indices of the distribution of “snapshot” parasite burdens of the host population at the end of simulations

increase with increasing parasite spatial aggregation, but less so at higher parasite densities. The spatial aggregation of parasites on the

landscape as represented by Moran’s I increases along the X-axis. Darker colors represent simulations with lower parasite densities, and

lighter colors represent higher densities. Each point represents the outcome of one simulation, and the lines represent the average trend for

that parasite density level. Each panel displays results from simulations with different recovery rates.
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hosts at simulation end and the parasites they acquired
cumulatively throughout the simulation. Thus, observa-
tions of hosts with consistently high parasite burdens
may be due to spatial aggregation of parasites alone.

The model demonstrates that, all else being equal,
spatial aggregation of environmental parasites can lead to
the commonly observed pattern of most hosts in a popu-
lation bearing few, if any, parasites, while a few hosts
bear high numbers of parasites. The results of our model
match findings from experiments performed on Tri.
confusum by Keymer and Anderson (1979), where more
clustered arrangements of environmental parasites led to
greater aggregation of parasite burdens. More specifically,
while Keymer and Anderson measured the spatial aggre-
gation of parasites with the variance: mean ratio of para-
site eggs in sections of their experimental arena and we
used Moran’s I, we both observed increases in the
variance:mean ratio (AKA dispersion) of host–parasite
burdens with increases in our respective spatial distribu-
tion measures. Spatial variance:mean ratios and Moran’s
I values are not perfect analogs, but they are generally
positively correlated, suggesting that our model supports
the experimental findings. Further, our work shows that

the positive effect of parasite spatial aggregation on host
burden dispersion is most likely to be observed when par-
asite density is low-to-moderate and hosts lose parasites
slowly. However, it should be noted that when parasite
density is extremely low such that hosts rarely encounter
parasites, parasite aggregation on hosts would likely be
low irrespective of parasite spatial aggregation. This sce-
nario would represent an “incidental” host of a parasite
and, thus, is of less interest in the context of parasite bur-
den aggregation.

Parasite burden aggregation is observed in a diversity
of systems, including fish, amphibians, birds, and mam-
mals (Shaw et al., 1998; Shaw & Dobson, 1995), and
drivers can be extrinsic (e.g., spatial parasite patterns) or
intrinsic to the hosts (e.g., sex or body size). Based on our
model, spatial aggregation of parasites has little effect on
parasite aggregation on hosts in high parasite density sce-
narios, which suggests that aggregated host burdens
observed in such contexts may be more driven by host
characteristics such as sex and/or body size (Devevey &
Brisson, 2012), behavior (Boyer et al., 2010), and/or
immunity (Johnson & Hoverman, 2014; Tinsley et al.,
2020) (which our model did not include). Alternatively,

F I GURE 4 The correlation coefficients between individual hosts’ “snapshot” parasite burdens (parasite count at simulation end) and

cumulative parasite burdens (every parasite acquired, including those lost) increase with parasite clustering. The clustering of parasites on

the landscape as represented by Moran’s I increases along the X-axis. Darker colors represent simulations with lower parasite densities, and

lighter colors represent higher densities. Each point represents the outcome of one simulation (i.e., the correlation coefficient for the

“snapshot” and cumulative burdens of that simulation’s population of hosts). The black lines represent the average trend in correlation

coefficients with increasing parasite spatial aggregation. Each panel displays results from simulations with different recovery rates.
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at low parasite density, the effect of parasite spatial aggre-
gation could overwhelm individual host differences sim-
ply by some hosts happening to move through parasite
clusters. This relationship between spatial aggregation of
parasites and aggregation on hosts is particularly relevant
to efforts aiming to understand, model, or control dis-
eases of wildlife or human populations, where parasite
aggregation can be of great importance (Rabajante, 2023;
Werkman et al., 2020; Wilber et al., 2020).

Our model also suggests that the spatial arrangement
of parasites could play a role in the consistency of para-
site burdens experienced by hosts over time. If parasite
burdens are driven by individual characteristics, it could
be assumed that hosts that are observed with high para-
site burdens are likely consistently parasitized at those
levels due to their attributes. However, our model shows
that in the absence of individual differences among hosts,
high spatial aggregation of parasites can also lead to con-
sistency in individual parasite burdens over time
(Figure 4). In Peromyscus maniculatus, specific individ-
uals have been observed to harbor similar tick burdens
over successive captures (Devevey & Brisson, 2012),
which can be attributed to host characteristics, but our
model presents the alternative explanation that while
variation among hosts is almost ubiquitous across sys-
tems, high spatial aggregation in parasites alone can the-
oretically lead to consistent burdens on specific hosts. A
scenario where parasite burden consistency is wholly
explained by parasite spatial distribution is highly
unlikely in nature, but the possibility of such a pattern
suggests that assumptions of host characteristic-driven
burden consistency should be evaluated if the relation-
ship varies widely. Inversely, when parasites are more
evenly distributed across the landscape (i.e., spatial aggre-
gation is low) and variation in host attributes is lower,
single observations of parasite burdens may be less pre-
dictive of lifetime parasite loads. Many studies do not
explicitly investigate or report the consistency in individ-
ual parasite burdens over time. Thus, future work should
consider exploring temporal parasite burden patterns in
concert with host attributes and parasite spatial arrange-
ment to further elucidate the drivers of observed parasit-
ism patterns.

Together these results show that in the simple sce-
nario where host organisms are identical, complex pat-
terns of parasitism at the population level can emerge.
Simple models can often generate complex behavior; eco-
logical neutral theory has been used to predict patterns of
biodiversity based solely on ecological drift (assuming no
differences in demographic processes among species in a
community), which can be a useful model when com-
pared to empirical systems (Rosindell et al., 2011).
Similarly, models like the one presented here that assume

no intrinsic differences between individuals within a spe-
cies may prove to be a useful metric by which to compare
empirical parasite burden data (see Gourbière et al., 2015
for another example).

Our model was designed to be tractable and not spe-
cific to any given system, thus making its results general-
izable for parasite spatial configurations that could be
realistically observed across different systems (Levins,
1966). Future work could build upon this model for more
specific applications. First, parasites are not exhaustible
in the model (i.e., their number is not reduced when
acquired by hosts), which is a reasonable simplification
in many systems given that free-living parasites or para-
sites in prey generally vastly outnumber their hosts.
However, for scenarios where parasite abundance is lim-
ited, the parasite-occupied cells in our model could be
made exhaustible. Second, hosts in our model roam
nomadically and do not interact with each other. Future
models could feature some degree of sociality and/or ter-
ritoriality in host behavior or incorporate resource selec-
tion. For our purposes, using simple movement rules
generalizes our results to apply widely and provide base-
line predictions before complex movement behavior is
considered. Finally, hosts and parasites operate totally
independently in the model; that is, hosts do not avoid
parasites, nor is their behavior influenced by the number
they have acquired. Again, this generalizes our results,
given that different systems may feature parasite avoid-
ance or the opposite when parasites are associated with
resources, and movement behavior can change in differ-
ent ways with infection depending on the organism.
Finally, parasites lost by hosts disappear from the model,
which is a reasonable simplification for multi-host envi-
ronmental parasites or parasites that are gained via con-
sumption, but not so for single-host environmental
parasites (though spatial heterogeneity may manifest dif-
ferently in such cases). Future work could implement
one or more of these complexities to extend the model
and provide more insight into how the role of space in
parasite aggregation changes among different contexts.
In addition, our results could be tested empirically with a
large-scale, manipulative field experiment, wherein para-
sites are placed in the environment with different densi-
ties and spatial arrangements across treatments.

This model provides explicit mathematical evidence
of the potential for spatial aggregation of environmental
or trophically transmitted parasites to drive varying pat-
terns of parasite burdens in host populations. The
uncomplicated implementation provides a resultingly
straightforward interpretation that points toward con-
texts of low-moderate parasite density combined with
suspected spatial aggregation of parasites as being scenar-
ios where spatial arrangement may be most important.
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Future theoretical work could explore how robust
these results are to modifying parasite ecology or host
behavior, and empirical studies could more explicitly
investigate the consistency of parasite burdens with
reference to their spatial arrangement. Overall, this
work serves as a theoretical indication that fine-scale
spatial patterns of parasites can be highly influential in
certain contexts.
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